Fundamentos de Matemática - professores.im-uff.mat.br · Admita que o pai de João esteja dizendo...

Post on 14-Nov-2018

214 views 0 download

Transcript of Fundamentos de Matemática - professores.im-uff.mat.br · Admita que o pai de João esteja dizendo...

Fundamentos de Matemática

Humberto José Bortolossi

Departamento de Matemática Aplicada

Universidade Federal Fluminense

Aula 1

2 de janeiro de 2012

Aula 1 Fundamentos de Matemática 1

Apresentação

Aula 1 Fundamentos de Matemática 2

Ementa e Bibliografia Básica

Ementa

Linguagem matemática: lógica proposicional; predicados equantificadores; demonstrações. Números naturais; princípioda indução. Recursão, iteração e indução.

Bibliografia Básica

Lehman, E.; Leighton, T. Mathematics for Computer Science. LectureNotes. MIT, 2004.

Rosen, K. H. Discrete Mathematics and Its Applications. McGraw-HillInternational Edition, 2007.

Malta, I.; Pesco, S.; Lopes, H. Cálculo a Uma Variável. Volume I. UmaIntrodução ao Cálculo. Editora PUC-Rio, 2002.

Aula 1 Fundamentos de Matemática 3

Ementa e Bibliografia Básica

Ementa

Linguagem matemática: lógica proposicional; predicados equantificadores; demonstrações. Números naturais; princípioda indução. Recursão, iteração e indução.

Bibliografia Básica

Lehman, E.; Leighton, T. Mathematics for Computer Science. LectureNotes. MIT, 2004.

Rosen, K. H. Discrete Mathematics and Its Applications. McGraw-HillInternational Edition, 2007.

Malta, I.; Pesco, S.; Lopes, H. Cálculo a Uma Variável. Volume I. UmaIntrodução ao Cálculo. Editora PUC-Rio, 2002.

Aula 1 Fundamentos de Matemática 4

Programação e Avaliação

Programação: O curso terá aulas expositivas com o instrutor àssegundas, quartas e sextas. As sessões de terça e quintaserão realizadas com o monitor e consistirão de resoluçãoe discussão das listas de exercícios.

Avaliação: Baseada em duas provas, listas de exercícios,desempenho nas aulas e sessões de discussão.

Datas das provas: 17/01/2012 (terça-feira) e 31/01/2011(terça-feira).

Página WEB:

http://www.professores.uff.br/hjbortol/disciplinas/2012.1/fgv00001/

Aula 1 Fundamentos de Matemática 5

Programação e Avaliação

Programação: O curso terá aulas expositivas com o instrutor àssegundas, quartas e sextas. As sessões de terça e quintaserão realizadas com o monitor e consistirão de resoluçãoe discussão das listas de exercícios.

Avaliação: Baseada em duas provas, listas de exercícios,desempenho nas aulas e sessões de discussão.

Datas das provas: 17/01/2012 (terça-feira) e 31/01/2011(terça-feira).

Página WEB:

http://www.professores.uff.br/hjbortol/disciplinas/2012.1/fgv00001/

Aula 1 Fundamentos de Matemática 6

Elementos de Lógica e LinguagemMatemáticas

Aula 1 Fundamentos de Matemática 7

O significado das palavras

linguagem do cotidiano6=

linguagem matemática

Aula 1 Fundamentos de Matemática 8

O significado das palavras

linguagem do cotidiano6=

linguagem matemática

Aula 1 Fundamentos de Matemática 9

Exemplo

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. Depois da divulgação do resultadodo vestibular, João foi visto com um carro novo. É então verdade que João foi aprovadono vestibular?

Resposta: não! João poderia, por exemplo, não ter sido aprovado no vestibular e terganhado o carro em um sorteio.

Equívoco: na linguagem do cotidiano, é comum assumir que se a sentença

Se João for aprovado no vestibular, então João terá um carro novo.

é verdadeira, então também é verdadeira a sentença

Se João tem um carro novo, então João foi aprovado no vestibular.

Aula 1 Fundamentos de Matemática 10

Exemplo

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. Depois da divulgação do resultadodo vestibular, João foi visto com um carro novo. É então verdade que João foi aprovadono vestibular?

Resposta: não! João poderia, por exemplo, não ter sido aprovado no vestibular e terganhado o carro em um sorteio.

Equívoco: na linguagem do cotidiano, é comum assumir que se a sentença

Se João for aprovado no vestibular, então João terá um carro novo.

é verdadeira, então também é verdadeira a sentença

Se João tem um carro novo, então João foi aprovado no vestibular.

Aula 1 Fundamentos de Matemática 11

Exemplo

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. Depois da divulgação do resultadodo vestibular, João foi visto com um carro novo. É então verdade que João foi aprovadono vestibular?

