31 Dias Para o CCNA

392

Click here to load reader

Transcript of 31 Dias Para o CCNA

Page 1: 31 Dias Para o CCNA
Page 2: 31 Dias Para o CCNA

Dispositivos de rede, Componentes e Diagramas Exame CCNA 640-802 Tópicos ■ Descrever o propósito e as funções de vários dispositivos de rede. ■ Selecionar os componentes necessários para atender a uma especificação de rede. ■ Descrever os componentes necessários para comunicações de rede e Internet. ■ Interpretar diagramas de rede. ■ Diferenciar entre LAN / WAN operação e características. Pontos-chave Em seu nível mais fundamental, uma rede pode ser dividido em quatro elementos: ■ As regras ■ As mensagens ■ Os meios de comunicação ■ Os dispositivos Tópicos para hoje? S exame, vamos nos concentrar nos dispositivos usados hoje em dia? S redes, os meios utilizados para interligar os dispositivos e os diferentes tipos de topologias de rede. Dispositivos Hubs e switches são usados para conectar dispositivos fim a uma única rede local. A seguir descreve quando usar um hub e quando usar um switch:

Page 3: 31 Dias Para o CCNA

■ Hubs são tipicamente escolhido como um dispositivo intermediário dentro de uma LAN muito pequenos, onde a largura de banda uso não é uma questão de custos ou limitações existem. Hoje em dia? S redes, hubs estão sendo

substituídos por switches. ■ Switches têm preferência sobre hubs como uma rede de área local (LAN) dispositivo intermediário, pois um switch pode domínios de colisão segmento e proporcionar maior segurança. Switches Ao escolher um switch, os principais fatores a considerar são os seguintes: ■ Custo: Determinado pelo número e tipo de portas, capacidade de gerenciamento de rede, embutidas tecnologias de segurança, e opcionais avançadas tecnologias de comutação.

■ características Interface: Número suficiente de portas para agora, assim como a expansão futura; velocidades de uplink; mistura de UTP e fibra; modularidade. ■ camada de rede hierárquica: Muda na camada de acesso têm necessidades diferentes do que muda a distribuição ou camadas do núcleo. Camada de acesso Switches Interruptores camada de acesso a facilitar a conexão de dispositivos final para a rede. Características de acesso interruptores camada incluem o seguinte: ■ Porta de segurança ■ VLANs ■ Fast Ethernet / Gigabit Ethernet ■ Power over Ethernet (PoE) ■ A agregação de link ■ Qualidade de serviço (QoS) Switches da camada de acesso do Cisco incluem o Catalyst Express 500, Catalyst 2960, Catalyst 3560, e Catalyst 3750 linhas de produtos Catalyst. Camada de switches de distribuição Interruptores camada de distribuição receber os dados dos switches camada de acesso e encaminhar os dados para a camada de núcleo switches. Características dos switches camada de distribuição incluem o seguinte: ■ Layer 3 apoio ■ taxa de transmissão de alta ■ Gigabit Ethernet Gigabit Ethernet/10 ■ componentes redundantes ■ As políticas de segurança / controle de acesso listas ■ A agregação de link ■ Qualidade de serviço (QoS) Cisco switches da camada de distribuição incluem o Catalyst 4500, Catalyst 4900 e Catalyst 6500 produto linhas. Camada de switches core Camada de núcleo interruptores formam a espinha dorsal e são responsáveis pela manipulação de a maioria dos dados sobre

Page 4: 31 Dias Para o CCNA

uma LAN comutada. Características dos switches camada do núcleo incluem o seguinte: ■ Layer 3 apoio ■ taxa de transmissão muito alta ■ Gigabit Ethernet Gigabit Ethernet/10

■ componentes redundantes ■ A agregação de link ■ Qualidade de serviço (QoS) O Catalyst linha de produtos 6500 é ideal para switches core dedicado em ambientes de rede muito grande. Observação: Você não é obrigado a conhecer a linha de produtos Cisco Catalyst para o exame CCNA. Questões do exame são plataforma neutra. Exemplos dados aqui são apenas para fins informativos. Roteadores Roteadores são os dispositivos primários utilizados para interconectar redes? LANs, WANs, e WLANs. Quando você escolher um roteador, os principais fatores a considerar são os seguintes: ■ Expansibilidade: Fornece flexibilidade para adicionar novos módulos conforme as necessidades. ■ Media: Determina o tipo de interfaces do roteador precisa suportar a várias conexões de rede. ■ recursos do sistema operacional: Determina a versão do IOS carregado no router. IOS diferentes versões suporte conjuntos de recursos diferentes. Características a considerar incluem a segurança, QoS, VoIP, roteamento complexidade, e outros serviços. Mídia Mensagens são codificadas e então colocados na mídia. Codificação é o processo de conversão de dados em padrões de energia elétrica, luz ou eletromagnéticas para que ele possa ser realizado na mídia. Tabela 31-1 resume as três meios de rede mais comum em uso hoje. Mídia tabela 31-1 Networking Exemplo de codificação de mídia De cobre de par trançado cabo normalmente usado como tensões LAN media Elétrica Fibra de vidro ou fibras ópticas de plástico em um revestimento de vinil normalmente usado ondas eletromagnéticas para corridas longas em uma LAN e como um tronco Sem fio conecta os usuários locais através das ondas eletromagnéticas do ar Cada tipo de mídia tem suas vantagens e desvantagens. Quando você escolhe a mídia, considerar cada das seguintes opções: ■ Comprimento do cabo: Será que o cabo precisa abranger toda uma sala ou de prédio em prédio? ■ Custo: Será que o orçamento permitir o uso de um tipo de mídia mais caro? ■ Largura de banda: Será que a tecnologia usada com a mídia fornecer largura de banda é adequada? ■ Facilidade de instalação: A equipe de implementação têm a capacidade de instalar o cabo, ou é um fornecedor exigido?

Page 5: 31 Dias Para o CCNA

■ Suscetível a EMI / RFI: É o ambiente local vai interferir com o sinal? Dia 31 5Tabela 31-2 resume padrões de mídia para cabeamento LAN. Tabela 31-2 mídia padrão, comprimento do cabo, e largura de banda Tipo de Ethernet de banda cabo Distância Máxima Tipo 10BASE-T 10 Mbps Cat3/Cat5 UTP 100 m 100BASE-TX 100 Mbps Cat5 UTP 100 m 100BASE-TX 200 Mbps Cat5 UTP 100 m 100BASE-FX multimodo de fibra 100 Mbps 400 m 100BASE-FX multimodo de fibra 200 Mbps 2 km 1000BASE-T 1 Gbps Cat5e UTP 100 m 1000BASE-TX UTP Cat6 1 Gbps 100 m 1000BASE-SX 1 Gbps de fibra multimodo 550 m 1000BASE-LX 1 Gbps A fibra monomodo 2 km 10GBASE-T 10 Gbps Cat6a/Cat7 UTP 100 m 10GBASE-SX4 10 Gbps de fibra multimodo 550 m 10GBASE-LX4 10 Gbps A fibra monomodo 2 km Dispositivos finais são aqueles equipamentos que são ou fonte original ou o destino final de uma mensagem. Dispositivos intermediários conectar dispositivos final à rede para auxiliar na obtenção de um mensagem do dispositivo final de origem para o destino final do dispositivo. Dispositivos de conexão em uma LAN é normalmente feito com cabeamento de par trançado não blindado (UTP). Embora muitos dispositivos mais novos têm uma característica de cruzamento automático que permite que você conecte ou um straight-through ou crossover, a maioria dos dispositivos atualmente exigem o uso de um ou outras. Use cabos straight-through para as seguintes conexões: ■ Mudar para router Ethernet ■ Computer para alternar ■ Computador para hub Use cabo crossover para as seguintes conexões: ■ Alternar para alternar ■ Mudar para hub ■ Hub para hub ■ Router para router (portas Ethernet) ■ computador para computador ■ Computador para router Ethernet 6 31 dias antes de seu exame CCNA

LANs e WANsUma rede de área local (LAN) é uma rede de computadores e outros componentes localizados relativamentejuntos em uma área limitada. LANs podem variar muito de tamanho de um computador em um escritório em casapara centenas de computadores em um escritório corporativo, no entanto, em geral, uma LAN abrange uma área geográfica limitadaárea. Os componentes fundamentais de uma LAN incluem o seguinte:■ Computadores

Page 6: 31 Dias Para o CCNA

■ Interligações (NICs e os meios de comunicação)■ Os dispositivos de rede (hubs, switches e roteadores)■ Protocolos (Ethernet, IP, ARP, DHCP, DNS e assim por diante)Uma rede de área ampla (WAN) geralmente se conecta redes locais que estão geograficamente separados. Uma coleçãode LANs ligadas por um ou mais WANs é chamado de internetwork-assim, temos a Internet.A intranet termo é usado frequentemente para se referir a uma conexão privada de LANs e WANs.Dependendo do tipo de serviço, a conexão com a WAN é normalmente feito em uma das quatro maneiras:■ conexão RJ-11 para uma conexão discada ou modem DSL■ conexão coaxial cabo a um modem a cabo■ conexão 60 pinos de série para um CSU / DSU■ Ligação Controlador RJ-45 para um T1 CSU / DSUCom o crescente número de teletrabalhadores, as empresas têm uma necessidade crescente de seguro, confiávele de baixo custo maneiras de conectar pessoas que trabalham em pequenos escritórios ou escritórios domésticos (SOHO) ououtros locais remotos aos recursos em sites corporativos. Tecnologias de conexão remota para apoiarteletrabalhadores são os seguintes:■ tradicional privada tecnologias WAN, incluindo Frame Relay, ATM, e de linhas alugadas■ IPsec redes privadas virtuais (VPNs)■ de acesso remoto VPN segura através de uma conexão de banda larga através da Internet públicaComponentes necessários para teletrabalhador conectividade incluem o seguinte:■ Início componentes de escritório: Computador, acesso de banda larga (cabo ou DSL), e um roteador VPN ouVPN software cliente instalado no computador.■ componentes Corporativa: VPN-capaz roteadores, concentradores de VPN, multifunções de segurançaaparelhos, autenticação e dispositivos de gerenciamento central para a agregação resiliente e rescisãodas conexões VPN.Ícones de redesAntes de poder interpretar diagramas de rede ou topologias, você primeiro deve entender os símbolosou ícones usados para representar diferentes dispositivos de rede e mídia. Os ícones mostrados na Figura31-1 são os símbolos de rede mais comum para estudos de CCNA.Dia 31 7

Page 7: 31 Dias Para o CCNA

Figura 31-1 Ícones Networking8 31 dias antes de seu exame CCNA

área de trabalhocomputadorLANmídiaWANmídiasem fiomídiarouterlaptopservidorTelefone IP Switch LANsem fiorouterfirewallcubo(suplente)sem fioPonto de AcessoFísicas e topologias lógicasDiagramas de rede são mais frequentemente referida como topologias. A topologia apresenta graficamente osmétodos de interconexão entre dispositivos usados.Topologias físicas se referem ao layout físico de dispositivos e como eles são por cabo. hásete topologias físicas básicas, como mostrado na Figura 31-2.Figura 31-2 Física Topologias

Page 8: 31 Dias Para o CCNA

Ponto-a-Pontobusmalha full mash malha parcial partion mash anelestrelaEstrela estendida

Topologias lógicas se referem à forma de um sinal viaja de um ponto da rede para outro e são em grande parte determinado pelo método de acesso determinístico ou não determinístico. Ethernet é um não-determinístico método de acesso. Logicamente, Ethernet opera como uma topologia de barramento. No entanto, Ethernet redes são quase sempre fisicamente concebido como uma estrela ou em estrela estendida. Outros métodos de acesso usar um método de acesso determinístico. Token Ring e Fiber Distributed Data Interface (FDDI), tanto logicamente operar como anel, passando os dados de uma estação para a outra. Embora essas redes podem ser concebidas como um anel físico, como Ethernet, são muitas vezes concebido como uma estrela ou estrela estendida. Mas, logicamente, eles operam como um anel. O modelo de rede hierárquica Projeto de rede hierárquica envolve dividir a rede em camadas discretas. Cada camada fornece funções específicas que definem o seu papel dentro da rede global. Ao separar as várias funções

que existem em uma rede, o projeto da rede torna-se modular, o que facilita a escalabilidade e desempenho. O modelo de design hierárquico é dividida em três camadas da seguinte forma: ■ camada de Acesso: Permite o acesso de usuários locais e remotos ■ camada de Distribuição: Controla o fluxo de dados entre o acesso e as camadas de núcleo ■ Núcleo camada: backbone de alta velocidade redundantes Figura 31-3 mostra um exemplo de modelo hierárquico.

Page 9: 31 Dias Para o CCNA

Figura 31-3 O Modelo Hierárquico

Dia 31 9 WAN Internet Telefone Rede Núcleo Distribuição Acesso Acesso

Page 10: 31 Dias Para o CCNA

A Enterprise Architecture A Cisco Enterprise Architecture é projetada para fornecer os planejadores de rede com um roteiro para a rede crescimento como o negócio se move através de estágios diferentes. Seguindo o roteiro sugerido, os gerentes de TI pode planejar para futuras atualizações da rede que vai integrar perfeitamente na actual rede e suporte a necessidade cada vez maior de serviços. A Cisco Enterprise Architecture consiste dos seguintes módulos: ■ Arquitetura Campus Enterprise: Refere-se a um grupo de edifícios que contêm muitos LANs. ■ Arquitetura Borda Enterprise: Oferece conectividade para voz, vídeo e dados de e para o serviço prestadores de serviços. ■ Arquitetura Branch Enterprise: Estende a aplicações e serviços dentro do campus para vários locais remotos. ■ Enterprise Data Center Arquitetura: Gerencia e mantém sistemas de dados da empresa (Tais como fazendas de seu servidor). ■ Empresa Teleworker Arquitetura: Conecta escritórios empregado em casa e "guerreiros de estrada" para os recursos de rede da empresa. Figura 31-4 mostra uma representação gráfica do Enterprise Architecture Cisco e como cada módulo de interconexões. Figura 31-4 Módulos da Arquitetura Corporativa 10 31 Dias antes de seu exame CCNA Construção de acesso Campus da empresa Borda da empresa A Enterprise Architecture Distribuição de construção Campus Núcleo Server Farm e Data Center Rede Gestão E-Commerce Internet Conectividade WAN e MAN Site a site VPN Acesso Remoto e VPN WAN e Internet Filial da empresa Dados da empresa Centro Empresa Teletrabalhador Quadro Relay, ATM, Homem ....

Page 11: 31 Dias Para o CCNA

PSTN A ISP ISP B Figura 31-5 mostra um diagrama de rede representando a maioria dos módulos do Enterprise Architecture em um exemplo de implementação do Enterprise Architecture-the Enterprise Data Center é excluída. Observe como as três camadas do modelo hierárquico (acesso, distribuição e núcleo) são integrados para a Arquitetura Enterprise.

Page 12: 31 Dias Para o CCNA

Documentação de redeDocumentação para a sua rede deve incluir, no mínimo, as seguintes categorias principais:■ Router e documentação switch: Inclui tipo de dispositivo, a imagem IOS, localização, hostname,endereços e outras informações importantes.■ Fim do sistema de documentação: Inclui nomes de dispositivo, sistema operacional, detalhes de endereçamento, impacto na rede(tais como o uso da banda).■ diagrama de topologia de rede: Inclui todos os dispositivos e mostra as conexões, bem como adesignações de interface e esquema de endereçamento.Mais frequentemente do que não, a documentação de uma rede é menor do que completa. Para completar a documentação,você pode ter que recolher informação directamente a partir dos dispositivos. Comandos que são úteispara esse processo incluem o seguinte:■ ping: Testes de conectividade direta entre dois dispositivos■ telnet: Testes de acesso remoto, bem como Layer 7 funcionalidade■ show interface ip breve: Verifica status da interface■ show ip route: Verifica operações de roteamento■ mostrar detalhes vizinho cdp: Reúne informações úteis sobre Cisco conectados diretamentedispositivos

Recursos estudoPara os temas de hoje do exame, consulte os seguintes recursos para mais estudo.Recurso Tópico Capítulo Onde Encontrá-lasRecursos fundacionalCCNA Exploration Capítulo 1, "Viver em uma Rede como um Seção 3.2Curriculum on-line: Network Centric-World Plataforma "Fundamentos de rede Capítulo 2, a plataforma para as secções

Page 13: 31 Dias Para o CCNA

"Comunicar sobre Comunicações 2.1.3-2.1.6a Rede "LANs, WANs e Internetworks Seção 2.2Capítulo 10, "Planejamento de LANs: Fazendo o ponto 10.1Redes e Cabeamento Connection "PhysicalLAN e WAN: Getting Seção 10.2.1ConectadoCCNA Exploration Capítulo 1, "Viver em uma Rede como Plataforma pp 10-16Fundamentos de rede Rede Centric-World "Companion Guia Capítulo 2, "Comunicando A Plataforma de Comunicações pp. 37-40Através da Rede "LANs, WANs e Internetworks pp. 41-44Capítulo 10, "Planejamento e LANs: Fazendo o pp. 368-373Redes de cabeamento de conexão "PhysicalLAN e WAN: Getting pp. 374-388 ConnectedCCNA Exploration Capítulo 1, "LAN Design" Switched LAN Seção 1.1Curriculum on-line: ArquiteturaLAN Switching Switches Matching a Seção 1.2e Wireless LAN Funções EspecíficasCCNA Exploration LAN Capítulo 1, "LAN Design" Switched LAN Arquitetura pp 2-15Switching e Wireless Switches Correspondência paraCompanion Guia de Funções específicas LAN pp 15-39CCNA Exploration Capítulo 1, "Introdução Fornecer Seção Integrada 1,1Curriculum on-line: a WANs "Serviços às EmpresasAcessando a WAN Capítulo 6, "Negócio Teleworker Seção Requisitos 6,1Serviços "para Teleworker ServiçosCapítulo 8, Rede "Estabelecer a Seção de Rede 8,1Linha de Base de Desempenho solução de problemas "CCNA Exploration Capítulo 1, "Introdução Fornecer pp Integrada 17/03Acessando a WAN para WANs "Serviços à EmpresaCompanion Guia Capítulo 6, "Requisitos de Negócio para Teleworker pp. 379-384Serviços "Teleworker ServiçosCapítulo 8, "Estabelecendo a Rede pp. 526-541 RedeLinha de Base de Desempenho solução de problemas "ICND1 Exame Oficial Capítulo 1, "Introdução Todos os temas dentro do capítulo pp 5-15Guia de certificação para Redes de ComputadoresConceitos "ICND1 Autorizado Capítulo 1, "A construção de uma Explorando as Funções pp 3-21Self-Study Guia de Rede Simples "da RedeSuplementar RecursosCCNA ICND1 e Flash Cards, Seção 1 Construir uma rede simples pp 4-36Pacote Practice Exam

Page 14: 31 Dias Para o CCNA

Dia 30Modelos de rede e aplicativosExame CCNA 640-802 Tópicos■ Descrever aplicações comuns de rede, incluindo aplicações web.■ Descrever a finalidade e funcionamento básico dos protocolos nos modelos OSI e TCP.■ Descrever o impacto de aplicações (Voz sobre IP e Vídeo sobre IP) em uma rede.Pontos-chaveComo um novo aluno ao trabalho em rede, um dos temas primeiro você provavelmente aprendeu foi a camadas deo OSI e TCP / IP modelos. Agora que você já completou seus estudos e estão revendo para oExame CCNA, você mais do que provavelmente pode ver a vantagem de usar esses modelos. Cada ajuda o nosso entendimentode redes em seu próprio caminho. Hoje fazemos uma revisão da OSI e TCP / IP modelos, bem

Page 15: 31 Dias Para o CCNA

como aaplicações e protocolos que são comumente usados em redes.O OSI e TCP / IP ModelosPara entender como a comunicação ocorre através da rede, usamos modelos em camadas como uma estruturapara representar e explicar conceitos e tecnologias de rede. Modelos de rede forneceruma variedade de benefícios:■ Reduza a complexidade■ Padronizar as interfaces■ Assist compreensão■ Promover o rápido desenvolvimento de produto■ Suporte a interoperabilidade■ Facilitar engenharia modularInicialmente, as redes foram construídas em padrões proprietários e hardware. Modelos em camadas, como oTCP / IP e os modelos OSI, interoperabilidade entre as linhas de produtos concorrentes do fornecedor.O desenvolvimento do modelo OSI começou na década de 1970 com o objetivo de fornecer uma suíte baseada em padrões deprotocolos que permitem a comunicação entre todos os sistemas de computador. Embora o governo dos EUAnecessário o uso de produtos OSI na década de 1980 e 1990, o Defense Advanced ResearchAgência de Projetos (DARPA) com o Departamento de Defesa e com a ajuda de pesquisadores davárias universidades, tinha desenhado o modelo de concorrentes TCP / IP. Por várias razões, incluindo apopularidade do TCP / IP, em 1983 a ARPANET tinha escolhido o TCP / IP como seu protocolo de terno princípio. Por1994, todas as agências do governo dos EUA foram obrigados a mudar ao longo do OSI para protocolos TCP / IP.

Hoje, usamos o modelo OSI principalmente como uma ferramenta para explicar conceitos de rede. No entanto,os protocolos da suíte TCP / IP são as regras pelas quais as redes operam agora. Porque ambos os modelossão importantes, você deve ser bem versado em camadas de cada modelo assim como os modelos de mapauns aos outros. Figura 30-1 resume os dois modelos.Figura 30-1 O OSI e TCP / IP Modelos14 31 Dias antes de seu exame CCNAModelo OSIAplicaçãoApresentaçãoSessãoTransporteRede

Page 16: 31 Dias Para o CCNA

Data LinkFísicoModelo TCP / IPAplicaçãoTransporteInternetAcesso à Rede

Ela pode ser confuso utilizando dois modelos. No entanto, esta regra simples pode ajudar. Ao discutir as camadasde um modelo, que são geralmente referindo-se ao modelo OSI. Ao discutir protocolos, que são normalmentereferindo-se ao modelo TCP / IP. Então, vamos rever rapidamente as camadas OSI e os protocolos TCP / IP.Camadas OSITabela 30-1 resume as camadas do modelo OSI e fornece uma breve descrição funcional.A tabela 30-1 OSI Camadas Modelo e FunçõesCamada Descrição FuncionalAplicação (7) Refere-se às interfaces entre a rede eo software de aplicação. Inclui também a autenticação

Page 17: 31 Dias Para o CCNA

serviços.Apresentação (6) Define o formato e organização de dados. Inclui criptografia.Sessão (5) Estabelece e mantém ponta a ponta-flows bidirecional entre endpoints. Incluigestão dos fluxos de transações.Transporte (4) Fornece uma variedade de serviços entre dois computadores host, incluindo o estabelecimento de conexãoe terminação, controle de fluxo, recuperação de erros, e segmentação de dados de grande porteblocos em partes menores para a transmissão.Rede (3) Refere-se a abordar lógica, roteamento e determinação do caminho.De enlace de dados (2) Formatos de dados em quadros apropriados para a transmissão em algum meio físico.Define regras para quando o meio pode ser usado. Define meio pelo qual a reconhecererros de transmissão.Física (1) Define os conectores elétricos, ópticos, cabos, e os detalhes processuais exigidos parabits de transmissão, representado por alguma forma de energia que passa através de um meio físico.

A frase mnemônica a seguir, onde a primeira letra representa a camada ("A" representa a"Aplicação") pode ser útil para memorizar o nome ea ordem das camadas de cima para baixo.Todas as pessoas parecem precisar de Processamento de DadosCamadas TCP / IP e protocolosO modelo TCP / IP define quatro categorias de funções que devem ocorrer para que as comunicações sejambem sucedida. A maioria dos modelos de protocolo descrever um fornecedor específico pilha de protocolo. No entanto, porque aTCP / IP modelo é um padrão aberto, uma empresa não tem controle sobre a definição do modelo.Tabela 30-2 resume as camadas TCP / IP, suas funções, e os protocolos mais comuns.Tabela 30-2 As funções TCP / IP CamadaTCP / IP Protocolos de Camada Exemplo FunçãoRepresenta a aplicação de dados para o usuário e DNS, Telnet, SMTP, POP3, IMAP,controles de diálogo. DHCP, HTTP, FTP, SNMPTransporte Suporta a comunicação entre os diversos TCP, UDPdispositivos através de redes diferentes.Internet Determina o melhor caminho através da rede. IP, ARP, ICMPControla o acesso à rede os dispositivos de hardware e mídia que Ethernet, Frame Relaycompõem a rede.Nos próximos dias, vamos rever esses protocolos em mais detalhes. Por agora, uma breve descrição doprincipais protocolos TCP / IP segue:■ Domain Name System (DNS): Fornece o endereço IP de um nome de site ou domínio para umhost pode se conectar a ele.■ Telnet: Permite aos administradores efetuar login em um host de um local remoto.■ Simple Mail Transfer Protocol (SMTP), Post Office Protocol (POP3) e InternetMessage Access Protocol (IMAP): Usado para enviar mensagens de e-mail entre clientes e servidores.■ Dynamic Host Configuration Protocol (DHCP): Atribui endereçamento IP para solicitarclientes.

Page 18: 31 Dias Para o CCNA

■ Hypertext Transfer Protocol (HTTP): Utilizado para transferência de informações entre clientes e webservidores web.■ File Transfer Protocol (FTP): Permite que o download e upload de arquivos entre um servidor FTPcliente e servidor FTP.■ Simple Network Management Protocol (SNMP): Usado por sistemas de gerenciamento de rede paradispositivos monitor conectado à rede.■ Transmission Control Protocol (TCP): Permite conexões virtuais entre os hosts darede para fornecer uma entrega confiável de dados.■ User Datagram Protocol (UDP): Permite mais rápido, a entrega confiável de dados que sejaleve ou sensíveis ao tempo.

Internet Protocol (IP): Fornece um endereço único global para os computadores para se comunicaratravés da rede.■ Address Resolution Protocol (ARP): Localiza uma série de endereços de hardware, quando apenas o IPendereço é conhecido.■ Internet Control Message Protocol (ICMP): Usado para enviar mensagens de erro e controleincluindo a acessibilidade para outro host e disponibilidade dos serviços.■ Ethernet: O mais popular padrão de LAN para a formulação e preparação de dados para transmissãopara a mídia.■ Frame Relay: Também um padrão de enquadramento, uma das tecnologias mais cost-effective WANusado para conectar LANs.Unidades de protocolo de dados e encapsulamentoComo os dados do aplicativo é transmitido a pilha de protocolos sobre a sua maneira de ser transmitidos através da redemeios de comunicação, vários protocolos adicionar informações a ele em cada nível. Isto é comumente conhecido como oprocesso de encapsulamento. A estrutura de dados em qualquer camada é chamada de um protocolo dados unidade (PDU).Tabela 30-3 lista as PDUs em cada camada do modelo OSI.

Page 19: 31 Dias Para o CCNA

Tabela 30-3 PDUs em cada camada do modelo OSIOSI Layer PDUDados de Aplicativosapresentação dos dadosDados da sessãoSegmento de transportePacket redeLigação de dados de quadroBits físicaO processo de comunicação de qualquer origem para qualquer destino pode ser resumida com as seguintespassos:1. Criação de dados na camada de aplicação do dispositivo fonte de origem final2. Segmentação e encapsulamento de dados à medida que passa para baixo da pilha de protocolos na fontedispositivo final3. Geração dos dados para a mídia na camada de acesso de rede da pilha4. Transporte dos dados através da rede, que consiste em meios de comunicação e qualquer intermediáriodispositivos5. Recepção dos dados na camada de acesso de rede do dispositivo de destino final6. Decapsulation e remontagem dos dados à medida que passa a pilha no dispositivo de destino7. Passar esses dados para a aplicação de destino na camada de aplicação do destino finaldispositivo

Crescimento de aplicações baseadas em redeAlém de todas as aplicações comuns em redes discutimos estudos, programadores e empreendedoresaplicações são continuamente em desenvolvimento para tirar proveito dos recursos de rede e osInternet. Hoje, as pessoas a criar, armazenar e acessar informações, bem como comunicar com os outros ema rede usando uma variedade de aplicações. Além do tradicional e-mail e navegador webaplicações, as pessoas estão usando cada vez mais novas formas de comunicação, incluindo mensagens instantâneas,blogs, podcasting, compartilhamento de arquivos peer-to-peer, wikis e ferramentas de colaboração que permitem a visualizaçãoe trabalhar em documentos simultaneamente. A indústria de jogos on-line tem crescido exponencialmenteao longo dos últimos anos. Todas estas aplicações e experiências on-line colocam demandas grande noinfra-estrutura de rede e recursos. Uma maneira de lidar com o grande volume de dados é a classificação de pacotescom base na qualidade do serviço que o aplicativo de origem necessidades, especialmente considerando omaior utilização da rede em geral, e do recente aumento de voz e vídeo aplicações que têmuma tolerância muito baixa para o atraso e jitter.Qualidade de ServiçoA prioridade e nível de serviço garantida para o fluxo de dados através da rede é cada vez maisimportante quanto as novas aplicações lugar maiores exigências sobre a capacidade de

Page 20: 31 Dias Para o CCNA

processamento e largura de banda doredes que usamos. Quando colocamos uma chamada por um telefone IP, queremos, pelo menos, como um serviço bom como nósreceber em uma linha de terra tradicional. Portanto, as redes precisam usar a qualidade de serviço (QoS) mecanismosassegurar que os recursos de rede limitada são priorizados com base no conteúdo do tráfego. Sem QoSimplementação, uma mensagem de e-mail ou solicitação de página web cruzar um switch ou um roteador terá amesma prioridade que o tráfego de voz ou vídeo.Cada tipo de aplicação pode ser analisado em termos de seus requisitos de QoS na rede, então se orede atende a esses requisitos, o aplicativo irá funcionar bem.Uso da Rede aumentoAplicações tendem a aumentar a necessidade de mais largura de banda, enquanto exigindo menor atraso.Aqui estão alguns dos tipos de aplicações de dados que entraram no mercado e seu impactona rede:■ Gráficos com capacidade de terminais e impressoras: Aumentou os bytes necessários para a mesma interaçãocomo os terminais antigos baseados em texto e impressoras.■ transferências de arquivos: Introduzida volumes muito maiores de dados, mas sem tempo de resposta significativarequisitos.■ servidores de arquivos: Permite aos usuários armazenar arquivos em um servidor, que pode exigir um grande volume detransferência de dados, mas com um muito menor requisito de tempo de resposta do usuário final.■ maturação da tecnologia de banco de dados: Fazendo uma vasta quantidade de dados disponíveis para casuaisusuários, aumentando tremendamente o número de usuários que querem acesso aos dados.■ A migração de aplicações comuns aos navegadores web: Incentiva mais usuários para acesso a dados.■ O crescimento do e-mail: A aceitação geral de ambas as comunicações de e-mail como uma pessoal e empresarialserviço aumentou consideravelmente a quantidade de tráfego de e-mail.■ A comercialização rápida da Internet: permitindo que as empresas para oferecer os dados diretamente paraseus clientes através da rede de dados em vez de através de telefonemas.Dia 30 17Avaliar

O Impacto da Voz e Vídeo na RedeAtualmente, voz e vídeo estão no meio de uma migração dos tradicionais redes de dados IP. anteso final dos anos 1990, voz e vídeo usados instalações de redes separadas. A maioria das empresas hoje são, migrando ou pretende migrar para telefones IP, que passam dados de voz através da rede de dadosdentro de pacotes IP utilizando protocolos de aplicação geralmente referidos como voz sobre IP (VoIP).

Page 21: 31 Dias Para o CCNA

Figura 30-2 mostra alguns detalhes de como VoIP funciona a partir de uma conexão de Internet em casa de alta velocidade,com um adaptador de voz genéricos (VA) converter o sinal analógico de um telefone normal a um IPpacote.Figura 30-2 Conversão de Som para pacotes com um VA

VoIP não coloca uma demanda na rede para capacidade adicional. Uma chamada de voz geralmente consomemenos de 30 kbps de largura de banda. No entanto, VoIP é sensível ao jitter, atraso, e perda de pacotes:■ atraso Low: VoIP requer um atraso muito baixa entre o telefone envio e recebimentotelefone normalmente menos de 200 milissegundos (0,2 segundo). Isso é um atraso muito menor do queo que é exigido por aplicações típicas de dados.■ jitter Baixa: Jitter é a variação de atraso. VoIP requer jitter muito baixos, bem como, enquanto os dadosaplicações podem tolerar jitter muito maior. Por exemplo, o jitter para os pacotes consecutivos VoIPnão deve exceder 30 milisegundos (0,03 segundo) ou a qualidade se degrada.■ Perda: Se um pacote VoIP é perdida em trânsito devido a erro, porque um router não temespaço para armazenar o pacote enquanto espera para enviá-la, a perda de pacotes de VoIP não é retransmitidoatravés da rede. Pacotes perdidos pode soar como uma pausa no som da chamada VoIP.Vídeo sobre IP tem o mesmo desempenho que as questões de voz. No entanto, o vídeo requer largura de banda muito maisem qualquer lugar a partir de 300 kbps a 10 Mbps, dependendo da qualidade exigida.Para suportar os requisitos de QoS de voz, vídeo e outros de qualidade ou de aplicações sensíveis ao tempo,roteadores e switches podem ser configurados com uma variedade de ferramentas de QoS. Essas configurações sãoalém do escopo dos tópicos do exame CCNA.

Page 22: 31 Dias Para o CCNA

Dia 29Fluxo de dados de rede de ponta a pontaExame CCNA 640-802 Tópicos■ Use o OSI e TCP / IP modelos e seus protocolos associados para explicar como os dados fluem em um

Page 23: 31 Dias Para o CCNA

rede.■ Determinar o caminho entre dois hosts em uma rede.■ Identificar e corrigir problemas comuns de rede nas camadas 1, 2, 3 e 7 usando um modelo em camadasabordagem.Pontos-chaveOs tópicos do exame para o dia de hoje cobrem uma vasta gama de conteúdo. Grande parte da revisão de hoje é uma rápidaresumo das camadas TCP / IP e suas operações como os dados são enviados da origem para o destino.Muitos dos pontos-chave serão desenvolvidos de forma mais completa nos próximos dias. No entanto, este é o únicodia iremos discutir o funcionamento da camada de transporte. Então, vamos gastar um pouco de tempo naTransmission Control Protocol (TCP) eo User Datagram Protocol (UDP). Vamos também revermetodologias básicas solução de problemas.A camada de aplicação TCP / IPA camada de aplicação do modelo TCP / IP fornece uma interface entre software, como uma teiabrowser, e da própria rede. O processo de solicitação e recebimento de uma página web funciona comoo seguinte:1. HTTP requisição enviada, incluindo uma instrução para "pegar" um arquivo, que é muitas vezes em casa de um Web sitepágina.2. Resposta HTTP enviado do servidor web com um código no cabeçalho, geralmente ou 200(Solicitação de sucesso e as informações são retornadas em resposta) ou 404 (página não encontrada).A solicitação HTTP ea resposta HTTP são encapsulados em cabeçalhos. O conteúdo dos cabeçalhospermite que as camadas de aplicação em cada dispositivo final para se comunicar. Independentemente da aplicaçãocamada de protocolo (HTTP, FTP, DNS e assim por diante), todos usam o mesmo processo geral de comunicaçãoentre as camadas de aplicação nos dispositivos finais.A Camada de Transporte TCP / IPA camada de transporte, através de TCP, oferece um mecanismo para garantir a entrega de dados através darede. TCP suporta a recuperação de erro para a camada de aplicação através do uso de reconhecimento básicológica. Somando-se o processo para solicitar uma página web, a operação TCP funciona assim:

1. Cliente da Web envia uma solicitação HTTP para um servidor web específico para a camada de transporte.2. TCP encapsula a solicitação HTTP com um cabeçalho TCP.3. Camadas inferiores do processo e enviar a solicitação para o servidor web.4. Servidor web recebe pedidos HTTP e envia uma confirmação TCP volta ao solicitantecliente web.5. Servidor Web envia a resposta HTTP para a camada de transporte.6. TCP encapsula os dados HTTP com um cabeçalho TCP.7. Camadas inferiores do processo e enviar a resposta para o cliente web requerente.

Page 24: 31 Dias Para o CCNA

8. Solicitando cliente da Web envia confirmação de volta para o servidor web.Se os dados são perdidos a qualquer momento durante esse processo, é trabalho de TCP para recuperar os dados. HTTP nacamada de aplicação não se envolve na recuperação de erros.Além de TCP, a camada de transporte fornece UDP-um protocolo sem conexão, não confiável paraenvio de dados que não requer nem necessidade de recuperação de erros. Tabela 29-1 lista as principais características suportadaspelos protocolos de transporte. O primeiro item é suportado pelo TCP e UDP. Os restantesitens são suportados apenas pelo TCP.Tabela 29-1 TCP / IP Camada de Transporte FeaturesDescrição da funçãoMultiplexação usando as portas Função que permite que os hosts receber a escolher a correta aplicação dequal os dados são destinados, com base no número de porta de destino.Processo de recuperação de erro (confiabilidade) de numeração e reconhecer dados com seqüência eCampos de cabeçalho do reconhecimento.Controle de fluxo usando o processo que usa um tamanho de janela deslizante que é dinamicamente concordoujanelas pelos dois dispositivos finais em vários pontos durante a conexão virtual.O tamanho da janela, representada em bytes, é a quantidade máxima de dados afonte irá enviar antes de receber uma confirmação do destino.Processo de criação de conexão usada para inicializar os números de porta, Seqüência e Reconhecimentoe terminação campos.Ordenou a transferência de dados e fluxo contínuo de bytes de um processo da camada superior que ésegmentação de dados "segmentada" para a transmissão e entregue à camada superior de processos nadispositivo de recepção, com os bytes na mesma ordem.TCP HeaderTCP fornece a recuperação de erro, mas a fazê-lo, ele consome mais largura de banda e usa mais processamentociclos de UDP. TCP e UDP depende de IP para o fim-de-final de entrega. TCP está preocupado com o fornecimento deserviços para as aplicações do envio e recebimento de computadores. Para fornecer todos estesserviços, TCP utiliza uma variedade de campos em seu cabeçalho. Figura 29-1 mostra os campos do cabeçalho TCP.22 31 Dias antes de seu exame CCNA

Page 25: 31 Dias Para o CCNA

Números de portaOs dois primeiros campos do cabeçalho TCP-fonte e destino portas também são parte do cabeçalho UDPmostrado mais adiante na Figura 29-6. Números de porta TCP fornecer (e UDP) uma forma de aplicações múltiplas multiplexno mesmo computador. Navegadores Web agora suportam múltiplas abas ou páginas. Cada vez que você abrir umnova guia e solicitar outra página web, TCP atribui um número de porta fonte diferente e às vezes múltiplosnúmeros de porta. Por exemplo, você pode ter cinco páginas web abertas. TCP quase sempre atribuir destinoa porta 80 para todas as cinco sessões. No entanto, a porta de origem para cada um será diferente. Isto é como TCP(e UDP) multiplexes a conversa para que o navegador web sabe em qual guia para mostrar os dados.Portas de origem são geralmente atribuídos dinamicamente pelo TCP e UDP a partir do intervalo de partida de 1024. portoNúmeros abaixo de 1024 são reservados para aplicações bem conhecidas. Tabela 29-2 listas de várias aplicações popularese seus números de porta bem conhecidos.Tabela 29-2 aplicações populares e seus números Well-Known Porto

Page 26: 31 Dias Para o CCNA

Recuperação de erroTambém conhecido como confiabilidade, o TCP fornece a recuperação de erro durante as sessões de transferência de dados entre dois enddispositivos que estabeleceram uma conexão. A seqüência e os campos de reconhecimento no TCPcabeçalho são usados para monitorar cada byte de transferência de dados e garantir que os bytes faltando são retransmitidos.Na Figura 29-2, o campo de confirmação enviado pelo cliente web (4000) implica o próximo byte a serrecebidos; isso é chamado de reconhecimento para a frente.Figura 29-2 Reconhecimento TCP sem erros24 31 Dias antes de seu exame CCNA

Figura 29-3 mostra o mesmo cenário, só que agora temos alguns erros. O segmento TCP segundafoi perdida na transmissão. Portanto, as respostas do cliente web com um campo de ACK definido para 2000. oservidor web irá agora reenviar os dados a partir de segmento de 2000. Desta forma, os dados perdidos são recuperados.

Page 27: 31 Dias Para o CCNA

Embora não seja mostrado, o servidor web também define um timer de retransmissão, aguardando reconhecimento,apenas no caso de o reconhecimento for perdido ou todos os segmentos transmitidos são perdidos. Se esse tempo expirar,o servidor web envia todos os segmentos de novo.

Controle de FluxoControle de fluxo é tratado pelo TCP através de um processo chamado de janelas. Os dois dispositivos final negociaro tamanho da janela quando inicialmente estabelecer a ligação, então eles dinamicamente renegociartamanho da janela durante a vida da conexão, aumentando seu tamanho até que atinja o máximotamanho da janela de 65.535 bytes ou até que os erros ocorrem. Tamanho da janela é especificado no campo da janelao cabeçalho TCP. Depois de enviar a quantidade de dados especificados no tamanho da janela, a fonte devereceber uma confirmação antes de enviar o tamanho da janela seguinte de dados.Estabelecimento de conexão e TerminaçãoEstabelecimento da conexão é o processo de seqüência de inicialização e campos de reconhecimento econcordando em números de porta e tamanho da janela. As três vias fase de estabelecimento da conexão mostradona Figura 29-4 deve ocorrer antes que a transferência de dados pode prosseguir.

Na figura, dport e SPORT são o destino e portas de origem. SEQ é o número de seqüência.Em negrito são SYN e ACK, que representam cada uma bandeira 1-bit no cabeçalho TCP usado

Page 28: 31 Dias Para o CCNA

para sinalizarestabelecimento da conexão. TCP inicializa o número de seqüência e número de Reconhecimentocampos para qualquer número que se encaixa nos campos de 4 bytes.Após a transferência de dados estiver concluída, um quatro-way seqüência de terminação ocorre que usa um adicionalbandeira, chamado o bit FIN, como mostrado na Figura 29-5.

UDPTCP estabelece e termina as conexões entre os terminais, enquanto que o UDP não. portanto,UDP é chamado de um protocolo sem conexão. Não fornece confiabilidade, sem janelas, sem reordenamento dasos dados, e não segmentação de grandes blocos de dados no tamanho certo para a transmissão. No entanto,UDP não fornece transferência de dados e números de porta usando multiplexação, e fá-lo com menosbytes de overhead de processamento e menos do que o TCP. Aplicativos que usam UDP são aqueles que podem negociara possibilidade de alguma perda de dados por menos de atraso, como VoIP. Figura 29-6 compara os dois cabeçalhos.

A camada de Internet TCP / IPA camada Internet do modelo TCP / IP e seu Protocolo de Internet (IP) define os endereços de modo que cada

Page 29: 31 Dias Para o CCNA

computador host pode ter um endereço IP diferente. Além disso, a camada de Internet define o processo deroteamento de modo que os roteadores podem determinar o melhor caminho para enviar pacotes para o destino. Continuandocom o exemplo da página web, endereços IP os dados à medida que passa da camada de transporte para oCamada de Internet:1. Cliente da Web envia uma solicitação HTTP.2. TCP encapsula a requisição HTTP.3. IP encapsula o segmento de transporte em um pacote, acrescentando endereços de origem e destino.4. Camadas inferiores do processo e enviar a solicitação para o servidor web.5. Servidor web recebe pedidos HTTP e envia uma confirmação TCP volta ao solicitantecliente web.6. Servidor Web envia a resposta HTTP para a camada de transporte.7. TCP encapsula os dados HTTP.8. IP encapsula o segmento de transporte em um pacote, acrescentando endereços de origem e destino.9. Camadas inferiores do processo e enviar a resposta para o cliente web requerente.10. Solicitando cliente da Web envia confirmação de volta para o servidor web.A operação de IP inclui não só tratar, mas também o processo de roteamento os dados doorigem para o destino. IP vai ser discutido e revisto nos próximos dias.

