• Os gases são altamente compressíveis e ocupam o volume … · lei de gás mais geral: Lei de...

21
Caracter Caracterí sticas sticas dos gases dos gases Os gases são altamente compressíveis e ocupam o volume total de seus recipientes. • Quando um gás é submetido à pressão, seu volume diminui. • Os gases sempre formam misturas homogêneas com outros gases. • Apresentam baixas densidades.

Transcript of • Os gases são altamente compressíveis e ocupam o volume … · lei de gás mais geral: Lei de...

CaracterCaracteríísticassticas dos gasesdos gases

• Os gases são altamente compressíveise ocupam o volume total de seusrecipientes.

• Quando um gás é submetido àpressão, seu volume diminui.

• Os gases sempre formam misturashomogêneas com outros gases.

• Apresentam baixas densidades.

Pressure is the amount of force applied to an area.

P = F

A

Pressãoatmosférica é o peso do porunidade de área.

Pressão atmosférica (P.A.) ao nível do mar.

P.A. é igual a:

��1.00 1.00 atmatm

��760 760 torrtorr (760 mm Hg)(760 mm Hg)

��101.325 101.325 kPakPa

A pressão atmosférica e o barômetro

• Unidades SI:A unidade SI para força é kg

m/s2 = 1NA unidade SI para pressão é

N/m2 (1N/m2 = 1Pa)• A pressão atmosférica

padrão é a pressão necessária para suportar 760 mm de Hg em uma coluna.

• Unidades: 1 atm = 760 mmHg = 760 torr = 1,01325 ×105 Pa = 101,325 kPa.

As leis dos gasesAs leis dos gases

Relação pressão-volume: lei de Boyle

• O volume de certa quantidade fixa de um gás mantido à temperatura constante é inversamente proporcional à pressão. O valor da constante depende da temperatura e da quantidade de gás da amostra.

• Um gráfico de V versus P éum hiperbolóide (a).

• Da mesma forma, um gráfico de V versus 1/P deve ser uma linha reta passando pela origem (b).

Relação temperatura-volume:

lei de Charles

• O volume de certa quantidade fixa de gás mantido a pressão constante é diretamente proporcional à respectiva temperatura absoluta. O valor da constante depende da pressão e da quantidade de gás.

• Um gráfico de V versus T é uma linha reta.

• Quando T é medida em °C, a intercepção no eixo da temperatura é-273,15°C.

• Definimos o zero absoluto, K = -273,15 °C.

Relação quantidade-volume:

lei de Avogadro

• A lei de Gay-Lussac de volumes combinados: a uma determinada temperatura e pressão, os volumes dos gases que reagem entre si estão na proporção dos menores números inteiros.

• Matematicamente: V = constante x n

• Podemos mostrar que 22,4 L de qualquer gás a 0°C contém 6,02 × 1023 moléculas de gás.

• A hipótese de Avogadro: volumes iguais de gases à mesma temperatura e pressão conterão o mesmo número de moléculas.

• A lei de Avogadro: o volume de gás a uma dada temperatura e pressão é diretamente proporcional àquantidade de matéria do gás.

A equaA equaçção do gão do gáás ideals ideal

• Considere as três leis dos gases:

• Podemos combinar essas relações para chegar a uma lei de gás mais geral:

Lei de Boyle:

Lei de Charles:

Lei de Avogadro:

• Se R é a constante de proporcionalidade (chamada de constante dos gases), então:

• Um gás ideal é um gás hipotético cujos comportamentos da pressão, volume e temperatura são completamente descritos pela equação do gás ideal.

• A equação do gás ideal é:

• R = 0,08206 L atm mol-1 K-1

• Definimos condições normais de temperatura e pressão (CNTP) = 273,15 K, 1 atm.

• O volume ocupado por 1 mol de um gás ideal nas CNTP é:

Exemplo-11) O carbonato da cálcio decompõe-se com aquecimento para produzir CaO(s) e CO2 (g). Uma amostra de CaCO3 édecomposta e o dióxido de carbono é coletado em um frasco de 250 mL. Após completar a decomposição, o gás tem pressão de 1,3 atm à temperatura de 31 oC. Calcule a quantidade de matéria de CO2 produzida.P = 1,3 atmV = 250 mL = 0,250 LT = 31 oC = 304 K

n = (PV) / (RT) = (1,3 atm)(0,250 L) / (0,0821 L atm/ mol K)(304 K)

n = 0,013 mol de CO2

Relação da equação do gás ideal

e das leis dos gases

• Se PV = nRT e n e T são constantes, entãoPV = constante e temos a Lei de Boyle.