Resposta: não! João poderia, por exemplo, não ter sido aprovado no vestibular e terganhado o carro em um sorteio.

Equívoco: na linguagem do cotidiano, é comum assumir que se a sentença

Se João for aprovado no vestibular, então João terá um carro novo.

é verdadeira, então também é verdadeira a sentença

Se João tem um carro novo, então João foi aprovado no vestibular.

Aula 1 Fundamentos de Matemática 12

Exemplo

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. Depois da divulgação do resultadodo vestibular, João foi visto com um carro novo. É então verdade que João foi aprovadono vestibular?

Resposta: não! João poderia, por exemplo, não ter sido aprovado no vestibular e terganhado o carro em um sorteio.

Equívoco: na linguagem do cotidiano, é comum assumir que se a sentença

Se João for aprovado no vestibular, então João terá um carro novo.

é verdadeira, então também é verdadeira a sentença

Se João tem um carro novo, então João foi aprovado no vestibular.

Aula 1 Fundamentos de Matemática 13

Exemplo

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. Depois da divulgação do resultadodo vestibular, João foi visto com um carro novo. É então verdade que João foi aprovadono vestibular?

Resposta: não! João poderia, por exemplo, não ter sido aprovado no vestibular e terganhado o carro em um sorteio.

Equívoco: na linguagem do cotidiano, é comum assumir que se a sentença

Se João for aprovado no vestibular, então João terá um carro novo.

é verdadeira, então também é verdadeira a sentença

Se João tem um carro novo, então João foi aprovado no vestibular.

Aula 1 Fundamentos de Matemática 14

Se A, então B: hipótese e tese

Aula 1 Fundamentos de Matemática 15

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 16

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 17

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 18

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 19

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 20

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Hipótese: m e n são inteiros pares.Tese: o produto m · n é um inteiro par.

Aula 1 Fundamentos de Matemática 21

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Hipótese: m é um inteiro múltiplo de 3.Tese: m é um inteiro múltiplo de 9.

Aula 1 Fundamentos de Matemática 22

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Hipótese: m é um inteiro múltiplo de 3.Tese: m é um inteiro múltiplo de 9.

Aula 1 Fundamentos de Matemática 23

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Hipótese: m é um inteiro múltiplo de 3.Tese: m é um inteiro múltiplo de 9.

Aula 1 Fundamentos de Matemática 24

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Hipótese: m é um inteiro múltiplo de 3.Tese: m é um inteiro múltiplo de 9.

Aula 1 Fundamentos de Matemática 25

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Hipótese: m é um inteiro ímpar.Tese: existe um inteiro k tal que m = 2 · k2 + 1.

Aula 1 Fundamentos de Matemática 26

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Hipótese: m é um inteiro ímpar.Tese: existe um inteiro k tal que m = 2 · k2 + 1.

Aula 1 Fundamentos de Matemática 27

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Hipótese: m é um inteiro ímpar.Tese: existe um inteiro k tal que m = 2 · k2 + 1.

Aula 1 Fundamentos de Matemática 28

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Hipótese: m é um inteiro ímpar.Tese: existe um inteiro k tal que m = 2 · k2 + 1.

Aula 1 Fundamentos de Matemática 29

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Hipótese: n é um inteiro positivo.Tese: n2 + n + 41 é um número primo.

Aula 1 Fundamentos de Matemática 30

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Hipótese: n é um inteiro positivo.Tese: n2 + n + 41 é um número primo.

Aula 1 Fundamentos de Matemática 31

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Hipótese: n é um inteiro positivo.Tese: n2 + n + 41 é um número primo.

Aula 1 Fundamentos de Matemática 32

Se A, então B: hipótese e tese

Na sentença

Se A, então B.

A é denominada hipótese e B é denominada tese.

Exemplo:

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Hipótese: n é um inteiro positivo.Tese: n2 + n + 41 é um número primo.

Aula 1 Fundamentos de Matemática 33

Se A, então B: exemplo econtraexemplo

Aula 1 Fundamentos de Matemática 34

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 35

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 36

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 37

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 38

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 39

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 40

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 41

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 42

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Exemplo: m = 18.Satisfaz a hipótese: m = 18 é múltiplo de 3.Satisfaz a tese: m = 18 é múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Aula 1 Fundamentos de Matemática 43

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 44

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 45

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 46

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 47

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 48

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.

Exemplo: m = 1.Satisfaz a hipótese: m = 1 é um inteiro ímpar.Satisfaz a tese: se k = 0, então 2 · k2 + 1 = 2 · (0)2 + 1 = 1 = m.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que 2 · k2 + 1 = m, pois 2 · k2 + 1 > 0para todo inteiro k e m = −3 < 0.