O TCP / IP Camada de Acesso à RedeIP depende da camada de acesso à rede para entregar pacotes IP através de uma rede física. Portanto,a camada de acesso de rede define os protocolos e hardware necessários para entregar os dados através de algunsrede física, especificando exatamente como conectar fisicamente um dispositivo de rede para o físicomídia sobre os quais dados podem ser transmitidos.A camada de acesso de rede inclui um grande número de protocolos para lidar com os diferentes tipos demedia que os dados podem cruzar no seu caminho de dispositivo de origem para dispositivo de destino. Por exemplo, dadosTalvez seja necessário primeira viagem em um link Ethernet, então atravessar um Ponto a Ponto-link (PPP), em seguida, um quadroLigação de revezamento, em seguida, um Asynchronous Transfer Mode (ATM) link, e, finalmente, uma ligação Ethernet parao destino. Em cada transição de um tipo de mídia para outra, a camada de acesso a rede forneceos protocolos, padrões de cabeamento, cabeçalhos e trailers para enviar dados através da rede física.Muitas vezes, um endereço link local é necessária para transferir dados de um salto para o outro. Por exemplo, emuma LAN Ethernet, Media Access Control (MAC) são usados entre o dispositivo de envio eseu roteador gateway local. Às portas do roteador, dependendo das necessidades da interface de saídao cabeçalho Ethernet pode ser substituído com um cabeçalho Frame Relay, que incluirá os dados-link de conexãoidentificador (DLCI) endereços. No Frame Relay, endereços DLCI têm a mesma finalidade como

Page 30: 31 Dias Para o CCNA

MACendereços Ethernet para obter os dados através do link de um hop para o próximo fim de que os dados podemcontinuar a sua viagem para o destino. Alguns protocolos, como Point-to-Point Protocol (PPP), nãoprecisa de um endereço do link, porque apenas um outro dispositivo está no link que pode receber os dados.Com a camada de acesso à rede, agora podemos finalizar o nosso exemplo de página web. A seguir bastantesimplifica e resume o processo de solicitação e envio de uma página web:1. Cliente da Web envia uma solicitação HTTP.2. TCP encapsula a requisição HTTP.3. IP encapsula o segmento de transporte em um pacote, acrescentando endereços de origem e destino.4. Camada de rede encapsula o acesso de pacote em um quadro, abordá-lo para a ligação local.5. Camada de rede de acesso envia o quadro para fora como bits na mídia.6. Dispositivos intermediários processo de bits no acesso à rede e as camadas de Internet, e depois para a frenteos dados para o destino.7. Web servidor recebe os bits na interface física e envia-se através da redecamadas de acesso e Internet.8. Servidor web envia uma confirmação TCP volta para o cliente web requerente.9. Servidor Web envia a resposta HTTP para a camada de transporte.10. TCP encapsula os dados HTTP.11. IP encapsula o segmento de transporte em um pacote, acrescentando endereços de origem e destino.12. Camada de rede encapsula o acesso de pacote em um quadro, abordá-lo para a ligação local.13. Camada de rede de acesso envia o quadro para fora como bits na mídia.14. Camadas inferiores do processo e enviar a resposta para o cliente web requerente.15. Resposta viaja de volta para a fonte através de links de dados múltiplos.Dia 29 27

16. Solicitando cliente web recebe resposta sobre a interface física e envia os dados atéatravés do acesso à rede e camadas Internet.17. Solicitando cliente da Web envia uma confirmação de TCP para o servidor web.18. Página da Web é exibida no navegador solicitando dispositivo.

Resumo dos dados de encapsulamentoCada camada do modelo TCP / IP adiciona seu próprio cabeçalho de informações. Como os dados viajam para baixo atravésas camadas, é encapsulado com um novo cabeçalho. Na camada de acesso à rede, um reboque também é adicionado.Este processo de encapsulamento pode ser descrito em cinco passos:Passo 1 Crie e encapsular os dados do aplicativo com qualquer cabeçalhos da camada de aplicação requerida.Por exemplo, a mensagem HTTP OK pode ser devolvido em um cabeçalho HTTP, seguidopor parte do conteúdo de uma página web.Passo 2 Encapsular os dados fornecidos pela camada de aplicação dentro de um cabeçalho da camada de transporte.

Page 31: 31 Dias Para o CCNA

Para aplicativos de usuário final, um cabeçalho TCP ou UDP é tipicamente usado.Passo 3 Encapsular os dados fornecidos pela camada de transporte dentro de uma camada de Internet (IP) de cabeçalho.IP é o protocolo disponível somente no modelo de rede TCP / IP.Passo 4 Encapsular os dados fornecidos pela camada de Internet dentro de um cabeçalho da camada de rede de acessoe trailer. Esta é a única camada que usa o cabeçalho e um trailer.Passo 5 Transmitir o bits. A camada física codifica um sinal para o meio para transmitir osframe.Os números da Figura 29-7 correspondem às cinco etapas na lista, mostrando graficamente o mesmoprocesso de encapsulamento.Figura 29 -

Usando Layers para solucionar problemasVocê já deve ter problemas na rede extensa experiência problemas-se em umambiente de trabalho real, em um ambiente de laboratório, ou uma combinação de ambos. Até agora, você tem desenvolvidosua metodologia de solução de problemas próprios. Talvez você gostaria de verificar a camada física primeiro. Éo cabeamento correto? São todas as luzes de status de interface verde? Talvez você gosta de ping tudo paracoletar informações sobre onde a conectividade é inexistente. Então você usa os resultados de sua conectividadetestes para isolar os problemas e drill down mais profundo. Talvez você só intuitivamente busca de soluções,utilizando sua experiência passada para orientar.

Page 32: 31 Dias Para o CCNA

Independentemente do seu método, uma metodologia de resolução de problemas sistemática pode ajudar a solucionarproblemas de forma mais eficiente e com melhor sucesso. Existem três métodos principais para solução de problemasredes usando as camadas do modelo OSI:■ de baixo para cima: Comece com os componentes físicos e mover-se através das camadas até que aproblema é isolado. Usar essa abordagem quando o problema é suspeito de ser um físicoum. A maioria dos problemas de rede reside nos níveis mais baixos, de modo a implementação de baixo para cimaabordagem geralmente resulta em resultados efetivos.■ cima para baixo: Comece com a aplicação do usuário final e mover para baixo através das camadas atéo problema é isolado. Usar essa abordagem para os problemas mais simples ou quando você acha que oproblema é com um pedaço de software.■ Dividir para conquistar: Comece por recolher a experiência do usuário, documentando os sintomas,e, em seguida, usar essas informações, dar um palpite informado em qual camada OSI para começarsua investigação. Depois de verificar que uma camada está funcionando corretamente, suponha que ocamadas abaixo dela estão funcionando, e trabalhar até as camadas OSI. Se uma camada OSI não está funcionandocorretamente, trabalhar sua maneira para baixo o modelo de camada OSI.Para efetivamente solucionar problemas de rede, o tempo necessário para selecionar a rede mais eficazsolução de problemas método. Hoje estamos apenas a revisão dos métodos gerais usados para solucionar problemasproblemas de rede. Nos próximos dias, vamos discutir solução de problemas em mais detalhes à medida que exploramosaplicação específica em situações de comutação e roteamento tecnologias.Recursos estudoPara os temas de hoje do exame, consulte os seguintes recursos para mais estudo.

Page 33: 31 Dias Para o CCNA

parte IIConceitos de comutação e

configuraçãoDia 28: Switches Ethernet Conexão e Tecnologia

Dia 27: Segmentação de Rede e Conceitos de comutação

Page 34: 31 Dias Para o CCNA

Dia 26: A configuração básica de switch e Segurança PortuáriaDia 25: Verificação e solução de problemas básica de um switch

configuraçõesDia 24: Switching Tecnologias e Conceitos de VLAN

Dia 23: VLAN Trunking e configuração eSolução de problemas

Dia 22: VTP e InterVLAN Roteamento de configuração eSolução de problemas

Switches Ethernet e conexãotecnologiaExame CCNA 640-802 Tópicos■ Explicar a tecnologia e mídia método de controle de acesso para redes Ethernet.■ Selecione a mídia apropriada, cabos, portas e conectores para conectar switches para outra rededispositivos e hosts.Tópicos-chaveEthernet tem continuado a evoluir a partir do sabor 10BASE2 capaz de atingir velocidades até 185 Mbps parao mais novo 10GigE (10 Gigabit Ethernet) capaz de atingir velocidades até 10 Gbps. Desde 1985, o IEEEcontinuou a melhorar a 802,3 padrões para fornecer velocidades mais rápidas, sem alterar a baseestrutura de quadros. Esse recurso, entre outros, fez a escolha Ethernet LAN para implementaçõesem todo o mundo. Hoje fazemos uma revisão tecnologias Ethernet e operação em ambos os dados da ligação ecamada física.Resumo Ethernet802.3 é o padrão IEEE para Ethernet, e ambos os termos são comumente usados como sinônimos. otermos Ethernet e 802.3 ambas se referem a uma família de padrões que juntas definem o físico ecamadas de dados ligação da tecnologia LAN definitiva. Figura 28-1 mostra uma comparação de Ethernetpadrões para o modelo OSI.Figura 28-1 Padrões Ethernet eo Modelo OSI

Page 35: 31 Dias Para o CCNA

Ethernet separa as funções da camada de enlace em duas subcamadas distintas:■ Logical Link Control subcamada (LLC): definido no padrão 802.2.■ Media Access Control (MAC) subcamada: definido no padrão 802.3.A subcamada LLC manipula a comunicação entre a camada de rede e da subcamada MAC. emgeral, LLC fornece uma maneira para identificar o protocolo que é passada da camada de enlace de dados para ocamada de rede. Desta forma, os campos da subcamada MAC não são preenchidas com o tipo de protocoloinformação, como foi o caso na anterior implementações Ethernet.A subcamada MAC tem duas responsabilidades principais:■ encapsulamento de dados: inclui a montagem de quadros antes da transmissão, análise sobre a estruturarecepção de um frame, camada de enlace de dados de endereçamento MAC, e detecção de erros.■ Media Access Control: Porque Ethernet é uma mídia compartilhada e todos os dispositivos podem transmitir aqualquer momento, acesso à mídia é controlada por um método chamado Carrier Sense Multiple Access comDetecção de Colisão (CSMA / CD).Na camada física, Ethernet especifica e implementa esquemas de codificação e decodificação quepermitir que pedaços de quadro para ser realizado como sinais em ambas as par trançado não blindado (UTP) de cabos de cobree os cabos de fibra óptica. Em implementações cedo, Ethernet utilizado cabeamento coaxial.

Legado Ethernet TechnologiesEthernet é melhor entendida pela primeira considerando os dois primeiros especificações Ethernet-10BASE5e 10BASE2. Com estas duas especificações, o engenheiro de rede instala uma série de coaxialcabos de ligação de cada dispositivo na rede Ethernet, conforme mostrado na Figura 28-2.Figura 28-2 Ethernet Topology Bus Físico e Lógico

Page 36: 31 Dias Para o CCNA

A série de cabos cria um circuito elétrico, chamado de ônibus, que é compartilhada entre todos os dispositivos emda Ethernet. Quando um computador deseja enviar alguma bits para outro computador no ônibus, ele envia umasinal elétrico, ea eletricidade se propaga para todos os dispositivos na Ethernet.Com a mudança de mídia para UTP e da introdução do primeiro hubs, Ethernet topologias físicasmigraram para uma estrela, como mostrado na Figura 28-3.Independentemente da mudança na topologia física de um ônibus para uma estrela, hubs operam logicamente similarespara uma topologia de barramento tradicionais e requerem o uso de CSMA / CD.

CSMA / CDPorque é uma Ethernet de mídia compartilhada, onde cada dispositivo tem o direito de enviar a qualquer momento, ele tambémdefine uma especificação para como garantir que apenas um dispositivo envia o tráfego de cada vez. oCSMA / CD algoritmo define como o ônibus Ethernet lógica é acessado.CSMA / CD lógica ajuda a evitar colisões e também define como agir quando uma colisão ocorre.O algoritmo CSMA / CD funciona da seguinte forma:1. Um dispositivo com um quadro para enviar escuta até que a Ethernet não está ocupado.2. Quando a Ethernet não está ocupado, o remetente (s) começar (s) de enviar o quadro.3. O remetente (s) listen (s) para se certificar de que nenhuma colisão ocorreu.4. Se uma colisão ocorre, os dispositivos que havia sido o envio de um quadro de cada um enviar um sinal de interferência

Page 37: 31 Dias Para o CCNA

para garantir que todas as estações de reconhecer a colisão.5. Após o bloqueio é completo, cada remetente randomizes um temporizador e espera que, muito antestentando reenviar o quadro colidiram.6. Quando cada um temporizador aleatório expira, o processo começa de novo desde o início.Quando CSMA / CD está em vigor, isso também significa que o cartão de um dispositivo de interface de rede (NIC) está operandoem modo half-duplex-enviando ou recebendo frames. CSMA / CD é desativada quando uma NICdetectará automaticamente que ele pode operar em ou é manualmente configurado para operar em modo full-duplex. emmodo full duplex, uma placa de rede pode enviar e receber simultaneamente.Resumo legado EthernetHoje, você pode ocasionalmente usar hubs LAN, mas você vai switches usam mais provável, em vez dehubs. No entanto, tenha em mente os seguintes pontos-chave sobre a história da Ethernet:■ O original Ethernet LANs criado um ônibus elétrico para que todos os dispositivos conectados.Repetidores ■ 10BASE2 e 10BASE5 estendeu o comprimento de LANs limpando o elétricasinal e repeti-lo-a Layer 1-função, mas sem interpretar o significado da elétricasinal.■ Hubs são repetidores que fornecem um ponto de conexão central para cabeamento UTP, mas eles aindacriar um único ônibus elétricos, compartilhada por vários dispositivos, assim como 10Base5 e 10Base2.■ Como as colisões podem ocorrer em qualquer desses casos, Ethernet define o algoritmo CSMA / CD,que conta como ambos os dispositivos de evitar colisões e agir quando colisõesocorrer.Atual Ethernet TechnologiesConsulte novamente a Figura 28-1 e observe os diferentes padrões de 802,3. Cada padrão nova camada físicado IEEE requer muitas diferenças na camada física. No entanto, cada um destes físicapadrões camada usa o cabeçalho 802,3 mesmo, e cada um usa a subcamada LLC superior também.Tabela 28-1 listas de hoje mais comumente utilizados padrões IEEE Ethernet de camada física.

Page 38: 31 Dias Para o CCNA

Cabeamento UTPOs três padrões mais comuns usados hoje Ethernet-10BASE-T (Ethernet), 100BASE-TX(Fast Ethernet, ou FE), e 1000BASE-T (Gigabit Ethernet, ou GE), use cabeamento UTP. alguns dos principaisdiferenças existem, particularmente com o número de pares de fios necessários em cada caso e no tipo(categoria) de cabeamento.O cabeamento UTP utilizado pelos padrões populares Ethernet incluem dois ou quatro pares de fios. oextremidades do cabo normalmente usa um conector RJ-45. O conector RJ-45 tem oito locais físicos específicosem que os oito fios do cabo pode ser inserido, chamado posições pino ou, simplesmente, pinos.O Telecommunications Industry Association (TIA) e da Electronics Industry Alliance (EIA)definir normas para cabeamento UTP, código de cores para fios e pinagem padrão nos cabos.Figura 28-4 mostra dois padrões TIA / EIA pinout, com a codificação de cores e números pares listados.

Para o exame, você deve estar bem preparado para escolher qual tipo de cabo (straight-through oucrossover) é necessária em cada parte da rede. Em suma, os dispositivos em extremidades opostas de um cabo queuse o mesmo par de pinos para transmitir precisa de um cabo crossover. Dispositivos que usam um par oposto depinos para transmitir precisa de um cabo straight-through. Dispositivos tabela 28-2 listas típicas e os pares de pinoseles usam, assumindo que eles usam 10BASE-T e 100BASE-TX.Tabela 28-2 10BASE-T e 100BASE-TX Pairs Pin UsadoDispositivos que transmitem em 1,2 e 3,6 de recebimento em dispositivos que transmitem em3,6 e 1,2 de recebimento emNICs Hubs PCSwitches roteadoresPonto de acesso sem fio (Ethernet interface) N / AImpressoras de rede (impressoras que se conectam diretamente à rede local) N / A1000BASE-T requer quatro pares de fios porque Gigabit Ethernet transmite e recebe em cada uma dasos quatro pares de fios simultaneamente.No entanto, Gigabit Ethernet tem um conceito de cabos straight-through e crossover, com umpequena diferença nos cabos crossover. A pinagem de um cabo straight-through são os

Page 39: 31 Dias Para o CCNA

mesmos-pino 1 ao pino 1, o pino 2 ao pino 2, e assim por diante. O cabo crossover atravessa a par de dois fios mesmo que ocabo crossover para os outros tipos de Ethernet-o par de pinos 1,2 e 3,6, bem como cruzamentoos dois outros pares (o par de pinos de 4,5 com o par de pinos de 7,8).Benefícios do Uso de SwitchesUm domínio de colisão é um conjunto de dispositivos cuja frames poderia colidir. Todos os dispositivos em um 10BASE2,10BASE5, ou qualquer rede usando um hub de risco de colisões entre os quadros que eles enviam, para que todos osdispositivos em um desses tipos de redes Ethernet estão no mesmo domínio de colisão e usarCSMA / CD para detectar e resolver conflitos.Switches LAN reduzir significativamente, ou até mesmo eliminar, o número de colisões em uma LAN. ao contráriohubs, switches não criar um único barramento compartilhado. Em vez disso, switches faça o seguinte:

Switches ■ interpretar os bits do quadro recebido para que possam normalmente enviar o quadro para foraa porta de um necessário, ao invés de todas as outras portas.■ Se um parâmetro necessidades de transmitir vários quadros com a mesma porta, o switch armazena os framesna memória, o envio de um de cada vez, evitando colisões.Além disso, switches com apenas um dispositivo por cabo para cada porta do switch permite o uso de FullDuplexoperação. Full-duplex significa que a NIC pode enviar e receber ao mesmo tempo, de forma eficazduplicando a largura de banda de um link de 100 Mbps até 200 Mbps-100 Mbps para enviar e 100 Mbpspara receber.Estas características chave aparentemente simples proporcionar melhorias significativas de desempenho em comparaçãocom o uso de hubs. Em especial:■ Se apenas um dispositivo esteja conectado a cada porta de um switch, sem colisões podem ocorrer.■ dispositivos conectados a uma porta do switch não compartilham de sua largura de banda com os dispositivos conectados aoutra porta do switch. Cada um tem a sua própria largura de banda separado, o que significa que um interruptor com 100Portas Mbps tem 100 Mbps de largura de banda por porta.Ethernet EndereçamentoO IEEE define o formato ea atribuição de endereços LAN. Para garantir um único endereço MAC,a primeira metade do endereço identifica o fabricante da placa. Este código é chamado de organizacionalmenteidentificador único (OUI). Cada fabricante atribui um endereço MAC com os seus próprios OUIa primeira metade do endereço. A segunda metade do endereço é atribuído pelo fabricante e énunca usado em outra placa ou interface de rede com a mesma OUI. Figura 28-5 mostra a estruturade um endereço Ethernet unicast.Figura 28-5 Estrutura da Unicast Endereço Ethernet

Page 40: 31 Dias Para o CCNA

Ethernet também tem endereços do grupo, que identificam mais de uma NIC ou interface de rede. oIEEE define duas categorias gerais de endereços de grupo para Ethernet:■ endereços Broadcast: O endereço de broadcast implica que todos os dispositivos na LAN devemprocesso do quadro e tem um valor de FFFF.FFFF.FFFF.■ endereços Multicast: endereços Multicast são utilizadas para permitir um subconjunto de dispositivos em uma LAN paracomunicar. Quando multicasts IP sobre uma rede Ethernet, o MAC multicast endereços utilizados por IPseguir este formato: 0100.5exx.xxxx, onde qualquer valor pode ser usado na última metade doendereço.

Framing EthernetA camada física ajuda a obter uma seqüência de bits de um dispositivo para outro. O enquadramento doos bits permite que o dispositivo de recepção para interpretar os bits. O enquadramento refere-se à definição deos campos a ser assumida em dados que são recebidos. Enquadramento define o significado dos bits transmitidose recebidos em uma rede.O enquadramento usado para Ethernet mudou um par de vezes ao longo dos anos. Cada iteração doEthernet é mostrado na Figura 28-6, com a versão atual mostrado na parte inferior.Figura 28-6 Quadro Formatos Ethernet

Page 41: 31 Dias Para o CCNA

O Papel da Camada FísicaNós já discutimos o cabeamento mais popular usado em LANs-UTP. Mas para entender completamenteo funcionamento da rede, você deve conhecer alguns conceitos básicos adicionais da físicacamada.A camada OSI física aceita um quadro completo da camada de enlace de dados e codifica-lo como uma sériede sinais que são transmitidos para a mídia local.A entrega de quadros através da mídia local exige os seguintes elementos de camada física:■ A mídia física e conectores associados■ Uma representação de bits na mídia■ Codificação de dados e informações de controle■ transmissor e receptor de circuito sobre os dispositivos de redeHá três formas básicas de mídia de rede em que os dados são representados:■ O cabo de cobre■ Fiber■ Wireless (IEEE 802.11)Bits são representados na mídia por mudar uma ou mais das seguintes características de umsinal:■ Amplitude■ Frequency

Page 42: 31 Dias Para o CCNA

Fase ■A natureza dos sinais reais que representam os bits na mídia vai depender da sinalizaçãométodo em uso. Alguns métodos podem usar um atributo de um sinal para representar um único 0 e usaroutro atributo de um sinal para representar um 1 single. O método actual de sinalização e as suas minuciosasoperação não são importantes para sua preparação para o exame CCNA.

Page 43: 31 Dias Para o CCNA

Segmentação de rede eConceitos de comutaçãoExame CCNA 640-802 Tópicos■ Explicar a segmentação da rede e conceitos básicos de gestão de tráfego.■ Explicar os conceitos básicos de comutação e operação de switches Cisco.Tópicos-chaveHoje nós revemos os conceitos por trás de comutação, incluindo a história do desenvolvimento dacomutação, como a mudança realmente funciona, bem como a variedade de recursos switch. Também revisamoscomo acessar dispositivos Cisco, o IOS comandos básicos para navegar pela interface de linha de comando(CLI) e os detalhes de como os arquivos de configuração são gerenciados.Evolução para SwitchingLANs de hoje quase que exclusivamente usam switches para interligar dispositivos final, no entanto, isso não foisempre o caso. Inicialmente, os dispositivos foram conectados a um barramento físico executar um longo da espinha dorsal coaxialcabeamento. Com a introdução do 10BASE-T cabeamento UTP e, o centro ganhou popularidade como um mais barato,maneira mais fácil para conectar dispositivos. Mas mesmo 10BASE-T com hubs tinha as seguintes limitações:■ Um quadro que está sendo enviado de um dispositivo pode colidir com um quadro enviado por um outro dispositivo conectadoa esse segmento LAN. Dispositivos estavam no mesmo domínio de colisão partilha a largura de banda.■ Transmissões enviadas por um dispositivo foram ouvidos por e processado por, todos os outros dispositivos na LAN.Dispositivos estavam no mesmo domínio de broadcast. Semelhante ao hubs, switches frente transmissãoframes para fora todas as portas exceto a porta de entrada. As portas do switch pode ser configurado em váriosVLANs, que segmentá-los em domínios de broadcast.Ethernet pontes foram desenvolvidos em breve para resolver alguns dos problemas inerentes a uma LAN compartilhada. Aponte basicamente segmentada LAN um em dois domínios de colisão que■ Reduziu o número de colisões que ocorreram em um segmento de LAN■ Aumento da largura de banda disponívelQuando muda chegaram ao local, estes dispositivos previstos os mesmos benefícios de pontes, bemcomo as seguintes:■ Um número maior de interfaces para quebrar o domínio de colisão em segmentos mais■ baseado em hardware de comutação em vez de usar software para tomar a decisão

Page 44: 31 Dias Para o CCNA

Em uma LAN onde todos os nós estão conectados diretamente ao switch, o throughput da redeaumenta dramaticamente. Com cada computador conectado a uma porta separada no comutador, cada um está em umdomínio de colisão separado e tem seu próprio segmento dedicado. As três principais razões para esteaumento são as seguintes:■ largura de banda dedicada para cada porta■ ambiente livre de colisão■ Operação Full-duplexComutação de lógicaSwitches Ethernet seletivamente frente quadros individuais de uma porta de recepção para a porta onde onó de destino está conectado. Durante esse instante, o switch cria uma banda completa, lógicaponto-a-ponto de conexão entre os dois nós.Switches criar esta conexão lógica com base na origem e destino de Controle de Acesso de Mídia(MAC) no cabeçalho Ethernet. Especificamente, o trabalho principal de um switch LAN éreceber quadros Ethernet e depois tomar uma decisão: ou a frente do quadro ou ignorar o quadro. Pararealizar isto, o switch executa três ações:1. Decide quando a frente de um quadro ou quando para filtrar (não para a frente) uma moldura, com base no destinoEndereço MAC2. Aprende os endereços MAC, examinando o endereço MAC de origem de cada quadro recebido pora ponte3. Cria um (Layer 2) o ambiente livre de laço com outras pontes usando Spanning TreeProtocol (STP)Para tomar a decisão para a frente ou de filtro, o switch utiliza uma tabela de endereços MAC dinamicamente construídaarmazenadas na memória RAM. Ao comparar o quadro de destino endereço MAC com os campos na tabela,o interruptor decide como encaminhar e / ou filtrar a frame.Por exemplo, na Figura 27-1 o switch recebe um quadro do Host A com o MAC de destinoEndereço OC. O interruptor olha em sua tabela MAC e encontra uma entrada para o endereço MAC e encaminhao quadro de porta de saída 6. O switch também filtra o quadro por não encaminhá-lo para fora de qualquer outroportuárias, incluindo a porta na qual o quadro foi recebido.Além de encaminhamento e filtragem de quadros, a mudança irá também atualizar o timestamp para oendereço MAC de origem do quadro. Na Figura 27-1, o endereço MAC para o Host A, OA, já está emtabela MAC. Assim, o interruptor atualiza a entrada. Entradas que não são atualizados serão eventualmenteremovida (após 300 segundos no Cisco IOS).Continuando o exemplo na Figura 27-1, assume outro dispositivo, E Host, é ligado à porta 10.Host B envia um quadro para o novo host E. A chave ainda não sabe onde E é anfitriãolocalizado. Então, ele encaminha o frame para todas as portas ativas, exceto para a porta na qual o quadro foi

Page 45: 31 Dias Para o CCNA

recebido. E o novo host irá receber o frame. Quando se respostas para o Host B, o switch vai aprenderEndereço do host E do MAC ea porta pela primeira vez e armazená-lo na tabela de endereços MAC.Quadros subseqüentes destinados Anfitrião E só será enviado pela porta 10

Finalmente, switches LAN deve ter um método para a criação de um caminho livre de laço para quadros de tomar dentroa LAN. STP oferece prevenção de loop em redes Ethernet redundantes, onde existem ligações físicas.Dia 24, "Tecnologias e Conceitos de comutação VLAN," opiniões STP em mais detalhes.Domínios de Colisão e BroadcastUm domínio de colisão é o conjunto de interfaces LAN cujos quadros poderia colidir uns com os outros. todosambientes compartilhados de mídia, como aqueles criados usando hubs, são domínios de colisão. quando umhost é conectado a uma porta do switch, o switch cria uma conexão dedicada eliminando assim apotencial de uma colisão. Switches reduzir colisões e melhorar o uso da largura de banda em segmentos de redeporque eles fornecem a largura de banda dedicada para cada segmento de rede.No entanto, fora da caixa, um interruptor não pode fornecer alívio de tráfego de broadcast. Uma coleção de conectadosinterruptores forma um domínio de broadcast de grande porte. Se um quadro com o endereço de destinoFFFF.FFFF.FFFF atravessa uma porta do switch, que o interruptor deve, então, inundar o quadro para fora todos os outros ativosportos. Cada dispositivo conectado processo deve, então, o quadro de transmissão, pelo menos, até a camada de rede.Roteadores e VLANs são utilizadas para os domínios de broadcast segmento. Dia 24 opiniões o uso de VLANs paratransmissão domínios segmento.Encaminhamento de quadrosSwitches operam em várias maneiras de transmitir frames. Eles podem diferir em métodos de encaminhamento, a portavelocidades, o buffer de memória, e as camadas OSI utilizado para tomar a decisão de encaminhamento. as seçõesque seguem discutir esses conceitos com mais detalhes.Mudar métodos de encaminhamentoNo passado, switches utilizado um dos métodos a seguir para o encaminhamento de comutação de dados entreportas de rede:

■ Store-and-forward: O switch armazena recebeu quadros em seus buffers, análisescada quadro para obter informações sobre o destino, e avalia a integridade dos dados usando overificação de redundância cíclica (CRC) no trailer frame. Todo o quadro é armazenado e CRCcalculado antes de qualquer quadro é encaminhado. Se o CRC passes, o quadro é encaminhado parao destino.■ Cut-through switching: O interruptor de buffers apenas o suficiente do quadro de ler o destinoEndereço MAC para que ele possa determinar a qual porta de transmitir os dados. Após o

Page 46: 31 Dias Para o CCNA

interruptordetermina se há uma correspondência entre o endereço MAC de destino e uma entrada noTabela de endereços MAC, o quadro é encaminhado para a porta apropriada (s). Isto acontece como oresto do quadro inicial ainda está sendo recebida. O switch não executa nenhuma verificação de errosna armação.Comutação simétrica e assimétricaComutação simétrica fornece conexões comutadas entre portas com a mesma largura de banda, taiscomo todos os 100 Mbps portas ou todas as portas 1000 Mbps. Um switch LAN assimétrica fornece conexões comutadasentre os portos de largura de banda, ao contrário, como uma combinação de 10 Mbps, 100 Mbps, ePortas 1000 Mbps.Buffering memóriaSwitches frames loja por um tempo breve em um buffer de memória. Existem dois métodos de memóriabuffering:■ memória Port-based: Frames são armazenadas em filas que estão ligados a portas de entrada.■ A memória compartilhada: Os quadros são depositados em um buffer de memória comum, que todas as portas nointerruptor partes.Layer 2 e Layer 3 SwitchingA Layer 2 switch LAN switching e realiza a filtragem baseada somente em endereços MAC. A camada 2interruptor é completamente transparente para os protocolos de rede e aplicativos do usuário. Um switch de camada 3funciona de forma semelhante a um switch Layer 2. Mas em vez de usar apenas o Layer 2 informações de endereço MACpara as decisões de encaminhamento, um switch de camada 3 também pode usar informações de endereço IP. Layer 3interruptores são também capazes de executar funções de roteamento Layer 3, reduzindo a necessidade de dedicadosroteadores em uma LAN. Porque Layer 3 switches possuem hardware de comutação especializadas, que podem tipicamenteencaminhar os dados tão rapidamente quanto eles podem mudar de dados.Como acessar e navegar Cisco IOSAté agora, você estão muito familiarizados com a conexão de dispositivos Cisco e configurá-los usando ode linha de comando interface (CLI). Aqui, nós rever rapidamente os métodos para acessar e navegar CLI.Conectando-se a dispositivos CiscoVocê pode acessar um dispositivo direta ou de um local remoto. Figura 27-2 mostra as muitas maneiras que vocêpode se conectar a dispositivos Cisco.46 31 Dias antes de seu exame CCNA

Page 47: 31 Dias Para o CCNA

As duas maneiras de configurar dispositivos Cisco são as seguintes:■ Console terminal: Use um conector RJ-45 para RJ-45 cabo rollover e um computador com o terminalsoftware de comunicação (como Prazo, HyperTerminal Tera, e assim por diante) para estabelecer uma relação directaconexão.■ terminal remoto: Use um modem externo conectado à porta auxiliar-routers apenas paraconfigurar remotamente o dispositivo.Uma vez configurado, você pode acessar o dispositivo usando três métodos adicionais:■ Estabelecer um terminal sessão (vty) usando Telnet.■ Configurar o dispositivo através da conexão atual (console ou auxiliar), ou baixar umescrito anteriormente arquivo startup-config de um Trivial File Transfer Protocol (TFTP) emda rede.■ Baixe um arquivo de configuração usando um software de gerenciamento de rede, tais comoCiscoWorks.Sessões CLI EXECCisco IOS separa a sessão EXEC em dois níveis de acesso básicos:■ modo EXEC Usuário: Acesso a apenas um número limitado de monitoramento e solução de problemas básicoscomandos, como show e ping.■ Modo EXEC privilegiado: o acesso total a todos os comandos do dispositivo, incluindo configuração ede gestão.

Usando o recurso de AjudaCisco IOS tem uma extensa linha de comando recursos de entrada de ajuda, incluindo ajuda sensível ao contexto. oa seguir resume os dois tipos de ajuda disponíveis:■ a ajuda do Word: Digite uma seqüência de caracteres de um comando incompleto

Page 48: 31 Dias Para o CCNA

imediatamente seguido por umponto de interrogação (sh?) para obter uma lista de comandos disponíveis que começam com a seqüência de caracteres.■ ajudar a sintaxe de comando: Digite o? comando para obter ajuda para a sintaxe de comando para ver todas asargumentos disponíveis para completar um comando (show?). IOS em seguida, exibe uma lista de disponíveisargumentosComo parte do mecanismo de ajuda, IOS exibe mensagens de erro do console quando sintaxe de comando incorretoé inserido. Tabela 27-1 mostra mensagens de erro da amostra, o que significam, e como obter ajuda quandoeles são exibidos.Tabela 27-1 Mensagens de erro do ConsoleErro Significado Exemplo Como obter ajudamensagemswitch # cl Você não inseriu suficiente Redigite o comando seguido por umPersonagens ambíguos% para o dispositivo de ponto de interrogação (?), Sem um espaçocomando: "cl" reconhecer o comando. entre o comando ea questãomarca. As palavras-chave possíveis que você podeentrar com o comando são exibidos.switch # clock Você não inseriu todos os Redigite a do comando seguido de umComando% incompleto. palavras-chave ou valores necessários ponto de interrogação (?), com um espaço entrepor este comando. o comando eo ponto de interrogação.switch # ste relógio Você digitou o comando Enter um ponto de interrogação (?) para exibir todos^ Incorretamente. O acento circunflexo (^) os comandos disponíveis ou parâmetros.Input% inválido detectado marca o ponto do erro.em '^' marcador.

Seta para a direita ou Ctrl-F Isso move o cursor para a frente no comando exibido atualmente semexclusão de caracteres. (A F está para a frente.)Guia Conclui uma entrada de nome parcial de comando.Backspace Isso move o cursor para trás no comando exibido atualmente, a exclusão

Page 49: 31 Dias Para o CCNA

caracteres.Ctrl-A Isso move o cursor diretamente para o primeiro caractere do atualmente exibidocomando.Ctrl-E Isso move o cursor diretamente para o final do comando exibido no momento.Ctrl-R Este exibe novamente a linha de comando com todos os personagens. É útil quando as mensagensa desordem da tela.Ctrl-D Isso exclui um único personagem.Esc-B Isso move uma palavra para trás.Esc-F Este avança uma palavra.No-More - PromptTecla Enter Exibe a próxima linha.Espaço Bar Exibe a próxima tela.Quaisquer outros alfanumérico Devoluções chave para o prompt EXEC.Chaves quebraCtrl-C Quando estiver em modo de configuração, este termina o modo de configuração eretorna ao modo EXEC privilegiado. Quando em modo de configuração, aborta volta para oprompt de comando.Ctrl-Z Quando, em qualquer modo de configuração, este termina o modo de configuração eretorna ao modo EXEC privilegiado. Quando em modo de usuário ou EXEC privilegiado,faz o logout do roteador.Ctrl-Shift-6 seqüência de quebrar todos os fins. Use para pesquisas abortar DNS, traceroutes, pings.Seta um parágrafo Direita OU Ctrl-F move cursor de Isso o Pará a Frente não commando exibido atualmente SEM Exclusão de Caracteres. (A F está offline Pará a Frente.) Guia Conclui UMA Entrada de nomo parcial de commando. Backspace mover o cursor de Isso parágrafo Trás exibido atualmente no comando, a Exclusão Caracteres. Ctrl-Um movimento de Isso o cursor Treatement parágrafo O Primeiro Caractere fazer atualmente exibido commando. Ctrl-E mover o cursor de Isso Treatement o parágrafo final, do commando exibido no Momento. Ctrl-R Este exibe Novamente uma Linha de comando com de Todos os Personagens. Útil quando e como Mensagens uma Desordem da Tela. Ctrl-D de Isso exclui hum Único Personagem. Esc-B move de Isso UMA Palavra parágrafo Trás. Esc-F Este Avança UMA Palavra. No-More - Prompt Tecla Enter Exibe uma Linha Proxima. Espaço Bar Exibe uma Tela Proxima. Quaisquer Outros alfanumérico Devoluções chave par o prompt de EXEC. Chaves quebra Ctrl-C Quando estiver los MoDo de configuração, this terminação o MoDo de configuração e retorna AO MoDo EXEC privilegiado. Quando los MoDo de configuração, aborta Volta par o prompt de comando de. Ctrl-Z Quando, EM QUALQUÉR MoDo de configuração, this terminação o MoDo de configuração e retorna AO MoDo EXEC privilegiado. Quando los MoDo de Usuário OU EXEC privilegiado, FAZ o sair do Roteador. Ctrl-Shift-6 sequencia de quebrar barbatanas Todos os. Use parágrafo Pesquisas abortar DNS, traceroutes, pings.

mudar tamanho do histórico terminal 50 # Configura o tamanho do histórico terminal. A história terminal pode manter 0até 256 linhas de comando.switch # terminal sem história tamanho Redefine o tamanho do histórico terminal para o valor padrão de 10 linhas de comando.switch # terminal sem história Desativa história terminal.Exame Comandos IOSPara verificar e solucionar problemas de operação de rede, você pode usar comandos de show. Figura 27-3 delineia acomandos show diferente, como se segue:■ Se eles são aplicáveis a IOS (armazenada na memória RAM)

Page 50: 31 Dias Para o CCNA

■ Se elas se aplicam ao arquivo de configuração de backup armazenadas em NVRAM■ Se eles se aplicam a flash ou interfaces específicasFigura 27-3 Comandos show típico e as informações fornecidas

Modos SubconfigurationPara entrar no modo de configuração global, digite o comando configure terminal. Do globalmodo de configuração, IOS proporciona uma infinidade de modos subconfiguration. Tabela 27-4 resumeos modos mais comuns subconfiguration pertinentes para o exame CCNA.

Armazenar e apagar arquivos de configuraçãoQuando você configurar um dispositivo Cisco, ele precisa ser capaz de manter a configuração na memóriacaso mudar o router ou perde poder. Dispositivos Cisco tem quatro tipos principais de memória. Figura 27-4mostra esses tipos de memória e quatro a função principal de cada um.Figura 27-4 Memória Cisco tipos de dispositivos

Dispositivos Cisco usar dois arquivos, um arquivo de configuração usado quando o dispositivo está ligado, eoutro arquivo para o ativo, de configuração usados atualmente em execução na RAM. Tabela 27-5 lista os nomes

Page 51: 31 Dias Para o CCNA

desses arquivos, seu propósito, e onde eles são armazenados na memória.Tabela 27-5 Nomes e Finalidades dos dois principais Cisco IOS arquivos de configuraçãoFinalidade configuração Nome do arquivo onde é armazenadoStartup-config armazena a configuração inicial usado NVRAMqualquer momento o interruptor recarrega Cisco IOS.Executando-config armazena os comandos de configuração usados atualmente. RAMEste arquivo muda dinamicamente quando alguémentra em modo de comandos de configuração.Arquivos de configuração também podem ser armazenadas em um servidor TFTP. Os arquivos de configuração pode ser copiadoentre a RAM, NVRAM, e um servidor TFTP usando os comandos copiar, como mostrado na Figura 27-5.Figura 27-5 Configuração Comandos de cópia de arquivo e locais de armazenamento

Você pode usar três comandos para apagar o conteúdo da NVRAM. O apagar escrever e apagar startup-comandos de configuração são mais velhos, enquanto que a nvram apagar: comando é o mais recente, e recomendou,comando. Todos os três comandos apagar o conteúdo do arquivo de configuração NVRAM.

Page 52: 31 Dias Para o CCNA

Dia 26Configuração básica de switch e PortoSegurançaExame CCNA 640-802 Tópicos■ Executar, salvar e verificar as tarefas de configuração opção inicial, incluindo a gestão de acesso remoto.■ Implementar e verificar a segurança básica de switch (incluindo a segurança portuária, os portos não atribuído, troncoacesso, e assim por diante).Tópicos-chaveHoje nós revemos os comandos necessários para realizar uma configuração básica inicial de um switch. Parasegurança básica de switch, revisamos mudança virtual padrão redes locais (VLANs), SecureShell configuração (SSH), e de segurança portuária.Comandos de Configuração Básica de um SwitchTabela 26-1 opiniões comandos básicos de configuração switch.Tabela 26-1 Comandos de Configuração Básica de um Switch

Page 53: 31 Dias Para o CCNA

Comando Sintaxe do Comando DescriçãoEntrar no modo de configuração global. Switch # configure terminalConfigure um nome para o dispositivo. Switch (config) # hostname S1Entrar na interface de configuração do modo S1 (config) # interface vlan 123para a interface de 123 VLAN.Configurar o endereço IP da interface. S1 endereço (config-if) # ip 172.17.99.11255.255.255.0Permitir a interface. S1 (config-if) # no shutdownRetornar ao modo de configuração global. S1 (config-if) # exitEntrar na interface para atribuir o VLAN. S1 (config) # interface FastEthernet 0 / 6Definir o modo de participação na VLAN para a porta. S1 (config-if) # access modo switchportAtribuir a porta a uma VLAN. S1 (config-if) # switchport acesso vlan 123Configurar o modo duplex interface para ativar auto (config-if) # S1 duplexConfiguração duplex AUTO.Configure a velocidade duplex interface e habilitar auto (config-if) # S1 velocidadeConfiguração de velocidade AUTO.continua

Retornar ao modo de configuração global. S1 (config-if) # exitConfigure o gateway default no switch. S1 (config) # ip default-gateway 172.17.50.1Configurar o servidor HTTP para autenticação usando S1 (config) # ip de autenticação http permitira senha de ativação, que é o método padrão deHTTP de autenticação do usuário do servidor.Habilitar o servidor HTTP. S1 (config) # ip do servidor httpAlternar entre o modo de configuração global para a linha S1 (config) # line do console 0modo de configuração para o console 0.Definir cisco como a senha para o console de linha 0 sobre o switch. S1 (config-line) # password ciscoDefinir a linha do console para exigir a senha para ser S1 (config-line) # loginentrou antes que o acesso é concedido.Retornar ao modo de configuração global. S1 (config-if) # exitAlternar entre o modo de configuração global para a linha S1 (config) # line vty 0 4modo de configuração para os terminais vty 0 a 4.Definir cisco como a senha para as linhas vty no interruptor. S1 (config-line) # password ciscoDefinir a linha de vty para exigir a senha a S1 (config-line) # loginser introduzido antes que o acesso é concedido.Retornar ao modo de configuração global. S1 (config-line) # exitConfigurar cisco como a senha de ativação S1 (config) # enable password ciscopara entrar no modo EXEC privilegiado.Configure classe como a enable secret password S1 (config) # enable secret classpara entrar no modo EXEC privilegiado.Criptografa todas as senhas do sistema que são armazenadas em texto claro. S1 (config) # serviço senha de criptografiaConfigurar um banner login. O caractere # delimita S1 (config) login bandeira # # Autorizadoinício e no final do banner. Somente pessoal! #Configurar um banner de login MOTD. # O personagem S1 (config) # motd bandeira # Dispositivodelimita o início eo fim do banner. manutenção estarão ocorrendo na sexta-feira! #Voltar ao modo EXEC privilegiado. S1 (config) # finalSalvar a configuração atual S1 # copy running-config startup-config

Page 54: 31 Dias Para o CCNA

a opção de configuração de arranque.Em referência aos comandos na Tabela 26-1, tenha em mente o seguinte:■ O padrão VLAN para todas as portas é a VLAN 1. Porque é uma prática recomendada para usar uma outra VLANque o padrão VLAN 1 como o gerenciamento de VLAN, o comando na tabela usa VLAN 123.■ Por padrão, a VLAN nativa atribuído a troncos também é 802.1Q VLAN 1. É uma melhor segurançaprática para definir uma VLAN dummy como o nativo VLAN-a VLAN que é diferente de todos osoutras VLANs. Discutimos trunking configuração no dia 23, "e VLAN TrunkingConfiguração e resolução de problemas. "54 31 Dias antes de seu exame CCNATabela 26-1 Comandos Configuração básica Mudar continuouComando Sintaxe do Comando Descrição

■ Embora o comando enable password é mostrada na tabela para a completude, este comandoé substituído pelo comando enable secret. Se ambos estão inseridos, ignora o IOSpermitir comando de senha.■ Para configurar várias portas com o mesmo comando, use o comando da escala interface. paraexemplo, para configurar as portas de 6 a 10 como portas de acesso pertencentes à VLAN 10, vocêdigite o seguinte:Switch (config) # interface gama FastEthernet 0 / 6-10Switch (config-if-range) # access modo switchport

Switch (config-if-range) # access switchport vlan 10

Configurando Acesso SSHFigura 26-1 mostra graficamente as etapas para configurar um switch (ou roteador) para dar suporte SSH.Figura 26-1 Etapas de configuração SSH

A seguir detalha a descrição das etapas mostrado na figura:Passo 1 Alterar as linhas vty de usar nomes de usuários, quer com nomes de usuários localmente configurado ou umautenticação, autorização e contabilidade servidor (AAA). Na Figura 26-1, o login

Page 55: 31 Dias Para o CCNA

locais subcomando define o uso de nomes de usuário local, substituindo o login subcomandovty no modo de configuração.Etapa 2 Configurar o interruptor para aceitar conexões tanto Telnet e SSH com o transporteinput telnet ssh vty subcomando. (O padrão é telnet de entrada de transporte, omitindo assh parâmetro.)Passo 3 Adicione uma ou mais nome nome senha pass valor comandos de configuração globalpara configurar usuário / senha pares.Etapa 4 Configurar um nome de domínio DNS com a configuração de ip nome de nome de domínio mundialcomando. Este comando é necessário somente se você quiser usar um nome de domínio em vezde um endereço IP.