• Em geral, se temos um gás sob dois gruposde condições, então:

22

22

11

11

Tn

VP

Tn

VP=

Exemplo-22) Se um cilindro de gás comporta 50,0 L de gás O2 a 18,5 atm e 21 oC, qual o volume que o gás ocupará se a temperatura for mantida enquanto a pressão é reduzida para 1,00 atm?

n e T são constantes. Logo:P1V1 = P2V2

V2 = (P1V1)/P2= (18,5 atm) x (50,0 L) / 1,00 atm = 925 L

Observe que os valores individuais de P e V variam, mas o produto PV é constante.

Exemplo-33) Um balão cheio tem volume de 6,0 L no nível do mar (1 atm) e é incitado a subir até que a pressão seja 0,45 atm. Durante a subida a temperatura do gás cai de 22 oC para -21 oC. Calcule o volume do balão a essa altitude final.P1 = 1 atmP2 = 0,45 atmT1 = 295 KT2 = 273 + (-21) = 252 K

Apenas a quantidade de matéria é constante. Logo: (P1V1) /T1 = (P2V2) / T2

V2 = V1 x (P1/P2) x (T2/T1)= 11 L

AplicaAplicaçções adicionais da equaões adicionais da equaçção ão do gdo gáás ideals ideal

Densidades de gases e massa molar, M

• A densidade tem unidades de massa por unidades de volume. • Reajustando a equação ideal dos gases com M como massa molar,

teremos:

RT

Pd

V

n

RT

P

V

n

nRTPV

MM==

=

=

• n = m / M

• n M = m

• A massa molar de um gás pode ser determinada como se segue:

P

dRT=M

Exemplo-44) Qual é a densidade do vapor de tetracloretode carbono a 714 torr e 125 oC?

1 atm = 760 torrP = 714 torr = 0,939 atmT = 125 + 273 = 398 Kd = (0,939 atm) x (154,0 g/mol) / (0,0821 L atm/mol K)(398 K)

d = 4,43 g/L

P

dRT=M

Exemplo-55) Uma série de medidas é feita para se determinar a massa molar de um gás desconhecido. Primeiro, um grande frasco éevacuado e consta que ele pesa 134,567 g. Então, ele é cheio com o gás a uma pressão de 735 torr a 31 oC e pesado novamente; sua massa é agora 137,456 g. Finalmente, o frasco écheio com água a 31 oC e é encontrada uma massa de 1.067,9 g. (A densidade da água a essa temperatura é 0,997 g/mL). Supondo que a equação do gás ideal se aplica, calcule a massa molar do gás desconhecido.

T = 31+ 273 = 304 KR = 0,0821 L atm/ mol KP = 735 torr = 0,967 atmd =?

P

dRT=M

mgás = mfrasco cheio com o gás – mfrasco evacuado =137,456 – 134,567 g = 2,889 g

Vgás = volume da água que o frasco pode comportar

mágua = mfrasco cheio – mfrasco vazio = 1067,9 g – 134,567 g = 933,3 g

Vágua = m/d = 933,3 g / ( 0,997 g /mL) = 936 mL

dgás = (2,889 g / 0,936 L) = 3,09 g/L

M = (3,09 g/L)(0,0821 L atm/mol K)(304 K) / 0,967 atm = 79,7 g/mol

P

dRT=M

Volumes de gases em reações químicas

• A equação do gás ideal relaciona P, V e T com a quantidade de matéria do gás.

• n pode então ser usado em cálculos estequiométricos.

Exemplo-6 Os air bags de segurança em automóveis contêm gás nitrogêniogerado pela decomposição rápida de azida de sódio de acordo com a equação:

2NaN3(s) ----- 2Na(s) + 3N2(g). Se um air bag tem um volume de 36 L e contém gás nitrogênio a uma pressãode 1,15 atm à temperatura de 26,0 oC, quantos gramas de NaN3 devem ser decompostos?

n = (PV) /(RT) = (1,15 atm)(36 L) / (0,0821 L atm/ mol K)(299 K)n = 1,7 mol de N2

3 mols de N2 ---- 2 mols de NaN3

1,7 mols ------ X X = 1,1 mol de NaN3

mNaN3 = n x M = 1,1 mol x (65,0 g mol-1) = 71,5 g

MisturaMistura de gases e de gases e pressõespressões parciaisparciais

• A pressão exercida por um componente em particular de certa mistura de gases é chamada pressãopressão parcialparcial daquelegás, e a observação de Dalton é conhecida como Lei de Lei de

Dalton das Dalton das pressõespressões parciaisparciais.