Aula 1 Fundamentos de Matemática 49

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 50

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 51

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 52

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 53

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 54

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Exemplo: n = 1.Satisfaz a hipótese: n = 1 é um inteiro positivo.Satisfaz a tese: n2 + n + 41 = (1)2 + 1 + 41 = 43 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese: n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 não éum número primo.

Aula 1 Fundamentos de Matemática 55

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 56

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 57

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 58

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 59

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 60

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 61

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 62

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 63

Se A, então B: exemplo e contraexemplo

Um exemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e satisfaz a tese B.

Um contraexemplo para uma sentença “Se A, então B.” é um objetomatemático que satisfaz a hipótese A e não satisfaz a tese B.

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Exemplo: m = 2 e n = 2.Satisfaz a hipótese: m = 2 e n = 2 são inteiros pares.Satisfaz a tese: m · n = (2) · (2) = 4 é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hipótese, obrigatoriamentetambém irá satisfazer a tese. De fato: se m e n satisfazem a hipótese, então m e n sãointeiros pares. Mas o produto de inteiros pares é inteiro par. Logo, m · n é inteiro par esatisfaz a tese.

Aula 1 Fundamentos de Matemática 64

Se A, então B: verdadeira ou falsa?

Aula 1 Fundamentos de Matemática 65

Se A, então B: verdadeira ou falsa?

Com relação a uma sentença da forma “Se A, então B.”:

(1) Ela possui um e somente um dos atributos: verdadeira e falsa.

(2) Ela é verdadeira se não possui contraexemplos.

(3) Ela é falsa se possui pelo menos um contraexemplo.

(4) (Demonstração por absurdo) Se ao admitirmos que ela possuium determinado atributo (verdadeira ou falsa, respectivamente),chegamos à uma contradição da regra (1), devemos concluirque o atributo correto é o outro (falsa ou verdadeira,respectivamente).

Regras do Jogo

Aula 1 Fundamentos de Matemática 66

Se A, então B: verdadeira ou falsa?

Com relação a uma sentença da forma “Se A, então B.”:

(1) Ela possui um e somente um dos atributos: verdadeira e falsa.

(2) Ela é verdadeira se não possui contraexemplos.

(3) Ela é falsa se possui pelo menos um contraexemplo.

(4) (Demonstração por absurdo) Se ao admitirmos que ela possuium determinado atributo (verdadeira ou falsa, respectivamente),chegamos à uma contradição da regra (1), devemos concluirque o atributo correto é o outro (falsa ou verdadeira,respectivamente).

Regras do Jogo

Aula 1 Fundamentos de Matemática 67

Se A, então B: verdadeira ou falsa?

Com relação a uma sentença da forma “Se A, então B.”:

(1) Ela possui um e somente um dos atributos: verdadeira e falsa.

(2) Ela é verdadeira se não possui contraexemplos.

(3) Ela é falsa se possui pelo menos um contraexemplo.

(4) (Demonstração por absurdo) Se ao admitirmos que ela possuium determinado atributo (verdadeira ou falsa, respectivamente),chegamos à uma contradição da regra (1), devemos concluirque o atributo correto é o outro (falsa ou verdadeira,respectivamente).

Regras do Jogo

Aula 1 Fundamentos de Matemática 68

Se A, então B: verdadeira ou falsa?

Com relação a uma sentença da forma “Se A, então B.”:

(1) Ela possui um e somente um dos atributos: verdadeira e falsa.

(2) Ela é verdadeira se não possui contraexemplos.

(3) Ela é falsa se possui pelo menos um contraexemplo.

(4) (Demonstração por absurdo) Se ao admitirmos que ela possuium determinado atributo (verdadeira ou falsa, respectivamente),chegamos à uma contradição da regra (1), devemos concluirque o atributo correto é o outro (falsa ou verdadeira,respectivamente).

Regras do Jogo

Aula 1 Fundamentos de Matemática 69

Se A, então B: verdadeira ou falsa?

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 70

Se A, então B: verdadeira ou falsa?

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 71

Se A, então B: verdadeira ou falsa?

Se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.

Contraexemplo: m = 6.Satisfaz a hipótese: m = 6 é múltiplo de 3.Não satisfaz a tese: m = 6 não é múltiplo de 9.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 72

Se A, então B: verdadeira ou falsa?

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2·k2+1.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que2 · k2 + 1 = m, pois 2 · k2 + 1 > 0 para todo inteiro k em = −3 < 0.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 73

Se A, então B: verdadeira ou falsa?

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2·k2+1.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que2 · k2 + 1 = m, pois 2 · k2 + 1 > 0 para todo inteiro k em = −3 < 0.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 74

Se A, então B: verdadeira ou falsa?

Se m é um inteiro ímpar, então existe um inteiro k tal que m = 2·k2+1.