Etapa 5 Configure a chave para gerar um pareado chaves pública e privada, bem como uma compartilhadachave de criptografia, usando a chave de criptografia gerar rsa comando de configuração global.Passo 6 Apesar de não mudar os comandos são necessários, cada cliente SSH precisa de uma cópia dointerruptor de chave pública antes de o cliente pode se conectar.Configurando Segurança PortaSe você sabe quais dispositivos devem ser conectados e ligados a interfaces em particular em um switch,você pode usar a segurança do porto para restringir a interface de modo que apenas os dispositivos previstos podem usá-lo. Estereduz a exposição a alguns tipos de ataques em que o atacante se conecta um laptop à tomada de paredeou usa o cabo ligado a outro dispositivo fim de obter acesso à rede.Porta de configuração de segurança envolve várias etapas. Basicamente, você precisa fazer a porta de acessoporto, o que significa que a porta não está fazendo qualquer trunking VLAN. Então você precisa para ativar a portasegurança e, em seguida, configurar o real Media Access Control (MAC) dos dispositivospermissão para usar essa porta. A lista a seguir descreve as etapas, incluindo os comandos de configuraçãoutilizados:Etapa 1 Configurar a interface para o modo de acesso usando a interface de acesso switchport modosubcomando.Passo 2 Habilitar a segurança do porto usando o switchport porta de segurança de interface subcomando.Passo 3 (Opcional) Especifique o número máximo de endereços MAC permitidos associadosa interface com o switchport número máximo de porta de segurança de interface subcomando.(O padrão é um endereço MAC).Passo 4 (Opcional) Defina a ação a tomar quando um frame é recebido de um endereço MACque não os endereços definidos usando o switchport violação de segurança do porto-{proteger| Restringir | shutdown} interface do subcomando. (A ação padrão é para desligar oporta.)5A passo Especifique o endereço MAC (es) permissão para enviar quadros para esta interface usando oswitchport porta de segurança mac-address comando mac-address. Use o comandovárias vezes para definir mais de um endereço MAC.

Page 56: 31 Dias Para o CCNA

5B passo Alternativamente, em vez de 5A Step, configurar a interface para aprender dinamicamente e configuraros endereços MAC dos hosts conectados no momento, configurando o switchportporta de segurança endereço mac da interface adesiva subcomando.Quando um dispositivo não autorizado tenta enviar quadros para a interface do switch, o switch pode emitirmensagens informativas, frames descartar a partir desse dispositivo, ou até mesmo descartar quadros de todos os dispositivospor efetivamente desligar o interface. Exatamente a ação que leva a porta do switch dependea opção de configurar no comando violação switchport porta de segurança. Tabela 26-2 listasações que a mudança terá com base no fato de configurar a opção proteger, restringir, ou desligamento(Padrão).56 31 Dias antes de seu exame CCNATabela 26-2 Ações Ao Porto Violação de segurança Ocorre Opção no switchport Proteja Restringir Shutdown porta de segurança Comando violação Descarta ofender tráfego Sim Sim Sim Envia log e mensagens SNMP Não Sim Sim Desativa a interface, descartando todo o tráfego Não Não Sim Exemplo 26-1 mostra uma configuração de segurança do porto, onde cada interface de acesso é permitido um máximo de três endereços MAC. Se um quarto MAC é detectado, somente o tráfego do dispositivo infractor será ser descartado. Se a opção de violação não é explicitamente configurado, o tráfego para dispositivos que estão permitido na porta também seria descartado porque a porta seria desligado por padrão.

Page 57: 31 Dias Para o CCNA

Desligando e Protegendo não utilizados Interfaces Interfaces do roteador, como você sabe, deve ser ativada com o comando no shutdown antes que eles se tornar operacional. O exato oposto é verdade para os switches Cisco Catalyst. Para fornecer out-deA- funcionalidade caixa, a Cisco escolheu uma configuração padrão que incluía interfaces que iria trabalhar sem qualquer configuração, incluindo automaticamente negociação de velocidade e duplex. Além disso, todos interfaces são atribuídos ao padrão VLAN 1. Essa configuração padrão expõe muda para algumas ameaças de segurança. As melhores práticas de segurança para interfaces não utilizadas são as seguintes: ■ Administrativamente desativar a interface com o desligamento da interface subcomando. ■ Evite VLAN trunking e VTP, tornando a porta de uma interface nontrunking usando o switchport acessar o modo de interface do subcomando. ■ Atribuir a porta a uma VLAN não utilizados usando o switchport número de acesso da interface vlan subcomando.

Page 58: 31 Dias Para o CCNA

Dia 25Verificação e solução de problemas básicosConfigurações de chaveExame CCNA 640-802 Tópicos

Page 59: 31 Dias Para o CCNA

■ Verifique o estado da rede ea operação do switch usando utilitários básicos (incluindo ping, traceroute,telnet, SSH, ARP, ipconfig), show e e comandos de depuração.■ Identificar, prescrever e resolver problemas comuns de rede comutada por meios de comunicação, problemas de configuração,autonegociação e falhas de hardware switch.■ Interpretar a saída de mostrar vários e depurar comandos para verificar o status operacional de umaCisco rede comutada.Pontos-chaveNos dias que virão, vamos analisar a configuração, verificação e solução de problemas associados tarefascom VLANs, trunking, VLAN Trunking Protocol (VTP), Spanning Tree Protocol (STP) einter-VLAN routing. Hoje vamos nos concentrar em habilidades solução de problemas associados com configuração básica de switchincluindo a verificação de conectividade de rede, interpretação de comandos que exibem o status deinterfaces, e usando o Cisco Discovery Protocol (CDP).Metodologia solução de problemasDia 29,? Fluxo de dados de rede de ponta a ponta,? discutiu a três abordagens para a resolução de problemassua rede com base nas camadas do modelo OSI: de baixo para cima, de cima para baixo, e dividir e conquistar.Independentemente do método que você usa, aqui estão algumas sugestões gerais para tornar a sua solução de problemasmais eficaz:■ Entenda a operação da chave normal: Nenhuma quantidade de estudo pode substituir a experiência prática.Com sorte, você já passou muitas horas a configuração muda, pelo menos em um laboratórioambiente ou em um simulador. Os guias de configuração em Cisco.com ajudará a preencher em qualquerlacunas em sua experiência.■ Criar mapas precisos física e lógica: Porque um interruptor pode criar diferentes segmentosatravés da implementação de VLANs, as conexões físicas por si só não contam toda a história. Vocêdeve saber como os interruptores estão configurados para determinar quais segmentos (VLANs) existem ecomo eles são logicamente conectados.■ Tenha um plano: Antes de tirar conclusões precipitadas, tente verificar de uma forma estruturada que está funcionandoeo que não é. Como as redes podem ser complexas, é útil para isolar possíveis problemasdomínios. Por exemplo, pode todos os dispositivos na mesma rede local pingar um ao outro? Assumindo queo interruptor está configurado corretamente, muitos dos problemas que você encontrar estará relacionada com

questões físicas camada (portas físicas e cabeamento). Layer 2 questões poderiam ser o problema comobem, no entanto. O ponto é ter um plano para por onde começar-Layer 1 ou Layer 2 e, em seguida,

Page 60: 31 Dias Para o CCNA

resolver todos os problemas em que a camada antes de prosseguir.■ Assumir nada: Não assuma componentes básicos estão funcionando corretamente sem testes-las primeiro. Ele normalmente leva apenas um minuto para verificar o básico (por exemplo, que as portas estãoconectado corretamente e ativa), e você pode economizar tempo valioso.As seguintes etapas descrevem um método geral solução de problemas que podem ser usados com qualquer problema emda rede. Este é o método usado nos livros de Wendell Odom no Exame CCNA OficialBiblioteca de certificação, Terceira Edição:Analisando passo 1 / prever o funcionamento normal.Prever os detalhes do que deve acontecer se a rede está funcionando corretamente, com base emdocumentação, configuração, e show e saída do comando debug.Passo 2 Problema de isolamento.Determinar o quão longe no caminho esperado do quadro / pacote vai antes que ele não pode serencaminhados mais longe, novamente com base em documentação, mostrar configuração e edepuração saída do comando.Passo 3 de análise de causa raiz.Identificar as causas subjacentes dos problemas identificados no passo anterior, especificamente,as causas que têm uma ação específica com a qual o problema pode ser corrigido.Na sequência deste processo requer uma variedade de habilidades aprendidas. Você precisa se lembrar da teoria dacomo as redes devem funcionar, bem como a forma de interpretar a saída do comando mostram que confirmacomo os dispositivos estão se comportando. Este processo requer o uso de ferramentas de teste, tais como pinge traceroute, para isolar o problema. Finalmente, esta abordagem exige a capacidade de pensar amplamentesobre tudo o que poderia afetar um único componente.Para os nossos propósitos hoje, vamos assumir que todos os problemas potenciais Layer 3 foramdescartada para que possamos concentrar em Camada 2 e Camada 1 questões. Em uma LAN comutada, você provavelmente iránecessidade de determinar alguns ou todos os seguintes:■ endereços MAC de dispositivos envolvidos (PCs e interfaces de router)■ interfaces de Alterne que estão em uso■ Estado de interfaces chave■ comportamento esperado da origem ao destinoVerificando a conectividade de redeUsar e interpretar a saída de ferramentas de teste diferentes é muitas vezes o primeiro passo para isolar ocausa de um problema de conectividade de rede. O comando ping pode ser usado para testar a conectividade sistematicamenteda seguinte forma:■ Pode um dispositivo de final de ping-se?■ Pode um dispositivo de final de ping seu gateway padrão?■ Pode um dispositivo final ping no destino?62 31 Dias antes de seu exame CCNA

Usando o comando ping nesta seqüência ordenada, você pode isolar problemas mais rapidamente. Se a conectividade local

Page 61: 31 Dias Para o CCNA

não é um problema, em outras palavras, o dispositivo final pode ping com êxito o seu default gateway-usando o utilitário traceroute pode ajudar a isolar em que ponto do caminho da origem ao destino queo trânsito pára.Como um primeiro passo na seqüência de testes, verificar o funcionamento da pilha TCP / IP no host localping o endereço de loopback, 127.0.0.1, como demonstrado no Exemplo 25-1.

Porque este teste deve ter sucesso, independentemente de o host está conectado à rede, uma falhaindica um problema de software ou hardware na máquina em si. Tanto a interface de rede não éfuncionando corretamente, ou possivelmente o suporte para a pilha TCP / IP foi removida inadvertidamenteo sistema operacional.Em seguida, verificar a conectividade para o gateway default. Determine o endereço de gateway padrão usandoipconfig e em seguida, tentar ping-lo, como demonstrado no Exemplo 25-2.Exemplo 25-2 Conectividade Teste para o Default Gateway em um PC Windows

Falha aqui pode indicar vários problemas, cada um dos quais terá de ser verificado em uma sistemáticaseqüência. Uma ordem possível pode ser o seguinte:1. É o cabeamento do PC para a opção correta? São luzes de link estão acesas?2. É a configuração do PC correta de acordo com o mapa lógico da rede?3. São as interfaces afetadas no interruptor a causa do problema? Existe um duplex ou

Page 62: 31 Dias Para o CCNA

velocidade de incompatibilidade? VLAN configurações erradas?4. É o cabeamento do switch ao roteador correto? São luzes de link estão acesas?5. É a configuração na interface do roteador correta de acordo com o mapa lógico da rede?É a interface ativa?Por fim, verifique a conectividade com o destino de ping-lo. Suponha que estamos tentando chegar a um servidorem 192.168.3.100. Exemplo 25-3 mostra um teste de ping foi bem sucedido para o destino.

Page 63: 31 Dias Para o CCNA

A nota do motivo da falha nos saltos 3, 4 e 5 do Exemplo 25-4 pode ser que esses roteadoressão configurados para não enviar mensagens ICMP de volta para a fonte.O último salto de sucesso no caminho para o destino era 192.168.2.2. Se você tem administradordireitos de 192.168.2.2, você pode continuar sua pesquisa por acessar remotamente a linha de comando em192.168.2.2 e investigando por que o tráfego não será ir mais longe. Além disso, entre outros dispositivos192.168.2.2 e 192.168.3.100 poderia ser a fonte do problema. O ponto é, você quer usarseu ping e tracert testes, bem como a documentação da rede para prosseguir na seqüência lógicada origem ao destino.Independentemente de quão simples ou complexa rede da sua é, usando ping e tracert da fonte parao destino é um simples, mas poderosa maneira, de forma sistemática e testar a conectividade localizar quebrasem um caminho de uma fonte para um destino.Status da interface e da configuração do comutadorPorque hoje estamos nos concentrando na solução de problemas switch, vamos olhar para os comandos mostram que sãoúteis na solução de sua configuração básica.Códigos de status de interfaceEm geral, as interfaces são ou "para cima" ou "para baixo". No entanto, quando uma interface é "baixo" e você nãosabe por que, o código no comando show interfaces fornece mais informações para ajudar a determinara razão. Tabela 25-1 lista as combinações de códigos e algumas possíveis causas para o estado indicado ..

Page 64: 31 Dias Para o CCNA

Descompasso duplex e velocidadeUm dos problemas mais comuns são as questões com a velocidade e / ou desencontros duplex. em switchese roteadores, a velocidade {10 | 100 | 1000} interface do subcomando ea meia duplex {|} completa da interfacesubcomando definir esses valores. Note que a configuração de velocidade e duplex em um interface do switchdesativa o processo de auto-negociação IEEE-padrão em que interface.O show de status interfaces e interfaces de mostrar lista de comandos a velocidade eo duplex configuraçõesem uma interface, como mostrado no Exemplo 25-5.

Page 65: 31 Dias Para o CCNA

Note-se que ambos os comandos irá mostrar as definições de duplex e velocidade da interface. No entanto, ocomando show status da interface é o preferido para solucionar incompatibilidades duplex ou velocidadeporque ele mostra exatamente como o interruptor determinou o duplex e velocidade da interface. nocoluna duplex, um full-significa que o switch autonegotiated full duplex. O meio cheio ou meio ambienteque o interruptor foi configurado nessa configuração duplex. Autonegociação foi desativado. nocoluna de velocidade, uma de 100 significa que o switch 100 Mbps autonegotiated como a velocidade. A configuração de 10 ou100 significa que o interruptor foi configurado com essa definição velocidade.Encontrar uma incompatibilidade duplex pode ser muito mais difícil do que encontrar uma incompatibilidade de velocidade, porque seas configurações de duplex não correspondem nas extremidades de um segmento de Ethernet, a interface do switch aindaestar em um estado de conexão (para cima / para cima). Neste caso, a interface funciona, mas a rede pode funcionar mal,com hosts experimentar um mau desempenho e problemas de comunicação intermitente. para identificarproblemas de incompatibilidade duplex, verifique a configuração duplex em cada extremidade do link, e ver para incrementarcolisão e contadores de colisão tardia.Problemas comuns Layer 1 On "Up" InterfacesQuando uma interface do switch é "para cima", não significa necessariamente que a interface está operando em umestado ideal. Por esta razão, IOS irá monitorar contadores certas para ajudar a identificar problemas que podemocorrer mesmo que a interface está em um estado de conexão. Esses contadores são destaque na saídano Exemplo 25-5. Tabela 25-2 resume três tipos gerais de problemas da camada 1 interface quepode ocorrer enquanto uma interface está na "up", estado conectado.

Page 66: 31 Dias Para o CCNA

Tabela 25-2 Common Camada LAN 1 Indicadores ProblemaTipo de valores do contador Problema indicando que este problema comum Causas RaizExcesso de ruído Muitos erros de entrada, algumas colisões categoria cabo errado (Cat 5, 5E,6); cabos danificados; EMIColisões Mais de aproximadamente 0,1% de todos os quadros são colisões incompatibilidade Duplex (visto na halfduplexlado); jabber; ataque DoSColisões tarde Aumentar domínio de colisão final colisões ou único cabomuito tempo; duplex incompatibilidade

CDP como Ferramenta de Resolução de ProblemasCDP descobre informações básicas sobre roteadores conectados diretamente e switches Cisco, enviando CDPmensagens. Exemplo 25-6 mostra a saída de um interruptor que está diretamente ligado a um roteador Cisco.Exemplo de Saída 25-6 Comandos do show cdp

Page 67: 31 Dias Para o CCNA

informação útil:■ ID do dispositivo: Normalmente o nome do host■ endereço de entrada (es): endereços de rede e de enlace de dados■ Plataforma: O modelo e nível de sistema operacional em execução no dispositivo■ Capacidades: Informações sobre que tipo de dispositivo é (por exemplo, um roteador ou switch)■ Interface: A interface do roteador ou switch de emitir o comando show cdp com o qualo vizinho foi descoberto■ Porto ID: Texto que identifica a porta usada pelo dispositivo vizinhos para enviar mensagens CDPpara o dispositivo localTambém aviso no comando show interface cdp que cada interface do switch é o envio de CDPmensagens a cada 60 segundos. CDP é habilitado por padrão e, assim, cria um problema de segurança porqueCDP mensagens podem ser interceptadas e informações sobre a rede descoberta. CDP pode ser facilmente desabilitado

Page 68: 31 Dias Para o CCNA

tanto a nível global para todo o dispositivo (sem executar cdp) ou individualmente por interface (não permitir cdp).

Comutação Technologies e VLAN Conceitos Exame CCNA 640-802 Tópicos ■ Descrever avançadas Tecnologias de comutação (VTP, RSTP, VLAN, PVSTP, 802.1Q). ■ Como Descrever como as VLANs CRIAM Redes separadas logicamente eA necessidade de roteamento empreendedorismo -Los. ■ Configurar, VerificAR e solucionar Problemas de Operação RSTP. Pontos-chave Redes virtuais LOCAIS (VLANs) São UMA Tecnologia de comutação Utilizados par melhorar o Desempenho da Rede separando SO Área de domínio de transmissão Grandes los Menores. Troncos VLAN fornecer UMA MANEIRA parágrafo hum Interface Física parágrafo Transportar varias VLANs. O Protocolo IEEE 802.1Q e trunking o recomendado Método de Marcação de Quadros parágrafo OSU los ligações tronco. Em Redes Maiores, Onde HÁ muitos muda parágrafo gerenciar, VLAN Trunking Protocol (VTP) fornece UMA MANEIRA de atualizar automaticamente com muda de Novas Informações OU Modificado VLAN. Spanning Tree Protocol (STP) e SUAS Variantes redundantes permitem Redes comutadas SEM SE preocupar com uma loops Mudança. Embora STP PoDE serviços alguns com tweaked comandos, e executado Por Padrão, nao precisando de nenhum ajuste los

Page 69: 31 Dias Para o CCNA

Tudo. Conceitos VLAN Apesar de hum switch "out of the box" e configurado par ter apenas UMA VLAN, normalmente hum interruptor vai serviços configurado par ter Duas OU VLANs Mais. Fazer ISSO CRIA Vários Área de domínio de broadcast, Colocando interfaces de ALGUMAS los UMA interfaces de VLAN e Outras los Outras VLANs. Razões parágrafo USAR VLANs incluem o seguinte: ■ Agrupamento usuarios Por departamento, EM Vez Por Localização de Física ■ segmentares Dispositivos los LANs Menores parágrafo reduzir uma sobrecarga de Processamento para Todos OS Dispositivos da LAN ■ Reduzir uma Carga de Trabalho da STP, limitando UMA VLAN hum uma chave de Acesso Único ■ Fazer cumprir UMA Melhor Segurança, isolando OS Dados sensíveis VLANs separadas parágrafo ■ Separar o Tráfego de Voz IP de Tráfego de Dados Benefícios do OSU de VLANs incluem o seguinte: ■ Segurança: Os Dados confidenciais podem serviços Isolados parágrafo UMA VLAN, separando-o do resto do Rede.

upgrades de rede e mais carouso eficiente da largura de banda existente e uplinks.■ Maior desempenho: Dividindo camada plana duas redes de transmissão em lógicas múltiplasdomínios reduz o tráfego desnecessário na rede e aumenta a performance.■ tempestade Transmissão de mitigação: VLAN segmentação evita que uma tempestade de broadcast de propagaçãotoda a rede.■ Facilidade de gestão e solução de problemas: Um esquema de endereçamento de rede hierárquica gruposendereços de forma contígua. Porque um esquema de endereçamento hierárquico IP torna problemacomponentes mais fáceis de localizar, de gerenciamento de rede e resolução de problemas são mais eficientes.Tipos de tráfegoUm fator-chave para VLAN implantação é entender os padrões de tráfego eo tráfego de váriostipos na organização. Tabela 24-1 mostra os tipos comuns de tráfego de rede que você deveavaliar antes de colocar dispositivos e configuração de VLANs.Tipos de Tabela 24-1 TráfegoDescrição Tipo de tráfegoMuitos tipos de rede de tráfego de gerenciamento de rede pode estar presente na rede. Para fazersolução de problemas de gerenciamento de rede mais fácil, alguns designers atribuir uma VLAN separada para realizar certastipos de tráfego de gerenciamento de rede.Telefonia IP Há dois tipos de tráfego de telefonia IP: informações de sinalização entre os dispositivos finale os pacotes de dados da conversa de voz. Designers muitas vezes os dados para configurar edos telefones IP em uma VLAN separada designada para o tráfego de voz, para que possam

Page 70: 31 Dias Para o CCNA

aplicar medidas de qualidade de serviço para dar prioridade ao tráfego de voz.IP multicast tráfego Multicast pode produzir uma grande quantidade de fluxo de dados através da rede.Interruptores devem ser configurados para manter esse tráfego de inundações para dispositivos que não tenhamsolicitado, e os roteadores devem ser configurados para garantir que o tráfego multicast é encaminhadopara as áreas de rede onde é solicitado.De dados normais o tráfego de dados é normal o tráfego de aplicações típicas que está relacionado com serviços de arquivo e impressão,e-mail, navegação na Internet, acesso a banco de dados e outras aplicações de rede compartilhada.Scavenger Scavenger classe classe inclui todo o tráfego com os protocolos ou padrões que excedem as suas normaisfluxos de dados. Aplicativos atribuídos a essa classe tem pouca ou nenhuma contribuição para a organizaçãoobjetivos da empresa e são tipicamente entretenimento orientados na natureza.Tipos de VLANsAlguns tipos de VLAN são definidos pelo tipo de tráfego que eles suportam, outros são definidos pelofunções específicas que desempenham. Os principais tipos de VLAN e suas descrições a seguir:■ Dados VLAN: Configurado para transportar o tráfego gerado pelo usuário apenas, assegurando que a voz e gestãotráfego é separado do tráfego de dados.■ Padrão VLAN: Todas as portas em um switch são membros da VLAN default quando o interruptoré redefinir os padrões de fábrica. A VLAN default para switches Cisco é a VLAN 1. VLAN 1 tem todasas características de qualquer VLAN, exceto que você não pode renomeá-lo e você não pode excluí-lo. É ummelhores práticas de segurança para restringir VLAN 1 para servir como um canal só para a camada de controle de tráfego 2(Por exemplo, CDP ou VTP), apoiando nenhum outro tráfego.72 31 Dias antes de seu exame CCNA

Buraco negro VLAN: A melhor prática de segurança é definir um buraco negro VLAN a ser um manequimVLAN distinta de todas as outras VLANs definidas na LAN comutada. Todas as portas não utilizadas sãoatribuído ao buraco negro VLAN de forma que qualquer dispositivo não autorizado se conectar a um não utilizadosporta do switch será impedido de se comunicar além do switch ao qual está conectado.■ Native VLAN: Este tipo de VLAN serve como um identificador comum em lados opostos de um troncolink. A melhor prática de segurança é definir uma VLAN nativa para ser um boneco VLAN distintosTodas as outras VLANs definidas na LAN comutada. A VLAN nativa não é usado para qualquer tipo de tráfego ema rede comutada, a menos que o legado dispositivos ponte estar presentes na rede, ou uminterconexão multiaccess existe entre switches unidos por um hub.

Page 71: 31 Dias Para o CCNA

■ Gerenciamento de VLAN: A VLAN definida pelo administrador da rede como um meio para acessar ocapacidades de gestão de um interruptor. Por padrão, VLAN 1 é a VLAN de gerenciamento. É uma segurançamelhores práticas para definir a VLAN de gestão a uma VLAN diferente de todas as outras VLANsdefinido na LAN comutada. Fazê-lo, configurando e ativando uma interface nova VLAN.■ VLANs Voz: A voz característica VLAN permite que portas do switch para transportar tráfego de voz IP de umTelefone IP. O administrador de rede configura uma VLAN de voz e atribui-lo para acessar as portas.Então, quando um telefone IP está conectado à porta do switch, o switch envia mensagens de CDP queinstruir o telefone IP conectado para enviar tráfego de voz marcado com o VLAN ID voz.Exemplo VLAN de vozFigura 24-1 mostra um exemplo do uso de uma porta de um switch para ligar de telefone IP de um usuário e PC.A porta do switch está configurado para transportar o tráfego de dados na VLAN 20 tráfego de voz e na VLAN 150. OCisco IP Phone contém um sistema integrado de três portas 10/100 para fornecer os seguintes dedicadosconexões:■ Porta 1 conecta ao switch ou dispositivo VoIP outros.■ Porta 2 é uma interface 10/100 interna que carrega o tráfego de telefone IP.■ Port 3 (acesso ao porto) se conecta a um PC ou outro dispositivo.Figura 24-1 Telefone IP Cisco comutação de tráfego de voz e dados

O tráfego do PC5 ligado ao telefone IP passa através do Telefone IP não identificado. o linkentre S2 eo ato de telefone IP como um tronco modificadas para transportar tanto o tráfego de voz com a tag e osuntagged tráfego de dados.VLANs trunkingUm tronco de VLAN é um link ponto-a-ponto entre uma interface Ethernet switch Ethernet e umInterface ethernet em outro dispositivo de rede, como um roteador ou switch, transportando o tráfego

Page 72: 31 Dias Para o CCNA

de várias VLANs através do link singular. Um tronco de VLAN permite que você estenda a toda a VLANsuma rede inteira. Um tronco de VLAN não pertencem a uma VLAN específica, mas sim, ele serve como um canalde VLANs entre switches. Figura 24-2 mostra uma pequena rede comutada com um link troncoentre S1 e S2 transportar tráfego VLAN múltiplos.

Quando um frame é colocado em um link tronco, informações sobre a VLAN a que pertence devem ser adicionados aodo quadro. Isto é conseguido usando IEEE 802.1Q tagging quadro. Quando um switch recebe um quadroem uma porta configurada no modo de acesso e destinados a um dispositivo remoto através de um link tronco, o switch temalém do quadro e insere uma tag VLAN, recalcula a seqüência de verificação de quadro (FCS), e envia otag frame para a porta do tronco. Figura 24-3 mostra a tag 802.1Q inserido em um quadro Ethernet.O campo tag VLAN consiste em um campo Tipo de 16 bits chamado de campo EtherType e um controle de Tagcampo de informação. O campo EtherType está definido para o valor hexadecimal de 0x8100. Este valor échamado tag protocolo ID (TPID) valor. Com o campo EtherType definido para o valor TPID, o interruptorrecebe o quadro sabe procurar a informação no campo da informação Tag controle. o Tagcampo de informação de controle contém o seguinte:■ 3 bits de prioridade do usuário: Usado para prover a transmissão acelerada de frames Layer 2, comotráfego de voz.■ bit 1 da Canonical Identificador Format (CFI): Permite que os frames Token Ring a ser realizadas em todaLigações Ethernet facilmente.■ 12 bits de VLAN ID (VID): números de identificação de VLAN.

Page 73: 31 Dias Para o CCNA

Embora 802.1Q é o método recomendado para quadros de marcação, você deve estar ciente da Ciscoprotocolo legado chamado trunking Mudar Inter-link (ISL). Você deve especificar o protocolo de trunkingusada em interfaces de tronco em todos os interruptores de Cisco Catalyst, exceto a série 29xx.Dynamic Trunking ProtocolDynamic Trunking Protocol (DTP) é um protocolo proprietário da Cisco que negocia, o estado deportas de tronco, bem como o encapsulamento tronco de portas de tronco. DTP gerencia a negociação só troncose a porta no outro switch é configurado em um modo de tronco que suporta DTP. A porta do switch em umCisco Catalyst switch suporta um número de modos de trunking. O modo de trunking define como oporta negocia com DTP para configurar uma ligação do tronco com o seu porto de pares. O seguinte é uma breve descriçãode cada modo de trunking:■ Se o interruptor está configurado com o comando tronco switchport modo, a porta do switch periodicamenteenvia mensagens de DTP à publicidade porta remota que está em um incondicionaltrunking estado.■ Se o interruptor está configurado com o modo de comando tronco auto switchport dinâmico, oporta do switch locais anuncia para a porta do switch remoto que é capaz de tronco, mas nãopedido para ir para o estado de trunking. Após uma negociação DTP, a porta local acaba em trunkingEstado somente se o modo de tronco porta remota foi configurado para que o estado está ligado ou desejável.Se ambas as portas nos switches estão definidos para auto, eles não negociam para estar em um entroncamentoEstado. Eles negociam a estar no estado modo de acesso.■ Se o interruptor está configurado com o comando de modo switchport dinâmica desejável, o localporta do switch anuncia para a porta do switch remoto que é capaz de tronco e pede que o controle remotoporta do switch para ir para o estado de trunking. Se o porto local detecta que o controle remoto foi configurado

Page 74: 31 Dias Para o CCNA

como sobre, desejável, ou modo automático, a porta local acaba em trunking estado. Se o controle remotoporta do switch está no modo nonegotiate, a porta do switch local permanece como uma porta nontrunking.■ Se o interruptor está configurado com o switchport nonegotiate comando, a porta local é entãoconsiderado em um estado trunking incondicional. Use esse recurso quando você precisa configurarum tronco com um interruptor de outro fornecedor switch.Tabela 24-2 resume os resultados das negociações DTP com base na configuração DTP diferentescomandos.

Conceitos VTPO nome de propriedade da Cisco VLAN Trunking Protocol (VTP) pode ser confuso. VTP nãofornecer um método para trunking entre dispositivos. Em vez disso, VTP é um protocolo de camada 2 mensagens quemantém a consistência VLAN configuração, gerenciando as adições, exclusões e nomemudanças de VLANs através de redes. VTP ajuda com VLAN de gerenciamento e embora façaa configuração e solução de problemas de VLANs mais fácil, não é necessário.Os benefícios da VTP incluem o seguinte:■ consistência configuração de VLAN em toda a rede■ rastreamento preciso e monitoramento de VLANs■ relatórios dinâmica de VLANs adicionados através de uma redeFigura 24-4 mostra um exemplo de como as mensagens VTP pode ser enviada entre o servidor VTP eClientes VTP.Figura 24-4 servidor VTP envia atualizações aos Clientes VTP76 31 Dias antes de seu exame CCNA802.1QtroncoVTP cliente VTP cliente VTP Cliente cliente VTP802.1Qtronco

Page 75: 31 Dias Para o CCNA

Observe na figura que a área sombreada é chamado de domínio VTP CCNA. Um domínio VTP é umswitch ou vários comutadores interconectados que compartilham anúncios VTP. Um switch pode estar apenas emum domínio VTP. Um roteador ou switch de camada 3 define o limite de cada domínio.Modos de VTPVTP opera em um de três modos:■ Servidor: O servidor é onde VLANs podem ser criadas, excluídas ou renomeadas para o domínio. VTPservidores anunciar informações VLAN para outros switches no domínio VTP mesmo e armazenar oVLAN informações em NVRAM.■ Cliente: Você não pode criar, alterar ou excluir VLANs em um cliente VTP. Uma redefinição exclui chaveas informações da VLAN. Você deve configurar um switch para mudar seu modo VTP para o cliente.■ Transparente: o modo transparente VTP muda a frente anúncios VTP para os clientes VTPVTP e servidores, mas não se originam ou de outra forma implementar anúncios VTP. VLANsque são criados, renomeados ou excluídos em um interruptor de modo VTP transparente são locais para essaopção somente.Operação VTPAnúncios VTP são enviados pelo servidor a cada cinco minutos sobre o padrão VLAN usando um multicastframe. Um número de revisão de configuração incluídos no quadro é usado por todos os clientes VTP eservidores para determinar se houve uma mudança no banco de dados VLAN. Figura 24-5 ilustra VTPoperação.

Page 76: 31 Dias Para o CCNA

Figura 24-5 começa com todos os interruptores com o mesmo número de revisão VLAN configuração, o que significaque eles têm a mesma configuração de banco de dados VLAN, isso significa que todos os interruptores saber sobreo mesmo número de VLAN e nomes de VLAN. O processo começa com cada switch sabendo queo número de revisão configuração atual é 3. Os passos mostrados na Figura 24-5 são as seguintes:1. Alguém configura uma nova VLAN no servidor VTP.2. O servidor VTP atualiza seu banco de dados VLAN número de revisão 3-4.3. O servidor envia mensagens de atualização VTP fora interfaces de seu tronco, afirmando número de revisão 4.

4. Os dois switches cliente VTP notar que as atualizações de lista um número maior de revisão (4) do queseus atuais números de revisão (3).5. Os dois switches cliente atualizar seus bancos de dados VLAN com base em atualizações VTP do servidor.VTP define três tipos de mensagens:■ anúncio Resumo: Enviados a cada 5 minutos pelo servidor, que lista o número de revisão,nome de domínio, e outras informações, mas nenhuma informação VLAN.■ anúncio Subconjunto: Segue uma propaganda de resumo se algo mudou naVLAN banco de dados, indicado por um novo número de revisão maior.■ mensagem de solicitação Anúncio: Permite que um switch para solicitar imediatamente mensagens VTPa partir de um interruptor de vizinhos, logo que um tronco vem à tona.poda VTPPor padrão, uma conexão de tronco carrega o tráfego para todas as VLANs no domínio da gestão VTP, no entanto,cada opção pode não ter portas atribuídas a cada VLAN. Poda VTP usa anúncios VLANpara determinar quando uma conexão de tronco está inundando o tráfego de VLAN desnecessariamente.Poda significa que as interfaces de tronco apropriado mudar não enche quadros em que VLAN.Figura 24-6 mostra um exemplo, com os retângulos de linha tracejada indicando os troncos a partir da qualVLAN 10 foi automaticamente podadas.

Page 77: 31 Dias Para o CCNA

Conceitos STP e OperaçãoUma das principais características de uma rede de comunicações bem construído é que ela é resistente. estesignifica que a rede precisa ser capaz de lidar com um dispositivo ou falha de ligação através de redundância. Atopologia redundante pode eliminar um ponto único de falha, usando vários links, vários dispositivos,ou ambos. Spanning Tree Protocol (STP) é usado para prevenir loops em uma rede redundante comutada.Sem STP, a redundância na rede comutada iria introduzir as seguintes questões:■ tempestades Broadcast: Cada transmissões inundações mudar incessantemente, chamada de tempestade de broadcast.

■ transmissão de quadros múltiplos: Várias cópias de quadros unicast podem ser entregues para o destinocausando erros irrecuperáveis.■ instabilidade do banco de dados MAC: Instabilidade no conteúdo dos resultados endereço MAC da tabelacópias do mesmo quadro sendo recebida em vários portos do interruptor.STP é um comitê IEEE padrão definido como 802.1d. STP lugares certos portos no bloqueioestado para que eles não ouvir, encaminhar ou quadros de dados de inundação. STP cria uma árvore que garantesó há um caminho para cada segmento de rede a qualquer momento. Então, se qualquer segmento experiênciasuma interrupção na conectividade, STP reconstrói uma nova árvore, ativando os inactivos anteriormente, mascaminho, redundante.O algoritmo usado pelo STP escolhe as interfaces que devem ser colocados em um estado de encaminhamento. Paratodas as interfaces não escolheu estar em um estado de encaminhamento, a STP coloca a interfaces em Bloqueio de Estado.Switches de troca de configuração STP mensagens a cada 2 segundos por padrão usando um multicastquadro chamado de ponte protocolo dados unidade (BPDU). Uma das peças de informação incluída noo BPDU é o ID ponte (BID).O BID é único para cada parâmetro e é composto por um valor de prioridade (2 bytes) e da ponte

Page 78: 31 Dias Para o CCNA

MAC address (6 bytes). A prioridade padrão é 32.768. A ponte de raiz é a ponte com o menorBID. Portanto, se o valor de prioridade padrão não é alterado, o switch com o menor MACendereço vai se tornar root.Para iniciar o processo, o algoritmo STP elege um comutador raiz e coloca todas as interfaces de trabalho sobreo interruptor de raiz no estado de encaminhamento. Então, cada switch nonroot considera uma de suas portas para tero menor custo administrativo entre si mesmo eo root switch. STP coloca este menos raiz de custointerface, chamada de porta do switch que é raiz (RP), no estado de encaminhamento. Finalmente, muitos switches podemanexar ao mesmo segmento Ethernet. Dessa forma o switch com o menor custo administrativo de si mesmopara a ponte raiz, em comparação com os outros switches ligados ao mesmo segmento, é colocado emEncaminhamento de Estado. O interruptor de menor custo em cada segmento é chamada de bridge designada, e queinterface de ponte, ligado a esse segmento, é chamado a porta designada (DP). Interruptores que sãopontes não têm seus portos designados nondesignated colocado em bloqueio Estado.Tabela 24-3 resume as razões STP colocar um porto em Forwarding ou Bloqueio de Estado.Tabela 24-4 STP: Razões para Forwarding ou BloqueioCaracterização de Descrição do Porto Estado STPTodas as portas do comutador raiz Forwarding O switch raiz é sempre o interruptor designado em todos conectadossegmentos.Cada switch não-raiz do Forwarding A porta pela qual o switch tem o menor custo paraporta raiz alcançar o interruptor raiz.Cada LAN é designado Forwarding O interruptor de encaminhamento do BPDU de menor custo para asegmento é a chave da porta designada para esse segmento.Todas as outras portas que trabalham bloqueando a porta não é usado para encaminhamento de quadros, nem quaisquer quadrosrecebeu nessas interfaces considerado para encaminhamento.Largura de banda porta é usada para determinar o custo para atingir a ponte raiz. Tabela 24-4 lista o padrãocustos portuários definido pelo IEEE, que teve que ser revisto com o advento de 10 Gbps.Dia 24 79

Page 79: 31 Dias Para o CCNA

Um quinto estado, condicionada, ocorre ou quando um administrador de rede manualmente desativa a porta ou umviolação de segurança desativa a porta.Conceitos RSTP e OperaçãoIEEE melhorou o desempenho convergência de STP de 50 segundos para menos de 10 segundos comsua definição do Rapid STP (RSTP) na 802.1w padrão. RSTP é idêntica à STP nos seguintesmaneiras:■ Ele elege o root switch usando os mesmos parâmetros e critérios de desempate.■ Ele elege o porta raiz em switches não-raiz com as mesmas regras.■ Elege portos designados em cada segmento LAN com as mesmas regras.■ Ele coloca cada porta em qualquer encaminhamento ou Bloqueio de Estado, embora RSTP chama de bloqueioEstado do Estado Discarding.As principais alterações com RSTP pode ser visto quando ocorrem alterações na rede. RSTP age de forma diferenteem algumas interfaces com base no que está ligado à interface.■ Comportamento Borda-Type e PortFast: RSTP melhora de convergência para borda-tipo conexõescolocando imediatamente a porta no estado de encaminhamento quando a ligação é fisicamente ativo.■ ligação Type-Compartilhada: RSTP não faz nada diferente do STP no link do tipo compartilhadalinks. No entanto, porque a maioria das ligações entre switches de hoje não são compartilhadas,

Page 80: 31 Dias Para o CCNA

mas são tipicamentefull-duplex ponto-a-ponto links, não importa.■ ligação Type-Point-to-Point: RSTP melhora a convergência mais full-duplex ligações entreswitches. RSTP reconhece a perda do caminho para a ponte raiz, através da porta de raiz, em 3vezes que o timer Olá, ou 6 segundos com um valor de timer padrão Olá de 2 segundos. Então RSTPreconhece um caminho perdido para a raiz muito mais rapidamente.RSTP usa terminologia diferente para descrever porta estados. Tabela 24-5 lista os estados de porta para RSTPe STP.

RSTP elimina a necessidade de escuta do Estado e reduz o tempo necessário para o estado de aprendizagem porativamente descobrir novo estado da rede. STP passivamente espera por nova BPDUs e reage aOs Estados-los durante o Ouvir e Aprender. Com RSTP, os interruptores negociar com vizinhosinterruptores, enviando mensagens RSTP. As mensagens de permitir que os switches para determinar rapidamentese uma interface pode ser imediatamente transferida para um Estado Forwarding. Em muitos casos, oprocesso leva apenas um ou dois segundos para o domínio RSTP inteiro.RSTP também adiciona mais três papéis de porta à porta de raiz e os papéis definidos na porta designada STP.Tabela 24-6 listas e define as funções de porta.Tabela 24-6 RSTP e funções STP Porto

Tradução do inglês para português

Configurando e Verificando STPPor padrão, todos os switches Cisco uso STP sem nenhuma configuração pelo administrador da rede.No entanto, devido STP é executado em uma base per-VLAN, cria uma instância de spanning-tree em separado para cadaVLAN, você pode tirar vantagem de várias opções para equilibrar a carga de tráfego através de ligações redundantes.PVST +, PVRST e MIST802.1d não suporta uma instância de spanning-tree para cada VLAN VLANs porque não existiaquando a norma foi introduzida pela primeira vez. Switches Cisco incluem uma funcionalidade proprietária chamada Per-VLAN Spanning Tree Plus (PVST), que cria uma instância separada do STP para cada VLAN.

Page 81: 31 Dias Para o CCNA

Novamente, quando introduziu IEEE 802.1w, ainda havia nenhum suporte para várias instâncias de STP. assimCisco implementada uma outra solução proprietária chamada ou árvore-Per VLAN Rapid Spanning(RPVST) ou Per-Rapid Spanning Tree VLAN (PVRST). Mais tarde, criou o padrão IEEE 802.1schamado de várias instâncias de Spanning Tree (MIST). Tabela 24-7 resume essas três opções parausando várias árvores que medem a carga de tráfego equilíbrio.

Configurando e Verificando o BIDIndependentemente do que per-VLAN Spanning Tree é usada, duas opções de configuração principal pode serutilizados para alcançar balanceamento de carga da ponte-ID e porta manipulação de custos. ID da ponte influênciasa escolha de root switch e pode ser configurado por VLAN. Cada interface é (per-VLAN) custo STPpara atingir a raiz influencia a escolha da porta designada em cada segmento LAN. porque PVSTexige que uma instância separada do spanning tree executado para cada VLAN, o campo BID é necessária pararealizar VLAN ID informações (VID). Isto é conseguido através da reutilização de uma parte do campo Prioridadecomo a identificação do sistema estendido para transportar um VID.Tabela 24-8 resume as configurações padrão para ambos BID e custos portuários.

Figura 24-8 mostra um simples interruptor de três STP topologia.

Page 82: 31 Dias Para o CCNA

Observação Esses comandos alterados os valores de prioridade somente para a VLAN 1. comandos adicionaisdeve ser inserido para cada VLAN para aproveitar o balanceamento de carga.Para verificar a corrente spanning-tree instâncias e pontes root, use o show spanning-tree comandocomo mostrado no Exemplo 24-1.Exemplo 24-1 Verificando Spanning Tree-Configurations

Page 83: 31 Dias Para o CCNA

Porque um sistema alargado ID é usado no BID, o valor da prioridade inclui a adiçãoID da VLAN. Assim, uma prioridade de 24576, mais uma VLAN de 1 resulta em uma produção de 24.577 prioridade.PortFastPara acelerar a convergência para as portas de acesso quando eles se tornam ativos, você pode usar de propriedade da CiscoTecnologia PortFast. Depois PortFast está configurado e uma porta é ativado, a porta imediatamentetransições do estado de bloqueio para o estado de encaminhamento. Exemplo 24-2 mostra o comando de interfacepara configurar PortFast.

Alternativamente, você pode configurar o comando global spanning-tree padrão portfast, quepermite PortFast por padrão em todas as portas de acesso.Configurando RSTPLembre-se, STP é a operação padrão dos switches Cisco. Para mudar para RSTP e PVRST, use umcomando global única em todos os switches: spanning-tree modo rápido PVST.Solução de problemas STPSTP é executado por padrão em switches e raramente causa problemas em pequenas e médias redes.No entanto, você pode encontrar problemas STP solução de problemas no exame. Use o seguintepassos para analisar um problema de STP:Passo 1 Determine a chave raiz.Passo 2 Para cada switch não-raiz, determino a sua porta de raiz um (RP) e custo para atingir a raizinterruptor através desse RP.Passo 3 Para cada segmento, determine a porta designada (DP) e os custos anunciados peloDP para esse segmento.As informações solicitadas em cada um dos of the steps can be obtained from variations of the showspanning-tree command.

Page 84: 31 Dias Para o CCNA

VTP e InterVLAN RoutingConfiguração e resolução de problemasExame CCNA 640-802 Tópicos■ Configurar, verificar e solucionar problemas de VTP.■ Configurar, verificar e solucionar problemas de inter-VLAN routing.Pontos-chaveHoje nós revemos os comandos e tarefas necessárias para configurar, verificar e resolver problemas VLANProtocolo de trunking (VTP). Além disso, fazemos uma revisão inter-VLAN routing e comandos de um router routeron-um pau-de implementação.VTP Configuração e VerificaçãoVTP é uma camada de protocolo de mensagens 2, que mantém a consistência VLAN configuração, gestãoas adições, exclusões e alterações de nome de VLANs através de redes. Esta seção usa otopologia exemplo na Figura 22-1, que é a mesma topologia usada para o dia 23. Você deve construire configurar esta topologia como parte de sua revisão para o exame CCNA.