• A Lei de Dalton: em uma mistura gasosa, a pressão total édada pela soma das pressões parciais de cada componente:

• Se cada um dos gases obedece à equação do gás ideal, podemos escrever:

L+++=321total

PPPP

=

V

RTnP ii

• Combinando as equações:

Pressões parciais e frações

em quantidade de matéria

• Considere ni a quantidade de matéria de gás i exercendouma pressão parcial Pi, então:

onde Χi é a fração em quantidade de matéria ((nnii //nntt).).

( )

+++=

V

RTnnnP L321total

totalPP ii Χ=

Exemplo-76) Uma mistura gasosa feita de 6,00 g de O2 e 9,00 g de CH4 é colocada em recipiente de 15,0 L a 0 oC. Qual é a pressão parcial de cada gás e a pressão total no recipiente?noxig = 6,00 g / 32 g mol-1 = 0,188 mol

nmet = 9,00 g / 16 g mol-1 = 0,563 mol

Poxig = (0,188 mol) (0,0821 L atm/ mol K) (273 K) / 15,0 L

Poxig = 0,281 atm

Pmet = 0,841 atm

Pt = 0,281 atm + 0,841 atm = 1,122 atm

=

V

RTnP ii

Exemplo-8Um estudo dos efeitos de certos gases no crescimento de plantas requer uma atmosfera sintética composta de 1,5% mol de CO2, 18% mol de O2 e 80% mol de Ar. (a) Calcule a pressão parcial de O2 na mistura se a pressão atmosférica total for de 745 torr. (b) Se a atmosfera é para ser mantida em um espaço de 120 L a 295 K, qual é a quantidade de matéria de O2 necessária?

(a) PO2 = XO2Ptotal

Passo 1: XO2 = (0,180)/(0,180 +0,800 + 0,015) = 0,180

Ptotal = 745/760 = 0,98 atm

Passo 2: PO2 = 0,180 x 0,98 atm = 0,176 atm

(b) PV=nRT

V = 120 L

T= 295 K

nO2 = ?

nO2 = (PV) / (RT) = (0,176 atm) x (120 L) / (0,0821 L atm/ mol K) x (295 K)

nO2 = 0,872 mol

totalPP ii Χ=

TeoriaTeoria cincinééticatica molecularmolecular

• Suposições:– A energia pode ser transferida entre as

moléculas, mas a energia cinética total éconstante à temperatura constante.

– A energia cinética média das moléculas éproporcional à temperatura.

• A teoria cinética molecular nos fornece um entendimento sobre a pressão e a temperaturano nível molecular.

•• A A pressãopressão de um de um ggááss resultaresulta do do nnúúmeromero de de

colisõescolisões porpor unidadeunidade de tempo de tempo nasnas paredesparedes

do do recipienterecipiente..

• A ordem de grandeza da pressão é dada pela frequência e pela força da colisão das moléculas.

• As moléculas de gás têm uma energia cinética média.• Cada molécula tem uma energia diferente.

A A pressãopressão de um de um ggááss éé provocadaprovocada pelaspelas colisõescolisões

das das molmolééculasculas de de ggááss com as com as paredesparedes de de seusseus recipientesrecipientes

• Há propagação de energias individuais de moléculas de gás emqualquer amostra de gases.

• À medida que a temperatura aumenta, a energia cinética média das moléculas de gás aumenta.

Distribuição das velocidades moleculares para o nitrogênio a 0oC.

• À medida que a energia cinética aumenta, a velocidade das moléculas do gás aumenta.

• A velocidade quadrática média, u, é a velocidadede uma molécula do gás que tem energiacinética média.

• A energia cinética média, ε, está relacionada àvelocidade quadrática média:

2

2

1 mv=ε

• Ilustração do efeito do volume finito das moléculas de um gásreal a alta pressão. (a) a baixapressão, o volume das moléculasde gás é pequeno comparadocom o volume do recipiente. (b) a alta pressão, o volume das moléculas de gás é uma fraçãomaior do espaço total disponível.

• Quando as moléculas estãoamontoadas a altas pressões, as forças intermoleculares atrativastornam-se significativas. Porcausa dessas forças atrativas, o impacto de determinada moléculacom a parede do recipientediminui. Como resultado, a pressão é menor que a de um gás ideal.