Contraexemplo: m = −3.Satisfaz a hipótese: m = −3 é um inteiro ímpar.Não satisfaz a tese: não existe inteiro k tal que2 · k2 + 1 = m, pois 2 · k2 + 1 > 0 para todo inteiro k em = −3 < 0.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 75

Se A, então B: verdadeira ou falsa?

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese:n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 nãoé um número primo.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 76

Se A, então B: verdadeira ou falsa?

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese:n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 nãoé um número primo.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 77

Se A, então B: verdadeira ou falsa?

Se n é um inteiro positivo, então n2 + n + 41 é um número primo.

Contraexemplo: n = 40.Satisfaz a hipótese: n = 40 é um inteiro positivo.Não satisfaz a tese:n2 + n + 41 = (40)2 + 40 + 41 = 1681 = 412 = 41 · 41 nãoé um número primo.

Logo a sentença (proposição) é falsa!

Aula 1 Fundamentos de Matemática 78

Se A, então B: verdadeira ou falsa?

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hi-pótese, obrigatoriamente também irá satisfazer a tese. De fato:se m e n satisfazem a hipótese, então m e n são inteiros pa-res. Mas o produto de inteiros pares é inteiro par. Logo, m · n éinteiro par e satisfaz a tese.

Logo a sentença (proposição) é verdadeira!

Aula 1 Fundamentos de Matemática 79

Se A, então B: verdadeira ou falsa?

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hi-pótese, obrigatoriamente também irá satisfazer a tese. De fato:se m e n satisfazem a hipótese, então m e n são inteiros pa-res. Mas o produto de inteiros pares é inteiro par. Logo, m · n éinteiro par e satisfaz a tese.

Logo a sentença (proposição) é verdadeira!

Aula 1 Fundamentos de Matemática 80

Se A, então B: verdadeira ou falsa?

Se m e n são inteiros pares, então o produto m · n é um inteiro par.

Contraexemplo: não existe, pois todo objeto que satisfaz a hi-pótese, obrigatoriamente também irá satisfazer a tese. De fato:se m e n satisfazem a hipótese, então m e n são inteiros pa-res. Mas o produto de inteiros pares é inteiro par. Logo, m · n éinteiro par e satisfaz a tese.

Logo a sentença (proposição) é verdadeira!

Aula 1 Fundamentos de Matemática 81

A recíproca de “Se A, então B.”

Aula 1 Fundamentos de Matemática 82

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 83

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 84

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 85

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 86

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 87

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9.Sentença: (a sentença é falsa)

Recíproca: se m é um inteiro múltiplo de 9, então m é um inteiro múltiplo de 3.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 88

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.Sentença: (a sentença é falsa)

Recíproca: se existe um inteiro k tal que m = 2 · k2 + 1, então m é um inteiro ímpar.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 89

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.Sentença: (a sentença é falsa)

Recíproca: se existe um inteiro k tal que m = 2 · k2 + 1, então m é um inteiro ímpar.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 90

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.Sentença: (a sentença é falsa)

Recíproca: se existe um inteiro k tal que m = 2 · k2 + 1, então m é um inteiro ímpar.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 91

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m é um inteiro ímpar, então existe um inteiro k tal que m = 2 · k2 + 1.Sentença: (a sentença é falsa)

Recíproca: se existe um inteiro k tal que m = 2 · k2 + 1, então m é um inteiro ímpar.Recíproca: (a recíproca é verdadeira: prove!)

Aula 1 Fundamentos de Matemática 92

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m e n são inteiros pares, então o produto m · n é um inteiro par.Sentença: (a sentença é verdadeira)

Recíproca: se o produto m · n é um inteiro par, então m e n são inteiros pares.Recíproca: (a recíproca é falsa: prove!)

Aula 1 Fundamentos de Matemática 93

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m e n são inteiros pares, então o produto m · n é um inteiro par.Sentença: (a sentença é verdadeira)

Recíproca: se o produto m · n é um inteiro par, então m e n são inteiros pares.Recíproca: (a recíproca é falsa: prove!)

Aula 1 Fundamentos de Matemática 94

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m e n são inteiros pares, então o produto m · n é um inteiro par.Sentença: (a sentença é verdadeira)

Recíproca: se o produto m · n é um inteiro par, então m e n são inteiros pares.Recíproca: (a recíproca é falsa: prove!)

Aula 1 Fundamentos de Matemática 95

A recíproca de “Se A, então B.”

A recíproca de uma sentença na forma

Se A, então B.

é a sentença

Se B, então A.

Sentença: se m e n são inteiros pares, então o produto m · n é um inteiro par.Sentença: (a sentença é verdadeira)

Recíproca: se o produto m · n é um inteiro par, então m e n são inteiros pares.Recíproca: (a recíproca é falsa: prove!)

Aula 1 Fundamentos de Matemática 96

Seção de Exercícios

Aula 1 Fundamentos de Matemática 97