Page 85: 31 Dias Para o CCNA

Depois de escolher qual opção será o servidor e que muda serão os clientes, use o seguintepassos para configurar o VTP:Etapa 1 Configurar o modo VTP usando o modo VTP server {|} cliente de configuração globalcomando.Passo 2 (Opcional, mas recomendado) Em ambos os clientes e servidores, configure o mesmo case-sensitivesenha usando o vtp password valor de comando de configuração global.Etapa 3 Configurar os VTP nome de domínio (caso-sensível), utilizando o domínio VTP nome de domíniocomando de configuração global.Passo 4 (Opcional) Configure poda VTP nos servidores VTP usando a poda vtp mundialcomando de configuração.Passo 5 (Opcional) Ativar versão VTP 2 com a versão 2 vtp comando de configuração global.Passo 6 Abra troncos entre os switches.Antes de configurar o VTP, olhar para o estado VTP padrão de S1. Para fazer isso, use o comando show vtpstatus como mostrado no Exemplo 22-1.Exemplo 22-1 Configuração VTP padrão em S198 31 Dias antes de seu exame CCNAObserve o número de revisão de configuração é 0 e que o número de VLANs existentes é de 5 acinco VLANs padrão que sempre existe no switch. Notar também que S1 já é um servidor VTP.Os comandos no Exemplo 22-2 S1 configurar como o servidor usando cisco como a senha VTP eCCNA como o nome de domínio VTP. Porque S2 e S3 compartilhar todas as VLANs mesmo, não estamos configurandoVTP poda (habilitado globalmente com a poda vtp de comando). Vamos também deixar VTPna versão padrão de um modo (habilitado globalmente com a versão do comando vtp 2).S1 #

Page 86: 31 Dias Para o CCNA

Observe o número de revisão de configuração é 0 e que o número de VLANs existentes é de 5 acinco VLANs padrão que sempre existe no switch. Notar também que S1 já é um servidor VTP.Os comandos no Exemplo 22-2 S1 configurar como o servidor usando cisco como a senha VTP eCCNA como o nome de domínio VTP. Porque S2 e S3 compartilhar todas as VLANs mesmo, não estamos configurandoVTP poda (habilitado globalmente com a poda vtp de comando). Vamos também deixar VTPna versão padrão de um modo (habilitado globalmente com a versão do comando vtp 2).

Observação configurado a senha VTP antes do nome de domínio VTP por uma razão específica.Assim que o nome de domínio VTP está configurado, S1 começará o envio de mensagens VTPem todos os links tronco que estão ativos. Se liga a outra extremidade do tronco está usando oVTP padrão de configuração (modo de servidor, nulo como o nome de domínio, e sem senha), elesvai começar a usar o nome de domínio enviadas nas mensagens VTP. Isto pode causar banco de dados VLANcorrupção se o interruptor de recepção tem um número maior do que a revisão da configuração configuradoservidor. O interruptor de recepção é também um servidor VTP e enviar seu banco de dados VLANpara o servidor VTP configurado. Ao configurar a senha primeiro, evitar o potencial deque isso aconteça. Após as chaves na outra extremidade dos troncos são configurados como clientes,seu número de revisão de configuração é reposto a 0. Então, quando o nome do domínio e

Page 87: 31 Dias Para o CCNA

senhasão configurados, atualizações VTP será solicitado do servidor VTP.Nós explicitamente configurado S1 como um servidor VTP ao invés de assumir que está no servidor VTP defaultmodo. Exemplo 22-3 mostra os comandos utilizados para verificar a configuração.

Exemplo 22-4 mostra os comandos para configurar S2 como um cliente com a mesma senha enome de domínio como S1. Repita os mesmos comandos em S3.Exemplo 22-4 configurar os clientes VTP

Novamente, verifique a configuração com o status vtp show e mostrar comandos senha vtp.Neste ponto, configure as VLANs no servidor VTP, S1. Você não será capaz de criar VLANsem S2 ou S3. Se você tentar, você vai receber a mensagem de console a seguir:S3 (config) # vlan 10VTP VLAN configuração não é permitida quando o dispositivo está no modo CLIENT.S3 (config) #Lembre-se, no entanto, que nos interruptores cliente que você ainda será capaz de atribuir portas do switch para específicosVLANs.Depois de configurar as VLANs, observe que o número de revisão de configuração é incrementado paracada modificação no banco de dados VLAN. Se você não fez erros em sua configuração, a configuração donúmero de revisão deve ser de 8, como mostrado no Exemplo 22-5 e um incremento para cada

Page 88: 31 Dias Para o CCNA

vez que vocêadicionado um dos quatro VLANs e um incremento para cada vez que você nomeada uma das VLANs.Há agora um total de nove VLANs no servidor.Exemplo 22-5 Verificando a configuração de VLAN no servidor VTPS1 #

S2 e S3 não receberam as VLANs ainda porque os troncos não estão ativos entre os switchese S1. Neste caso, configure as interfaces apropriadas S1 ao tronco e atribuir VLAN 99 como onativa VLAN. Em alguns casos, DTP irá negociação automática os links tronco em S2 e S3. agora, tantointerruptores cliente deve ter recebido VTP anunciar para S1. Como mostrado no Exemplo 22-6, tantoS2 e S3 têm bases de dados sincronizadas VLAN.Exemplo 22-6 Verificando S2 e S3 agora tem sincronizado bancos de dados VLAN

Page 89: 31 Dias Para o CCNA

Nota Embora a configuração da VTP faz ajudar a gerenciar a configuração de VLAN em suas redes,não é necessário para criar VLANs. Além disso, VTP não atribui VLANs para alternarportos. Você deve atribuir manualmente VLANs para mudar portas em cada switch.Para evitar o uso VTP de um switch, configurá-lo para usar o modo transparente:Switch (config) # vtp modo transparenteA mudança não irá atualizar seu banco de dados VLAN a partir de mensagens VTP, mas vai ainda encaminhar o VTPmensagens para fora interfaces de tronco. Além disso, você pode configurar VLANs em um switch locais em VTPmodo transparente.Solução de problemas VTPEmbora VTP oferece um nível de eficiência para a sua rede de comutação, permitindo que você configureseu banco de dados VLAN em um servidor VTP, VTP também tem o potencial de causar sérios problemas.Para combater o mau uso do VTP nas redes de produção, a Cisco criou o tutorial seguinte formaçãoem Cisco.com, que você deve rever como parte de sua preparação para o exame CCNA:http://www.cisco.com/warp/public/473/vtp_flash/Os passos seguintes são uma forma sistemática de determinar por que VTP não está actualmente a trabalhar comoesperado.

Page 90: 31 Dias Para o CCNA

Passo 1 Verifique os nomes switch, topologia (incluindo quais interfaces que conectar switches),e alternar entre os modos VTP.Passo 2 Identificar conjuntos de dois switches vizinhos que devem ser clientes ou servidores VTPcujas bases de dados VLAN diferem com o comando vlan show.Passo 3 Em cada par de dois switches vizinhos cujas bases de dados diferentes, verifique o seguinte:a. Pelo menos um tronco operacional deve existir entre as duas chaves (use o showinterfaces de comando tronco, switchport interfaces de show, ou mostrar vizinhos cdp~b. Os interruptores devem ter o mesmo nome de domínio (case-sensitive) VTP (show vtpstatus).c. Se configurado, os interruptores devem ter o mesmo (caso-sensível) senha VTP(Show senha vtp).d. Embora poda VTP deve ser ativado ou desativado em todos os servidores na mesmadomínio, tendo dois servidores configurados com as definições de poda oposto não impedeo processo de sincronização.Passo 4 Para cada par de chaves identificadas no Passo 3, resolver o problema por qualquer solução de problemaso problema trunking ou reconfigurar uma opção para corresponder corretamente o nome de domínioou senha.Para evitar o potencial de problemas VTP, implementar as seguintes práticas recomendadas.■ Repor o número de revisão de configuração antes de instalar uma nova opção. Isto pode ser feito emuma das seguintes formas:- Mude o interruptor para VTP modo transparente.- Alterar o nome de domínio para algo diferente do nome de domínio existentes.- Apague o arquivo vlan.dat e recarregar o switch.■ Se você não pretende usar VTP em tudo, configurar cada switch para usar o modo transparente.■ Se você estiver usando servidor VTP ou modo de cliente, use sempre uma senha VTP.■ Evite ataques VTP pela desativação do potencial para a negociação dinâmica trunking em todas as interfacesexceto troncos conhecidos quer com o modo de acesso switchport ou switchport nonegotiatecomandos.Inter-VLAN roteamento de configuração eVerificaçãoCisco apoio interruptores dois protocolos de trunking: Inter-Switch Link (ISL) e IEEE 802.1Q. CiscoISL criado muitos anos antes da IEEE criou o padrão de protocolo 802.1Q VLAN trunking.Porque é proprietário da Cisco ISL, ele pode ser usado apenas entre dois switches Cisco que suportamISL. ISL encapsula totalmente cada quadro Ethernet original em um cabeçalho ISL e trailer.Anos após a Cisco criou ISL, o IEEE completou trabalhar no padrão 802.1Q, que define umamaneira diferente de fazer trunking. Hoje, 802.1Q tornou-se o protocolo de trunking mais popular, comCisco nem mesmo apoiando ISL em alguns de seus modelos mais recentes de switches LAN, incluindo o 2960parâmetros utilizados nos exemplos neste livro. 802.1Q na verdade não encapsular o originalquadro em outro cabeçalho Ethernet e trailer. Em vez disso, insere 802.1Q um extra de 4-byte cabeçalho VLAN

Page 91: 31 Dias Para o CCNA

para o cabeçalho do quadro original de Ethernet. Para mais detalhes sobre as diferenças e semelhançasentre ISL e 802.1Q, ver os recursos do seu estudo.Configurando o roteamento inter-VLAN é bastante simples. Consulte o exemplo mostrado na topologiaFigura 22-2 para rever os comandos.

Este router-on-a-stick topologia é configurado usando as seguintes etapas no roteador:Passo 1 Ative a interface física que está trunking com a chave usando o shutdowncomando.Passo 2 Entre no modo de configuração subinterface para a VLAN primeiro que precisa de encaminhamento. uma convençãoé usar o número VLAN como o número subinterface. Por exemplo, o comandointerface de fa0/1.10 entra no modo de configuração para subinterface VLAN 10.Etapa 3 Configurar o tipo de encapsulamento trunking usando o comando de configuração subinterfaceencapsulamento {dot1q | isl} vlan-número [nativa]. Definir o encapsulamento dot1q-querisl ou para o tipo usado pelo switch. Em alguns roteadores, o nativo palavra chave opcionaldeve ser configurado para a VLAN nativa antes do roteador irá encaminhar a VLAN nativa.Etapa 4 Configurar o endereço IP e máscara de sub-rede.Repita o passo 5 Passos 2 a 4 para cada VLAN adicionais que necessita de encaminhamento.Presumindo que a opção já está configurado com VLANs e trunking, Exemplo 22-7 mostra acomandos para configurar R1 para fornecer roteamento entre VLAN 10 e VLAN 30.

Page 92: 31 Dias Para o CCNA

Para verificar a configuração, utilize o show ip route e mostrar comandos ip interface brief para fazercerteza de que as novas redes estão na tabela de roteamento e os subinterfaces são "up" e "up" como mostra aExemplo 22-8.Exemplo 22-8 Verificando o Inter-VLAN configuração de roteamento.

Supondo-se que o interruptor e PCs estão configurados corretamente, os dois PCs deve agora ser capaz depingar um ao outro. R1 irá rotear o tráfego entre 10 e VLAN VLAN 30.Solução de problemas Inter-VLAN RoutingPara solucionar problemas com inter-VLAN routing que estão diretamente relacionados à configuração do roteador,confirme o seguinte:■ É o cabeamento físico para a opção correta?■ É a interface física ativado?■ O encapsulamento definido para o tipo certo?■ O endereçamento IP correto?Se você responder "não" a qualquer destas perguntas, isolar e corrigir o problema.

Page 93: 31 Dias Para o CCNA
Page 94: 31 Dias Para o CCNA

Day 21Dia 21IPv4 Endereço SubnettingExame CCNA 640-802 Tópicos■ Calcular e aplicar um esquema de endereçamento, incluindo a concepção VLSM endereçamento IP a uma rede.■ Determinar o esquema de endereçamento sem classe apropriado usando VLSM e sumarização desatisfazer os requisitos de endereçamento em um ambiente de LAN / WAN.■ Descrever a operação e os benefícios do uso de IP privado e público de endereçamento.Tópicos-chaveAté agora, você deve ser capaz de sub-rede muito rapidamente. Por exemplo, você deve ser capaz de rapidamenteresponder a uma pergunta como: Se você receber um / 16 da rede, o que máscara você usaria queseria maximizar o número total de sub-redes enquanto continua a fornecer endereços suficientes para o maiorsub-rede com 500 hosts? A resposta seria 255.255.254.0 ou / 23. Isto lhe daria 128 sub-redescom 510 hosts utilizáveis por subnet. Você deve ser capaz de calcular esta informação em muito

Page 95: 31 Dias Para o CCNA

curto espaço de tempo.O exame CCNA promete contêm grande quantidade de sub-redes e sub-perguntas relacionadas. Hojeenfocamos essa habilidade necessárias, bem como projetar esquemas de endereçamento usando de comprimento variávelmascaramento de sub-rede (VLSM) e sumarização para otimizar o tráfego de roteamento da rede. Nós tambémrever a diferença entre público e privado de endereçamento.Endereçamento IPv4Embora IPv6 está rapidamente sendo implantado no backbone da Internet, e todas as redes do governo dos EUAeram obrigados a ser compatíveis com IPv6 até 30 de junho de 2008, a migração longe de IPv4 vai demoraranos para ser concluído. Mesmo que as redes do governo dos EUA estão agora IPv6 capaz, isso nãosignifica que eles estão executando IPv6. Então IPv4 e sua habilidade em seu uso ainda está em demanda.Formato do cabeçalhoPara facilitar o encaminhamento de pacotes através de uma rede, o conjunto de protocolos TCP / IP usa uma lógica de 32 bitsendereço conhecido como um endereço IP. Este endereço deve ser único para cada dispositivo na internetwork.Figura 21-1 mostra o layout do cabeçalho IPv4.Note-se que cada pacote IP transporta este cabeçalho, que inclui um endereço IP de origem e IP de destinoendereço

Nota hoje o seu ISP lhe atribui um bloco de endereços que não tem nenhuma relação com o originalclasses. Baseado em suas necessidades, você poderia ser atribuído um ou mais endereços. mas como uso de NAT e endereços privados dentro da sua rede, raramente você vai precisar de mais do que umpunhado de endereços IP públicos.Em um esquema de classes de endereço, os dispositivos que operam na camada 3 pode determinar a classe de endereço doum endereço IP a partir do formato dos primeiros bits no primeiro octeto. Inicialmente, isso foi importante paraque um dispositivo de rede poderia aplicar a máscara de sub-rede padrão para o endereço e determinar aendereço de host. Tabela 21-1 resume como os endereços são divididos em classes, a sub-rede padrãomáscara, o número de redes por classe, eo número de hosts por endereço de rede classful.

Page 96: 31 Dias Para o CCNA

Nota hoje o seu

ISP lhe atribui um bloco de endereços que não tem nenhuma relação com o originalclasses. Baseado em suas necessidades, você poderia ser atribuído um ou mais endereços. mas como uso de NAT e endereços privados dentro da sua rede, raramente você vai precisar de mais do que umpunhado de endereços IP públicos.Em um esquema de classes de endereço, os dispositivos que operam na camada 3 pode determinar a classe de endereço doum endereço IP a partir do formato dos primeiros bits no primeiro octeto. Inicialmente, isso foi importante paraque um dispositivo de rede poderia aplicar a máscara de sub-rede padrão para o endereço e determinar aendereço de host. Tabela 21-1 resume como os endereços são divididos em classes, a sub-rede padrãomáscara, o número de redes por classe, eo número de hosts por endereço de rede classful.

Page 97: 31 Dias Para o CCNA

Na última coluna, o "menos 2" para hosts por rede é a conta para a rede reservada eendereços de broadcast para cada rede. Estes dois endereços não podem ser atribuídos a hosts.Nota Não estamos revendo o processo de conversão entre binário e decimal. nesteponto em seus estudos, você deve estar se movendo muito confortável entre a numeração doissistemas. Se não, tome algum tempo para praticar esta habilidade necessária. Referem-se ao estudo "Recursos secção ". Você também pode pesquisar na Internet para conversão de binário truques, dicas ejogos para ajudá-lo a prática.Propósito da MáscaraMáscaras de sub-rede são sempre uma série de bits um seguidos por uma série de zero bits. O limite ondeas mudanças de série para os zeros é a fronteira entre a rede e host. Isto é como umdispositivo que opera na camada 3 determina o endereço de rede para um pacote por encontrar o bit

limite onde a série de bits de um termina ea série de bits zero começa. O limite de bits paramáscaras de sub-quebra na fronteira octeto. Determinar o endereço de rede para um endereço IP queusa uma máscara padrão é fácil.Por exemplo, um roteador recebe um pacote destinado a 192.168.1.51. Por "AND" o endereço IPea máscara de sub-rede, o roteador determina o endereço de rede para o pacote. Pelo "AND"regras, um e um é igual a um. Todas as outras possibilidades iguais a zero. Tabela 21-2 mostra os resultadosdo "AND" operação. Observe que os bits de host no último octeto são ignorados.Tabela 21-2 "AND" um endereço IP e máscara de sub-rede para encontrar o endereço de rede

Page 98: 31 Dias Para o CCNA

Sub-redes em quatro etapasTodo mundo tem um método preferido de subnetting. Cada professor irá utilizar uma estratégia um pouco diferenteajudar os alunos a dominar esta habilidade crucial. Cada um dos sugerido "Resources Study" tem um poucoforma diferente de abordar este assunto.O método que eu prefiro pode ser dividido em quatro etapas:Passo 1 Determine quantos bits para emprestar com base nos requisitos de rede.Passo 2 Determine a nova máscara.Passo 3 Determine o multiplicador de sub-rede.Passo 4 Lista as sub-redes sub-rede, incluindo endereço, gama de hospedeiros, e endereço de broadcast.

A melhor maneira de demonstrar este método é usar um exemplo. Vamos supor que você tem a redeendereço 192.168.1.0 com a sub-rede 255.255.255.0 máscara padrão. O endereço de rede emáscara de sub-rede pode ser escrita como 192.168.1.0/24. A "barra 24" representa a máscara de sub-rede em ummenor notação e significa o primeiro 24 bits são bits de rede.Vamos assumir que você precisa de 30 hosts por rede e deseja criar sub-redes como muitos, paradeterminado espaço de endereçamento possível. Com estes requisitos de rede, vamos sub-rede do espaço de endereço.Determine quantos bits to BorrowPara determinar o número de bits você pode tomar emprestado, primeiro você deve saber quantos bits de host você tem quecomeçar. Porque os primeiros 24 bits são bits de rede no nosso exemplo, os restantes 8 bits são bits de host.Porque a nossa exigência especifica 30 endereços de hosts por sub-rede, é preciso primeiro determinar a

Page 99: 31 Dias Para o CCNA

número mínimo de bits de host para sair. Os bits restantes podem ser emprestados:Bits Host = Bits Borrowed + Bits EsquerdaPara fornecer espaço de endereço suficiente para 30 hosts, precisamos deixar 5 bits. Use a seguinte fórmula:2BL - 2 = número de endereços de hostonde o expoente é BL pedaços deixados na parte do host.Lembre-se, o "menos 2" é a conta para os endereços de rede e broadcast que não podem seratribuídos a hosts.Neste exemplo, deixando 5 bits na parte do host irá fornecer a quantidade certa de endereço de host:25-2 = 30.Porque temos 3 bits restantes na parte do host original, tomamos emprestado todos esses bits para satisfazera exigência de "criar sub-redes como possível." Para determinar quantas sub-redes podemoscriar, utilizar a seguinte fórmula:2BB = número de sub-redesonde o expoente é BB bits emprestados da parte do host.Neste exemplo, o empréstimo de 3 bits da parte do host vai criar 8 sub-redes: 23 = 8.Como mostrado na Tabela 21-4, os 3 bits são tomados emprestados dos bits mais à esquerda na parte do host. obits de destaque na tabela mostram todas as combinações possíveis de manipular a 8 bits emprestados para criar as sub-redes. Binary tabela 21-4 e valor decimal do octeto Subnetted

Determinar a máscara de sub-NovoObserve na Tabela 21-4 que os bits de rede agora inclui os 3 bits de host emprestado no último octeto.Adicione estes 3 bits para o 24 bits na máscara de sub-rede original e você tem uma nova máscara / 27. emformato decimal, ligar o 128, de 64, e 32 bits do último octeto para um valor de 224. Assim, a novamáscara de sub-rede é 255.255.255.224.Determine o multiplicador de sub-redeObserve na Tabela 21-4 que o último octeto incrementos de valor decimal por 32, com cada número de sub-rede.O número 32 é o multiplicador de sub-rede. Você pode encontrar rapidamente o multiplicador de sub-rede usando um dosdois métodos:■ Método 1: Subtrair o último octeto zero da máscara de sub-rede de 256. Neste exemplo, oocteto zero último é 224. Assim, o multiplicador de sub-rede é 256-224 = 32.

Page 100: 31 Dias Para o CCNA

■ Método 2: O valor decimal do último bit emprestado é o multiplicador de sub-rede. Neste exemplo,contraímos um empréstimo em 128 bits, o bit 64, e os de 32 bits. O bit 32 é o último bit nós emprestamose é, portanto, o multiplicador de sub-rede.Usando o multiplicador de sub-rede, você não precisa mais converter os bits de sub-rede binário para decimal.A lista de sub-redes, Ranges Host e Endereços de DifusãoListagem das sub-redes, intervalos de host e endereço de broadcast ajuda você a ver o fluxo de endereços dentroum espaço de endereço. Tabela 21-5 documentos esquema de sub-rede a nossa abordagem para a 192.168.1.0/24espaço de endereço.

Page 101: 31 Dias Para o CCNA

Exemplo 3 sub-redesSub-rede do espaço de endereço 172.16.10.0/23 para fornecer pelo menos 60 endereços de hosts por sub-rede durante a criação decomo sub-redes possíveis.1. Há 9 bits de host. Deixe 6 bits para endereços de host (26-2 = 62 endereços de hosts por sub-rede).Emprestado os primeiros 3 bits de host para criar sub-redes o maior número possível (23 = 8 sub-redes).2. A máscara de sub-rede original é / 23 ou 255.255.254.0. Ligue os próximos 3 bits começando com oúltimo bit do segundo octeto para uma nova máscara de / 26 ou 255.255.255.192.

3. O multiplicador de sub-rede é de 64, que pode ser encontrado como 256-192 = 64 ou porque o bit 64 éo último bit emprestado.4. Tabela 21-7 enumera os primeiros três sub-redes, intervalos de host e endereço de broadcast.

Page 102: 31 Dias Para o CCNA

VLSMVocê deve ter notado que o espaço de endereço a partir de Subnetting Exemplo 3 não é um todoendereço classful. Na verdade, é sub-rede de 5 Subnetting Exemplo 2. Assim, em sub-redes Exemplo 3,nós "subnetted uma sub-rede." Isso é o que é VLSM em poucas palavras-subnetting uma sub-rede.Com VLSM, é possível personalizar o seu sub-redes para caber sua rede. Subnetting funciona da mesma maneira.Você apenas tem que fazê-lo mais de uma vez para completar o seu esquema de endereçamento. Para evitar a sobreposiçãoespaços de endereço, comece com sua exigência maior host, criar uma sub-rede para ele, e depois continuarcom a exigência de receber o maior seguinte.Vamos usar um pequeno exemplo. Dado o espaço de endereços 172.30.4.0/22 e os requisitos de redemostrado na Figura 21-3, aplicar um esquema de endereçamento que conserva a maior quantidade de endereçospara o crescimento futuro.Figura 21-3 Exemplo de Topologia VLSM.

Precisamos de cinco sub-redes: quatro sub-redes LAN e uma sub-rede WAN. Começando com o maior anfitriãoexigência de LAN 3, começam subnetting o espaço de endereço.Para satisfazer a exigência de 250 hosts, deixamos 8 bits hosts (28-2 = 252 hosts por sub-rede). porquetemos 10 total do hospedeiro bits, tomamos emprestado 2 bits para criar a primeira rodada de sub-redes (22 = 4 sub-redes).A máscara de sub-rede de partida é / 22 ou 255.255.252.0. Ligamos os próximos dois bits na máscara de sub-redepara obter / 24 ou 255.255.255.0. O multiplicador é 1. As quatro sub-redes são os seguintes:

Page 103: 31 Dias Para o CCNA

■ sub-rede 0: 172.30.4.0/24■ Subnet 1: 172.30.5.0/24■ Sub-rede 2: 172.30.6.0/24■ sub-rede 3: 172.30.7.0/24Atribuição de sub-rede 0 a LAN 3, ficamos com três / 24 sub-redes. Continuando a maior nos próximosexigência de host na LAN 4, tomamos uma sub-rede, 172.30.5.0/24 e sub-rede ainda mais.Para satisfazer a exigência de 100 hosts, deixamos 7 bits (27-2 = 128 hosts por sub-rede). Porque nóstem 8 bits de host total, podemos tomar emprestado apenas 1 bit para criar as sub-redes (21 = 2 sub-redes). O ponto de partidamáscara de sub-rede é / 24 ou 255.255.255.0. Ligamos o próximo bit na máscara de sub-rede para get / 25 ou255.255.255.128. O multiplicador é de 128. As duas sub-redes são os seguintes:■ sub-rede 0: 172.30.4.0/25■ Subnet 1: 172.30.4.128/25Atribuição de sub-rede 0 a LAN 4, ficamos com um / 25 e duas sub-rede / 24 sub-redes. Continuandoà exigência de receber o maior seguinte em uma LAN, tomamos uma sub-rede, 172.30.4.128/24 e sub-rede queainda mais.Para satisfazer a exigência de 60 hosts, deixamos 6 bits (26-2 = 62 hosts por sub-rede). Porque nóstem 7 bits de host total, tomamos emprestado um pouco para criar as sub-redes (21 = 2 sub-redes). A sub-rede de partidamáscara é / 25 ou 255.255.255.128. Ligamos o próximo bit na máscara de sub-rede para get / 26 ou255.255.255.192. O multiplicador é 64. As duas sub-redes são os seguintes:■ sub-rede 0: 172.30.4.128/26■ Subnet 1: 172.30.4.192/26Atribuição de sub-rede 0 a LAN 1, ficamos com um / 26 e duas sub-rede / 24 sub-redes. Terminando o nossoLAN subnetting com LAN 2, tomamos uma sub-rede, 172.30.4.192/26 e sub-rede ainda mais.Para satisfazer a exigência de 10 hosts, deixamos 4 bits (24-2 = 14 hosts por sub-rede). Porque nóstem 6 bits de host total, tomamos emprestado 2 bits para criar as sub-redes (22 = 4 sub-redes). A sub-rede de partidamáscara é / 26 ou 255.255.255.192. Ligamos os próximos dois bits na máscara de sub-rede para obter / 28 ou255.255.255.240. O multiplicador é 16. As quatro sub-redes são os seguintes:■ sub-rede 0: 172.30.4.192/28■ Subnet 1: 172.30.4.208/28■ Sub-rede 2: 172.30.4.224/28■ sub-rede 3: 172.30.4.240/28Atribuição de sub-rede 0 a LAN 2, ficamos com três / 28 sub-redes e dois / 24 sub-redes. Para finalizarnosso esquema de endereçamento, é preciso criar uma sub-rede apenas para o link WAN, que necessita apenas de host 2endereços. Tomamos uma sub-rede, 172.30.4.208/28 e sub-rede ainda mais.Para satisfazer a exigência host 2, deixamos 2 bits (22-2 = 2 hosts por sub-rede). Porque nós

Page 104: 31 Dias Para o CCNA

temos quatrobits de host total, tomamos emprestado 2 bits para criar as sub-redes (22 = 4 sub-redes). A máscara de sub-rede de partida é/ 28 ou 255.255.255.240. Ligamos os próximos dois bits na máscara de sub-rede para obter / 30 ou255.255.255.252. O multiplicador é 4. As quatro sub-redes são os seguintes:Dia 21 117■ sub-rede 0: 172.30.4.208/30■ Subnet 1: 172.30.4.212/30■ Sub-rede 2: 172.30.4.216/30■ sub-rede 3: 172.30.4.220/30Nós atribuímos de sub-rede 0 para o link WAN. Ficamos com três / 30 sub-redes, dois / 28 sub-redes, e dois/ 24 sub-redes.Resumindo endereços de sub-redeQuando um esquema de endereçamento de rede está desenhada de forma hierárquica, endereços resumindo aroteadores upstream roteamento torna muito mais eficiente. Em vez de enviar uma coleção de váriossub-redes, um roteador de borda pode enviar uma rota de síntese para o próximo roteador.Se você estiver usando roteamento estático ou configurar uma rota de síntese para EIGRP, pode ser necessário para calcularo prefixo de rede direita e máscara.Referindo-se a Figura 21-4, o que seria rota de síntese R1 enviar para o roteador upstream, BBR(Router Backbone) para os quatro sub-redes?Figura 21-4 sub-redes Resumindo: Exemplo 1

Use as seguintes etapas para calcular uma rota de síntese:Etapa 1 Escreva as redes que você deseja resumir em binário, como mostra a Etapa 4 seguintes.Passo 2 Para encontrar a máscara de sub-rede para a sumarização, comece com o bit mais à esquerda.Passo 3 Trabalhe seu caminho para a direita, encontrando todos os bits que correspondem consecutivamente.Passo 4 Quando você encontrar uma coluna de bits que não correspondem, pare. Você está no limite resumo.11000000.10101000.00000001.0000000011000000.10101000.00000001.0010000011000000.10101000.00000001.0100000011000000.10101000.00000001.01100000

Page 105: 31 Dias Para o CCNA

Passo 5 Contar o número de bits mais à esquerda de correspondência, que neste exemplo é 25. este númerotorna-se sua máscara de sub-rede para a rota resumida, / 25 ou 255.255.255.128.Passo 6 Para encontrar o endereço de rede para sumarização, cópia da correspondência 25 bits e adicionar todos os 0bits para o fim de fazer 32 bits. Neste exemplo, o endereço de rede é 192.168.1.0.Nas redes de produção, as sub-redes para ser resumido muito provavelmente não terá a mesma sub-redemáscara. Por exemplo, as sub-redes na Figura 21-5 está usando três máscaras de sub-rede diferente. que sumáriorota seria R1 enviar para o BBR para as quatro sub-redes?Figura 21-5 sub-redes Resumindo: Exemplo 2

IP privado e público AddressingRFC 1918, "atribuição de endereços internet Privada", facilitou a procura de endereços IPreservando os seguintes endereços para uso em redes privadas.■ Classe A: 10.0.0.0 / 8 (10.0.0.0 a 10.255.255.255)■ Classe B: 172.16.0.0/12 (172.16.0.0 a 172.31.255.255)■ Classe C: 192.168.0.0/16 (192.168.0.0 a 192.168.255.255)Se você está dirigindo uma intranet não públicas, esses endereços privados podem ser usados em vez de globalmenteúnicos endereços públicos. Isso proporciona flexibilidade em seu projeto de endereçamento. Qualquer organização podetirar o máximo proveito de toda uma classe de endereços A (10.0.0.0 / 8). Encaminhamento de tráfego para o públicoInternet requer tradução para um endereço público usando Network Address Translation (NAT). Mas sobrecarregando um endereço de Internet roteáveis com muitos endereços privados, uma empresa precisa de apenas umpunhado de endereços públicos. Dia 5, "Conceitos de NAT, Configuração e Solução de

Page 106: 31 Dias Para o CCNA

Problemas", comentáriosNAT operação e configuração em maior detalhe.Recursos estudoPara os temas de hoje do exame, consulte os seguintes recursos para mais estudo.

Page 107: 31 Dias Para o CCNA

Dia 20Dirigindo-anfitrião, DHCP, DNS eExame CCNA 640-802 Tópicos■ Implementar estáticos e dinâmicos serviços de endereçamento para hosts em um ambiente de LAN.■ Identificar e corrigir problemas comuns associados com endereçamento IP e configurações de host.■ Explicar o funcionamento e benefícios do uso DHCP e DNS.■ Configurar, verificar e solucionar problemas de DHCP e DNS operação em um roteador (CLI / SDM).Tópicos-chaveHoje fazemos uma revisão IP estático e dinâmico de endereçamento para dispositivos finais, bem como os protocolos em tornohost-to-host comunicações, incluindo Address Resolution Protocol (ARP), DomínioName System (DNS) e Dynamic Host Configuration Protocol (DHCP). Porque um roteador Ciscotambém pode ser um servidor de DHCP, vamos rever esses comandos. Além disso, como um endereçamento IPimplementação não é sempre perfeita, revisamos as ferramentas de teste à sua disposição para rastreare resolver problemas de conectividade relacionados para hospedar endereçamento.Dispositivos de endereçamentoEndereços na rede podem ser atribuídos a hosts estática ou dinâmica. Endereços estáticos têmalgumas vantagens sobre endereços dinâmicos. Por exemplo, se os anfitriões normalmente

Page 108: 31 Dias Para o CCNA

acessar um servidor, uma impressora,ou outros dispositivos em um determinado endereço IP, pode causar problemas se o endereço mudou.Além disso, a atribuição estática de informações de endereçamento pode fornecer controle maior da rederecursos. No entanto, pode ser demorado para inserir as informações em cada host, e porque umendereço duplicado afeta a operação de acolhimento, o cuidado deve ser tomado para não reutilizar um endereço.Para configurar um endereço estático em um PC executando o Windows XP, acessar o Internet Protocol (TCP / IP)Caixa de diálogo Propriedades, conforme mostrado na Figura 20-1 e digite todas as informações de configuração necessárias IP.Por causa dos desafios associados ao gerenciamento de endereço estático, dispositivos de usuário final, muitas vezes têmendereços atribuídos dinamicamente, usando DHCP.Para configurar um PC Windows para usar DHCP, acessar o Internet Protocol (TCP / IP) caixa de diálogo Propriedadescaixa como mostrado na Figura 20-2 e clique em ambos os botões de rádio para a obtenção de informações de endereçamentoautomaticamente.

Page 109: 31 Dias Para o CCNA

ARPPara a comunicação IP sobre Ethernet-redes conectadas a ter lugar, o endereço (IP) lógicaprecisa ser ligado ao endereço físico (MAC) de seu destino. Este processo é realizado

usando ARP. Figura 20-3 mostra um exemplo de mapeamento de um endereço de Layer 2 para um endereço de camada 3.

Page 110: 31 Dias Para o CCNA

Para enviar dados para um destino, um host em uma rede Ethernet deve saber o físico (MAC)endereço do destino. ARP fornece o serviço essencial de endereços IP para o mapeamento físicoendereços em uma rede.Os mapeamentos resultantes ou endereço ligações são mantidos em uma tabela e, dependendo da operaçãosistema pode estar em qualquer lugar 2-20 minutos, ou até mais, antes da entrada expire. cada rededispositivo que envia pacotes IP em um segmento de rede Ethernet mantém uma tabela ARP emmemória semelhante à tabela mostrada no Exemplo 20-1.Exemplo 20-1 Tabela ARP para um PC Windows

Independentemente do formato da saída, a tabela ARP mostra o IP ligados a um endereço MAC.ARP ajuda dispositivos finais se comunicar na mesma rede local. Mas o que acontece quando o dispositivo um fimquer se comunicar com outro dispositivo em uma LAN remota?Se o host de destino não esteja na rede local, a fonte envia o quadro para o roteador local. para

Page 111: 31 Dias Para o CCNA

fazer isso, a fonte irá usar o endereço do gateway padrão do MAC no quadro. O gateway padrão(o roteador local), irá cuidar de roteamento o pacote para o próximo salto.DNSPacotes IP de destino e exigem endereços IP de origem. Mas a maioria dos seres humanos teria um tempo difícillembrando todos os endereços IP para seus destinos favoritos. Por isso, o Domain Name System(DNS) foi criado para converter nomes reconhecíveis em endereços IP para que os dispositivos final pode, então,encapsular um pacote com as informações necessárias de endereçamento.O servidor DNS age como o livro de telefone para a Internet: Ele traduz legível computadorhostnames, por exemplo, http://www.cisco.com-into os endereços IP que o equipamento de redenecessidades de informação de entrega. Para ver esta "lista telefônica" em ação em uma máquina Windows, insirao comando nslookup, como mostrado no Exemplo 20-3. Em seguida, insira o nome de um site.Exemplo 20-3 Usando nslookup para encontrar um endereço IP

Observe que o servidor DNS, que está localizado no endereço IP 64.102.6.247, voltou o endereço IP198.133.219.25 para www.cisco.com.DNS usa um sistema hierárquico para criar um banco de dados nome para fornecer resolução de nomes. No topoda hierarquia, os servidores raiz manter registros sobre como alcançar os servidores domínio de nível superior,que por sua vez têm registros que apontam para os servidores de nível secundário de domínio, e assim por diante.Os diferentes domínios de nível superior representam qualquer tipo de organização ou país de origem.Os seguintes são exemplos de domínios de nível superior:. ■ au: Austrália. ■ co: Colômbia■ com:. A empresa ou indústria. ■ jp: Japão■ org:. A organização sem fins lucrativosDHCPDHCP permite que um host para obter um endereço IP dinamicamente quando ele se conecta à

Page 112: 31 Dias Para o CCNA

rede. oDHCP servidor é contactado através do envio de um pedido, e um endereço IP é solicitado. O servidor DHCPescolhe um endereço de um intervalo configurado de endereços chamado de piscina e atribui-lo para o hostcliente por um determinado período. Figura 20-4 mostra graficamente o processo de como um servidor DHCP alocaEndereçamento IP informações a um cliente DHCP.Figura 20-4 Informação Alocando o endereçamento IP com o DHCPDia 20 127

Quando um DHCP configurado o dispositivo é inicializado ou se conecta à rede, o cliente envia umDHCPDISCOVER pacote para identificar quaisquer servidores DHCP disponível na rede. Um servidor DHCPresponde com um DHCPOFFER, que é uma mensagem de oferta de concessão com um endereço IP atribuído, de sub-redemáscara, servidor DNS e as informações de gateway padrão, bem como a duração do contrato de locação.O cliente pode receber pacotes DHCPOFFER múltiplas se a rede local tem mais de umServidor DHCP. O cliente deve escolher entre eles e transmitir um pacote que DHCPREQUESTidentifica a oferta de servidores e de arrendamento explícito que ele está aceitando.Assumindo que o endereço IP ainda é válido, o servidor escolhido retorna um DHCPACK (reconhecimento)mensagem de finalização do contrato. Se a oferta não é mais válido, por algum motivo, o servidor escolhidoresponde ao cliente com uma mensagem DHCPNAK (confirmação negativa). Depois que ele é locado,o cliente renovar antes da expiração da concessão através de outro DHCPREQUEST. Se o cliente estiverdesligado ou retirado da rede, o endereço é retornado para o pool para reutilização.

Configurar em um roteador Cisco como um DHCPservidorObservação: Devido às limitações de espaço, apenas o método CLI para a configuração DHCP é revistoaqui. No entanto, porque o tópico exame inclui tanto o CLI e Gerenciador de Dispositivos de Segurança

Page 113: 31 Dias Para o CCNA

(SDM) métodos, rever o método SDM, consultando os recursos do seu estudo.As etapas para configurar um roteador como um servidor DHCP são as seguintes:Passo 1 Use o ip dhcp excluídos endereço endereço de baixa [endereço de alta] comando para identificar umendereço ou intervalo de endereços para excluir do pool de DHCP. Por exemplo:R1 (config) # ip dhcp excluídos endereço 192.168.10.1 192.168.10.9R1 (config) # ip dhcp excluídos endereço 192.168.10.254Passo 2 Crie o pool DHCP usando o ip dhcp pool de comando pool-name, que depoiscolocá-lo em modo DHCP config, como demonstrado aqui:R1 (config) # ip dhcp pool de LAN-POOL-10R1 (dhcp-config) #Passo 3 Finalmente, configure o parâmetro de endereçamento IP que você precisa para atribuir automaticamente paraclientes solicitantes. Tabela 20-1 lista os comandos necessários.

Page 114: 31 Dias Para o CCNA
Page 115: 31 Dias Para o CCNA
Page 116: 31 Dias Para o CCNA

Para liberar a configuração DHCP em um cliente baseado no Windows, digite o comandoipconfig / release. Para renovar a configuração DHCP, digite o comando ipconfig / renew.Em uma complexa rede, os servidores DHCP são geralmente contido em um farm de servidores. Portanto, os clientesnormalmente não estão na mesma sub-rede que o servidor DHCP, como mostrado no exemplo anterior. paragarantir transmitido DHCPDISCOVER mensagens são enviadas para o servidor DHCP remoto, use o iphelper-address endereço de comando.Por exemplo, na Figura 20-6 o servidor DHCP está localizado na LAN 192.168.11.0/24 e está cumprindoInformações de endereçamento IP para ambas as LANs.Sem o comando ip helper-address, R1 iria descartar qualquer transmissões de PC1 solicitandoServiços de DHCP. Para configurar R1 para retransmitir DHCPDISCOVER mensagens, digite o seguinte comando:R1 (config) # interface FastEthernet 0 / 0R1 (config-if) # ip helper-address 192.168.11.5Observe o comando é inserido na interface que irá receber transmissões de DHCP. R1 em seguida, encaminhaDHCP transmitir mensagens como unicast para 192.168.11.5. O comando ip helper-addresspor padrão para a frente os seguintes oito serviços UDP:■ Porta 37: Tempo■ Porta 49: TACACS■ Porta 53: DNS■ Porta 67: DHCP / BOOTP cliente

Page 117: 31 Dias Para o CCNA

Para especificar portas adicionais, use o comando global ip forward-protocol udp [número de porta-| protocol]. Para desativar as transmissões de um protocolo particular, use o formulário não do comando. Testes de rede Ferramentas Camada O ping e tracert (traceroute para Cisco IOS) são comumente usados para testar a conectividade e

identificar problemas com host de endereçamento. Sibilo Para o teste de ponta a ponta-de conectividade entre hosts, use o comando ping. Se o ping tiver êxito, como mostrado nos exemplos 20-7 e 20-8, você sabe que pelo menos um caminho existe para rotear o tráfego entre a origem eo destino. Exemplo de saída do Ping 20-7 em um PC Windows C: \> ping 192.168.10.1 Ping 192.168.10.1

Page 118: 31 Dias Para o CCNA

Observe que o primeiro ping falhou (.). Provavelmente, isso foi devido a um timeout enquanto R1 iniciou umARP pedido para 192.168.10.10. Depois R1 tinha o endereço MAC para 192.168.10.10, ele poderia, então,enviar os pedidos ICMP. Os próximos quatro pings sucesso (!). Se o teste de ping falhar para o fim-a-extremo,você pode querer de volta até a máquina local para testar sua pilha TCP / IP usando o ping para o127.0.0.1 endereço. Se este ping tiver êxito, testar a sua conectividade com o gateway padrão. Se esse pingfalhar, verifique seus conectividade física e configuração de IP.Se o ping tiver êxito para o gateway padrão, use traceroute para encontrar onde há falhas.Traceroute (tracert) permite que você observe o caminho entre esses hosts. O traço gera uma listade saltos que foram sucesso alcançado ao longo do caminho, como mostrado no Exemplo 20-9. Esta lista podefornecê-lo com a verificação e informações importantes solução de problemas.

O tracert para www.cisco.com mostra as respostas dos roteadores ao longo do caminho. O host local

Page 119: 31 Dias Para o CCNA

envia um pacote para o endereço designação de 198.133.219.2. A primeira resposta é uma resposta dogateway host padrão, 10.20.0.94.Quando o destino final é atingido, o host responde com um ICMP Port Unreachablemensagem ou uma mensagem de resposta ICMP Echo. No caso do Exemplo 20-8, o asterisco (*) indicao ICMP Time Exceeded mensagem de que não houve resposta do destino.

Page 120: 31 Dias Para o CCNA

Conceitos básicos IPv6Exame CCNA 640-802 Tópicos■ Descrever os endereços IPv6.■ Descrever os requisitos tecnológicos para IPv6 executando em conjunto com IPv4 (incluindoprotocolos, pilha dupla, tunelamento).Tópicos-chaveNo início de 1990, o Internet Engineering Task Force (IETF) cresceu preocupada com a exaustãodo IPv4 endereços de rede e começou a procurar um substituto para este protocolo. esteatividade levou ao desenvolvimento do que hoje é conhecido como IPv6. Revisão de hoje centra-se na rápidasubstituição emergentes para IPv4.O estudo nota detalhes IPv6 recursos básicos de endereçamento e configuração de roteamento.Apesar de interessante para ler e prática no equipamento real, de configuração IPv6 não é umObjetivo CCNA. Portanto, não será uma parte de nossa Principais temas. No entanto, praticandotarefas de configuração, você também será reforçar os conceitos básicos de IPv6.Visão geral do IPv6A capacidade de escala de redes para demandas futuras requer uma fonte ilimitada de endereços IP emelhoria da mobilidade que privada de endereçamento e NAT sozinho não pode atender. IPv6 satisfaz as cada vez maisnecessidades complexas de endereçamento hierárquico que o IPv4 não fornece.Tabela 19-1 compara as representações binárias e alfanuméricos de endereços IPv4 e IPv6.