• À medida que a pressão em um gás aumenta, as moléculas são forçadas a se aproximarem.

• À medida que as moléculas ficam mais próximas, o volume do recipiente torna-se menor.

• Quanto menor for o recipiente, mais espaço as moléculas de gás começam a ocupar.

• Como conseqüência, quantoquanto maiormaior for a for a pressãopressão, o , o

ggááss se se tornatorna menosmenos semelhantesemelhante aoao ggááss idealideal..

• Quanto menor for a distância entre as moléculas de gás, maior a chance das forças de atração se desenvolverem entre as moléculas.

• Conseqüentemente, menos o gás se assemelha com um gás ideal (as moléculas de um gás ideal supostamente não ocupam espaço e não se atraem).

• À medida que a temperatura aumenta, as moléculasde gás se movem mais rapidamente e se distanciammais entre si.

• Altas temperaturas significam também mais energiadisponível para a quebra das forças intermoleculares.

• Conseqüentemente, quantoquanto maiormaior for a for a temperaturatemperatura, ,

maismais ideal ideal éé o o ggááss.

AplicaAplicaçção das leis dos gasesão das leis dos gases

1. O efeito de um aumento de volume a temperatura constante: temperatura constante significa que a energia cinética média das moléculas dos gases permanece inalterada. Isso implica que a velocidade média quadrática das moléculas, u, não varia. Entretanto, se o volume aumenta, as moléculas devem mover-se por uma distância maior entre as colisões. Assim, existem menos colisões por unidade de tempo com as paredes do recipiente, e a pressão diminui. O modelo explica de maneira simples a Lei de Boyle.

2) O efeito do aumento da temperatura a volume constante: aumento na temperatura significa aumento na energia cinética média das moléculas, assim, aumento em u. Se não existe variação no volume, haverá mais colisões com as paredes por unidade de tempo, e a pressão aumenta.

Gases Gases reaisreais: : desviosdesvios dodoComportamentoComportamento idealideal

• O desvio do comportamento ideal depende da temperatura e pressão

PV/RT em função da pressão para 1 mol PV/RT em função da pressão para 1 mol de vários gases a 300 K. Os dados para de gás nitrogênio a 3 temperaturas dife -CO2 referem-se à temperatura de 313 K rentes. À medida que T aumenta, o gás

porque o CO2 se liquefaz à alta pressão aproxima-se mais do comportamentoa 300 K. ideal.

Gases Gases reaisreais: : desviosdesvios dodoComportamentoComportamento idealideal

A equação de van der Waals

) (V − nb) = nRTn2a

V2(P +

Os coeficientes a e b são determinados experimentalmente. O parâmetro aarepresenta o papel das forças de atraatraççãoão e, por isso, é relativamente grande para moléculas que se atraem fortemente. O parâmetro bb representa o papel das repulsõesrepulsões. Ele representa o volume de uma molécula (volume molar das moléculas), porque as forças repulsivas impedem que uma molécula ocupe o volume já ocupado por outra.

Gases Gases reaisreais: : desviosdesvios dodoComportamentoComportamento idealideal

Exemplo -9

Calcule a pressão de um gás real quando 1,50 mols foram confinados em5,0 L a 0oC.

a= 16,2 La= 16,2 L22 x mol x x mol x atmatm--22 b= 8,4 x 10b= 8,4 x 10--22 L molL mol--11

Reorganizando-se a Equação de van der Waals, tem-se:

2

2

V

an

nbV

nRTP −

−=

).104,8()50,1(00,5

)273()...082,0()50,1(12

11

−−

−−

−=

molLxxmolL

KxmolKatmLxmol

2

2

22

)00,5(

)50,1()..2,16(

L

molxmolatml

−−

Exemplo -9

Calcule a pressão de um gás real quando 1,50 mols foram confinados em5,0 L a 0oC.

a= 16,2 L2 x mol x a= 16,2 L2 x mol x atmatm--2 b= 8,4 x 102 b= 8,4 x 10--2 L mol2 L mol--11

atm

xatmxx

xatmx

44,5

)00,5(

)50,1()2,16(

104,850,100,5

273)082,0(50,12

2

2

=

−−

=−

Qual seria a pressão desse gás, nas mesmas condições, se ele fosse tomado comoum gás ideal? Deverá ser maiormaior do que a pressão calculada como gás real.