Page 121: 31 Dias Para o CCNA

Um endereço IPv6 é um valor binário de 128 bits, que podem ser apresentados até 32 dígitos hexadecimais. IPv6deve fornecer endereços suficiente para as necessidades futuras Internet crescimento para os anos vindouros.IPv6 é um acessório poderoso para IPv4. Vários recursos no IPv6 oferecer melhorias funcionais.■ maior espaço de endereçamento: maior espaço de endereçamento inclui várias melhorias:- Melhoria da acessibilidade global e flexibilidade- A agregação de prefixos que são anunciados em tabelas de roteamento- Multihoming para vários provedores- Autoconfiguration que pode incluir dados-link camada de endereços no espaço de endereço- Plug-and-play opções- Público-to-end privada readdressing ao fim, sem tradução de endereços- Mecanismos simplificados para o endereço de renumeração e alteração■ Simpler cabeçalho: A mais simples de cabeçalho oferece diversas vantagens sobre IPv4:- Melhor eficiência para o desempenho de roteamento e encaminhamento de taxa de escalabilidade- Sem transmissões e, portanto, nenhuma ameaça potencial de tempestades de difusão- Não há necessidade de somas de verificação de processamento- Mecanismos de cabeçalho mais simples e mais eficiente de extensão- Etiquetas de fluxo para o fluxo por tratamento sem necessidade de abrir o pacote de transporte interno paraidentificar os vários fluxos de tráfego■ Mobilidade e segurança: Mobilidade e ajudar a garantir a conformidade com a segurança IP móveis eIPsec funcionalidade padrões. Mobilidade permite que as pessoas com a rede de dispositivos móveis-muitoscom conectividade sem fio para se movimentar em redes:- IPv4 não habilita automaticamente dispositivos móveis para mover-se sem interrupções no estabelecidoconexões de rede.- Em IPv6, a mobilidade é embutido, o que significa que qualquer nó IPv6 pode usar mobilidade quandonecessário.- IPsec é ativado em cada nó IPv6 e está disponível para uso, tornando a Internet IPv6mais seguro.■ estratégias de Transição: Você pode incorporar capacidades existentes IPv4 com as características adicionadasde IPv6 de várias maneiras:- Você pode implementar um método dual-stack, com IPv4 e IPv6 configurado nointerface de um dispositivo de rede.- Você pode usar tunelamento, que se tornam mais proeminentes como a adoção de IPv6cresce.- Cisco IOS Release 12,3 Software (2) T e, posteriormente, incluem-Tradução de Endereços de RedeProtocolo Translation (NAT-PT) entre IPv4 e IPv6.138 31 dias antes de seu exame CCNA

Estrutura de endereços IPv6Você sabe o endereço IPv4 de 32 bits como uma série de quatro campos de 8 bits, separados por pontos. No entanto, maiores128-bit endereços IPv6 precisam de uma representação diferente por causa de seu tamanho.Convenções para escrever os endereços IPv6Convenções IPv6 utilizar 32 números hexadecimais, organizados em oito quartetos de 4 dígitos hexadecimais separados

Page 122: 31 Dias Para o CCNA

por dois pontos, para representar um endereço IPv6 de 128 bits. Por exemplo:2340:1111: AAAA: 0001:1234:5678:9 ABCPara tornar as coisas um pouco mais fácil, duas convenções permitem encurtar o que deve ser digitado para umEndereço IPv6:■ Omitir os 0s líder em qualquer quarteto de dado.■ Representar um ou mais quartetos seguidos de todos os 0s hex com um (::), dois pontos duplos, mas apenas paraum tal ocorrência em um determinado endereço.Nota O quarteto termo vem do Exame livro Wendell Odom Oficial CCNA ICND2Edição de certificação Guia Segundo. Para o IPv6, um quarteto é um conjunto de quatro dígitos hexadecimais. Oitoquartetos estão em cada endereço IPv6.Por exemplo, considere o seguinte endereço. Os dígitos em negrito representam dígitos no qual o endereçopode ser abreviado.FE00: 0000:0000:0001:0000:0000:0000:0056Este endereço possui dois locais em que um ou mais quartetos têm quatro 0s hex, então dois principaisopções existem para abreviar este endereço, usando o:: abreviatura em um ou outro local.Duas opções a seguir mostram o mais breve duas abreviaturas válidas:■ FE00:: 1:0:0:0:56■ FE00: 0:0:1:: 56No primeiro exemplo, os quartetos segundo e terceiro anteriores 0001 foram substituídas por::. No segundoexemplo, os quartetos quinto, sexto e sétimo foram substituídos por::. Em particular, note que o:: Abreviatura, que significa "um ou mais quartetos de todos os 0s," não pode ser usado duas vezes, porque issoser ambíguo. Assim, a abreviação FE00:: 1:: 56 não seria válida.

Convenções para escrever prefixos IPv6Prefixos IPv6 representam uma faixa ou bloco de endereços IPv6 consecutivos. O número que representao intervalo de endereços, chamada de prefixo, é geralmente visto em tabelas de roteamento IP, assim como você vê sub-rede IPnúmeros em tabelas de roteamento IPv4.Tal como acontece com IPv4, ao escrever ou digitar um prefixo no IPv6, os bits após o final do comprimento do prefixo sãotodos os 0s binários. O seguinte endereço IPv6 é um exemplo de um endereço atribuído a um host:2000:1234:5678:9 ABC: 1234:5678:9 ABC: 1111-1164O prefixo em que reside neste endereço seria o seguinte:2000:1234:5678:9 ABC: 0000:0000:0000:0000 / 64Dia 19 139

Quando abreviado, este seria2000:1234:5678:9 ABC:: / 64Se o comprimento do prefixo não cai em um limite de quarteto (não é um múltiplo de 16), o valor do prefixodeve listar todos os valores no último quarteto. Por exemplo, suponha que o comprimento de prefixo nos últimosexemplo é / 56. Então, por convenção, o resto do quarteto quarto deve ser escrito, depois de ser definidopara 0s binários, como segue:2000:1234:5678:9 A00:: / 56

Page 123: 31 Dias Para o CCNA

A lista a seguir resume alguns pontos-chave sobre como escrever prefixos IPv6:■ O prefixo tem o mesmo valor que os endereços IP no grupo para o primeiro número de bits, comodefinida pelo comprimento de prefixo.■ Qualquer bits depois o número do prefixo comprimento de bits são 0s binários.■ O prefixo pode ser abreviado com as mesmas regras que os endereços IPv6.■ Se o comprimento do prefixo não está em um limite de quarteto, anote o valor para o quarteto inteiro.Tabela 19-2 mostra vários exemplos de prefixos, o seu formato, e uma breve explicação.

Endereço IPv6 Unicast GlobaisIPv6 tem um formato de endereço que permite a agregação de cima, eventualmente, para o ISP. Um IPv6 globalendereço unicast é globalmente exclusivo. Semelhante a um endereço IPv4 público, ele pode ser encaminhado na Internetsem qualquer modificação. Um endereço unicast IPv6 global consiste em um prefixo de roteamento global de 48-bite um ID de sub-rede de 16 bits, como mostrado na Figura 19-1.

O endereço unicast global atual, que é atribuído pelo IANA usa o intervalo de endereços quecomeçar com valor binário 001 (2000:: / 3), que é um oitavo do espaço de endereços IPv6 e éo maior bloco de endereços atribuído.Endereços reservados, Private e LoopbackAs reservas IETF uma porção do espaço de endereços IPv6 para vários usos, presente e futuro.Endereços reservados representam 1 / 256 do espaço de endereços IPv6. Alguns dos outros tipos deEndereços IPv6 vem este bloco.Um bloco de endereços IPv6 é reservado para endereços privados, assim como é feito em IPv4. Estes privadaendereços são locais apenas para um determinado link ou site e, portanto, nunca são encaminhados fora de um determinadorede da empresa. Endereços privados têm um valor primeiro octeto de FE em notação hexadecimal,

Page 124: 31 Dias Para o CCNA

com o dígito hexadecimal sendo um valor próximo de 8 a F.Esses endereços são divididos em dois tipos, com base no seu escopo:■ Site-local endereços: Estes são para um site inteiro ou organização. No entanto, o uso de sitelocalendereços é problemático e está sendo substituído a partir de 2003 por RFC 3879. Em hexadecimal,endereços de sites locais começam com FE e C para F para o terceiro dígito hexadecimal. Assim,estes endereços começam com FEC, FED, FEE, ou FEF.■ Link-local endereços: Estes têm um menor âmbito de endereços de sites locais, pois eles se referem a apenasuma ligação física particular (rede física). Roteadores não encaminham datagramas usando linklocalendereços, nem mesmo dentro da organização, eles servem apenas para comunicação local em umsegmento particular da rede física. Eles são usados para comunicações link como automáticoconfiguração de endereços, descoberta de vizinhos, e a descoberta de roteador. Muitos protocolos de roteamento IPv6também usar link-local endereços. Link-local endereços começam com FE e depois ter um valorde 8 a B para o terceiro dígito hexadecimal. Assim, estes endereços começar com FE8, FE9, FEA, ouFevereiroAssim como no IPv4, uma provisão foi feita para um endereço IPv6 loopback especiais para testes. Oendereço de loopback é 0:0:0:0:0:0:0:1, que normalmente é expressa usando compressão zero como: 1.

O ID de interface IPv6 e EUI-64 Format

Figura 19-1 mostra o formato de um endereço IPv6 unicast globais, com a segunda metade doendereço chamado de host ou ID interface. O valor da parcela ID interface de um unicast globalendereço pode ser definido como qualquer valor, contanto que nenhuma outra máquina na mesma sub-rede tenta usar omesmo valor. No entanto, o tamanho do ID de interface foi escolhido para permitir a configuração automática fácil de IPendereços, ligando o endereço MAC de uma placa de rede no campo ID de interface em uma IPv6endereço.Os endereços MAC são 6 bytes (48 bits) de comprimento. Então, para completar o ID de interface de 64 bits, o IPv6 preencheMais 2 bytes, separando o endereço MAC em duas metades de 3 bytes. Em seguida, FFFE hex inserções ementre as metades e define o sétimo bit do primeiro byte para binário 1 para formar o ID de interfacede campo. Figura 19-2 mostra neste formato, chamado o formato EUI-64 (EUI significa único ExtendedIdentificador).Dia 19 141

Page 125: 31 Dias Para o CCNA

Gerenciamento de endereços IPv6

Existem duas opções para a configuração do endereço IPv6 estático para ambos os roteadores e hosts:■ configuração estática do endereço completo■ configuração estática de um prefixo / 64 com o anfitrião calcular o seu ID de interface EUI-64 para completaro endereço IP.IPv6 suporta dois métodos de configuração dinâmica de endereços IPv6:■ DHCPv6: Funciona da mesma conceitualmente como DHCP no IPv4.■ autoconfiguração stateless: Um host dinamicamente aprende o / 64 através do prefixo IPv6Neighbor Discovery Protocol (NDP) e calcula o resto do seu endereço usando umEUI-64 ID de interface com base na sua placa de rede (NIC) de endereço MAC.

A transição para IPv6

A transição de IPv4 para IPv6 não requer upgrades em todos os nós ao mesmo tempo. muitosmecanismos de transição permitir uma integração harmoniosa de IPv4 e IPv6. Outros mecanismos que permitemIPv4 nós para se comunicar com nós IPv6 estão disponíveis. Diferentes situações exigem diferentesestratégias. Mecanismos de transição diferentes incluem o seguinte:

■ duplo empilhamento: Um método de integração no qual um nó tem implementação e conectividadepara tanto uma rede IPv4 e IPv6. Esta é a opção recomendada e envolve a execução IPv4IPv6 e, ao mesmo tempo.■ Tunneling: Várias técnicas de tunelamento estão disponíveis:■ túneis manualmente configurado (MCT): Um pacote IPv6 é encapsulado dentro do IPv4

Page 126: 31 Dias Para o CCNA

protocolo. Este método requer dual-stack roteadores.■ dinâmico túneis 6to4: Este termo refere-se a um tipo específico de túnel criados dinamicamente,tipicamente feito na Internet IPv4, em que os endereços IPv4 das extremidades do túnelpode ser encontrada de forma dinâmica com base no endereço de destino IPv6.■ Intrasite Protocolo de endereçamento de encapsulamento automático (ISATAP): Outra dinâmica de tunelamentométodo, normalmente utilizado dentro de uma empresa. Ao contrário de túneis 6to4, túneis ISATAP fazernão funciona se IPv4 NAT é usado entre as extremidades do túnel.■ Teredo tunelamento: Este método permite dual-stack hosts para criar um túnel para outrohost, com o anfitrião-se tanto a criação do pacote IPv6 e encapsular o pacotedentro de um cabeçalho IPv4.■ NAT-Protocol Translation (NAT-PT): Esta opção permite a comunicação direta de transiçãoentre IPv4-only hosts IPv6 e somente hosts. Estas traduções são mais complexas do IPv4NAT. Neste momento, esta técnica de tradução é a opção menos favorável e deve ser usadocomo último recurso.Lembre-se este conselho: "pilha dupla, onde pode; túnel onde você deve." Estes dois métodossão as técnicas mais comuns para a transição de IPv4 para IPv6.Tabela 19-3 resume as opções de transição para IPv6.

Page 127: 31 Dias Para o CCNA
Page 128: 31 Dias Para o CCNA

Dia 18 Conceitos básicos de roteamento ■ Descrever conceitos básicos de roteamento (incluindo o encaminhamento de pacotes, o processo de pesquisa roteador). ■ Comparar e contrastar os métodos de roteamento e protocolos de roteamento.

Tópicos-chave

Hoje nós revemos conceitos básicos de roteamento, incluindo exatamente como um pacote é processado pelo intermediário dispositivos (roteadores) a caminho da origem para decisão. Nós então rever os métodos básicos de roteamento, incluindo conectado, rotas estáticas e dinâmicas. Porque roteamento dinâmico é como um grande CCNA área de tópico, passamos algum tempo discutindo classificações, bem como as características básicas da distância vector e link-state protocolos de roteamento. Nota O material CCNA Exploration para hoje? Tópicos do exame s é bastante extensa. Na maioria dos

Page 129: 31 Dias Para o CCNA

casos, o material leva o caminho do estudante para além do âmbito do CCNA. Em particular,

Capítulo 8, A tabela de roteamento: Um olhar mais atento,? não deve ser uma prioridade para o seu comentário hoje. No entanto, se você estiver usando material de Exploração para rever, verificar todos os capítulos pertinentes e concentrar-se nos temas que são fracos dentro Encaminhamento de pacotes Encaminhamento de pacotes por roteadores é realizada através de determinação do caminho e as funções de comutação. A função de determinação do caminho é o processo de como o roteador determina qual o caminho para usar quando encaminhamento de um pacote. Para determinar o melhor caminho, o roteador procura sua tabela de roteamento para uma rede endereço que corresponde ao pacote? endereço IP de destino. Uma das três determinações caminho resultados desta pesquisa: ■ Directamente ligado rede: Se o endereço IP de destino do pacote pertence a um dispositivo em uma rede que está diretamente ligado a um dos router interfaces? s, que pacote é transmitido diretamente para esse dispositivo. Isto significa que o endereço IP de destino do pacote é um host endereço na mesma rede que esta interface s router?. ■ de rede remota: Se o endereço IP de destino do pacote pertence a uma rede remota, a pacote é encaminhado para outro roteador. Redes remotas pode ser alcançado somente por encaminhamento pacotes para outro roteador. ■ Nenhuma rota determinada: Se o endereço IP de destino do pacote não pertence a qualquer um conectado ou rede remota, eo roteador não tem uma rota default, o pacote é descartado. O roteador envia uma Internet Control Message Protocol (ICMP) mensagem de inacessível para o endereço IP de origem do pacote. Nos dois primeiros resultados, o roteador conclui o processo de comutação por pacote com a interface correta. Ele faz isso reencapsulating o pacote IP para o formato apropriado Camada frame 2 de enlace de dados para a interface de saída. O tipo de encapsulamento da camada 2 é determinada pelo tipo de interface. Para exemplo, se a interface de saída é Fast Ethernet, o pacote é encapsulado em um quadro Ethernet. Se o interface de saída é uma interface serial configurada para PPP, o pacote IP é encapsulado em um quadro PPP.

Determinação caminho e Exemplo de Função de comutação

A maioria dos recursos de estudo têm exemplos detalhados com excelentes gráficos que explicam a determinação do caminhoe comutação de funções desempenhadas pelos roteadores como um pacote de viagens da origem ao destino.Embora não temos uma abundância de espaço aqui para repetir os gráficos, podemos textualmenterevisão um exemplo usando um gráfico, mostrado na Figura 18-1.Figura 18-1 Exemplo de Topologia Packet Forwarding

Page 130: 31 Dias Para o CCNA

Para resumir, apenas os dois últimos octetos do endereço MAC é mostrado na figura.1. PC1 tem um pacote a ser enviado para PC2.E usando a operação em endereço IP de destino ea máscara de sub-rede PC1, o PC1 temdeterminou que o IP de origem e destino endereços IP estão em redes diferentes.Portanto, PC1 verifica sua tabela Address Resolution Protocol (ARP) para o endereço IP dogateway padrão e seu endereço MAC associado. Em seguida, ele encapsula o pacote em um

Ethernet cabeçalho e encaminha para R1.

2. Roteador R1 recebe o quadro Ethernet.Roteador R1 examina o endereço MAC de destino, o que corresponde ao endereço MAC dointerface de recepção, FastEthernet 0 / 0. R1, portanto, copiar o quadro em seu buffer.R1 decapsulates o quadro Ethernet e lê o endereço IP de destino. Porque nãocorresponde a nenhuma das redes diretamente conectadas R1, o roteador consulta sua tabela de roteamento para roteareste pacote.R1 procura na tabela de roteamento para um endereço de rede e máscara de sub-rede que iria incluir esseendereço IP de destino do pacote como um endereço de host na rede. A entrada com o maiorjogo (prefixo mais longo) é selecionado. R1, em seguida, encapsula o pacote no quadro apropriadoformato para a interface de saída e muda o quadro para a interface (FastEthernet 0 / 1 em nossoexemplo). A interface, em seguida, encaminha para o próximo salto.3. Pacote chega ao roteador R2.R2 executa as mesmas funções que R1, só que desta vez a interface de saída é uma interface serial-não Ethernet. Portanto, R2 encapsula o pacote no formato de quadro apropriado usado pora interface serial e envia para R3. Para o nosso exemplo, suponha que a interface está usando altaNível Data Link Control (HDLC), que usa o endereço 0x8F link de dados. Lembre-se, hánão são endereços MAC em interfaces seriais.4. Pacote chega ao R3.R3 decapsulates o quadro HDLC link de dados. A busca dos resultados da tabela de roteamento em uma redeque é uma das redes diretamente conectadas R3. Porque a interface de saída é uma diretamenteconectados de rede Ethernet, as necessidades R3 para resolver o endereço IP de destino do pacotecom um endereço MAC de destino.Buscas R3 para o pacote do endereço IP de destino 192.168.4.10 em seu cache ARP. Se oentrada não estiver no cache ARP, R3 envia uma solicitação ARP a sua FastEthernet 0 / 0 interface.

Page 131: 31 Dias Para o CCNA

Classificar protocolos de roteamento dinâmico

Figura 18-2 mostra um cronograma de protocolos de roteamento IP, juntamente com um gráfico que irá ajudá-lo a memorizaras várias maneiras de classificar os protocolos de roteamento.Evolução figura 18-2 Protocolos de Roteamento e Classificação150

Os protocolos de roteamento em destaque na figura são o foco do exame CCNA.Protocolos de roteamento podem ser classificados em diferentes grupos de acordo com suas características:■ IGP ou EGP■ vector distância ou link-state■ Classful ou sem classes

IGP e EGP

Um sistema autônomo (AS) é um conjunto de roteadores sob uma administração comum, que apresenta

Page 132: 31 Dias Para o CCNA

comum, política de roteamento claramente definida para a Internet. Exemplos típicos são um granderede interna da empresa e uma rede ISP. A maioria das redes da empresa não são autônomossistemas, apenas uma rede dentro de seu sistema de ISP autónoma. Porque a Internet é baseadasobre o conceito de sistema autônomo, dois tipos de protocolos de roteamento são necessários:■ Interior Gateway Protocols (IGP): Utilizado para roteamento intra-AS, isto é, roteamento dentro de um AS■ Exterior Gateway Protocols (EGP): Utilizado para roteamento inter-AS, isto é, roteamento entresistemas autônomos

Distance Vector Routing Protocols

Vetor de distância significa que as rotas são anunciadas como vetores de distância e direção. distância édefinida em termos de tal métrica como contagem de saltos, ea direção é o next-hop roteador ou interface de saída.Protocolos vetor de distância normalmente usam o algoritmo de Bellman-Ford para a rota melhor caminho-determinação.

Alguns protocolos vetor de distância enviar periodicamente completa tabelas de roteamento para todos os vizinhos conectados.Em grandes redes, essas atualizações de roteamento pode tornar-se enorme, fazendo com que o tráfego significativo sobreos links.Embora o algoritmo de Bellman-Ford, eventualmente, acumula conhecimento suficiente para manter umabanco de dados de redes alcançáveis, o algoritmo não permite que um roteador para conhecer a topologia exatade uma internetwork. O roteador conhece apenas as informações de roteamento recebidas de seus vizinhos.Protocolos vetor de distância usam roteadores como indicadores ao longo do caminho até o destino final. A únicainformações de um roteador sabe sobre uma rede remota é a distância ou métrica para chegar a essa redee qual o caminho ou interface que usará para chegar lá. Protocolos de roteamento vetor de distância não tem umamapa real da topologia da rede.Protocolos de vetor distância funcionam melhor em situações onde■ A rede é simples e plana e não exige um projeto hierárquico.■ Os administradores não têm conhecimento suficiente para configurar e solucionar problemas de link-stateprotocolos.■ tipos específicos de redes, tais como hub-and-spoke redes, estão sendo implementadas.■ vezes pior caso de convergência em uma rede não são uma preocupação.

Link State-Protocolos de Roteamento

Em contraste com a operação de vetor de distância protocolo de roteamento, um roteador configurado com um roteamento link-stateprotocolo pode criar uma "vista completa", ou topologia, da rede de coleta de informaçõesde todos os outros roteadores. Pense em um protocolo de roteamento link-state como tendo um mapa completo datopologia da rede. As placas de sinalização ao longo do caminho da origem ao destino não são

Page 133: 31 Dias Para o CCNA

necessários,porque todos os roteadores link-state está usando um "mapa" idêntico da rede. Um roteador usa link-stateas informações do link state-para criar um mapa da topologia e selecionar o melhor caminho para todas as redes de destinona topologia.Com alguns protocolos de roteamento vetor de distância, os roteadores enviam atualizações periódicas de suas informações de roteamentoaos seus vizinhos. Protocolos de roteamento link-state não usar atualizações periódicas. Depois que a redeconvergiu, uma atualização de link-state é enviado somente quando há uma mudança na topologia.Link-state protocolos funcionam melhor em situações onde■ O projeto de rede é hierárquica, geralmente ocorrendo em grandes redes.■ Os administradores têm um bom conhecimento do protocolo de roteamento implementado link-state.■ rápida convergência da rede é crucial.

Classful Protocolos de Roteamento

Classful protocolos de roteamento não envie informações máscara em atualizações de roteamento. O primeiroprotocolos de roteamento, como o Routing Information Protocol (RIP), foram classful. Isto foi em um momentoquando os endereços de rede foram alocados com base em classes: Classe A, B, ou C. Um protocolo de roteamento quenão precisa incluir a máscara de sub-rede na atualização de roteamento, pois a máscara de rede poderia serdeterminado com base no primeiro octeto do endereço de rede.

Dia 18 151

1 (RIPv1) e Interior Gateway Routing Protocol (IGRP).

Protocolos de Roteamento Classless

Protocolos de roteamento sem classes incluem a máscara de sub-rede com o endereço de rede em atualizações de roteamento.Redes de hoje já não são alocados com base em classes, ea máscara de sub-rede não pode ser determinadopelo valor do primeiro octeto. Classless protocolos de roteamento são necessários na maioria das redeshoje por causa de seu apoio para VLSM e descontínua redes e supernets. Sem classesprotocolos de roteamento são Routing Information Protocol versão 2 (RIPv2), Enhanced IGRP (EIGRP),Open Shortest Path First (OSPF), System Intermediate System-to-Intermediate (IS-IS) e BorderGateway Protocol (BGP).

Métricas de roteamento dinâmico

Há casos em que um protocolo de roteamento aprende de mais de uma rota para o mesmo destinoa partir da fonte de roteamento mesmo. Para selecionar o melhor caminho, o protocolo de roteamento deve ser capaz de avaliare diferenciar entre os caminhos disponíveis. A métrica é usada para esta finalidade. Dois

Page 134: 31 Dias Para o CCNA

roteamento diferentesprotocolos podem escolher caminhos diferentes para o mesmo destino por causa do uso de métricas diferentes.Métricas usadas em protocolos de roteamento IP incluem o seguinte:■ RIP-Hop count: Melhor caminho é escolhido por a rota com o menor número de saltos.■ IGRP e EIGRP largura de banda, confiabilidade atraso, e de carga: Melhor caminho é escolhido pelopercurso com o menor valor composto métrica calculada a partir desses parâmetros múltiplos. Porlargura de banda padrão, apenas e atraso são usados.■ IS-IS e OSPF Custo: O melhor caminho é escolhido pelo percurso com o menor custo. A Ciscoimplementação de OSPF usa a largura de banda para determinar o custo.A métrica associada a uma determinada rota pode ser melhor visualizado utilizando o comando show ip route.O valor da métrica é o segundo valor entre parênteses, por uma entrada na tabela de roteamento. No Exemplo 18-1, R2tem uma rota para a rede 192.168.8.0/24, que é de dois saltos de distância.Exemplo 18-1 tabela de roteamento para R2152 31 dias antes de seu exame CCNAR2 # show ip route<saida omitted>Gateway de último recurso não está definidoR 192.168.1.0/24 [120 / 1] via 192.168.2.1, 00:00:24, Serial0/0/0

Observe na saída que uma rede, 192.168.6.0/24, tem duas rotas. RIP vai balancear a cargaentre estas vias de igual custo. Todos os outros protocolos de roteamento são capazes de automaticamente loadbalancingtráfego para até quatro igual custo rotas por padrão. EIGRP também é capaz de balanceamento de cargaem custos desiguais caminhos.

Distância administrativa

Page 135: 31 Dias Para o CCNA

Pode haver momentos em que um roteador aprende uma rota para uma rede remota de mais de um roteamentofonte. Por exemplo, uma rota estática pode ter sido configurado para a máscara de rede / sub-rede mesmoque foi aprendido de forma dinâmica através de um protocolo de roteamento dinâmico, como o RIP. O roteador deve escolherqual a rota para instalar.Embora menos comum, mais do que um protocolo de roteamento dinâmico podem ser implantados na mesma rede.Em algumas situações, pode ser necessário para rotear o mesmo endereço de rede usando vários protocolos de roteamentotais como RIP e OSPF. Porque diferentes protocolos de roteamento utilizam diferentes métricas-RIP usa hopcontagem e OSPF usa largura de banda não é possível comparar métricas para determinar o melhor caminho.Distância administrativa (AD) define a preferência de uma fonte de roteamento. Cada fonte, incluindo o roteamentoprotocolos específicos de roteamento, rotas estáticas, e até mesmo diretamente ligado redes é prioridade naordem de mais para o menos preferível usando um valor de AD. Roteadores Cisco usar o recurso de AD para escolher o melhorcaminho quando aprendem sobre a rede mesmo destino de dois ou mais diferentes fontes de roteamento.O valor AD é um valor inteiro de 0 a 255. Quanto menor o valor, o mais preferido a rotafonte. Uma distância administrativa de 0 é o mais preferido. Apenas uma rede diretamente conectadatem uma AD de 0, que não pode ser alterado. Um AD de 255 significa que o roteador não vai acreditar ofonte dessa rota, e não vai ser instalado na tabela de roteamento.Na tabela de roteamento mostrada no Exemplo 18-1, o valor AD é o primeiro valor listado na colchetes.Você pode ver que o valor AD para as rotas RIP é de 120. Você também pode verificar o valor com o ADcomando show ip protocolos como demonstrado no Exemplo 18-2.Exemplo 18-2 Verificando o valor AD com o comando show ip protocols

Page 136: 31 Dias Para o CCNA

IGP Resumo

ComparaçãoTabela 18-3 compara várias características do IGPs atualmente mais popular: RIPv2, OSPF, eEIGRP.

Page 137: 31 Dias Para o CCNA

Roteamento loop Prevenção

Sem medidas preventivas, protocolos de encaminhamento vector distância pode causar graves loops de roteamento emda rede. Um loop de roteamento é uma condição na qual um pacote é transmitido de forma contínua dentro de umsérie de roteadores sem nunca chegar a sua rede de destino. Um loop de roteamento pode ocorrerquando dois ou mais roteadores têm imprecisas informações de roteamento para uma rede de destino.Um número de mecanismos disponíveis para eliminar loops de roteamento, principalmente com vetor de distânciaprotocolos de roteamento. Estes mecanismos incluem o seguinte:■ Definir uma métrica máximo, para evitar contagem ao infinito: Para finalmente parar o incrementode uma métrica durante um loop de roteamento, "infinito" é definida pela configuração de uma métrica máximavalor. Por exemplo, RIP define infinito como 16 saltos-uma métrica "inacessível". Quando orouters "contagem ao infinito", que marca a rota como inacessível.■ Mantenha-down timers: Usado para instruir roteadores para realizar quaisquer mudanças que possam afetar rotas para umperíodo de tempo especificado. Se uma rota é identificada como, possivelmente, para baixo ou para baixo, qualquer outra informaçãopara aquela rota contendo o mesmo status, ou pior, é ignorado para uma quantidade predeterminadade tempo (o período de hold-down) para que a rede tenha tempo para convergir.■ horizonte Split: Usado para evitar um loop de roteamento, não permitindo que os anúncios para ser enviado de voltaatravés da interface que originou. A regra de dividir horizonte pára um roteador de incrementouma métrica e depois enviar a rota de volta à sua fonte.■ envenenamento Route ou reverter veneno: Usado para marcar a rota como inacessível em um roteamentoatualização que é enviado para outros roteadores. Inacessível é interpretado como uma métrica que é definido para omáxima.■ atualizações Triggered: Uma atualização de tabela de roteamento que é enviado imediatamente em resposta a um encaminhamentomudar. Atualizações desencadeada não espere por temporizadores atualização para expirar. O roteador detectar imediatamente

Page 138: 31 Dias Para o CCNA

envia uma mensagem de atualização para os roteadores adjacentes.■ campo TTL no cabeçalho IP: O objetivo do Time to Live (TTL) de campo é para evitar uma situaçãoem que um pacote undeliverable continua circulando na rede indefinidamente. Com TTL,o campo de 8 bits é definida com um valor pelo dispositivo de origem do pacote. O TTL é diminuído1 por cada roteador na rota para seu destino. Se o campo TTL chega a 0 antes de o pacotechega ao seu destino, o pacote é descartado eo roteador envia uma mensagem de erro ICMPde volta para a origem do pacote IP.

Link State-Routing Protocol Features

Como protocolos de vetor de distância que enviam atualizações de roteamento para seus vizinhos, link-state protocolosenvie o link state-atualidades routers vizinhos, que por sua vez transmite essa informação aos seusvizinhos, e assim por diante. Ao final do processo, como protocolos de vetor de distância, os roteadores que usamlink-state protocolos de adicionar as melhores rotas para suas tabelas de roteamento, com base em métricas. No entanto, para alémeste nível de explicação, esses dois tipos de algoritmos de protocolo de roteamento têm pouco em comum.Construção do LSDBLink-state routers informações detalhadas sobre o dilúvio internetwork a todos os outros roteadores para quecada roteador tem as mesmas informações sobre a rede. Os roteadores usam esta base de dados link-state(LSDB) para calcular as melhores rotas, actualmente, para cada sub-rede.OSPF, o mais popular link-state protocolo de roteamento IP, anuncia informações em roteamento de atualizaçãomensagens de vários tipos, com as atualizações contendo propagandas informações chamado link-state(LSAs).Figura 18-3 mostra a idéia geral do processo de inundação, com a criação de R8 e inundações suarouter LSA. Note que a Figura 18-3 mostra apenas um subconjunto das informações no router R8 da LSA.LSAs Figura 18-3 Inundações Usando um Link State Routing Protocol-

Page 139: 31 Dias Para o CCNA

Figura 18-3 mostra o processo de inundação, em vez de base, com R8 enviar o LSA original para si,e os outros roteadores inundando o LSA, enviando-lhe até que cada roteador tem uma cópia.Após o LSA foi inundado, mesmo se o LSAs não mudam, link-state protocolos exigemreflooding periódica dos LSAs por padrão a cada 30 minutos. No entanto, se uma mudança LSA, oinundações router imediatamente a LSA mudou. Por exemplo, se LAN Router R8 da interface falhou, R8precisaria reflood o LSA R8, afirmando que a interface é agora para baixo.

Cálculo do algoritmo de Dijkstra

O processo de inundação por si só não causa um roteador para saber o que as rotas para adicionar ao roteamento IPmesa. Link-state protocolos deve, então, encontrar e adicionar rotas à tabela de roteamento IP usando o DijkstraAlgoritmo Shortest Path First (SPF).O algoritmo SPF é executado na LSDB para criar a árvore SPF. O LSDB contém todas as informaçõessobre todos os routers possível e links. Cada roteador deve ver-se como o ponto de partida, e cadasub-rede como o destino, e usa o algoritmo SPF para construir sua própria árvore SPF para escolher o melhorrota para cada sub-rede.Figura 18-4 mostra uma visualização gráfica dos resultados do algoritmo SPF executado pelo roteador R1 ao tentarpara encontrar a melhor rota para chegar a sub-rede 172.16.3.0/24 (com base na Figura 18-3).Figura 18-4 árvore SPF encontrar Route R1 para 172.16.3.0/24

Page 140: 31 Dias Para o CCNA

Para escolher a melhor rota, o algoritmo de um roteador SPF acrescenta o custo associado a cada ligação entreem si e da sub-rede de destino, em cada rota possível. Figura 18-4 mostra os custos associadoscom cada rota ao lado dos links, com as linhas tracejadas mostram as três rotas R1 encontra entresi mesmo e de sub-rede X (172.16.3.0/24).

Tabela 18-4 lista as três rotas mostrado na Figura 18-4, com os respectivos custos acumulados, mostrando queMelhor rota R1 para 172.16.3.0/24 começa por passar por R5.

Como resultado da análise do algoritmo SPF é do LSDB, R1 adiciona uma rota para 172.16.3.0/24 sub-rede parasua tabela de roteamento, com o roteador next-hop de R5.

Convergência com ligação Estado-Protocolos

Lembre-se, quando uma mudança LSA, link-state protocolos de reagir rapidamente, convergindo a rede eutilizando as melhores rotas atualmente o mais rápido possível. Por exemplo, imagine que a ligação entreR5 e R6 falha na internetwork de Figuras 18-3 e 18-4. A lista a seguir explica aprocesso de R1 usa para mudar para uma rota diferente.1. R5 e R6 LSAs inundação que afirmam que suas interfaces estão agora em um estado "down".2. Todos os roteadores executar o algoritmo SPF novamente para ver se todas as rotas foram alteradas.3. Todos os roteadores substituir as rotas, conforme necessário, com base nos resultados do SPF. Por exemplo, mudanças R1

Page 141: 31 Dias Para o CCNA

sua rota para a sub-rede X (172.16.3.0/24) para usar como roteador R2 o próximo salto.Estes passos permitem a ligação de estado protocolo de roteamento a convergir rapidamente, muito mais rapidamente do que a distânciaprotocolos de roteamento vetor.Recursos estudoPara os temas de hoje do exame, consulte os seguintes recursos para mais estudo.

dia 17

Conexão e inicialização de RoutersExame CCNA 640-802 Tópicos■ Selecione a mídia apropriada, cabos, portas e conectores para conectar roteadores para outras redesdispositivos e hosts.■ Descrever a operação de roteadores Cisco (incluindo o processo de inicialização do roteador, POST, o roteadorcomponentes).

Tópicos-chave

Hoje analisamos os componentes básicos do roteador, o processo de inicialização do roteador, interfaces do roteador, e conectar

Page 142: 31 Dias Para o CCNA

aos roteadores. O conteúdo para a revisão de hoje é bastante leve. Aproveite esta oportunidade para revermaterial mais difícil do dia anterior ou passar para o dia seguinte, quando você está feito aqui. vocêtambém pode simplesmente fazer uma pausa.

Componentes roteador interno

Semelhante a um PC, um roteador também inclui os seguintes componentes internos:■ CPU: Executa as instruções do sistema operacional, como inicialização do sistema, funções de roteamento,e controle de interface de rede.■ RAM: A memória volátil que armazena as estruturas de dados requisitados pela CPU enquanto o roteador épowered, incluindo- Sistema operacional: Cisco IOS Software é copiado para a RAM durante a inicialização.- Running arquivo de configuração: Armazena os comandos de configuração que IOS do roteador éusando atualmente.- Tabela de roteamento IP: armazena informações sobre redes diretamente conectadas e remotos.- Cache ARP: Similar ao cache ARP em um PC.- Buffer de pacotes: pacotes são armazenados temporariamente em um buffer quando recebidos em uma interfaceou antes de sair de uma interface.■ ROM: A forma de armazenamento permanente usado para armazenar- Instruções Bootstrap- Software de diagnóstico básico- Scaled-down versão do IOS

■ Memória Flash: A memória flash é a memória do computador não-volátil que pode ser eletricamenteapagada e reprogramada. O Flash é usado como armazenamento permanente para o IOS Cisco.■ NVRAM: Memória de acesso aleatório não-volátil, que não perde sua informação quando oenergia é desligada. NVRAM é usada pela Cisco IOS Software como armazenamento permanente para oarquivo de configuração de inicialização

IOS

O software do sistema operacional usado nos roteadores Cisco é conhecido como Cisco Internetwork OperatingSystem (IOS). Como qualquer sistema operacional em qualquer outro computador, Cisco IOS Software é responsávelpara a gestão dos recursos de hardware e software do roteador, incluindo alocação de memória,gerenciamento de processos e segurança, e gestão de sistemas de arquivo. Cisco IOS é um sistema operacional multitarefasistema que é integrado com o roteamento, switching, internetworking e telecomunicaçõesfunções. Embora Cisco IOS Software pode parecer ser o mesmo em muitos roteadores, existemvárias imagens IOS. Cisco cria muitas imagens IOS, dependendo do modelo e as característicasno IOS. Normalmente, os recursos adicionais requerem mais flash e RAM para armazenar e carregar IOS.Tal como acontece com outros sistemas operacionais, Cisco IOS tem sua própria interface de usuário. Embora alguns roteadores fornecem

Page 143: 31 Dias Para o CCNA

uma interface gráfica de usuário (GUI), a interface de linha de comando (CLI) é muito mais comummétodo de configuração de roteadores Cisco.

Processo de inicialização do roteador

Como todos os computadores, um roteador usa um processo sistemático para boot. Isso envolve testar o hardware,o carregamento do software do sistema operacional e realizar todos os comandos de configuração salvo nasalva arquivo de configuração de inicialização. Alguns dos detalhes desse processo foram excluídos e sãoexaminados de forma mais completa em um curso mais tarde.Figura 17-1 mostra os seis grandes fases no processo de inicialização:1. Power-On Self Test (POST): Testando o hardware router2. Carregando o programa de inicialização3. Localizando Cisco IOS4. Carregando Cisco IOS5. Localizar o arquivo de configuração6. Carregando o arquivo de configuração de inicialização ou entrar no modo de configuraçãoUse o comando show version para verificar e solucionar alguns dos básicos de hardware e softwarecomponentes de um roteador. O comando show version no Exemplo 17-1 exibe informaçõessobre a versão do Cisco IOS Software actualmente em execução no router, a versão do bootstrapprograma e informações sobre a configuração de hardware, incluindo a quantidade de sistemamemória.162 31 dias antes de seu exame CCNA

Page 144: 31 Dias Para o CCNA

Portas roteador e Interfaces

Figura 17-2 mostra o lado de trás de um router 2621 com portas de gerenciamento e interfaces rotulados.Portas Figura 17-2 Router e Interfaces

Portas de gerenciamento não são utilizados para o encaminhamento de pacotes, como Ethernet e interfaces seriais, mas sãousado para conectar um terminal para o roteador e configurá-lo sem acesso à rede. A porta do consoledeve ser utilizado durante a configuração inicial do roteador. A porta auxiliar pode fornecer gerenciamento remoto

Page 145: 31 Dias Para o CCNA

se um modem está conectado.Roteadores têm múltiplas interfaces usadas para conectar a várias redes. Por exemplo, um roteadormais provável ter interfaces Fast Ethernet para conexões a LANs diferentes e também têm diferentestipos de interfaces WAN usado para conectar uma variedade de ligações de série, incluindo T1, DSL e ISDN.

Conexões roteador

Ligar um router a uma rede requer um conector de interface do roteador para ser acoplado com um caboconector. Como você pode ver na Figura 17-3, roteadores Cisco suportam muitos conectores seriais incluindoEIA/TIA-232, EIA/TIA-449, V.35, X.21, e EIA/TIA-530 padrões.Para conexões Ethernet baseado em LAN, um conector RJ-45 para o par trançado não blindado (UTP)cabo é mais comumente usado.Dois tipos de cabos podem ser utilizados com interfaces Ethernet LAN:■ A straight-through, patch ou, a cabo, com a ordem dos pinos coloridos o mesmo em cada extremidade doo cabo■ Um cabo crossover, com o pino 1 ligado ao pino 3 eo pino 2 ligado ao pino 6

Page 146: 31 Dias Para o CCNA
Page 147: 31 Dias Para o CCNA

dia 16

Configuração Básica do Roteador everificaçãoExame CCNA 640-802 Tópicos■ Acessar e utilizar o roteador para definir os parâmetros básicos (CLI / SDM).■ Connect, configurar e verificar o status de operação de uma interface de dispositivo.■ Implementar a segurança básica de um roteador.■ Verifique a configuração do dispositivo e conectividade de rede usando ping, traceroute, telnet, SSH, ououtros utilitários.■ Verifique a conectividade da rede (usando ping, traceroute, telnet e SSH ou).Tópico chave

Hoje fazemos uma revisão da configuração do roteador e os comandos básicos de verificação, bem como testes utilizandoo ping, traceroute, telnet e comandos. A maior parte deste deve ser muito familiar para você nesteponto em seus estudos, porque estas habilidades são fundamentais para todas as outras tarefas de configuração do roteador.Nota Cisco Device Manager Security (SDM) é um método baseado em GUI para acessar e configuraro roteador. Revisão SDM aqui iria ocupar muito espaço, porque nós

Page 148: 31 Dias Para o CCNA

necessidade de repetir dezenas de screenshots. Então, para sua análise de hoje SDM, consulte o seu EstudoRecursos. Cada um tem uma extensa revisão da configuração do roteador básico usando SDM.

Configuração Básica do Roteador

Figura 16-1 mostra o esquema de endereçamento topologia e usaremos a revisão básica de um roteadortarefas de configuração e verificação.Ao configurar um roteador, certas tarefas básicas são executadas, incluindo o seguinte:■ Naming o roteador■ Configuração de senhas■ Configurando interfaces de■ Configurar um banner■ Salvar alterações em um roteador■ Verificar a configuração básica e operações router

Page 149: 31 Dias Para o CCNA
Page 150: 31 Dias Para o CCNA
Page 151: 31 Dias Para o CCNA

O endereço IP deve ser correta, eo status de interface deve ser "para cima" e "up". tabela 16-2resume os dois códigos de status e seus significados.

Page 152: 31 Dias Para o CCNA

Quatro combinações de configurações existentes para os códigos de status na solução de uma

rede. Tabela 16 -

3 lista as quatro combinações, junto com uma explicação dos motivos típicos por uma interface

Seria nesse estado

Page 153: 31 Dias Para o CCNA
Page 154: 31 Dias Para o CCNA

Tabela 16-4 mostra Explicação interfaces de saídaDescrição de saídaFastEthernet ... é {up | down | Indica se o hardware de interface estáadministrativamente down} ativa ou para baixo, ou se um administrador tomou-a para baixo.protocolo de linha é {up | down} Indica se a processos de software que lidam com o protocolo de linha considerarutilizável interface (isto é, se keepalives são bem sucedidos). Se ointerface de misses três keepalives consecutivos, o protocolo de linha é marcadacomo para baixo.Tipo de hardware Hardware (por exemplo, a MCI Ethernet, interface de comunicação serial[SCI], CBUs Ethernet) e endereço.Inscrição seqüência de texto configurado para a interface (max 240 caracteres).Internet endereço IP endereço seguido pelo comprimento do prefixo (máscara de sub-rede).MTU Maximum Transmission Unit (MTU) da interface.BW Bandwidth da interface, em kilobits por segundo. O parâmetro de largura de bandaé usado para calcular as métricas de roteamento protocolo e outros cálculos.DLY Delay da interface, em microssegundos.confiar Confiabilidade da interface como uma fração de 255 (255/255 é 100 por cento

Page 155: 31 Dias Para o CCNA

confiabilidade), calculado como uma média exponencial sobre 5 minutos.carga de carga na interface como uma fração de 255 (255/255 é totalmente saturada),calculado como uma média exponencial sobre 5 minutos.Método de encapsulamento encapsulamento atribuído a uma interface.loopback Indica se loopback está definido.keepalive Indica se keepalives estão definidos.ARP tipo: Tipo de Address Resolution Protocol (ARP) atribuído.Número de entrada de última hora, minutos e segundos desde o último pacote foi sucessorecebido por uma interface. Útil para saber quando uma interface de mortos não

Número de saída de horas, minutos e segundos desde o último pacote foi sucessotransmitido por uma interface. Útil para saber quando a interface de um mortofalhou.Número de saída jeito de horas, minutos e segundos (ou nunca) já que a interface foireiniciadas por causa de uma transmissão que demorou muito. Quando o númerode horas em qualquer um dos campos anteriores exceder 24 horas, o número de diase horas é impresso. Se esse campo transborda, asteriscos são impressas.Tempo clearing última em que os contadores que medem estatísticas acumuladas mostrado nesterelatório (como o número de bytes transmitidos e recebidos) foram redefinidas para último0. Note-se que as variáveis que podem afetar o roteamento (por exemplo, carga e confiabilidade)não são apagadas quando os contadores são apagadas. Asteriscos indicamtempo decorrido muito grande para ser exibido. Repor os contadores com o clarointerface de comando.Fila de saída, número de entrada de pacotes na saída e filas de entrada. Cada número é seguidofila, cai por uma barra (/), o tamanho máximo da fila, eo número de pacotescaiu por causa de uma fila cheia.Cinco minutos taxa de entrada, número médio de bits e pacotes transmitidos por segundo nos últimos 5Cinco minutos minutos taxa de saída. Se a interface não está em modo promíscuo, ele detecta o tráfego de redeque envia e recebe (em vez de todo o tráfego de rede).A entrada de 5 minutos e as taxas de saída deve ser usado apenas como uma aproximaçãode tráfego por segundo durante um determinado período de 5 minutos. Estas taxas sãoexponencialmente médias ponderadas com uma constante de tempo de 5 minutos. Um período dede quatro constantes de tempo deve passar antes, a média será dentro de 2 por centoda taxa instantânea de um fluxo uniforme de tráfego ao longo desse período.Número total de pacotes de entrada livre de erros pacotes recebidos pelo sistema.bytes Número total de entrada de bytes, incluindo dados e encapsulamento MAC, nolivre de erros pacotes recebidos pelo sistema.não Número buffers de pacotes recebidos descartados porque não havia espaço no bufferno sistema principal. Compare com "ignorado contar." Tempestades de broadcast emEthernet são frequentemente responsáveis por nenhum evento buffer de entrada.... Recebeu transmissões Número total de pacotes broadcast ou multicast recebidos pela interface.O número de transmissões deve ser mantido tão baixo quanto possível. Uma aproximadalimite é inferior a 20 por cento do número total de pacotes de entrada.runts Número de frames Ethernet que são descartados porque eles são menores do queo tamanho de quadro mínimo de Ethernet. Qualquer quadro Ethernet que é inferior a 64bytes é considerado um nanico. Runts são geralmente causadas por colisões. Se houvermais de 1 milhão de bytes por runt recebido, ele deve ser investigado.gigantes Número de frames Ethernet que são descartados porque eles excedem otamanho máximo do quadro Ethernet. Qualquer quadro Ethernet que é maior que 1518bytes é considerado um gigante.

Page 156: 31 Dias Para o CCNA

erro de entrada Inclui runts, gigantes, sem buffer, verificação de redundância cíclica (CRC), frame,superação, e ignorado conta. Outros entrada relacionados com erros também podem causar aerro de entrada contagem a ser aumentada, e alguns datagramas pode ter mais deum erro. Portanto, essa soma não pode equilibrar com a soma dos enumeradoscontagens de erros de entrada.Dia 16 173Descrição de saídacontinuaCRC CRC gerado pela estação de origem ou LAN far-end dispositivo nãocoincidir com a soma de verificação calculada a partir dos dados recebidos. Em uma LAN, estageralmente indica problemas de ruído ou de transmissão na interface LAN ouo ônibus LAN si. Um grande número de CRCs é geralmente o resultado de colisõesou uma estação de transmissão de dados incorretos.Número de quadros de pacotes recebidos incorretamente com um erro CRC e um nonintegernúmero de octetos. Em uma LAN, este é geralmente o resultado de colisões oumau funcionamento do dispositivo Ethernet.Número de saturação de vezes que o hardware receptor foi incapaz de mão-receber dados paraum buffer de hardware, porque a taxa de entrada excedeu a capacidade do receptorpara manipular os dados.Número de pacotes recebidos ignorado ignorados pela interface porque a interfacehardware correu baixo em buffers internos. Estes buffers são diferentes dosbuffers sistema mencionado na descrição do buffer. Tempestades de broadcast erajadas de ruído pode causar a contagem ignorado ser aumentado.pacotes de entrada com drible de erro de bit Dribble indica que um quadro é um pouco demaiscondição detectada longo. Este contador de erro de quadro é incrementado apenas para fins informativos;o roteador aceita a frame.número de pacotes de saída total das mensagens transmitidas pelo sistema.Número total de bytes bytes, incluindo dados e encapsulamento MAC, transmitidapelo sistema.underruns Número de vezes que o transmissor foi correndo mais rápido do que oroteador pode suportar. Isso nunca pode ser relatado em algumas interfaces.Sum erros de saída de todos os erros que impediram a transmissão final de datagramas deinterface que está sendo examinado. Note que isso não poderia equilíbrio com osoma dos erros de saída enumerados, porque alguns datagramas pode termais de um erro, e outros podem ter erros que não se enquadram em nenhumadas categorias especificamente tabulados.Número de colisões de mensagens retransmitidas por causa de uma colisão Ethernet. Isto égeralmente o resultado de um overextended LAN (Ethernet ou cabo transceptormuito tempo, mais de dois repetidores entre duas estações, ou muitos em cascatamultiport transceivers). Um pacote que choca é contado apenas uma vez na saídapacotes.Número de interface redefine de vezes que um interface foi completamente reposto. Isso pode acontecerse os pacotes na fila de transmissão não foram enviados dentro de alguns segundos.Em uma linha serial, isto pode ser causado por um modem com defeito que não éque fornece o sinal do relógio de transmissão, ou pode ser causado por um problema de cabo.Se o sistema percebe que a transportadora detectar linha de uma interface serial éacima, mas o protocolo de linha está em baixo, periodicamente redefine a interface em umesforço para reiniciá-lo. Interface redefine também pode ocorrer quando uma interface élooped costas ou desligado.174 31 dias antes de seu exame CCNATabela 16-4 mostra Explicação interfaces de saída contínuaDescrição de saída

Page 157: 31 Dias Para o CCNA

Verificando a conectividade de rede

Como revisado no dia 20, "Host Addressing, DHCP, DNS e," ping e traceroute são úteis

ferramentas para verificar a conectividade de rede. Estas ferramentas de trabalho para os

roteadores também. A única diferença

é a saída do comando ea sintaxe de comando.

Exemplo 16-4 demonstra a saída ping foi bem sucedido no roteador.

Exemplo de saída do Ping 16-4 em um Router

Page 158: 31 Dias Para o CCNA

Usando Telnet ou SSH para acessar remotamente outro dispositivo também testes de conectividade. Mais importante, estes métodos de acesso remoto irá testar se um dispositivo foi configurado corretamente para que você pode acessá-lo para fins de gestão. Isto pode ser muito importante quando um dispositivo é verdadeiramente remoto (Por exemplo, através da cidade ou em outra cidade). Dia 8,? Ameaças de Segurança atenuantes e Melhor Práticas? opiniões de configuração SSH e verificação em mais detalhes. Durante a nossa tarefas básicas de configuração anterior, entramos os comandos para configurar corretamente o Linhas Telnet (vty 0 4) para acesso remoto. Exemplo 16-8 mostra um Telnet sucesso de R1 para R2.

Page 159: 31 Dias Para o CCNA

Gestão e Cisco IOSArquivos de configuraçãoExame CCNA 640-802 Tópicos■ Gerenciar arquivos de configuração do IOS (salvar, editar, atualizar e restaurar).

Page 160: 31 Dias Para o CCNA

■ Gerenciar Cisco IOS.■ Verifique hardware do roteador e operação de software usando comandos SHOW e DEBUG.

Tópicos-chave

IOS imagens e arquivos de configurações podem ser corrompidos por meio de ataques intencionais, não intencionaiserros do usuário, e falha do dispositivo. Para evitar esses problemas, você tem que ser capaz de salvar, fazer backupe restaurar imagens de configuração e IOS. Hoje fazemos uma revisão das operações de gestão de arquivos.

O Cisco IOS File System

Dispositivos Cisco IOS oferecem um recurso chamado o Cisco IOS Integrated File System (IFS). estesistema permite criar, navegar e manipular pastas em um dispositivo Cisco. os diretóriosdisponíveis dependem da plataforma.Comandos IFSExemplo 15-1 mostra a saída do comando show sistemas de arquivos.

As colunas mostram a quantidade de memória disponível e livre em bytes eo tipo de sistema de arquivos e seuspermissões. Permissões incluem somente leitura (ro), write-only (wo), e ler e gravar (rw). emboravários sistemas de arquivos são listados, de interesse para nós são os TFTP, flash, e sistemas de arquivos NVRAM.Observe que o sistema de arquivos flash tem um asterisco (*) precederam, o que indica que esta

Page 161: 31 Dias Para o CCNA

é a correntesistema de arquivos padrão. Lembre-se que o IOS inicializável está localizado em flash. Portanto, o símbolo da libra(#) Anexado à lista de flash indica que este é um disco de boot.Exemplo 15-2 lista o conteúdo do atual sistema de arquivo padrão, que neste caso é flash.Exemplo 15-2 sistema de arquivos padrão é o Flash

De particular interesse é a primeira listagem, que é o nome do arquivo para a imagem do IOS.Observe que os arquivos de configuração armazenadas em NVRAM não são mostrados na saída. Para ver estes,primeira mudança diretórios (cd) para o diretório NVRAM (nvram:). Em seguida, listar o conteúdo com o dircomando, como mostrado no Exemplo 15-3.

O arquivo que estão mais interessados em como candidatos exame CCNA é o arquivo de configuração startup-config.

Prefixos de URL para especificar locais de arquivos

Locais de arquivos são especificados na Cisco IFS usando a convenção de URL, como mostrado

Page 162: 31 Dias Para o CCNA

no exemploFigura 15-1.Figura 15-1 Usando uma URL para especificar o local TFTP

Na Figura 15-1, as partes do URL tftp: / 192.168.20.254/configs/backup-config / pode ser dissecada como se segue: ■ tftp: é o prefixo que especifica o protocolo. ■ Tudo após a barra dupla (/ /) define o local do arquivo. ■ 192.168.20.254 é a localização do servidor TFTP. ■ configs é o diretório mestre no servidor TFTP. ■ de backup de configuração é um nome de arquivo da amostra. A URL TFTP mostrado na Figura 15-1 é um exemplo de uma URL remota. Exemplos de URLs para acessando o IFS local da Cisco incluem o seguinte: ■ flash: configs / backup-config ■ Sistema: executando-config (este acessa a memória RAM) ■ nvram: startup-config

Comandos para gerenciar arquivos de configuraçãoConhecer a estrutura URL é importante porque você usá-los ao copiar arquivos de configuraçãode um local para outro. O Cisco IOS comando de cópia de software é usado para mover a configuraçãoarquivos de um componente ou dispositivo para outro, como RAM, NVRAM, ou um servidor de TFTP.Figura 15-2 mostra a sintaxe de comando.Figura 15-2 Sintaxe do Comando cópia

A URL de origem é onde você está copiando. O URL de destino é onde você está copiandopara. Por exemplo, você já está familiarizado com o abreviado iniciar executar o comando de cópia. No entanto,na sua forma mais detalhada, esse comando especifica os locais de arquivo:Router sistema de cópia #: running-config nvram: startup-configOs estados de comando, "Copiar a configuração atual da memória RAM do sistema para NVRAM esalvá-lo com o nome do arquivo startup-config.Outros exemplos incluem a cópia da RAM para o TFTP:Router sistema de cópia #: running-config tftp:Ou simplesmente,

Page 163: 31 Dias Para o CCNA

Router # copy tftp executarCópia do TFTP para a RAM:Router # copy tftp: system: running-configOu simplesmente,Router # copy tftp executarCópia do TFTP para o arquivo de configuração de inicialização:Router # copy tftp: nvram: startup-configOu simplesmente,Router # copy tftp nvramOs comandos copiar usando TFTP requer mais configurações (coberto na próxima seção), apósvocê digitá-los para realizar a instrução

Cisco IOS Naming Convenções Arquivo

Por causa do grande número de plataformas, conjuntos de recursos, e possíveis versões do IOS, um arquivo de nomesconvenção é usada para fornecer algumas informações básicas sobre a imagem do IOS. Figura 15-3 mostra umamostra de arquivo de imagem IOS e significado de cada parte.

Os seguintes detalhes cada parte do nome do arquivo IOS mostrado na Figura 15-3:■ Plataforma: A primeira parte, c1841, identifica a plataforma na qual a imagem é executada. nestaexemplo, a plataforma é um Cisco 1841.■ Características: A segunda parte, ipbase, especifica o conjunto de recursos. Neste caso, refere-se à ipbasebásicos imagem internetworking IP. Muitos conjuntos de recursos estão disponíveis:- I: Designa o conjunto de recursos IP.- J: Designa o conjunto de recursos da empresa (todos os protocolos).- S: Designa um conjunto de recursos PLUS (filas extra, manipulação, ou traduções).- 56i: Designa 56-bit de encriptação IPsec DES.- 3: Designa o firewall / IDS.- K2: Designa criptografia 3DES IPsec (168 bits).■ Tipo: A terceira parte, mz, indica onde a imagem é executada (m para RAM) e que a imagem écompactado (z). Outros códigos possíveis incluem o seguinte:- F: A imagem é executado a partir da memória Flash.- R: A imagem é executado a partir ROM.- L: A imagem é relocável.- X: A imagem é mzip comprimido.■ Versão: A quarta parte, 123-14.T7, é o número da versão.■ Extensão: A parte final, bin, é a extensão do arquivo. A extensão. Bin indica que este é umarquivo binário executável ..

Page 164: 31 Dias Para o CCNA

Gerenciar Imagens IOS

Como qualquer rede cresce, o armazenamento de imagens Cisco IOS Software e arquivos de configuração no centroTFTP servidor lhe dá o controle sobre o número eo nível de revisão de imagens Cisco IOS e configuraçãoarquivos que devem ser mantidas. Figura 15-4 mostra uma topologia da amostra com um servidor TFTP.

Fazendo backup de uma imagem IOS

Certifique-se de um servidor TFTP está configurado e funcionando na rede. Em seguida, siga estes passos paracopiar uma imagem do Cisco IOS Software de memória flash para o servidor TFTP de rede:Passo 1 Ping do servidor TFTP para se certificar de que você tem acesso a ele:R1 # ping 192.168.20.254Tipo de seqüência de escape ao aborto.Enviando 5, 100-byte ICMP Echos a 192.168.20.254, tempo limite é de 2 segundos:!!!!!Taxa de sucesso é 100 por cento (05/05), round-trip min / avg / max = 31/31/32 msR1 #Passo 2 Copie o arquivo de imagem do sistema atual a partir do roteador para o TFTP servidor de rede, usandoo flash cópia: tftp: comando no modo EXEC privilegiado. Você, então, é solicitado. ocomando requer que você digite o endereço IP do host remoto eo nome doarquivos de origem e destino imagem do sistema:R1 # copy flash: tftp:Filename [Fonte]? c1841-ipbase-mz.123-14.T7.binEndereço ou nome do host remoto []? 192.168.20.254Filename de destino [c1841-ipbase-mz.123-14.T7.bin]? <CR>!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !<saida omitted>13832032

Restaurando uma imagem IOS

Verifique se o roteador tem espaço em disco suficiente para acomodar a nova imagem do Cisco IOS Software

Page 165: 31 Dias Para o CCNA

com show flash: comando, como mostrado no Exemplo 15-4.Exemplo de Saída 15-4 do Comando show flash

O comando show flash ajuda a determinar o seguinte:■ A quantidade total de memória flash do roteador■ A quantidade de memória flash disponíveis■ Os nomes de todos os arquivos armazenados na memória flash e da quantidade de memória flash ocupadaExemplo 15-5 mostra os comandos necessários para copiar uma imagem armazenada no servidor TFTP para flash.

O comando pede o endereço IP do servidor TFTP e, em seguida o nome do arquivo de imagem IOS armazenadano servidor TFTP que deseja copiar. Quando perguntado sobre o nome do arquivo de destino, você poderiamudá-lo, mas isso não é recomendado porque o nome tem significados específicos como revista mais cedo.No Exemplo 15-5, há muito espaço para a nova imagem, de modo que o mais velho da imagem não é apagada. assimda próxima vez as botas router, ele irá carregar a imagem antiga, porque a velha imagem está listado em primeiro lugar noFlash diretório, como mostrado no Exemplo 15-6.

Page 166: 31 Dias Para o CCNA

Neste caso, para finalizar a atualização para a nova imagem (listado como arquivo 3 no Exemplo 15-6), você poderiaapagar a primeira imagem listada no diretório do flash. Afinal, você tem um backup no servidor TFTP.Para fazê-lo, digite o comando delete flash, certificando-se de especificar o arquivo que deseja apagar, comomostrado no Exemplo 15-7:

A melhor solução seria configurar o roteador para iniciar a nova imagem usando comandos de inicialização do sistema.R2 (config) # boot system flash c1841-ipbasek9-mz.124-12.binEsta forma do comando de inicialização do sistema informa ao roteador para usar a imagem IOS especificado armazenados emflash em vez da imagem padrão. Usando este método permite que você tenha um backup local de um IOSimagem que você pode usar imediatamente se algo acontecer com a imagem de inicialização.Recuperando uma imagem IOS Usando um servidor TFTPSe um roteador perde todo o conteúdo do flash, intencionalmente ou não, ele automaticamente inicia naModo ROMmon. Comandos muito poucos estão disponíveis no modo ROMmon. Você pode ver esses comandosdigitando? no rommon> prompt de comando, como demonstrado no Exemplo 15-8.Exemplo 15-8 Comandos ROMmon Disponível

Page 167: 31 Dias Para o CCNA

A melhor solução seria configurar o roteador para iniciar a nova imagem usando comandos de inicialização do sistema.R2 (config) # boot system flash c1841-ipbasek9-mz.124-12.binEsta forma do comando de inicialização do sistema informa ao roteador para usar a imagem IOS especificado armazenados emflash em vez da imagem padrão. Usando este método permite que você tenha um backup local de um IOSimagem que você pode usar imediatamente se algo acontecer com a imagem de inicialização.

Recuperando uma imagem IOS Usando um servidor TFTP

Se um roteador perde todo o conteúdo do flash, intencionalmente ou não, ele automaticamente inicia naModo ROMmon. Comandos muito poucos estão disponíveis no modo ROMmon. Você pode ver esses comandosdigitando? no rommon> prompt de comando, como demonstrado no Exemplo 15-8.Exemplo 15-8 Comandos ROMmon Disponível

O comando pertinentes para a recuperação de uma imagem IOS é tftpdnld TFTP para download. para ativaro roteador para usar o comando tftpdnld, primeiro você deve definir variáveis ROMmon específico. estesvariáveis, mostrado no Exemplo 15-9, são de sintaxe e case-sensitive

Recuperando uma imagem IOS Usando Xmodem

Se por algum motivo você não é capaz de usar as interfaces Fast Ethernet em um roteador, você

Page 168: 31 Dias Para o CCNA

pode recuperaruma imagem IOS, transferindo-o sobre um cabo de console usando Xmodem. O método é muitomais lento do que usando tftpdnld porque você está transferindo a 9600 bps em vez de 100 Mbps.Para usar Xmodem, conectar um cabo de console e abrir uma sessão de terminal com o roteador. Em seguida, useo comando xmodem como demonstrado no Exemplo 15-10.Exemplo 15-10 Usando xmodem para recuperar uma imagem IOS

Agora use o "Enviar Arquivo" comando para o seu software terminal para iniciar a transferência IOS. ParaHyperTerminal, "Enviar Arquivo" está no menu de transferência. Navegue até o local do arquivo e enviá-lo.O software terminal então fornece um feedback sobre o estado de transferência de arquivos como ele ocorre. Quando otransferência estiver completa, o roteador automaticamente recarrega com a nova imagem IOS Cisco.

Recuperando uma senha perdida

Procedimentos de recuperação de senha para qualquer roteador ou switch Cisco estão disponíveis online. Parabusca exemplo, para "1841 de recuperação de senha" e você irá descobrir rapidamente os procedimentos que você precisaa seguir para redefinir a senha. É por isso que a segurança física é uma obrigação para todos os dispositivos de rede.Roteadores e switches devem estar por trás de portas trancadas.Passo 1 Use o interruptor para desligar o router e ligue o roteador novamente.Passo 2 Pressione a tecla pausa especificado pelo seu software terminal dentro de 60 segundos de energizaçãopara acessar o prompt de ROMmon. Para HyperTerminal, use a tecla Break. Prazo para Tera,use a combinação de teclas Alt + b.Passo 3 Digite confreg 0x2142 no prompt ROMmon. Isso faz com que o roteador para ignorar oconfiguração de inicialização, onde a senha esquecida é armazenado.Etapa 4 Digite reset no prompt. A reinicialização do roteador, mas ele ignora a configuração salva.No entanto, o arquivo ainda existe em NVRAM.Passo 5 Pressione Ctrl-C para pular o processo de configuração inicial.Passo 6 Enter permitir ao Router> prompt. Isso coloca você no modo EXEC privilegiado, ondevocê deve ser capaz de ver o Router # alerta.Passo 7 Enter copy startup-config running-config para copiar o arquivo de configuração de backup NVRAMna memória.Passo 8 Digite configure terminal.Passo 9 Digite comando enable senha secreta para alterar a senha secreta de ativação.Issue passo 10 o comando no shutdown em cada interface que você deseja ativar.Passo 11 A partir do modo de configuração global, digite config-register 0x2102 para restaurar o original

Page 169: 31 Dias Para o CCNA

configuração do Registro de configuração.Passo 12 Pressione Ctrl-Z ou digite end para sair do modo de configuração.Passo 13 Enter copy running-config startup-config para confirmar as alterações. Você pode emitir ocomando show ip interface brief para confirmar que a sua configuração de interface está correto.Cada interface que você deseja utilizar deve exibir "up" e "up".Você acabou de completar recuperação de senha. Digitando o comando show version confirma queo roteador irá utilizar a configuração configurado registo definição na próxima reinicialização.188 31 dias antes de seu exame CCNA

dia 14Padrão, estático e roteamento RIPExame CCNA 640-802 Tópicos■ Fazer e verificar as tarefas de configuração de roteamento para uma rota estática ou padrão dados de roteamento específicosrequisitos.■ Configurar, verificar e solucionar RIPv2.

Tópicos-chave

Hoje nos concentramos em padrão, estático e roteamento RIP para IPv4. As rotas estáticas são uma parte comum de umapolítica de roteamento empresa. As rotas estáticas podem ser usados para forçar o tráfego a usar um caminho específico ou paraestabelecer uma rota padrão para fora da empresa. As rotas estáticas são codificados na tabela de roteamentoo administrador de rede. Assim, um administrador de rede deve monitorar e manter rotas estáticaspara garantir a conectividade.

Page 170: 31 Dias Para o CCNA

Roteamento dinâmico, por outro lado, mantém automaticamente a informação de roteamento sem uma redeintervenção do administrador. O primeiro protocolo de roteamento, Routing Information Protocol (RIP),vem em duas versões para IPv4 e IPv6 para outra versão.

Configuração de Rota Estática

Um dos usos comuns para uma rota estática é de roteamento para uma rede stub. Uma rede stub é uma redeacessados por uma única rota. Para configurar uma rota estática, use o comando ip route com aseguinte sintaxe relevantes:Router (config) # ip route endereço de rede subnet-mask {ip-address |saída da interface}Explicação para cada parâmetro é a seguinte:■ endereço de rede: endereço de destino de rede da rede remota para ser adicionado ao roteamentomesa.■ sub-máscara: máscara de sub-rede da rede remota para ser adicionado à tabela de roteamento. a sub-redemáscara pode ser modificada para resumir um grupo de redes.Um ou ambos os seguintes parâmetros são utilizados:■ ip-address: Comumente referido como o endereço IP do roteador next-hop é.■ saída da interface: interface de saída que seria usada no encaminhamento de pacotes para o destinorede.Figura 14-1 e Tabela 14-1 mostra a topologia e esquema de endereçamento que estamos usando hoje pararevisão estático e roteamento padrão.

Page 171: 31 Dias Para o CCNA

As redes remotas que R1 não conhece são as seguintes:■ 172.16.1.0/24: A LAN em R2■ 192.168.1.0/24: A rede serial entre R2 e R3■ 192.168.2.0/24: A LAN em R3

Rotas Estáticas Usando o "Next Hop" Parameter

Usando o "next hop" parâmetro, R1 pode ser configurado com três rotas estáticas, uma para cada um dosredes R1 que ainda não conhecem. Exemplo 14-2 mostra a sintaxe de comando

A interface que encaminha para o próximo salto deve ser "para cima" e "up" antes as rotas estáticas podem serentrou na tabela de roteamento. Exemplo 14-3 verifica que as rotas estáticas estão agora no roteamentomesa.

Page 172: 31 Dias Para o CCNA

Note que existe uma rota para a rede 172.16.2.0/24, que o "next hop" 172.16.2.2 pertencepara. Depois de realizar uma pesquisa recursiva para encontrar a interface de saída, R1 irá enviar pacotes para cada um dosas três rotas estáticas para a interface Serial 0/0/0.

Rotas Estáticas Usando o parâmetro interface de saída

Para evitar uma pesquisa recursiva e ter um roteador imediatamente enviar pacotes para a interface de saída, configurea rota estática usando o parâmetro de saída da interface em vez do "next hop" (endereço IP)parâmetro.Por exemplo, em R2 podemos configurar uma rota estática para a rede 172.16.3.0/24 e especificar o0/0/0 de interface serial como a interface de saída:R2(config)#ip route 172.16.3.0 255.255.255.0 serial 0/0/0

Todas as rotas estáticas anteriores a esta rede usando um next-hop endereço IP deve ser removido. R2 agoratem uma rota estática em sua tabela de roteamento, como mostrado no Exemplo 14-4, que pode usar imediatamente pararota para a rede 172.16.3.0/24 sem ter que fazer uma pesquisa de rota recursiva.

Rotas padrão estática

Uma rota padrão é um tipo especial de rota estática utilizada para representar todas as rotas com zero ou não bitscorrespondente. Em outras palavras, quando não há rotas que têm uma correspondência mais específica no roteamento

Page 173: 31 Dias Para o CCNA

tabela, a rota padrão será uma partida.O endereço IP de destino de um pacote pode combinar várias rotas na tabela de roteamento. Por exemplo,considerar ter os dois seguintes rotas estáticas na tabela de roteamento:172.16.0.0/24 é sub-redes, três sub-redesS 172.16.1.0 está diretamente conectado, Serial0/0/0S 172.16.0.0/16 está diretamente conectado, Serial0/0/1Um pacote destinado a 172.16.1.10, o pacote do endereço IP de destino, fósforos ambas as rotas.No entanto, a rota 172.16.1.0 é a rota mais específica porque o destino corresponde à primeira24 bits, enquanto que o destino corresponde apenas os primeiros 16 bits da rota 172.16.0.0. portanto,o roteador irá utilizar a rota com a correspondência mais específica.A rota padrão estática é um percurso que irá corresponder a todos os pacotes. Comumente chamado de rota quad-zero, umrota estática padrão usa 0.0.0.0 (assim, o termo "quad-zero"), tanto para o endereço de rede e sub-redeparâmetro de máscara, como mostra a esta sintaxe:Rota Router (config) # ip 0.0.0.0 0.0.0.0 {ip-address | sair da interface}Referindo-se a topologia mostrada na Figura 14-1, assumir que R3 tem uma conexão com a Internet.A partir da perspectiva de R2, todo o tráfego padrão pode ser enviado para R3 para o encaminhamento fora do domínioconhecido por R2.O comando a seguir configura R2 com uma rota estática padrão apontando para R3 utilizando o próximo "parâmetro hop ":R2 (config) # ip route 0.0.0.0 0.0.0.0 192.168.1.1R2 tem agora um "gateway de último recurso" listados na tabela de roteamento, uma rota padrão candidatoindicado pelo asterisco (*) ao lado do código S, como mostrado no Exemplo 14-5.

Page 174: 31 Dias Para o CCNA

Após adicional rotas estáticas são configuradas, as tabelas de roteamento de R1 e R2 estão completos.No entanto, R3 não tem rotas de volta para nenhuma das redes 172.16.0.0. Assim, qualquer tráfego de PC1para o PC3 PC3 vai chegar, mas o tráfego de retorno PC3 será deixado por R3 R3, porque nãoter uma rota de volta para qualquer uma das redes diretamente conectadas R1. Podemos ver que o problema é comR3 da saída traceroute no Exemplo 14-7.

A partir da saída, você pode ver que R2 (172.16.2.2) responderam ao PC1. R2 em seguida, encaminha o traço próximapara R3. Sabemos disso porque R2 tem uma rota default apontando para R3. No entanto, quando o traçochega a R3, ele não tem uma rota de volta ao PC1, por isso descarta o pacote. R3 precisa de uma rota de volta paraa rede 172.16.3.0/24.Antes de configurar três diferentes rotas estáticas para cada uma das redes 172.16.0.0, observe que otrês rotas podem ser resumidas em uma rota. Nós revisamos as rotas de síntese sobre Dia 21, então nósnão detalhe o processo aqui. Exemplo 14-8 mostra as três rotas em binário com os bits emcomum em destaque.Exemplo 14-8 Cálculo Route Resumo para R3

Page 175: 31 Dias Para o CCNA

Portanto, a rota de síntese seria 172.16.0.0/22. Embora não faça parte da corrente de endereçamentoesquema, esta rota de síntese estática incluiria também a 172.16.0.0/24 rota.Agora você pode configurar R3 com uma rota estática:R3(config)#ip route 172.16.0.0 255.255.252.0 serial 0/0/1

Now PC1 can successfully trace a route to PC3 as shown in Example 14-9.

RIP Conceitos

RIPv2 porque é realmente um aumento da RIPv1, você deve ser capaz de comparar e contrastarconceitos a versão dois e configurações. Primeiro, vamos examinar brevemente RIPv1.

RIPv1 Message Format

RIPv1 é um classful, protocolo de roteamento vetor de distância para o IPv4. Ele usa a sua contagem de saltos como métrica únicapara a seleção de caminho com uma contagem de saltos superiores a 15 unreachable considerados. RIPv1 mensagens de roteamentosão encapsulados em um segmento UDP usando a porta número 520 e são transmitidos a cada 30 segundos.

Page 176: 31 Dias Para o CCNA

Figura 14-2 mostra o encapsulamento mensagem RIPv1 da camada de enlace de dados e atéincluindo a mensagem RIPv1.Figura 14-2 Mensagem encapsulamento RIPv1

RIPv1 Operação

Repare na mensagem RIP RIP que usa dois tipos de mensagens especificado no campo Command.Comando 1 é uma mensagem de solicitação e Comando 2 é uma mensagem de Resposta.Cada interface RIP-configurado envia uma mensagem de solicitação na inicialização, solicitando que todos os RIPvizinhos enviar as suas tabelas de roteamento completa. A mensagem de resposta é enviada de volta pelo RIP habilitadovizinhos. Quando o roteador recebe solicitando as respostas, que avalia cada entrada de rota. Se umentrada de rota é nova, o roteador recebendo instala a rota na tabela de roteamento. Se a rota já estána tabela, a entrada existente é substituída se a entrada de novos tem uma contagem melhor hop. a inicializaçãoroteador envia uma atualização acionada para todas as interfaces RIP habilitado contendo sua própria tabela de roteamentode modo que os vizinhos RIP pode ser informado de quaisquer novas rotas.RIPv1 não envia informações de máscara de sub-rede na atualização. Portanto, um router ou usa omáscara de sub-configurado em uma interface local ou se aplica a máscara de sub-rede padrão com base noclasse de endereço. Devido a esta limitação, as redes RIPv1 não podem ser contíguas, nem podemimplementar VLSM ou super.RIP tem uma distância padrão de 120 administrativos. Quando comparado a outros protocolos de gateway interior,RIP é o menos preferido protocolo de roteamento.

RIPv1 Configuração

Figura 14-3 e Tabela 14-2 mostra a topologia RIPv1 para o nosso primeiro cenário eo endereçamentoesquema que utilizará para rever RIPv1 configuração e verificação.Figura 14-3 RIPv1 Topologia: Cenário A

Page 177: 31 Dias Para o CCNA

Na Figura 14-3, estamos usando seis redes distintas classes, de modo que cada rede deve ser configuradaindividualmente. Assumindo que as interfaces em R1, R2 e R3 são configurados e Exemplo, ativo 14-11mostra a configuração RIPv1 para os roteadores.

RIPv1 Verificação e solução de problemas

Os comandos de verificação seguintes, usado em ordem, vai verificar rapidamente se o roteamento está funcionando comopretendido.■ show ip route■ mostram protocolos ip■ debug ip ripSe o roteamento não está funcionando corretamente, estes comandos irão ajudá-lo a rastrear o problema emda maneira mais eficiente.Para verificar se o roteamento está funcionando, comece com o comando show ip route. Para a topologia em

Page 178: 31 Dias Para o CCNA

Figura 14-3, todas as rotas devem ser na tabela de roteamento de cada roteador. 14-12 mostra o exemplotabela de roteamento para R2 ..

Para entender melhor a saída do comando show ip route, vamos nos concentrar em uma rota RIPaprendida por R2 e interpretar a saída mostrada na tabela de roteamento:

Se a tabela de roteamento está faltando uma ou mais rotas esperados, use o comando show ip protocolossobre o local router primeiro a fazer RIP certeza está configurado e funcionando corretamente. Este comando exibeo protocolo de roteamento que está atualmente configurado no roteador. A saída pode ser usada para verificarparâmetros mais RIP para confirmar o seguinte:■ RIP roteamento é configurado.■ As interfaces corretas enviar e receber atualizações de RIP.■ O roteador anuncia as redes correta.■ RIP vizinhos estão enviando atualizações.Figura 14-4 mostra a saída do comando show ip protocolos, com os números de cada parcelada saída. As descrições que seguem a figura correspondem aos números na figura.:

Page 179: 31 Dias Para o CCNA

1. A primeira linha de saída verifica se o roteamento RIP está configurado e funcionando em R2.2. Estes são os temporizadores que mostram quando a próxima rodada de atualizações serão enviadas a partir desterouter-23 segundos de agora, no exemplo.3. Filtragem e informações redistribuição mostrado aqui são ambos CCNP nível de tópicos.4. Este bloco de saída contém informações sobre qual versão RIP está actualmente configuradoe quais interfaces estão participando de atualizações RIP.5. Esta parte da saída mostra que R2 é atualmente resumindo na rede classfullimite e, por padrão, irá utilizar até quatro igual custo rotas para equilibrar a carga de tráfego.6. As redes classful configurado com o comando de rede estão listados a seguir. Estes são osredes R2 que irá incluir em suas atualizações RIP.7. Aqui os vizinhos RIP estão listados como Fontes de Informação de Roteamento. Gateway é o next-hopEndereço IP do vizinho que está enviando atualizações R2. Distância é o AD que usa para R2atualizações enviadas por este vizinho. Última Atualização é o segundo desde a última atualização foi recebidoa partir deste próximo.Erros de configuração mais RIP envolvem uma configuração declaração incorreta de rede, uma faltaconfiguração de rede declaração, ou a configuração de sub-redes adjacentes em um ambiente com classe.Conforme mostrado na Figura 14-5, debug ip rip pode ser utilizado para encontrar problemas com atualizações de RIP

Page 180: 31 Dias Para o CCNA

Este comando exibe atualizações de roteamento RIP à medida que são enviados e recebidos, o

que permite a

oportunidade de rastrear as fontes potenciais de um problema de roteamento. A lista que se

segue corresponde

para os números na Figura 14-5.

1. Você vê uma atualização vindo de R1 na interface Serial 0/0/0. Repare que R1 envia apenas

uma rota para a rede 192.168.1.0. Sem outras rotas são enviados, pois isso violaria

a regra de dividir horizonte. R1 não é permitido para fazer propaganda de redes de volta para R2

R2 que anteriormente

enviado para R1.

2. A próxima atualização que é recebido é de R3. Mais uma vez, por causa da regra dividir

horizonte, R3

envia apenas uma rota: a rede 192.168.5.0.

3. R2 envia suas próprias atualizações. Primeiro, R2 constrói uma atualização para enviar a

FastEthernet 0 / 0

interface. A atualização inclui toda a tabela de roteamento, exceto para a rede 192.168.3.0,

que é anexado ao FastEthernet 0 / 0.

4. Em seguida, R2 constrói uma atualização para enviar para o R3. Três rotas estão incluídos. R2

não faz propaganda

o R2 rede e compartilhar R3, nem propaganda na rede 192.168.5.0 por causa da separação

horizonte.

5. Finalmente, R2 constrói uma atualização para enviar a R1. Três rotas estão incluídos. R2 não

faz propaganda

a rede que R2 e R1 partes, nem anunciar a rede 192.168.1.0 por causa da

Page 181: 31 Dias Para o CCNA

split horizon.

6. Para parar de monitorar atualizações de RIP na R2, sem entrar no debug ip rip de comando ou

undebug

todos, como mostrado na figura

Interfaces passiva

Na topologia mostrada na Figura 14-3, observe que não há nenhuma razão para enviar atualizações para o FastInterfaces Ethernet em qualquer um dos roteadores. Portanto, você deve configurar estas interfaces como passivopor duas razões:■ Melhorar a segurança, impedindo que alguém ligado a uma das LANs de intercepção,inspeção, e, possivelmente, modificando as atualizações RIP.■ Melhorar a eficiência do processamento dos roteadores.Use o passivo-interface interface interface de comando do tipo de número para parar de enviar atualizações de RIPas interfaces Fast Ethernet, como mostrado no Exemplo 14-13 para R2. O comando show ip protocolsé então usado para verificar a configuração da interface passiva.Exemplo 14-13 Desabilitar a atualização com o comando Passive-interface

204 31 dias antes de seu exame CCNA

Page 182: 31 Dias Para o CCNA

Observe que a interface não é mais listada em interface, mas sob uma nova seção chamada PassiveInterface (s). Notar também que a rede 192.168.3.0 ainda está listado em Roteamento para Redes:,o que significa que esta rede ainda é incluído como uma entrada de rota RIP nas atualizações que são enviadas para R1e R3. Todos os protocolos de roteamento suporte para o comando Passive-interface.Sumarização automáticaRIP automaticamente resume na fronteira da rede classful. Figura 14-6 e 14-4 Tabela mostraa topologia RIPv1 para Cenário B eo esquema de endereçamento que vamos usar para o resto da nossaRIPv1 revisão.Figura 14-6 RIPv1 Topologia: Cenário B

Assumindo todas as interfaces estão configurados e ativados, Exemplo 14-14 mostra a configuração de RIPpara R1, R2 e R3.Exemplo 14-14 RIPv1 Configuração Standard: Cenário B

Page 183: 31 Dias Para o CCNA

Repare na configuração do RIP para todos os roteadores, o endereço de rede classful foi inserido em vez decada sub-rede. Se tivéssemos entrado no sub-redes em vez disso, Cisco IOS teria resumido-los para oendereço de rede classful. Isto porque um router RIP ou usa a máscara de sub-rede configurado em uminterface local ou se aplica a máscara de sub-rede padrão com base na classe de endereço. Portanto, RIPv1não pode apoiar sub-redes adjacentes, supernets, ou VLSM esquemas de endereçamento. exemplo 14-15mostra o que R2 envia suas atualizações para R1 e R3.

Quando R2 envia atualizações para R1, ele envia a rede 172.30.3.0 porque a interface Serial 0/0/0 éusando uma máscara / 24 para a rede 172.30.2.0. No entanto, ele resume a sub-rede 192.168.4.8 para192.168.4.0 antes de enviar a atualização a R1 porque R1 irá aplicar a máscara padrão classful aoroteamento de atualização. R2 é um roteador de limite para a rede 192.168.4.0. Para sua atualização para R3, R2 resumesub-redes 172.30.1.0, 172.30.2.0, 172.30.3.0 e à rede 172.30.0.0 porque classfulR2 é o roteador de limite para a rede 172.30.0.0 e assume R3 não tem qualquer outra formapara chegar à rede 172.30.0.0.

206 31 dias antes de seu exame CCNA

Padrão de roteamento e RIPv1

Usando o mesmo esquema de endereçamento da Tabela 14-4, vamos modificar a topologia como

mostrado na Figura

14-7 para que R2 e R3 estão usando roteamento estático e padrão.

Page 184: 31 Dias Para o CCNA

Exemplo 14-16 mostra as mudanças de configuração feitas para R2 e R3. R3 é prestação de

serviço ao

a Internet. Então R2 irá utilizar uma rota padrão para enviar todo o tráfego para destino

desconhecido para R3. R3

irá usar uma rota de síntese para enviar todo o tráfego para a sub-redes 172.30.0.0.

Poderíamos configurar R1 com uma rota padrão apontando para R2. Mas uma solução melhor e

mais escalável

é usar o padrão de informação originam-comando para ter R2 propagar a sua rota padrão para

R1

em suas atualizações de roteamento RIP.

R2 (config) # router rip

R2 (config-router) # default-information originate

Como mostrado no Exemplo 14-17, R1 tem agora uma rota RIP marcados com o asterisco (*)

indicando o código

que esta rota é um gateway padrão

Page 185: 31 Dias Para o CCNA

RIPv2 Configuração

Como Versão 1, RIPv2 é encapsulado em um segmento UDP usando a porta 520 e pode

transportar até 25

rotas. Figura 14-8 mostra o RIPv1 e RIPv2 formatos de mensagem.

Para fins de revisão, o RIPv2 extensão mais importante fornece a adição de sub-rede

campo de máscara, o que permite uma máscara de 32 bits para ser incluída na entrada de rota

RIP. Como resultado, o recebimento

router já não depende da máscara de sub-rede da interface de entrada ou a máscara quando

classful

determinar a máscara de sub-rede para uma rota. Isto significa que RIPv1 três principais

limitações falta de

projetos de rede adjacentes, supernetting e VLSM suporte já não são um problema.

Por padrão, o processo de RIP nos roteadores Cisco envia mensagens RIPv1 mas pode receber

tanto RIPv1

e RIPv2. Você pode ver isso no show de saída protocolos ip mostrado anteriormente no Exemplo

14-13.

Para habilitar o envio de mensagens RIPv2 em nossa topologia, digite o comando versão 2 em

router

modo de configuração, conforme demonstrado no Exemplo 14-18

Page 186: 31 Dias Para o CCNA

Com essa configuração, R2 vai agora enviar e receber apenas mensagens RIPv2. Isso significa

que deve configurar

R1 com o comando a versão 2, mas também porque R2 irá ignorar a RIPv1 mensagens enviadas

por R1.

Page 187: 31 Dias Para o CCNA

incapacitantes Autosummarization

Observe a linha no show de saída protocolos ip do Exemplo 14-18 que diz:

Sumarização automática de rede está em vigor

Por padrão, RIPv2 automaticamente resume redes para a fronteira classful como RIPv1. assim,

para apoiar sub-redes e VLSM adjacentes, primeiro você deve desabilitar sumarização

automática com

a nenhum comando auto-resumo sobre todos os RIPv2 roteadores para garantir que os sub-redes

individuais são enviados em

atualizações de roteamento não o endereço de rede classful.

RIPv2 Verificação e solução de problemas

Existem várias maneiras de verificar e solucionar RIPv2. Você pode usar

muitos dos mesmos comandos para

RIPv2 para verificar e solucionar problemas de outros protocolos de roteamento. É sempre

melhor começar com o básico:

■ Certifique-se que todos os links (interfaces) estão ativos e operacionais.

■ Verifique os cabos.

■ Certifique-se que você tem o endereço IP correto e máscara de sub-rede em cada interface.

■ Remova todos os comandos de configuração que não são mais necessárias ou que tenham

sido substituídos por

outros comandos.

Comandos para uso são as mesmas que para RIPv1, bem como seu uso padrão de show

interface ip

breve, show run, e ping. Mas também considerar o seguinte RIPv2 questões específicas:

■ Versão: Um bom lugar para começar a solucionar uma rede que está executando o RIP é

verificar se

a versão 2 comando é configurado em todos os roteadores. RIPv1 não suporta adjacentes

sub-redes, VLSM, CIDR ou rotas supernet.

■ declarações Network: Outra fonte de problemas pode ser configurado incorretamente ou

faltando

declarações de rede configurado com o comando da rede. Lembre-se, de comando da rede

faz duas coisas:

- Ele permite que o protocolo de roteamento para enviar e receber atualizações em todas as

Page 188: 31 Dias Para o CCNA

interfaces locais que

pertencem a essa rede.

- Ele inclui a rede configurada em suas atualizações de roteamento para seus roteadores

vizinhos.

A declaração de rede ausente ou incorreto resultará em perder atualizações de roteamento e

encaminhamento

atualizações não são enviados ou recebidos em uma interface.

■ sumarização automática: Se houver uma necessidade ou expectativa para o envio de sub-redes

específicas e

não apenas resumiu rotas, certifique-se que a sumarização automática foi desativada com

o comando no auto-summary.

Page 189: 31 Dias Para o CCNA

Roteamento EIGRP

Exame CCNA 640-802 Tópicos

■ Configurar, verificar e solucionar problemas de EIGRP.

Tópicos-chave

Aprimorada Interior Gateway Routing Protocol (EIGRP) é um vetor de distância, protocolo de

roteamento sem classes

que foi lançado em 1992 com Cisco IOS Software Release 9.21. Como o próprio nome sugere,

EIGRP

é um aprimoramento do Interior Gateway Routing Protocol (IGRP). Ambos são proprietários da

Cisco

protocolos e operar apenas em roteadores Cisco. Hoje fazemos uma revisão da operação, a

Page 190: 31 Dias Para o CCNA

verificação de configuração,

e solução de problemas de EIGRP

.

Operação EIGRP

EIGRP inclui vários recursos que não são comumente encontradas em outros protocolos de

roteamento vetor de distância

como o Routing Information Protocol (RIPv1 e RIPv2) e IGRP. Esses recursos incluem o

seguinte:

■ Reliable Transport Protocol (RTP)

■ atualizações Bounded

■ Algoritmo Atualização Difusão (DUAL)

■ Estabelecer adjacências

■ vizinho e tabelas de topologia

Embora EIGRP pode agir como um protocolo de roteamento link-state, ainda é um vetor de

distância protocolo de roteamento.

Tabela 13-1 resume as principais diferenças entre um protocolo de vetor de distância tradicional

de roteamento,

tais como RIP, eo maior vetor de distância protocolo de roteamento EIGRP

Page 191: 31 Dias Para o CCNA

A partir do lado direito da Figura 13-1, observe que o campo de dados é chamadoTipo / comprimento / valor, ou TLV. Os tipos de TLVs relevantes para o CCNA são parâmetros EIGRP, IPRotas internas e externas IP Routes.O cabeçalho do pacote EIGRP, mostrado na Figura 13-2, é incluído em cada pacote EIGRP, independentementede sua TLV. O cabeçalho do pacote EIGRP e TLV são então encapsulado em um pacote IP. No PIcabeçalho do pacote, o campo de protocolo está definido para 88 para indicar EIGRP, eo endereço de destino é definido parao endereço multicast de 224.0.0.10. Se o pacote EIGRP é encapsulado em um frame Ethernet, oendereço MAC de destino é também um endereço de multicast: 01-00-5E-00-00-0A.Campos importantes para a nossa discussão incluem o campo Opcode eo Autonomous System Numberde campo. Opcode especifica o tipo de pacote EIGRP. O número de sistema autônomo especifica oProcesso de roteamento EIGRP. Ao contrário de RIP, os roteadores Cisco pode executar várias instâncias do EIGRP. onúmero de sistema autônomo é usado para controlar várias instâncias do EIGRP.

RTP e os tipos de pacotes EIGRP

Protocolo de transporte confiável (RTP) é o protocolo usado pelo EIGRP para a entrega e recepção dePacotes EIGRP. EIGRP foi concebido como uma rede de protocolo de roteamento da camada de independentes, portanto,ele não pode usar os serviços de UDP ou TCP, porque IPX e AppleTalk não usam protocolos deo conjunto de protocolos TCP / IP.Embora confiável é parte de seu nome, RTP inclui tanto a entrega confiável e entrega confiável dePacotes EIGRP. Confiável RTP exige uma confirmação para ser devolvido, enquanto um não

Page 192: 31 Dias Para o CCNA

confiávelPacote RTP não exige um reconhecimento ..

RTP pode enviar pacotes ou como um unicast ou multicast. Pacotes multicast usar o EIGRP reservadosendereço multicast de 224.0.0.10. EIGRP usa cinco tipos de pacotes:■ Olá: Olá pacotes são usados pelo EIGRP para descobrir vizinhos e formar adjacências comos vizinhos. Olá pacotes EIGRP são multicasts e usar de entrega não confiável, por isso nãoresposta é necessária a partir do destinatário. Na maioria das redes, os pacotes EIGRP Olá são enviadosa cada 5 segundos. Em multiponto sem difusão multiaccess (NBMA) redes como X.25,Frame Relay e ATM interfaces com links de acesso dos T1 (1.544 Mbps) ou mais lento, são hellosunicast a cada 60 segundos. Por padrão, o tempo de espera é de 3 vezes o intervalo Olá, ou 15 segundosNa maioria das redes e 180 segundos em redes de baixa velocidade NBMA. Se o tempo de espera expira,EIGRP declara a rota como para baixo, e as buscas DUAL para um novo caminho na tabela de topologiaou através do envio de consultas.■ Update: EIGRP não envia atualizações periódicas. Pacotes de atualização são enviados somente quando necessário,conter apenas as informações de roteamento necessário, e são enviados apenas para aqueles roteadores queassim o exigem. Pacotes EIGRP atualização use entrega confiável. Pacotes de atualização são enviados como um multicastquando exigido por vários roteadores, ou como um unicast quando requerido por apenas um único roteador.■ Reconhecimento: O reconhecimento (ACK) pacotes são enviados por EIGRP quando entrega confiávelé usado. RTP utiliza entrega confiável para EIGRP atualização, consulta e pacotes de resposta. EIGRPpacotes de reconhecimento são sempre enviadas como um unicast confiável.■ Query: Um pacote de consulta é utilizado por DUAL na busca de redes. Consultas utilização fiávelentrega e pode usar multicast ou unicast.

Page 193: 31 Dias Para o CCNA

■ Resposta: Um pacote de resposta é enviada em resposta a um pacote de consulta independentemente de o responderroteador tem informações sobre a rota consultada. Respostas use entrega confiável e, ao contrárioconsultas, as respostas são sempre enviadas como unicast (nunca como multicast).

DUAL

Protocolos de roteamento vetor de distância, como RIP evitar loops de roteamento com hold-

down timers. o

principal forma que evita loops de roteamento EIGRP é com o algoritmo DUAL. DUAL é usado

para

obter laço liberdade a cada instante ao longo de um cálculo de rota. Isso permite que todos os

roteadores

envolvidos em uma alteração de topologia para sincronizar ao mesmo tempo. Roteadores que

não são afetados pela

mudanças na topologia não estão envolvidos no recálculo porque as consultas e as respostas são

limitadas para

apenas os routers que precisam ou têm as informações de rota específica. Este método fornece

EIGRP

com tempos de convergência mais rápida do que outros protocolos de roteamento vetor de

distância.

Porque o recálculo da dupla pode ser do processador, é vantajoso evitar o recálculo

sempre que possível. Portanto, DUAL mantém uma lista de rotas de backup que já determinou

ser livre de laço. Se a rota primária na tabela de roteamento falhar, a melhor rota de backup é

imediatamente adicionado à tabela de roteamento.

Distância administrativa

EIGRP tem um padrão de AD 90 para rotas internas e 170 para as rotas importadas de uma

externa

fonte, tais como rotas padrão. Quando comparado a outros protocolos de gateway interior, EIGRP

é o

mais preferido pela Cisco IOS Software porque tem o menor AD.

Observe na Tabela 13-2 EIGRP que tem um valor AD terceiro, de 5, para as rotas de síntese.

Mais adiante neste

capítulo, você aprenderá a configurar as rotas EIGRP sumário.

Page 194: 31 Dias Para o CCNA

Configuração EIGRP

Para rever os comandos de configuração EIGRP, vamos usar a topologia da Figura 13-3 e da

esquema de endereçamento na Tabela 13-3.

Page 195: 31 Dias Para o CCNA

Observe na Figura 13-3 que o roteador ISP não existe realmente. Para a nossa análise do padrão

de roteamento

em EIGRP, vamos usar uma interface, simulado loopback.

O Comando de rede

Assumindo que as interfaces de todos os roteadores são configurados e ativados de acordo com

os endereços IP

na Tabela 13-3, 13-1 Exemplo mostra a configuração EIGRP com o comando da rede.

Sumarização automática

Como RIP, EIGRP automaticamente resume redes para a fronteira com classe. No Exemplo 13-2,

vemos que R1 e R2 são ambos de enviar a rede 172.16.0.0/16 classful para R3.

Tabela de roteamento R3 exemplo 13-2 é: Sumarização Automática

R3 não tem as informações mais específicas de sub-rede. Porque ambos os caminhos são iguais

custo, R3 irá

carga de tráfego equilíbrio para sub-redes para a rede 172.16.0.0/16. Isso resultará em menos de

ótima

Page 196: 31 Dias Para o CCNA

encaminhamento pelo menos metade do tempo. Por exemplo, para enviar o tráfego para um

destino que pertencem ao

Sub-rede 172.16.1.0/24, R3 irá enviar o tráfego para ambos os R1 e R2. Claramente, a partir da

topologia mostrada na

Figura 13-3, R1 é o caminho ideal.

Para garantir roteadores EIGRP estão recebendo informações de sub-rede completo, desativar o

sumário automático

com o comando no auto-summary, como mostrado no Exemplo 13-3.

Exemplo 13-3 Desativar Sumarização Automática

Agora R3 irá enviar o tráfego para a LAN R1 para R1 e R2 para a LAN R2. Exemplo 13-4 mostra

a

nova tabela de roteamento para R3 após a sumarização automática é desabilitada.

Tabela de roteamento R3 exemplo 13-4 é: Sumarização Automática com mobilidade

condicionada

Sumarização manual

Sumarização automática com deficiência, EIGRP benefícios já não a partir das tabelas de

roteamento menores

Page 197: 31 Dias Para o CCNA

que podem resultar de rotas de rede resumida classful. Para controlar o tamanho das tabelas de

roteamento, você

pode usar sumarização manual para especificar que uma interface específica envia uma rota de

síntese, em vez

das sub-redes individuais. Isso também funciona para o envio de supernets.

Por exemplo, suponha que R3 também tem rotas para o 192.168.0.0/24, 192.168.2.0/24, e

Redes 192.168.3.0/24, além da LAN 192.168.1.0/24. Podemos simular esses três

rotas, configurando loopbacks em R3 e em seguida, adicione estas redes com a configuração

EIGRP

em R3, como mostrado no Exemplo 13-5.

Exemplo 13-5 Simulado LANs em R3

As rotas no Exemplo 13-6 pode ser resumido em uma rota supernet anunciados por R3 para

ambos

R1 e R2. A supernet é uma coleção de endereços de rede contíguos classful agregados em um

rota. Em vez de enviar quatro / 24 rotas para as redes classful 192.168.0.0, 192.168.1.0,

192.168.2.0 e 192.168.3.0, podemos configurar uma rota de síntese manual como 192.168.0.0/22

.

Rotas de síntese manual deve ser configurado na interface que você deseja que a rota de síntese

Page 198: 31 Dias Para o CCNA

para

ser enviados de fora. A sintaxe para as rotas de síntese manual com EIGRP é a seguinte:

Router(config-if)#ip summary-address eigrp as-number network-address subnet-

mask

Porque R3 tem dois vizinhos EIGRP, o resumo EIGRP manual em configurado em ambos os

0/0/0 0/0/1 de série e de série, como mostrado no Exemplo 13-7.

R1 e R2 agora têm tabelas de roteamento menores porque as quatro redes são resumidos em um

rota, como destacado no Exemplo 13-8 para R2.

Cancelar

EIGRP rota padrãoO "quad zero" rota estática padrão pode ser usado com todos os protocolos suportados atualmente roteamento. emnosso exemplo, vamos configurar a rota padrão estática em R2, pois é simular uma conexão comISP. Exemplo 13-9 mostra o padrão de configuração rota estática em R2.Exemplo 13-9 Configuração e Redistribuição de uma rota padrão no EIGRP

Page 199: 31 Dias Para o CCNA

O comando redistribuir estática diz EIGRP para incluir essa rota estática em suas atualizações

EIGRP para

outros roteadores. Exemplo 13-10 mostra a tabela de roteamento para R1 com a rota padrão em

destaque.

Exemplo 13-10 R1 tabela de roteamento com rota padrão Instalado

Modificando o Metric EIGRP

EIGRP usa os valores de largura de banda, atraso, confiabilidade, e carga na sua métrica

composta para calcular

o caminho preferido a uma rede. Por padrão, EIGRP utiliza apenas a largura de banda e atraso

na sua métrica

cálculo, como mostrado na Figura 13-4.

A largura de banda métrica é um valor estático atribuído pelo Cisco IOS para os tipos de

interface. Por exemplo, a maioria

interfaces seriais são atribuídos o valor padrão 1544 kbps, a largura de banda de uma conexão

T1. este

valor pode ou não refletir a largura de banda real da interface.

Delay é a medida do tempo que leva para um pacote de percorrer uma rota. A métrica de atraso é

um static

valor com base no tipo de ligação a qual a interface está conectado e é medido em

microssegundos.

Page 200: 31 Dias Para o CCNA

Porque a largura de banda pode padrão para um valor que não reflecte o valor real, você pode

usar

a largura de banda de comando interface para modificar a largura de banda métricas:

Router (config-if) # largura de banda kilobits

Na topologia mostrada na Figura 13-3, observe que a ligação entre R1 e R2 tem uma largura de

banda

64 kbps, ea ligação entre R2 e R3 tem uma largura de banda de 1024 kbps. 13-11 mostra o

exemplo

configurações utilizadas em todos os três routers para modificar a largura de banda.

Modifying Hello Intervals and Hold Times

Hello intervals and hold times are configurable on a per-interface basis and do not have to

match

with other EIGRP routers to establish adjacencies. The syntax for the command to modify

the

hello interval is as follows:

Router(config-if)#ip hello-interval eigrp as-number secondsIf you change the hello interval, make sure that you also change the hold time to a value equal toor greater than the hello interval. Otherwise, neighbor adjacency will go down after the hold timeexpires and before the next hello interval. The command to configure a different hold time is asfollows:

Router(config-if)#ip hold-time eigrp as-number seconds

Page 201: 31 Dias Para o CCNA

EIGRP Verificação e solução de problemas

Para verificar qualquer configuração de roteamento, você provavelmente irá depender do ip route

show, show ip

breve interface, e mostrar comandos ip protocolos. A tabela de roteamento deve ter tudo o que

espera

rotas. Se não, verificar o estado das interfaces para se certificar de que nenhum interfaces são

para baixo ou errada.

Use o comando show ip protocolos para verificar se EIGRP e que a maioria de seus

Configurações EIGRP são operacionais, como mostrado no Exemplo 13-13.

Exemplo 13-13 Verificar a Configuração EIGRP com o comando show ip protocols

Page 202: 31 Dias Para o CCNA

Para EIGRP, você pode usar duas tabelas, além da tabela de roteamento para verificar e

solucionar o

-configuração da tabela de vizinhos ea tabela de topologia.

Primeiro, verifique se os vizinhos esperado estabeleceram adjacência com o show ip vizinhos

eigrp

comando. Figura 13-5 mostra a saída para R2 com uma breve explicação de cada parte.

Se EIGRP não é roteamento como você espera, você pode usar o comando show ip eigrp

topologia para ver

todas as rotas que fazem actualmente parte do banco de dados EIGRP, incluindo rotas que estão

instalados em

a tabela de roteamento e rotas de backup potencial como mostrado no Exemplo 13-14 para R2.

Page 203: 31 Dias Para o CCNA

EIGRP termos específicos que você deve saber para que você possa interpretar o resultado do

Exemplo 13-14 incluem

o seguinte:

■ Sucessor: Um roteador vizinho que é usado para encaminhamento de pacotes e é a rota de

menor custo

à rede de destino.

■ Distância Viável (FD): o mais baixo calculado métrica para alcançar a rede de destino.

■ sucessor viável (FS): Um vizinho que tem um caminho livre de laço de backup à mesma rede

como o sucessor ao satisfazer a condição de viabilidade.

■ Condição de Viabilidade (FC): O FC é cumprida quando a distância relatou um vizinho (RD)

para um

rede é inferior a FD do roteador local para a rede de destino mesmo.

Rever os conceitos do sucessor, a distância possível, e sucessor viável, vamos olhar para um

descrição detalhada da entrada em destaque na Exemplo 13-13.

A primeira linha exibe o seguinte:

■ P: Esta rota é no estado passivo, o que significa que a rota é estável e não procuram

activamente um

substituição. Todas as rotas na tabela de topologia deve estar no estado passivo para um

roteamento estável

domínio.

■ 172.16.1.0/24: Esta é a rede de destino, que também é encontrado na tabela de roteamento.

■ 1 sucessores: Isso mostra o número de sucessores para esta rede. Se vários equal-cost

caminhos existem para esta rede, haverá sucessores múltiplas.

■ FD é 3526400: Este é o FD, a métrica EIGRP para alcançar a rede de destino.

A primeira entrada mostra o sucessor:

■ via 192.168.10.10: Este é o next-hop endereço do sucessor, R3. Este endereço é mostrado na

a tabela de roteamento.

■ 3526400: Este é o FD para 172.16.1.0/24. É a métrica mostrado na tabela de roteamento.

■ 2172416: Esta é a RD do sucessor e é o custo R3 para chegar a esta rede.

■ Serial0/1/1: Esta é a interface de saída usada para chegar a esta rede, também mostrado no

roteamento

mesa.

A segunda entrada mostra o sucessor viável, R1. (Se não existe segunda entrada, não há FSS.)

■ via 172.16.3.1: Este é o endereço do próximo salto do FS, R1.

■ 40514560: Este seria novo R2 da FD para 192.168.1.0/24 se R1 tornou-se o novo sucessor.

Page 204: 31 Dias Para o CCNA

■ 28160: Esta é a RD do FS ou R1 métrica para alcançar esta rede. Este valor, RD, deve

ser inferior ao FD atual de 3526400 para atender a FC.

■ Serial0/1/0: Esta é a interface de saída usada para atingir a FC, se este router torna-se o

sucessor.

Para ver todas as rotas possíveis no banco de dados de topologia EIGRP, incluindo rotas que não

atendam

a condição de viabilidade, use a opção de todos os links, como mostrado no Exemplo 13-15.

Dia 13 223

Ao comparar a saída do Exemplo 13-14 com a saída do Exemplo 13-15, você pode ver

EIGRP que tem mais rotas na tabela de roteamento do que é mostrado inicialmente. Mas essas

rotas adicionais que

não satisfazem a condição de viabilidade. Portanto, deve primeiro DUAL consulta vizinhos para

se certificar que

não é uma rota melhor lá fora, antes de instalar um percurso que não satisfazem a condição de

viabilidade.

Esta é a essência de como DUAL evita loops.

Page 205: 31 Dias Para o CCNA

DUAL de estado finito máquina como o algoritmo trata de uma decisão é final, representada

graficamente

no fluxograma da Figura 13-6.

Para monitorar o FSM DUAL em ação, use o comando debug eigrp fsm. Em seguida, desligue

uma interface

no roteador para ver como DUAL reage à mudança na topologia.

Page 206: 31 Dias Para o CCNA

Roteamento OSPF

Exame CCNA 640-802 Tópicos

■ Configurar, verificar e solucionar problemas de OSPF.

Tópicos-chave

Open Shortest Path First (OSPF) é um protocolo de roteamento link-state, que foi desenvolvido

como um substituto

para Routing Information Protocol (RIP). Principais vantagens do OSPF sobre o RIP são seus

convergência rápida

e sua escalabilidade para implementações de rede muito maior. Hoje fazemos uma revisão da

operação,

configuração, verificação e solução de problemas básicos do OSPF.

Operação OSPF

IETF escolheu OSPF sobre Intermediate System-to-Intermediate System (IS-IS) como

recomendado

Page 207: 31 Dias Para o CCNA

Interior Gateway Protocol (IGP). Em 1998, a especificação OSPFv2 foi atualizado em RFC 2328 e

RFC é o atual para OSPF. RFC 2328, OSPF versão 2, está no site da IETF em

http://www.ietf.org/rfc/rfc2328. Cisco IOS Software irá escolher rotas OSPF em rotas RIP

porque OSPF tem uma distância de 110 administrativos contra AD RIP de 120.

OSPF Message Format

A porção de dados de uma mensagem OSPF é encapsulado em um pacote. Este campo de

dados pode incluir uma das

cinco tipos de pacotes OSPF. Figura 12-1 mostra uma mensagem encapsulada OSPF em um

quadro Ethernet.

O cabeçalho do pacote OSPF é incluído em cada pacote OSPF, independentemente do seu tipo.

O pacote OSPF

cabeçalho e de pacotes específicos do tipo de dados são então encapsulados em um pacote IP.

No cabeçalho do pacote IP, o

campo de protocolo é ajustado a 89 para indicar OSPF, eo endereço de destino é normalmente

definido como um dos dois

endereços multicast: 224.0.0.5 ou 224.0.0.6. Se o pacote OSPF é encapsulado em um quadro

Ethernet,

o endereço MAC de destino é também um endereço de multicast: 01-00-5E-00-00-05 ou 01-00-

5E-00-00-06.

Packet Tipos OSPF

Estes cinco tipos de pacotes OSPF cada servir a um propósito específico no processo de

roteamento:

■ Hello: Hello pacotes são utilizados para estabelecer e manter adjacência com outros roteadores

Page 208: 31 Dias Para o CCNA

OSPF.

■ DBD: A descrição do banco de dados (DBD) pacote contém uma lista abreviada do envio

roteador link-state banco de dados e é usado por roteadores para verificar a receber contra a

linkstate locais

banco de dados.

■ LSR: Receber roteadores pode, então, solicitar mais informações sobre qualquer entrada na

DBD por

envio de um pedido de estado de link (LSR).

■ LSU: Link state-atualização (LSU) pacotes são utilizados para responder aos LSRs e anunciar

novas informações.

LSUs contêm 11 tipos de link-state anúncios (LSA).

■ LSAck: Quando um LSU é recebida, o roteador envia um aviso de estado de link (LSAck) para

confirmar o recebimento da LSU.

Estabelecimento vizinho

Hello pacotes são trocados entre vizinhos OSPF para estabelecer adjacência. Figura 12-2 mostra

o cabeçalho OSPF e pacotes Olá.

Campos importantes mostrado na figura incluem o seguinte:

■ Tipo: tipo de pacote OSPF: Olá (Tipo 1), DBD (Tipo 2), LS Request (Tipo 3), LS Atualização

(Tipo 4), LS ACK (Tipo 5)

■ Router ID: ID do router originário

■ ID Área: Area a partir do qual se originou o pacote

■ Máscara de Rede: Máscara de sub-associado com a interface de envio

■ Intervalo Olá: Número de segundos entre Hellos o roteador que está enviando

■ Prioridade Router: Usado em DR / BDR eleição (discutido posteriormente na seção "Eleição DR

/ BDR")

■ Designated Router (DR): Router ID do DR, se houver

■ Backup Designated Router (BDR): Router ID do BDR, se houver

■ Lista de Vizinhos: Lista o Router ID do roteador OSPF vizinhos (s)

Hello pacotes são usados para fazer o seguinte:

■ Descubra OSPF vizinhos e estabelecer adjacências vizinho

■ Anuncie parâmetros em que dois roteadores devem concordar em se tornar vizinhos

■ Elect the DR e BDR em redes multi-acesso, como Ethernet e Frame Relay

228 31 dias antes de seu exame CCNA

Page 209: 31 Dias Para o CCNA

Recebendo um pacote OSPF em uma interface Olá confirma para um roteador que outro roteador

OSPF

existe neste link. OSPF em seguida, estabelece adjacência com o vizinho. Para estabelecer

adjacência, dois

OSPF roteadores devem ter os seguintes valores de interface de correspondência:

■ Intervalo Hello

■ Intervalo Morto

■ Rede Tipo

Antes de ambos os roteadores podem estabelecer adjacência, ambas as interfaces devem ser

parte da mesma rede,

incluindo a máscara de sub-rede mesmo. Então adjacência total vai acontecer depois que ambos

os roteadores têm

trocado LSUs necessárias e têm idêntico link-state bancos de dados. Por padrão, o OSPF Olá

pacotes são enviados para o endereço de multicast 224.0.0.5 (ALLSPFRouters) a cada 10

segundos em multiaccess

e ponto-a-ponto segmentos ea cada 30 segundos em multiaccess sem difusão (NBMA)

segmentos

(Frame Relay, X.25, ATM). O intervalo padrão mortos é quatro vezes o intervalo Hello.

Page 210: 31 Dias Para o CCNA

Link State-Anúncios

Link-state atualizações (LSUs) são os pacotes usado para atualizações de roteamento OSPF. Um

pacote pode LSU

contêm 11 tipos de link-state anúncios (LSAs), como mostrado na Figura 12-3.

Tipos de rede OSPF

OSPF define cinco tipos de rede:

■ Ponto-a-ponto

■ Transmissão multiaccess

■ sem difusão multiaccess

■ Ponto-a-multiponto

■ ligações Virtual

Redes multi criar dois desafios para OSPF sobre a inundação de LSAs:

■ Criação de múltiplos adjacências, uma adjacência para cada par de roteadores

■ inundações extensivo de LSAs

DR / BDR Eleição

A solução para gerir o número de adjacências ea inundação de LSAs em um multiaccess

rede é o roteador designado (DR). Para reduzir a quantidade de tráfego OSPF em redes multi-

acesso,

Page 211: 31 Dias Para o CCNA

OSPF elege um DR e backup DR (BDR). A DR é responsável por atualizar todos os outros

Roteadores OSPF quando ocorre uma alteração na rede de múltiplo acesso. O BDR monitora a

DR e

assume como se o DR DR atual falhar ..

Os critérios a seguir é usado para eleger o DR e BDR:

1. DR: Router com a mais alta prioridade interface OSPF.

2. BDR: Router com a mais alta prioridade interface OSPF segundo.

3. Se as prioridades interface OSPF são iguais, o ID mais alto do roteador é usado para quebrar o

empate.

Quando o DR é eleito, ele continua a ser o DR até que uma das seguintes condições ocorrer:

■ O DR falha.

■ O processo OSPF no DR falha.

■ A interface multiaccess no DR falha.

Se o DR falhar, o BDR assume o papel de DR, e uma eleição é realizada para escolher um novo

BDR. Se

um novo roteador entra na rede depois que o DR e BDR foram eleitos, não se tornará a

DR ou BDR o mesmo que tem uma prioridade maior interface OSPF ou ID router que o DR atual

ou

BDR. O novo roteador pode ser eleito o BDR se o DR ou BDR atual falhar. Se o DR atual

falhar, o BDR será o DR, eo novo roteador pode ser eleito o BDR novo.

Sem configuração adicional, você pode controlar os roteadores que ganhar as eleições DR e BDR

fazendo uma das seguintes opções:

■ Inicialize o primeiro DR, seguido da BDR, e depois bota todos os outros roteadores.

■ Desligue a interface em todos os roteadores, seguido por um shutdown na DR, em seguida, o

BDR,

e depois todos os outros roteadores.

No entanto, a forma recomendada para controle de DR / BDR eleições é para alterar a prioridade

interface,

que analisar no "OSPF Configuration" seção.

Algoritmo OSPF

Cada roteador OSPF mantém um banco de dados link-state contendo os LSAs recebidos de

Page 212: 31 Dias Para o CCNA

todos os outros

routers. Quando um roteador recebeu todos os LSAs e construiu sua base de dados link-state

local, OSPF usa

Mais curto de Dijkstra primeiro caminho algoritmo (SPF) para criar uma árvore SPF. Este

algoritmo acumula

custos ao longo de cada caminho, da origem ao destino. A árvore SPF é então usado para

preencher o IP

tabela de roteamento com as melhores caminhos para cada rede.

Por exemplo, na Figura 12-4 cada caminho é marcado com um valor arbitrário para o custo. O

custo do

caminho mais curto para o R2 para enviar pacotes para a LAN ligado ao R3 é de 27 (20 + 5 + 2 =

27). Note-se que

este custo não é 27 para todos os roteadores para alcançar a LAN ligado ao R3. Cada roteador

determina a sua própria

custo para cada destino na topologia. Em outras palavras, cada roteador usa o algoritmo SPF

para calcular

o custo de cada caminho para uma rede e determina o melhor caminho para que a rede a partir

de suas próprias

perspectiva.

Dia 12 231

Page 213: 31 Dias Para o CCNA

Cancelar

Você deve ser capaz de criar uma tabela semelhante para cada um dos outros roteadores na Figura 12-4.

Link State Routing-Processo

A lista a seguir resume o processo de roteamento link-state usado por OSPF. Todos os roteadores OSPF completoo processo de roteamento genérico seguinte link-state para alcançar um estado de convergência:1. Cada roteador aprende sobre as suas próprias ligações e as suas próprias redes diretamente conectadas. isto éfeito através da detecção de uma interface que está no estado up, incluindo um endereço de camada 3.2. Cada roteador é responsável por estabelecer adjacência com seus vizinhos diretamente

Page 214: 31 Dias Para o CCNA

conectadosredes de troca de pacotesHello.3. Cada roteador constrói um pacote de link-state (LSP), contendo o estado de cada conectado diretamentelink. Isto é feito através da gravação de todas as informações pertinentes sobre cada vizinho, incluindovizinho ID, tipo link, e largura de banda.4. Cada roteador inundações LSP para todos os vizinhos, que, em seguida, armazenar todos os LSPs recebido em um banco de dados.Vizinhos, em seguida, inundar o LSPs para os seus vizinhos até que todos os roteadores na área têm recebido oLSPs. Cada roteador armazena uma cópia de cada LSP recebido de seus vizinhos em um banco de dados local.5. Cada roteador usa o banco de dados para construir um mapa completo da topologia e calcula omelhor caminho para cada rede de destino. O algoritmo SPF é usado para construir o mapa dotopologia e determinar o melhor caminho para cada rede. Todos os roteadores terão um comummapa ou árvore da topologia, mas cada roteador independentemente determina o melhor caminho para cadarede dentro dessa topologia.

Configuração OSPFPara rever os comandos de configuração OSPF, vamos usar a topologia da Figura 12-5 e daesquema de endereçamento na Tabela 12-2.

Page 215: 31 Dias Para o CCNA

The router ospf CommandOSPF is enabled with the router ospf process-id global configuration command:R1(config)#router ospf 1The process-id is a number between 1 and 65,535 and is chosen by the network administrator. Theprocess ID is locally significant. It does not have to match other OSPF routers to establish adjacencieswith those neighbors. This differs from EIGRP. The EIGRP process ID or autonomous systemnumber must match before two EIGRP neighbors will become adjacent.For our review, we will enable OSPF on all three routers using the same process ID of 1.The network CommandThe network command is used in router configuration mode:

Router(config-router)#network network-address wildcard-mask area area-id

The OSPF network command uses a combination of network-address and wildcard-mask. Thenetwork address, along with the wildcard mask, is used to specify the interface or range of interfacesthat will be enabled for OSPF using this network command.The wildcard mask is customarily configured as the inverse of a subnet mask. For example, R1’sFastEthernet 0/0 interface is on the 172.16.1.16/28 network. The subnet mask for this interface is/28 or 255.255.255.240. The inverse of the subnet mask results in the wildcard mask 0.0.0.15.The area area-id refers to the OSPF area. An OSPF area is a group of routers that share link-stateinformation. All OSPF routers in the same area must have the same link-state information in theirlink-state databases. Therefore, all the routers within the same OSPF area must be configured withthe same area ID on all routers. By convention, the area ID is 0.Example 12-1 shows the network commands for all three routers, enabling OSPF on all interfaces.

Page 216: 31 Dias Para o CCNA

router ID

A identificação do roteador tem um papel importante no OSPF. Ele é usado para identificar

exclusivamente cada roteador no OSPF

roteamento de domínio. Roteadores Cisco derivar o ID do roteador baseado em três critérios na

seguinte ordem:

1. Use o endereço IP configurado com o comando router-id OSPF.

2. Se o ID do roteador não está configurado, o roteador escolhe o endereço IP mais alto de

qualquer dos seus

interfaces loopback.

3. Se nenhuma interface loopback são configurados, o roteador escolhe mais o endereço IP de

ativos

qualquer de suas interfaces físicas.

A identificação do roteador pode ser visto com vários comandos, incluindo interfaces de show ip

ospf, show ip

protocolos, e show ip ospf.

Duas maneiras de influenciar o ID do roteador são para configurar um endereço de loopback ou

configurar o roteador

ID. A vantagem de usar uma interface de loopback é que, ao contrário de interfaces físicas, não

pode falhar.

Portanto, usando um endereço de loopback para o ID do router fornece estabilidade para o

processo OSPF.

Porque o comando router-id OSPF é um acréscimo bastante recente para Cisco IOS Software

(Release

12,0 [1] T), é mais comum encontrar endereços de loopback usado para configurar IDs router

Page 217: 31 Dias Para o CCNA

OSPF.

Exemplo 12-2 mostra as configurações de loopback para os roteadores em nossa topologia.

Exemplo de configurações 02/12 Loopback

Para configurar o router ID, use a sintaxe seguinte comando:

Router (config) # router ospf processo-id

Router (config-router) # router-id ip address

A identificação do roteador é selecionado quando OSPF é configurado com o seu comando

primeira rede OSPF. assim, o

loopback ou comando ID roteador já deve estar configurado. No entanto, você pode forçar a

OSPF

liberar seu ID atual e usar o loopback ou ID roteador configurado por qualquer recarregar o

roteador

ou usando o seguinte comando:

Router # clear ip ospf processo

Modificando o Metric OSPF

Cisco IOS Software usa a largura de banda cumulativo das interfaces de saída do roteador para

a rede de destino como o valor de custo. Em cada roteador, o custo de uma interface é calculado

usando a seguinte fórmula:

Cisco IOS Custo de OSPF = 108/bandwidth em bps

Neste cálculo, o valor 108 é conhecida como a largura de banda de referência. A largura de

banda de referência

pode ser modificado para acomodar as redes com ligações mais rapidamente do que 100 milhões

bps (100 Mbps)

usando o OSPF comando auto custo-comando de interface de referência de banda larga. Quando

usado, este

comando deve ser inserido em todos os roteadores OSPF de modo que a métrica de roteamento

permanece consistente.

Page 218: 31 Dias Para o CCNA

Você pode modificar a métrica OSPF de duas maneiras:

■ Use o comando de largura de banda para modificar o valor de largura de banda utilizada pela

Cisco IOS Software

no cálculo da métrica de custo OSPF.

■ Use o comando ip ospf custo, que permite que você especificar diretamente o custo de uma

interface.

Tabela 12-4 mostra as duas alternativas que podem ser usadas para modificar os custos das

ligações em série

a topologia. O lado direito mostra o ip ospf equivalentes de custo de comando dos comandos de

largura de banda

à esquerda.

Page 219: 31 Dias Para o CCNA

Cancelar

Controlar a eleição DR / BDR

Porque o DR se torna o ponto focal para a coleta e distribuição de LSAs em um multiaccessrede, é importante para este router para ter CPU suficiente e capacidade de memória para lidar coma responsabilidade. Em vez de depender a ID do roteador para decidir quais roteadores são eleitos a DRe BDR, é melhor controlar a eleição desses roteadores com a interface de prioridade ip ospfcomando:Router (config-if) # ip ospf prioridade {0-255}Os padrões de prioridade valor para 1 para todas as interfaces do roteador, o que significa a identificação do roteador determina aDR e BDR. Se você alterar o valor padrão a partir de 1 para um valor maior, no entanto, com o routera prioridade mais alta torna-se o DR, eo roteador com a próxima prioridade passa a ser oBDR. Um valor de 0 faz com que o router inelegíveis para se tornar um DR ou BDR.Todos os roteadores na Figura 12-6 inicializado, ao mesmo tempo com uma configuração completa OSPF. emtal situação, RouterC é eleito o DR, e RouterB é eleito o BDR com base na maiorIDs router.Vamos supor RouterA é o melhor candidato a DR e RouterB deve ser BDR. No entanto, vocênão deseja alterar o esquema de endereçamento. Exemplo 12-3 mostra uma forma de controlar a DR / BDReleição na topologia mostrada na Figura 12-6.

Page 220: 31 Dias Para o CCNA

Observe que mudamos ambos os roteadores. Embora RouterB foi o BDR sem fazer nada, seria

perder este papel a RouterC se não configurar prioridade RouterB? s a ser maior do que o

padrão.

Redistribuição de uma rota padrão

Voltando à primeira topologia mostrada na Figura 12-5, podemos simular uma conexão com a

Internet

em R1, configurando uma interface loopback. R1 é agora chamado de limite de Sistema

Autônomo

Router (ASBR). Então, podemos redistribuir a rota padrão estática para R2 e R3 com o

defaultinformation

originam de comando, como demonstrado no Exemplo 12-4.

Intervalos de modificar Hello e tempos de espera

Pode ser necessário mudar os temporizadores OSPF para que os roteadores irá detectar falhas

de rede em menos

tempo. Fazendo isso vai aumentar o tráfego, mas às vezes há uma necessidade de convergência

Page 221: 31 Dias Para o CCNA

rápida, que supera

o tráfego extra.

Olá OSPF e intervalos Morto pode ser modificado manualmente utilizando os comandos seguinte

interface:

Exemplo 12-5 mostra os intervalos Olá e Dead modificado para 5 segundos e 20 segundos,

respectivamente,

na interface Serial 0/0/0 de R1.

Verificação e solução de problemas OSPF

Para verificar qualquer configuração de roteamento, você provavelmente irá depender do ip route

show, show ip

breve interface, e mostrar comandos ip protocolos. A tabela de roteamento deve ter tudo o que

espera

rotas. Se não, verificar o status de todas as interfaces para garantir que uma interface não é para

baixo ou errada.

Para o nosso exemplo, as tabelas de roteamento OSPF terá uma rota O * E2 em R2 e R3 como

mostrado na tabela de roteamento R2 no Exemplo 12-6.

Page 222: 31 Dias Para o CCNA

Rotas OSPF externas caem em uma das duas categorias:

■ Tipo External 1 (E1): OSPF acumula custo para uma rota E1 como a rota está sendo propagada

em toda a área OSPF.

■ Tipo externas 2 (E2): O custo de uma rota E2 é sempre o custo externo, independentemente do

interior de custo para chegar a essa rota.

Nesta topologia, porque a rota padrão tem um custo externo do 1 no roteador R1 R2 e R3

também

mostram um custo de 1 para a rota padrão E2. Rotas E2 a um custo de 1 são a configuração

padrão OSPF.

Você pode verificar que os vizinhos esperado estabeleceram adjacência com o show ip ospf

neighbor

comando. Exemplo 12-7 mostra as tabelas vizinho por três roteadores.

Page 223: 31 Dias Para o CCNA

Para cada vizinho, este comando exibe a seguinte saída:

■ Neighbor ID: A identificação do roteador do roteador vizinho.

■ Pri: A prioridade OSPF da interface. Estes mostrar todos os 0 porque ponto-a-ponto ligações

não

eleger um DR ou BDR.

■ Estado: O estado OSPF da interface. Estado COMPLETA significa que a interface do roteador é

totalmente

adjacente com o seu vizinho e eles têm idênticas OSPF link-state bancos de dados.

■ Time Dead: A quantidade de tempo restante que o roteador irá esperar para receber um OSPF

Hello

pacote do vizinho antes de declarar o vizinho para baixo. Esse valor é redefinido quando a

interface recebe um pacote Hello.

■ Endereço: O endereço IP da interface do vizinho para que este roteador está diretamente

conectado.

■ Interface: A interface em que este router formou adjacência com o vizinho.

Como mostrado no Exemplo 12-8, você pode usar o comando show ip protocolos como uma

maneira rápida de verificar

vital informações de configuração do OSPF, incluindo a identificação do processo OSPF, a

identificação do roteador, as redes do roteador é a publicidade, os vizinhos de onde o roteador

está recebendo atualizações, e da AD padrão,

que é 110 para OSPF

Page 224: 31 Dias Para o CCNA

O comando show ip ospf mostrado no Exemplo 12-9 para R2 também pode ser usado para

examinar o OSPF

ID processo e ID router. Além disso, este comando exibe as informações de área OSPF eo

última vez que o algoritmo SPF foi calculado.

Page 225: 31 Dias Para o CCNA

A maneira mais rápida para verificar intervalos Hello e Dead é usar o comando show ip ospf interface.Como mostrado no Exemplo 12-10 para R2, acrescentando o nome da interface e número para o comandoexibe a saída para uma interface específica.

Conforme destacado no Exemplo 12-10, o comando show ip ospf interface também mostra o roteadorID, tipo de rede, eo custo para a ligação, assim como o vizinho para que esta interface é adjacente.

Page 226: 31 Dias Para o CCNA

Solucionando problemas de roteamento

Exame CCNA 640-802 Tópicos

■ Solucionar problemas de roteamento.

Tópicos-chave

Durante os últimos três dias, analisamos tanto o roteamento estático e dinâmico, incluindo rotas

estáticas,

as rotas padrão, RIPv1, RIPv2, EIGRP, OSPF e. Estas revisões pela sua própria natureza incluía

alguns

breve discussão sobre como solucionar problemas de roteamento relacionados a cada um dos

métodos de roteamento. Hoje nós

concluir nossa revisão de conceitos de roteamento e configuração com foco na solução de

problemas de roteamento.

Os comandos básicos

Solução de problemas de roteamento pode começar com ping básica e comandos traceroute para

descobrir

onde a conectividade é inexistente. No caso de uma grande rede, entretanto, estes dois

comandos são

provavelmente não da maneira mais eficiente para encontrar um problema. Além disso, se esses

comandos fazem trilha

Page 227: 31 Dias Para o CCNA

baixo um problema, você ainda tem que descobrir a causa.

Um método melhor seria começar com os seus dispositivos de núcleo. Estes dispositivos devem

ser uma coleção

ponto de partida para todas as rotas da empresa. Para verificar se há rotas de desaparecidos e

rastrear o motivo, o

seguinte método pode ser usado para questões relacionadas com roteamento dinâmico:

1. Verifique as tabelas de roteamento para a convergência com o comando show ip route. Todos

os esperados

rotas devem ser na tabela de roteamento. Restrição de uma política de segurança que impede

que algumas rotas, o

dispositivo deve ser capaz de rota para qualquer outro local na empresa.

2. Se você encontrar uma rota em falta ou rotas, use o comando show ip protocolos para

investigar a

operação do protocolo de roteamento no roteador local. O comando show ip protocols resume

quase todos os detalhes da operação de um protocolo de roteamento é. Informações úteis para

todos os protocolos

inclui o seguinte:

- Habilitar o protocolo de roteamento: Se o protocolo de roteamento esperado não for habilitado,

configurá-lo.

- Encaminhamento para redes: se uma rede que deve ser anunciado está em falta, pode ser que

o comando da rede está faltando para aquela rota. No entanto, pode ser também que a interface

ou interfaces que pertencem a essa rede não estão funcionando. Se assim for, use show ip

Interface breve para isolar problemas com interfaces.

- Encaminhamento fontes de informação: Esta é uma lista de vizinhos de que o roteador local é

recebendo atualizações. Um vizinho ausente pode ser um problema com o roteador local (em

falta

comando de rede ou interface para baixo). Ou o problema pode ser com o vizinho. Para

EIGRP e OSPF, você pode usar o visor de relacionamentos próximo como um primeiro passo na

descoberta

por que um vizinho não é a publicidade rotas para o roteador local (através do show ip

eigrp vizinhos e show ip ospf comandos vizinho). Se as relações vizinho são

operando como esperado, log para o roteador vizinho para descobrir por que o vizinho não é

rotas de publicidade

3. Se uma rota estática está faltando na tabela de roteamento, verificar se ele está configurado

com o show

Page 228: 31 Dias Para o CCNA

running-config comando. Se estiver configurado, a interface de saída local é baixo ou a interface

com o endereço do próximo salto é baixo.

VLSM Troubleshooting

A lista a seguir resume os pontos de solução de problemas importantes a serem considerados

quando você estiver solucionando problemas

potencial de comprimento variável de sub-rede de mascaramento (VLSM) problemas no exame:

■ Preste muita atenção se o projeto realmente usa VLSM. Se isso acontecer, observe se um sem

classes

protocolo de roteamento é usado.

■ Esteja ciente de que sub-redes sobrepostas podem de fato ser configurado.

■ Os sintomas do problema para fora pode ser que alguns hosts em uma sub-rede funcionar bem,

mas outros

não pode enviar pacotes fora da sub-rede local.

■ Use o comando traceroute para procurar rotas que os pacotes direto para a parte errada do

rede. Isto poderia ser resultado de uma das sub-redes sobrepostas.

■ No exame, você poderá ver uma pergunta que você acha que está relacionado com endereços

IP e VLSM. nesse

caso, o melhor plano de ataque poderia muito bem ser a de analisar as contas para cada sub-

rede e garantir que

não existem sobreposições, ao invés de solução de problemas usando ping e traceroute.

Redes Discontiguous

Sumarização automática não causa qualquer problema, desde que a rede resumida é contíguo

ao invés de não adjacentes. Para RIPv2 e EIGRP, você deve desativar sumarização automática

em uma rede adjacentes ou você vai ter uma situação de convergência menos-que-cheia.

Mesmo um projeto de rede pode tornar-se contíguos adjacentes se uma ou mais falhas de link

dividir um

classful rede em duas ou mais partes. Figura 11-1 mostra uma internetwork com dois contíguos

classful redes: 10.0.0.0 e 172.16.0.0.

Page 229: 31 Dias Para o CCNA

Nesta figura, com todos os links acima e sumarização automática de trabalho e com efeito, todos

os hosts podem

de ping todos os outros hosts. Neste projeto, os pacotes para a rede 172.16.0.0 fluxo ao longo da

rota de alta, e

pacotes para a rede 10.0.0.0 fluxo sobre a rota de baixa.

No entanto, se qualquer ligação entre os roteadores falhar, uma das duas redes classful torna-se

descontínuo.

Por exemplo, se a ligação entre R3 e R4 falhar, a rota a partir de R1 a R4 passa por

sub-redes da rede 172.16.0.0, para rede 10.0.0.0 é descontínuo. A solução, como sempre, é

usar um protocolo de roteamento sem classes com deficiência sumarização automática.

Solução de problemas RIP

Erros de configuração mais RIP envolvem uma configuração declaração incorreta de rede, uma

falta

configuração de rede declaração, ou a configuração de sub-redes adjacentes em um ambiente

com classe.

Conforme mostrado na Figura 11-2, usando debug ip rip pode ser uma maneira eficaz de

descobrir problemas com

RIP atualizações. Esta saída é a partir da topologia que usamos no dia 14, "Default, Static, e RIP

Roteamento ", mostrado na Figura 14-3.

Figura 11-2 Interpretando saída debug ip rip.

Page 230: 31 Dias Para o CCNA

Este comando exibe RIPv1 atualizações de roteamento como eles são enviados e recebidos.

Porque é RIPv1,

as máscaras de sub-rede não estão incluídas. Como as atualizações são periódicas, você precisa

esperar para os próximos

rodada de atualizações antes de ver qualquer saída. A lista que se segue corresponde ao número

de

Figura 11-2.

1. Você vê uma atualização vindo de R1 na interface Serial 0/0/0. Repare que R1 envia apenas

uma rota para a rede 192.168.1.0. Sem outras rotas são enviados, pois isso violaria

a regra de dividir horizonte. R1 não é permitido para fazer propaganda de redes de volta para R2

R2 que anteriormente

enviado para R1.

2. A próxima atualização que é recebido é de R3. Mais uma vez, por causa da regra dividir

horizonte, R3

envia apenas uma rota: a rede 192.168.5.0.

3. R2 envia suas próprias atualizações. Primeiro, R2 constrói uma atualização para enviar a

FastEthernet 0 / 0

interface. A atualização inclui toda a tabela de roteamento, exceto para a rede 192.168.3.0,

que é anexado ao FastEthernet 0 / 0.

4. Em seguida, R2 constrói uma atualização para enviar para o R3. Três rotas estão incluídos. R2

não faz propaganda

o R2 rede e compartilhar R3, nem propaganda na rede 192.168.5.0 por causa da separação

horizonte.

5. Finalmente, R2 constrói uma atualização para enviar a R1. Três rotas estão incluídos. R2 não

faz propaganda

a rede que R2 e R1 partes, nem anunciar a rede 192.168.1.0 por causa da

split horizon.

6. Não se esqueça de desativar a depuração ou com nenhum debug ip rip ou, como mostrado na

figura,

undebug todos.

Solução de problemas EIGRP e OSPF interface

questões

Esta seção analisa como verificar as interfaces em que o protocolo de roteamento foi ativado.

Ambos EIGRP e OSPF configuração permite que o protocolo de roteamento em uma interface

usando o

Page 231: 31 Dias Para o CCNA

rede do roteador subcomando. Para as interfaces que coincidem com a comandos de rede, o

roteamento

protocolo tenta as duas seguintes ações:

■ As tentativas de encontrar potenciais vizinhos na sub-rede conectada à interface

■ Anuncia a sub-rede conectada a essa interface

Ao mesmo tempo, o roteador passiva interface subcomando pode ser configurado para que o

roteador

não tentativa de encontrar vizinhos na interface (a primeira ação listada), mas ainda anuncia o

sub-rede conectado (a segunda ação da lista).

Tabela 11-1 resume as três comandos show que você precisa saber exatamente quais interfaces

foram habilitados com EIGRP e OSPF e que as interfaces são passivas.

Adjacência Solução de Problemas de Vizinhos

Quando um protocolo de roteamento foi ativado em uma interface, ea interface não é configurado

como um

interface passiva, o protocolo de roteamento tenta descobrir vizinhos e formar um relacionamento

próximo

com cada vizinho que compartilha a sub-rede comum.

OSPF e EIGRP usam Olá mensagens para aprender sobre os novos vizinhos e trocar informaçõesusada para executar algumas verificações básicas. Depois de um roteador EIGRP OSPF ou ouve umOlá a partir de um novo vizinho, o protocolo de roteamento examina as informações da Hello, junto comalgumas definições de local, para decidir se os dois vizinhos deveria sequer tentar tornar-se vizinhos. tabela02/11 lista os requisitos para ambos vizinho EIGRP e OSPF.

Page 232: 31 Dias Para o CCNA

1Tendo duplicado RIDs EIGRP não impede de se tornar routers vizinhos, mas podecausar problemas quando as rotas externas EIGRP são adicionados à tabela de roteamento. determinar aEIGRP ID roteador não é discutida ao nível CCNA.Qualquer dois roteadores EIGRP que se conectam ao link de dados mesmo, e cujas interfaces foramhabilitado para EIGRP e não são passivos, ao menos, considerar tornar-se vizinhos. De forma rápida edefinitivamente saber qual o potencial vizinhos passaram todos os requisitos para o vizinho EIGRP,olhar para a saída do comando show ip eigrp vizinhos. Se um ou mais vizinhos esperadonão estão listados, e os dois roteadores pode pingar um ao outro de endereços IP em suas sub-rede comum, oproblema provavelmente está relacionado a um dos requisitos vizinho listados na Tabela 11-2. tabela 11-3resume os requisitos vizinho EIGRP e regista o melhor comandos que permitam determinarexigência que é a causa raiz do problema ..

Semelhante ao EIGRP, o comando show ip ospf vizinho lista todos os roteadores vizinhos que possuemcumprido todos os requisitos para se tornar um vizinho OSPF, conforme listado na Tabela 11-2.Se um ou mais vizinhos esperado existir, antes de passar a olhar para os requisitos vizinho OSPF,você deve confirmar que os dois roteadores pode pingar um ao outro na sub-rede local. Tão logoos dois roteadores vizinhos pode pingar um ao outro, se os dois roteadores ainda não se OSPFvizinhos, o próximo passo é examinar cada um dos requisitos vizinho OSPF. Tabela 11-4 resumeos requisitos, a lista dos comandos mais úteis com os quais a encontrar as respostas.Tabela 11-4 OSPF Requisitos vizinho e Melhor do show / debug Comandos

Page 233: 31 Dias Para o CCNA
Page 234: 31 Dias Para o CCNA

Padrões sem fio, Componentes

e Segurança

Exame CCNA 640-802 Tópicos

■ Descrever os padrões associados a meios de comunicação sem fio (IEEE, Wi-Fi Alliance, ITU /

FCC).

■ Identificar e descrever a finalidade dos componentes em uma rede sem fio pequeno (SSID,

BSS,

ESS).

■ Compare e apresenta contraste de segurança sem fio e recursos de segurança WPA (aberto,

WEP, WPA-1 / 2).

Tópicos-chave

Page 235: 31 Dias Para o CCNA

Para os próximos dois dias, vamos rever conceitos sem fio e configurações. Hoje olhamos para o

conceitos básicos de wireless, componentes e recursos de segurança.

Padrões sem fio

Quatro organizações têm um grande impacto sobre as normas utilizadas para as LANs sem fio

hoje.

Tabela 10-1 listas destas organizações e descreve suas funções.

O IEEE introduziu wireless LAN (WLAN) padrões, com a criação da ratificação 1997

do padrão 802.11, que foi substituído por normas mais avançadas. A fim de ratificação,

os padrões são 802.11b, 802.11a, 802.11g. De nota, o padrão 802.11n é no projecto de

formulário. Ratificação final não é esperada até dezembro de 2009. Todavia, os produtos são

projecto de norma

já disponíveis.

Tabela 10-2 apresenta alguns pontos-chave sobre os padrões atualmente ratificado.

Modos de Operação sem fio

WLANs pode usar um dos dois modos:

■ Modo Ad Hoc: Com o modo ad hoc, um dispositivo sem fio quer se comunicar com apenas um

ou

Page 236: 31 Dias Para o CCNA

alguns outros dispositivos diretamente, geralmente por um curto período de tempo. Nestes casos,

os dispositivos de envio

Frames WLAN diretamente uns aos outros.

■ Modo de Infra-estrutura: No modo de infra-estrutura, cada dispositivo comunica com uma rede

sem fio

ponto de acesso (AP), com o AP conectando via Ethernet com fio para o resto da infra-estrutura

de rede.

Modo infra-estrutura permite que os dispositivos WLAN para se comunicar com os servidores e os

Internet em uma rede com fio existente.

Modo infra-estrutura suporta dois conjuntos de serviços, chamados conjuntos de serviço. O

primeiro, chamado de base

Service Set (BSS), usa um único AP para criar a LAN sem fio. O outro, chamado Extended

Service Set (ESS), usa mais de um AP, muitas vezes com células sobrepostas para permitir

roaming em uma

área maior.

Tabela 10-3 resume os modos wireless.

freqüências sem fio

A FCC define três faixas de freqüência não licenciada. As bandas são referenciados por uma

determinada freqüência

na banda, embora, por definição, uma faixa de freqüência é uma faixa de freqüências. tabela 10-4

listas de faixas de frequências que são importantes para algum grau de WLAN comunicações.

Page 237: 31 Dias Para o CCNA

Codificação sem fio e Canais

Você deve saber os nomes de três classes gerais de codificação, em parte porque o tipo de

codificação requer planejamento e premeditação para alguns WLANs:

■ Frequency Hopping Spread Spectrum (FHSS): FHSS utiliza todas as freqüências na banda,

pulando

com outros diferentes. Usando freqüências ligeiramente diferentes para as transmissões

consecutivas, uma

dispositivo pode esperançosamente evitar interferências de outros dispositivos que usam a

mesma banda sem licença.

O original padrões 802.11 WLAN usada FHSS, mas os padrões atuais não.

■ Direct Sequence Spread Spectrum (DSSS): DSSS foi projetado para uso em 2,4 GHz

banda não licenciada e é usado por 802.11b. Conforme regulamentado pela FCC, esta banda

pode ter 11

sobreposição de canais DSSS. Três dos canais (canais 1, 6 e 11) não se sobrepõem

o suficiente para impactar o outro. Assim, ao projetar uma WLAN ESS, APs com áreas de

sobreposição

deve ser definido para utilizar diferentes canais sem sobreposição, como mostrado na Figura 10-

1.

Figura 10-1 Usando não sobrepostas DSSS 2.4 GHz Canais em uma WLAN ESS

Page 238: 31 Dias Para o CCNA

Área de Cobertura sem fio

O tamanho real da área de cobertura WLAN depende de um grande número de fatores, incluindo

o

seguinte:

■ A banda de frequências utilizada pelo padrão WLAN

■ O obstruções entre os dispositivos e perto WLAN

■ A interferência de outras fontes de rádio freqüência (RF)

■ As antenas utilizadas em ambos os clientes e APs

■ As opções usadas por DSSS e OFDM quando a codificação de dados através do ar.

De um modo geral, os padrões WLAN que usam freqüências mais altas pode enviar dados mais

rápido, mas com o

preço de pequenas áreas de cobertura. Para cobrir todo o espaço necessário, um ESS que usa

freqüências mais altas

, então, exigem mais APs, elevando o custo da implantação WLAN.

Tabela 10-5 enumera os principais padrões IEEE WLAN ratificada, a velocidade máxima, eo

número de

nonoverlapping canais.

Tabela 10-5 velocidade WLAN e referência de freqüência

Page 239: 31 Dias Para o CCNA

CSMA / CA

Ao contrário das tecnologias de comutação Ethernet, você não pode isolar os sinais sem fio a

partir de hosts partilha

o AP mesmo de interferir uns com os outros. Portanto, se dois ou mais dispositivos WLAN enviar

ao mesmo

tempo, usando o mesmo ou sobreposição faixas de freqüência, ocorre uma colisão, e nenhum

dos transmitida

sinais podem ser entendidas por aqueles que recebem o sinal. Além disso, o dispositivo que está

transmitindo

dados não podem ouvir simultaneamente para dados recebidos. Isto significa que os dispositivos

de envio não

saber que a colisão ocorreu.

A solução é usar o sensor de portadora de acesso múltiplo com prevenção de colisão (CSMA /

CA) algoritmo

para minimizar a possibilidade estatística de colisões podem ocorrer. No entanto, CSMA / CA não

evitar colisões, portanto, os padrões WLAN deve ter um processo para lidar com as colisões

quando elas

ocorrem. A lista a seguir resume os principais pontos sobre o algoritmo CSMA / CA:

1. Ouvir para garantir que o meio (espaço) não está ocupado (sem ondas de rádio atualmente

estão sendo

recebeu nas freqüências a serem utilizados).

2. Definir um temporizador espera aleatória antes de enviar um quadro para estatisticamente

reduzir a chance de dispositivos

todos tentando enviar, ao mesmo tempo.

3. Quando o temporizador aleatório passou, ouvir novamente para garantir que o meio não está

ocupado. se

não é, enviar o quadro. 5. Se nenhuma confirmação for recebida, reenviar o quadro, utilizando

CSMA / CA lógica para esperar o

momento apropriado para enviar novamente.

Riscos de Segurança sem fio

WLANs introduzir uma série de vulnerabilidades que não existem para LANs com fio Ethernet.

Ameaças

a segurança de WLAN incluem o seguinte:

■ motoristas Guerra: Uma pessoa que dirige ao redor, tentando encontrar APs que não tem

segurança ou fraco

Page 240: 31 Dias Para o CCNA

segurança.

■ Hackers: A motivação para hackers, quer seja para encontrar a informação ou negar serviços.

Curiosamente, o objetivo final pode ser comprometer a hosts dentro da rede com fio, usando

a rede sem fio como uma maneira de acessar a rede da empresa sem ter que passar por

Conexões de internet que possuem firewalls.

■ Empregados: Um empregado poderia instalar um ponto de acesso (AP) em seu escritório,

usando as configurações padrão

sem segurança, e criar uma pequena rede local sem fio. Isto permitiria uma mais fácil acesso de

hackers

para o resto da empresa.

■ Vampira AP: O atacante captura pacotes na LAN sem fio existente, encontrar o conjunto de

serviços

identificador (SSID) e rachaduras todas as chaves de segurança utilizado. Em seguida, o

atacante pode configurar um AP,

que os clientes da empresa sem querer associar.

Para reduzir o risco de tais ataques, três principais tipos de ferramentas podem ser usadas em

uma WLAN:

■ A autenticação mútua: Um processo que usa uma senha secreta, chamada de chave, em

ambos os

cliente eo AP. Utilizando alguns algoritmos matemáticos sofisticados, a AP pode confirmar

que o cliente realmente sabe o valor correto chave.

■ Encryption: Usa uma chave secreta e uma fórmula matemática para embaralhar o conteúdo do

WLAN frame. O dispositivo receptor então usa uma outra fórmula para descriptografar os dados.

■ ferramentas de Intrusão: Inclui sistemas de detecção de intrusão (IDS) e sistemas de prevenção

de intrusão

(IPS), bem como WLAN ferramentas específicas. Cisco define a rede sem fio-Aware Structured

(SWAN) arquitetura. Ele inclui muitas ferramentas, algumas das quais especificamente a questão

da

detectar e identificar rogue APs, e se representam ameaças.

Tabela 10-6 lista as vulnerabilidades chave, junto com a solução geral.

Page 241: 31 Dias Para o CCNA

Padrões de Segurança sem fio

O padrão de segurança inicial para WLANs, chamada Wired Equivalent Privacy (WEP), tinha

muitos problemas.

Os próximos três padrões representam uma progressão, cujo objetivo, em parte, foi para corrigir

os problemas

criado por WEP. Em ordem cronológica, Cisco primeiro abordou o problema com alguns

proprietários

soluções. Então a Aliança Wi-Fi ajudou a resolver o problema através da definição de um padrão

de indústria.

Por fim, o IEEE concluiu os trabalhos em um padrão oficial público, 802.11i.

O seguinte é uma breve revisão desses quatro padrões de segurança:

■ WEP: Em 1997, o padrão de segurança original previa autenticação e criptografia, que

pode ser facilmente quebrado. Questões principais foram:

- Static chaves pré-compartilhadas (PSKs) que a configuração manual necessária, portanto, as

pessoas simplesmente deixaram

os padrões.

- PSK valores eram curtas, com apenas 40 bits única, tornando-os fáceis de crack.

■ Cisco Solução provisória: resposta de propriedade da Cisco para os problemas com WEP saiu

em

2001 para fornecer uma solução mais rápida do que a Aliança Wi-Fi ou soluções IEEE prometido.

O

Resposta Cisco incluídas algumas melhorias para a criptografia proprietária, juntamente com o

IEEE

802.1x padrão para autenticação do usuário final. As principais características da Cisco

aprimoramentos incluídos

o seguinte:

- Troca de chaves dinâmicas de modo que se uma chave for descoberta, ela é de curta duração

- Uma nova chave de criptografia para cada pacote

Page 242: 31 Dias Para o CCNA

- A autenticação do usuário usando 802.1x em vez da autenticação do dispositivo

■ Wi-Fi Protected Access (WPA): WPA saiu em 2003 e essencialmente faz a mesma coisa

como a solução provisória Cisco. WPA inclui a opção de usar troca de chaves dinâmicas, usando

o Temporal Key Integrity Protocol (TKIP). Cisco usou uma versão proprietária do TKIP. WPA

permite o uso de qualquer autenticação de usuário IEEE 802.1X ou autenticação simples

dispositivo

utilizando chaves pré-compartilhadas. O algoritmo de criptografia utiliza a verificação de

integridade de mensagem (MIC)

algoritmo, uma vez mais semelhante ao processo usado na solução Cisco-proprietário. WPA

melhorou

segurança e, através do programa de certificação Wi-Fi Alliance, deu um incentivo para

vendedores

ter seus produtos levam o selo de certificação Wi-Fi.

■ 802.11i (WPA2): Em 2005, IEEE 802.11i ratificado, o que inclui troca de chaves dinâmicas,

criptografia muito mais forte usando o Advanced Encryption Standard (AES) e autenticação do

usuário.

802.11i não é compatível com qualquer solução da Cisco ou WPA. Porque o

Wi-Fi Alliance certificação é tão popular e bem conhecido, os produtos são certificados com o

802.11i

o rótulo WPA2.

Tabela 10-7 resume as principais características dos vários padrões de segurança WLAN.

258 31 dias antes de seu exame CCNA

Page 243: 31 Dias Para o CCNA

Dia 9Configuração e Solução de ProblemasRedes sem fiosExame CCNA 640-802 Tópicos■ Identificar os parâmetros básicos para configurar uma rede sem fio para garantir que os dispositivos se conectemao ponto de acesso correto.■ Identificar problemas comuns na implantação de redes sem fio (interface, erros de configuração).

Tópicos-chave

Pontos de acesso sem fio pode ser configurado através de uma interface de linha de comando (CLI), ou mais comumenteatravés de um navegador interface gráfica do usuário (GUI). Estudantes Cisco Networking Academy usoLinksys WRT300N dispositivo multifuncional em um ambiente de laboratório para a prática de configuração básicaparâmetros. No entanto, o exame CCNA 640-802 tópicos não incluem a capacidade de configurar wirelessdispositivos. Em vez disso, você deve ser capaz de identificar os parâmetros de configuração

Page 244: 31 Dias Para o CCNA

básica, bem comoproblemas comuns com implementações wireless.Portanto, o nosso hoje revisão não incluem tarefas de configuração específica com screenshots de umGUI, mas será uma visão geral das implementações sem fio que são aplicáveis a qualquer wirelessdispositivo. No entanto, eu recomendo fortemente que você pelo menos práticas de execução alguns dostecnologias que analisamos no dia 10, "Standards Wireless, Componentes e Segurança." Se você estáum Cisco Networking Academy estudante, você também tem acesso ao Packet Tracer, que inclui uma simulaçãode um WRT300N Linksys. No entanto, você também pode ter sua própria casa router queinclui um ponto de acesso sem fio (AP). Você pode praticar configurar seu roteador sem fio para casa própriacom configurações personalizadas, como o Service Set Identifier (SSID), segurança e criptografia.

Implementação de um WLAN

Parâmetros básicos de ponto de acesso wireless incluem SSID, canal de radiofreqüência (RF) com opcionaispoder, e autenticação (segurança), enquanto que parâmetros básicos cliente sem fio incluem apenas a autenticação.Clientes sem fio precisam de menos parâmetros, porque uma placa de interface de rede sem fio (NIC)scans todas as freqüências de rádio disponíveis ao seu alcance para localizar o canal RF (o que significa um IEEE802.11b / g cartão de scans da faixa de 2,4 GHz e não digitalizar 5 GHz) e geralmente inicia a conexãocom uma configuração padrão para descobrir os APs disponíveis. Portanto, por 802.11 design, sevocê estiver usando autenticação aberta, o resultado é "plug-and-play." Quando a segurança é configurado comchaves pré-compartilhadas (PSKs) para idosos Wired Equivalent Privacy (WEP) ou corrente Wi-Fi ProtectedDe acesso (WPA), lembre-se que a chave deve ser uma correspondência exacta para permitir a conectividade.

Cancelar

Checklist wireless LAN Implementação

A lista a seguir básicas podem ajudar a orientar a instalação de um WLAN:Passo 1 Verifique se a rede com fio existente.A rede com fio existente deverá estar operacional, incluindo LANs virtuais (VLANs),Dynamic Host Configuration Protocol (DHCP), e serviços de conectividade Internet.Práticas básicas sugerem conectar todos os APs na mesma Extended Service Set (ESS) paramesma VLAN. Por exemplo, na Figura 9-1 cada um dos APs está ligado a um switchporta que pertence à VLAN 2.

Page 245: 31 Dias Para o CCNA

Uma maneira rápida de testar a rede com fio é conectar um PC para a porta do switch que a APvai usar. Se o dispositivo adquire o endereçamento IP automaticamente através de DHCP serviços, orede com fio está pronto para a AP.Passo 2 Instalar e configurar o AP com fio e IP detalhes.O próximo passo é unir a AP para a porta do switch com um cabo straight-through eem seguida, configurar ou verificar a sua conectividade à rede com fio, incluindo IP do APendereço, máscara e gateway padrão. Apenas como um switch, o endereçamento IP permitirágerenciamento remoto de um AP, que é um dispositivo da camada 2.Etapa 3 Configurar os detalhes do AP WLAN.A maioria dos APs têm uma capacidade plug-and-play, no entanto, tanto o consumidor da classe ede nível empresarial APs podem ser configurados com uma variedade de parâmetros, incluindoA lista a seguir (os parâmetros de segurança são abordados em Passo 6):- Padrão IEEE (a, b, g, ou múltipla)- Wireless canal- SSID, que é um identificador de 32 caracteres de texto para a WLAN- Potência de transmissãoMuitos APs hoje apoio múltiplos padrões WLAN. Em alguns casos, eles podem suportar múltiplosnormas relativas à AP mesmo, ao mesmo tempo. No entanto, essas implementações de modo misto,particularmente com 802.11b / g, neste AP mesmo, tendem a desacelerar a WLAN. Tambémnote que quando você configurar uma WLAN ESS, cada um dos APs deve ser configurado como mesmo SSID, que permite o roaming entre APs, mas dentro da mesma WLAN.

Passo 4 Instalar e configurar um cliente sem fio.

Para ser um cliente WLAN, o dispositivo precisa de um NIC WLAN WLAN que suporta o mesmopadrão como a AP. Normalmente, os clientes por padrão não tem nenhuma segurança ativada.Quando o cliente começa a trabalhar, ele tenta descobrir todos os APs, ouvindo em todas as freqüênciascanais para os padrões WLAN que suporta por padrão. Por exemplo, se um cliente foramusando a WLAN mostrado na Figura 9-1, com três APs, cada um usando um canal diferente,o cliente pode descobrir todos os APs três. O cliente, então, usar o AP a partir do qualo cliente recebe o sinal mais forte. Além disso, o cliente aprende o SSID do AP,novamente removendo a necessidade de qualquer configuração do cliente.

Etapa 5 Verificar que a WLAN funciona a partir do cliente.

Page 246: 31 Dias Para o CCNA

O cliente sem fio deve ser capaz de acessar os mesmos recursos que o cliente com fio quefoi anexado à porta do switch mesmo que o AP anteriormente na etapa 1. Se não, o problemapode ser a localização do AP ou APs. Durante as fases de planejamento, pesquisa de um sitedeveria ter sido realizado para determinar os melhores locais para APs para garantir a cobertura integralda área de WLAN. Se o cliente não pode se comunicar, verifique o seguinte noem conta o levantamento site:- É a AP, no centro da área em que residem os clientes?- É o direito AP ou cliente ao lado de um monte de metal?- É o AP ou cliente perto de uma fonte de interferência?- É a área AP de cobertura ampla o suficiente para chegar ao cliente?Além da pesquisa do site, a lista a seguir observa alguns outros problemas comunscom uma nova instalação:- Certifique-se de que o NIC e AP rádios estão habilitados. Em particular,verifique o interruptor físico, bem como o software de configuração para ativar ou desativaro rádio.- Verifique a AP para garantir que ele tem o firmware mais recente.- Verifique a configuração do AP em particular, o canal de configuração paragarantir que ele não usa um canal que se sobrepõe a outros APs na mesmalocalização.

Passo 6 Configurar a segurança sem fio.

Depois de ter verificado que o que o cliente pode acessar os recursos wireless sem segurançaativado, é hora de implementar a segurança sem fio. Configurar a segurança sem fio comWPA/WPA2. Use WEP somente se o AP ou cliente wireless não suporta WPA/WPA2.

Dia 9 263

Etapa 7 Verificar a WLAN segura.

Agora que a segurança está ativada, verifique se o WLAN funciona novamente na presença dorecursos de segurança por meio de testes para garantir que o cliente sem fio pode aceder a todos osrecursos que poderiam acessar, sem a segurança ativada.

Solução de problemas sem fio

Se você seguir os passos recomendados para implementar uma rede sem fio, o dividir e conquistarmetodologia de resolução de problemas será mais provável isolar o problema da maneira mais eficiente.A seguir estão as causas mais comuns de problemas de configuração:■ Configurando um SSID definido no cliente que não coincide com o ponto de acesso■ Configurando métodos de segurança incompatíveisTanto o cliente sem fio e ponto de acesso devem corresponder para método de autenticação, ExtensibleAuthentication Protocol (EAP) ou PSK, e método de criptografia (Temporal Key Integrity Protocol[TKIP] ou Advanced Encryption Standard [AES]). Outros problemas comuns resultantes inicialRF instalação às vezes pode ser identificado por responder as seguintes perguntas:■ É o rádio habilitado em ponto de acesso eo cliente para a correta RF (2,4 GHz ISM ou 5GHz UNII)?■ É uma antena externa ligado e virado na direcção correcta (em linha reta ascendente para dipolo)?

Page 247: 31 Dias Para o CCNA

■ A localização da antena muito alta ou muito baixa em relação a clientes sem fio (dentro de 20 pés vertical)?■ Existem objetos de metal no quarto refletindo RF e causando mau desempenho?■ O AP o cliente está a tentar chegar a muito grande de uma distância?

Page 248: 31 Dias Para o CCNA

Dia 8Mitigação de ameaças de segurança e MelhorPráticasExame CCNA 640-802 Tópicos

■ Descrever hoje? S crescentes ameaças de segurança de rede e explicar a necessidade de implementar umpolítica de segurança global para mitigar as ameaças.■ Explicar os métodos gerais para mitigar as ameaças à segurança comum para dispositivos de rede, hosts, eaplicações.■ Descrever as funções dos dispositivos de segurança e aplicações comuns.■ Descrever as práticas de segurança recomendadas incluindo os passos iniciais para proteger dispositivos de rede.Tópicos-chave

A segurança é um componente fundamental de todo projeto de rede. Ataques que antes exigiam umconhecimento avançado em informática pode agora ser feito com facilidade baixado e disponível gratuitamenteferramentas que qualquer pessoa alfabetizada computador da média pode descobrir como usar. A segurança é claramente uma grande

Page 249: 31 Dias Para o CCNA

questão, e que requer uma atenção séria. Para efeitos dos tópicos do exame de hoje, oobjetivo é rever alguns dos terminologia básica, tipos de questões de segurança, e alguns dos comunsferramentas utilizadas para mitigar os riscos de segurança.A Importância da SegurançaAtaques podem ser lançados de vários locais dentro e fora da organização, como mostradona Figura 8-1.Como aplicações e-business e Internet continuam a crescer, encontrar o equilíbrio entre ser isoladoe estar aberto é fundamental. Além disso, o aumento do comércio móvel e redes sem fio demandasque as soluções de segurança tornam-se perfeitamente integrado, mais transparente e mais flexível. Redeos administradores devem equilibrar cuidadosamente a acessibilidade aos recursos de rede com segurança.Atacante TerminologiaAo longo dos anos, ferramentas de rede de ataque e métodos evoluíram, assim como a terminologia adescrever os indivíduos envolvidos. Alguns dos termos mais comuns são os seguintes:■ White Hat: Uma pessoa que procura por vulnerabilidades em sistemas ou redes e, em seguida,relatórios essas vulnerabilidades para o sistema? s proprietários para que eles possam ser corrigidos.■ Hacker: Um termo geral que tem sido historicamente usado para descrever uma programação de computadorperito. Mais recentemente, este termo é frequentemente usado de forma negativa para descrever um indivíduo comintenção maliciosa que tenta obter acesso não autorizado aos recursos da rede.

■ black hat: Outro termo para as pessoas que usam seu conhecimento de sistemas de computador parainvadir sistemas ou redes que não estão autorizados a usar.■ Cracker: Alguém com intenção maliciosa que tenta obter acesso não autorizado à rederecursos.

Page 250: 31 Dias Para o CCNA

■ Phreaker: Um indivíduo que manipula a rede de telefonia para causá-lo para executar uma funçãoque não é permitido, como fazer livre chamadas de longa distância.Spammer ■: Um indivíduo que envia grandes quantidades de mensagens de correio electrónico não solicitadas.■ Phisher: Usos e-mail ou outros meios para se mascarar como um partido de confiança para que as vítimas sãoatraídos para fornecer informações confidenciais, como números de cartão de crédito ou senhas.

Pensar como um invasor

Muitos atacantes utilizam este processo de sete passos para obter informações e iniciar um ataque:

Passo 1 Execute análise da pegada (reconhecimento).

A página web da empresa pode levar a informação, como os endereços IP dos servidores. a partir delá, um atacante pode criar uma imagem de perfil da empresa de segurança ou "pegada".

Passo 2 informações Enumerate.Um atacante pode expandir a pegada pelo tráfego da rede de monitoramento com um pacotesniffer como Wireshark, encontrar informações úteis como números de versão do FTPservidores e servidores de correio.Passo 3 Manipular usuários para obter acesso.

Às vezes, os funcionários escolhem senhas que são facilmente atacada. Em outros casos,empregados podem ser enganados por atacantes talentosos em desistir sensíveis relacionados com o acessoinformação (engenharia social).Passo 4 Escalate privilégios.Depois de os atacantes ganham acesso básico, eles usam suas habilidades para aumentar seus privilégios de rede.Passo 5 Reúna senhas adicionais e segredos.Com privilégios de acesso melhorado, os atacantes usam seus talentos para ganhar acesso a wellguarded,informações confidenciais.Passo 6 portas traseiras de instalação.Portas traseiras dão ao invasor um caminho para entrar no sistema sem ser detectado. Oporta traseira mais comum é aberto a ouvir TCP ou UDP.Passo 7 Leverage o sistema comprometido.Depois de um sistema é comprometido, o invasor usa para ataques estágio em outros hospedeiros narede.

Segurança balanceamento e disponibilidade

As organizações devem encontrar um equilíbrio entre duas necessidades importantes:■ redes Mantendo aberta para suportar os requisitos de negócios em evolução■ Proteger informações de empresas privadas, pessoais e estratégicosPara atender a essas necessidades, os modelos de segurança de rede seguem uma escala progressiva. Em uma extremidade está "aberta",o que significa que qualquer serviço é permitido a menos que seja expressamente negado. Embora os riscos de segurançasão auto-evidentes, existem algumas vantagens de uma rede aberta:

Page 251: 31 Dias Para o CCNA

■ Fácil de configurar e administrar.■ Fácil para usuários finais para acessar recursos de rede.■ custos de segurança são muito menos.No outro extremo está o sistema de rede mais restritiva, o que significa que os serviços sejam negados porpadrão a menos que considere necessário. Embora os benefícios da implementação de um completamente restritivassistema de rede são evidentes, ela apresenta algumas desvantagens:

■ Mais difícil de configurar e administrar.■ Mais difícil para os usuários finais para acessar recursos.■ custos de segurança são maiores do que as de uma rede aberta.Desenvolvimento de uma Política de SegurançaO primeiro passo de qualquer organização deve tomar para proteger seus dados e se de um desafio a responsabilidade épara desenvolver uma política de segurança. A política de segurança é um conjunto de princípios que orienta a tomada de decisõesprocessos e permite que os líderes em uma organização para distribuir autoridade confiança. Uma política de segurançapode ser tão simples como um breve "Política de Utilização Aceitável" para recursos de rede, ou pode ser váriascem páginas e detalhe todos os elementos de conectividade e políticas associadas.

Dia 8 269.

Uma política de segurança atende aos seguintes objetivos:

■ Informa usuários, funcionários e gestores das suas obrigações para proteger a tecnologia e informaçãoativos.■ Especifica os mecanismos através dos quais esses requisitos podem ser atendidos.■ Oferece uma linha de base a partir da qual a adquirir, configurar e sistemas de auditoria de computadores e redespara o cumprimento da política.Ameaças à segurança comumAo discutir a segurança da rede, três fatores comuns são as vulnerabilidades, ameaças e ataques,como descrito nas seções que se seguem.

vulnerabilidades

Vulnerabilidade é o grau de fraqueza que é inerente a cada rede e dispositivo. ameaças sãopessoas que estão interessadas e capazes de tirar proveito de cada falha de segurança.Seguem-se as três categorias principais de vulnerabilidades:■ fraquezas Tecnológico, incluindo o seguinte:- O conjunto de protocolos TCP / IP- Operação questões de segurança do sistema- Equipamentos de rede fraquezas■ fraquezas de configuração, incluindo o seguinte:- Inseguros contas de usuário- Sistema de contas com senhas fáceis de adivinhar- Misconfigured serviços de Internet- Inseguros configurações padrão- Equipamentos de rede Misconfigured■ Segurança fraquezas políticas, incluindo as seguintes:

Page 252: 31 Dias Para o CCNA

- Falta de política de segurança por escrito- Política corporativa tornando-o difícil de implementar uma política consistente- Falta de continuidade- Deficiente monitorização e auditoria de segurança- Software e hardware instalações e atualizações que não seguem a política- Plano de recuperação de desastre Nonexistent

270 31 dias antes de seu exame CCNA.Ameaças à infra-estrutura físicaUm atacante pode negar o uso dos recursos da rede se esses recursos podem ser fisicamente comprometido.

As quatro classes de ameaças físicas são as seguintes:

■ ameaças Hardware: roubo ou vandalismo, causando danos físicos aos servidores, roteadores, switches,plantas de cabeamento, e estações de trabalho■ As ameaças ambientais: temperaturas extremas ou extremos de umidade■ ameaças Elétrica: picos de tensão, tensão de alimentação insuficiente, poder incondicionado, e totalperda de energiaAmeaças ■ Manutenção: manuseamento incorrecto dos principais componentes elétricos, falta de reposição críticapeças, cabeamento pobres, pobres e rotulagem

Ameaças às redes

Crimes que têm implicações para a segurança da rede podem ser agrupadas em duas classes principais deameaças às redes:■ ameaças não-estruturados: Consist principalmente de indivíduos inexperientes usando facilmente disponíveisferramentas de hacking, como scripts shell e biscoitos senha.■ ameaças Estruturado: Structured ameaças vêm de indivíduos ou grupos que são mais altamentemotivados e tecnicamente competente. Essas pessoas sabem vulnerabilidades do sistema e usarsofisticadas técnicas de invasão para penetrar empresas desavisados.Estas duas classes principais de ameaças podem ainda ser classificados da seguinte forma:■ As ameaças externas: As ameaças externas podem surgir a partir de indivíduos ou organizações que trabalham forade uma empresa que não têm acesso autorizado aos sistemas de computador ou rede.■ Ameaças internas: ameaças internas ocorrem quando alguém tem acesso autorizado à redecom qualquer conta de uma ou de acesso físico.

Tipos de ataques à redeVários tipos de ataques podem ser lançados contra uma organização.

Existem quatro classes principais deataques:■ ataques Reconnaissance: A descoberta não autorizado e mapeamento de sistemas, serviços ouvulnerabilidades usando as ferramentas disponíveis para lançar os seguintes ataques:- Internet consultas de informações: Uso de ferramentas como nslookup e utilitários para facilmente whoisdeterminar o espaço de endereço IP atribuído à organização alvo.

Page 253: 31 Dias Para o CCNA

- Varre Ping: Depois de espaço de endereço IP é descoberto, o atacante usa um utilitário ping paraenviar pings a cada endereço IP no espaço de endereço para determinar quais endereços sãoaberto.- Verifica Port: O atacante então verifica os endereços IP ativo para ver quais portas estão abertas.- Packet sniffers captura: os atacantes internos podem tentativa de "escutar" na redetráfego para recolher ou roubar informações.

Dia 8 271

■ Ataques de Acesso: A Entrada OU Acesso Sistemas executando um hum hack, script, OU Ferramenta Que exploraUMA vulnerabilidade conhecida do Sistema OU Aplicação Que está offline Sendo Atacado. Ataques Comuns Acessoincluem o seguinte:- Ataques Senha: Senha Ataques geralmente referem si um repetidas tentativas de login de los humRecurso compartilhado, tal Como hum Servidor OU Roteador, parágrafo identificar UMA Conta de Usuário, Senha, Ambos ou.Estás repetidas tentativas São chamados Ataques de Dicionário OU Força Bruta Ataques.- Exploração Confiança: O Processo de comprometer hum anfitrião confiável e entao usa-lo parEstágio Ataques uma Outros hosts los UMA Rede.- O redirecionamento de Portas: hum Tipo de Confiança Ataque Exploração Opaco EUA UMA Máquina comprometida parágrafopassar o Tráfego atraves de hum firewall Que seriam bloqueados.- Man-in-the-Middle: Um Ataque realizado Por Pessoas Que conseguem POSIÇÃOEntre si Dois hosts legítimos. SE OS atacantes conseguem Entrar los UMA POSIÇÃO Estratégica,enguias podem Roubar Informações, seqüestrar UMA Sessão los Curso Acesso parágrafo ganhar uma Rede PrivadaRecursos, uma Conduta de negação de Serviço Ataques, CORROMPER OS Dados transmitidos, OU introduzirNovas Informações los sessões de Rede.■ Denial-of-service (DoS) Ataques: Ataques DoS envolvem o Processamento de hum Sistema indisponíveis Porfisicamente desconectar hum Sistema, travando o Sistema, OU ATÉ Diminuir um velocidade o Ponto Opacoinutilizável é. Alguns Exemplos de Ataques de negação de Serviço incluem o seguinte:- Ping da Morte Ataques: Envio de pacotes de ping Que São Muito fazer Maiores Que o esperado, o OpacoPoDE falhar Sistemas Mais Antigos da Rede.- SYN Flood Ataques: Envio de milhares de Pedidos de UMA Conexão TCP (SYN bit eset) parágrafo hum Servidor Alvo. O Servidor Deixa uma Conexão Aberta, à Espera de hum reconhecimentodo atacante, Nunca Que VEM.- Distributed DoS (DDoS): Semelhante AO DoS, Mas com centenas de milhares de UOPontos de Ataque Que tentam Dominar hum Alvo.■ Ataques de Códigos maliciosos: O software malicioso inserido PoDE serviços los hum anfitrião parágrafo danificar OU CORROMPERhum Sistema; si replicar, OU Negar o Acesso uma redes, Serviços Sistemas ou. Nomes comunsEste parágrafo Tipo de software São worms, vírus e cavalos de tróia.- Worm: Um verme executa o Código de instala e Cópias de si MESMO NA Memória das Pessoas infectadasComputador, Que Pode, Por SUA Vez, infectar Outros hospedeiros.

Page 254: 31 Dias Para o CCNA

- Vírus: Um vírus de software malicioso hum Que está offline anexado um Outro Programa parágrafo executar humFUNÇÃO especial indesejados los UMA Estação de Trabalho. Um virus de normalmente Requer hum mecanismo de entregar,Como hum ARQUIVO zip OU sândalo Outro ARQUIVO executável anexado um hum e-mail. O Elemento-chaveQue distingué hum verme de um Computador Partir de hum virus de Computador e de Interação Humana Que ume necessária par facilitar uma PROPAGAÇÃO de hum vírus.- Cavalo de Tróia: difere de hum verme OU virus de apenas los Que o aplicativo inteiro está offline Escritoparágrafo parecer outra Coisa, Quando nd Verdade elementos e UMA Ferramenta de Ataque.

272 31 dias os antes de Seu Exame CCNA

Mitigação Técnicas GeraisCada tipo de ataque à rede apreciação tem técnicas de mitigação que você deve implementar,incluindo sistemas de usuário final, servidores e dispositivos de rede. As seções que seguem descrevem estestécnicas de mitigação em mais detalhes.Host e Segurança do ServidorSegurança do host e baseada em servidor deve ser aplicada a todos os sistemas de rede.

Técnicas de mitigação paraEstes dispositivos incluem o seguinte:

■ Dispositivo de endurecimento: Novos sistemas normalmente chegam com valores padrão que raramente são seguraso suficiente para aderir à política de segurança. A maioria dos novos sistemas exigem o seguinte out-of-theboxconfiguração de segurança:- Padrão usernames e senhas devem ser alteradas.- Administrador nível de recursos deve ser restrito àqueles acesso autorizado.- Os serviços desnecessários devem ser desativado ou desinstalado.- Sistema de registro e acompanhamento deve ser configurado.■ O software antivírus: host Instale um software antivírus para proteger contra ataques conhecidos ecertifique-se que é atualizada regularmente.■ firewalls pessoais: firewalls pessoais são destinados para PCs que se conectam diretamente à Internetsem o benefício de firewalls corporativos.■ patches do sistema operacional: A maneira mais eficaz para atenuar um worm e suas variantes ébaixar atualizações de segurança e patch todos os sistemas vulneráveis.

Detecção de Intrusão e Prevenção

Sistemas de detecção de intrusão (IDS) detecta ataques contra a rede e enviar logs para uma gestãoconsole. Sistemas de prevenção de intrusão (IPS) prevenir atentados contra a rede. Qualquer tecnologiapode ser implementado no nível de rede ou o nível de host, ou ambos para a máxima proteção.Host-based prevenção de intrusão (HIPS) pára um ataque, evita danos e bloqueia a propagaçãode worms e vírus. Detecção ativa pode ser configurado para desligar a conexão de rede ou pararserviços afetados automaticamente. Ações corretivas podem ser tomadas imediatamente.

Page 255: 31 Dias Para o CCNA

A vantagem de HIPS é que ele pode monitorar processos do sistema operacional e proteger críticos do sistemarecursos, incluindo arquivos que podem existir apenas no que host específico. Isso significa que ele pode notificargerentes de rede quando algum processo externo tenta modificar um arquivo de sistema de uma forma que podeincluem um programa de back-door escondido.

Appliances de segurança e Aplicações

Figura 8-2 mostra uma topologia de rede comum com um firewall. O papel do firewall é parar pacotesque o administrador de rede considerada insegura. O firewall principalmente olha para o transportenúmeros de porta camada e os cabeçalhos da camada de aplicação para evitar que determinadas portas e aplicações derecebendo pacotes para a empresa.

Dia 8 273

No entanto, uma firewall por si só não é mais adequada para garantir uma rede. Uma abordagem

integrada

envolvendo um firewall, prevenção contra intrusões e uma rede privada virtual (VPN) podem ser

necessários.

Uma abordagem integrada para a segurança e os dispositivos necessários para que isso

aconteça siga estas construção

blocos:

■ Controle de ameaça: Regulamenta o acesso à rede, isola os sistemas infectados, impede

intrusões, e

Page 256: 31 Dias Para o CCNA

protege os ativos mediante a neutralização tráfego malicioso. Cisco dispositivos e aplicações que

oferecem

soluções de controle de risco incluem o seguinte:

- Cisco ASA 5500 Series Adaptive Security Appliances (ASA)

- Integrated Services Routers (ISR)

- Network Admission Control (NAC)

- Agente de Segurança da Cisco para Desktops

- Prevenção de intrusão de sistemas Cisco

■ Seguro comunicações: terminais de rede Protege com uma VPN. Os dispositivos que permitem

que um

organização para implantar uma VPN são roteadores Cisco ISR com uma solução de VPN Cisco

IOS, e os

Cisco ASA 5500 e switches Cisco Catalyst 6500.

■ controle de admissão de Rede: Fornece um método baseado em funções de prevenção não

autorizada

acesso a uma rede. Cisco oferece um aparelho NAC.

A política de segurança é o centro em que as quatro etapas da roda de segurança são baseadas:

Passo 1 Secure: a rede de Seguros pela aplicação da política de segurança e implementar o

seguinte

soluções de segurança:

- Ameaça de defesa usando o dispositivo de endurecimento técnicas, antivírus e spyware

Page 257: 31 Dias Para o CCNA

ferramentas.

- Sistemas de prevenção de intrusão ativamente parar o tráfego malicioso.

- Patch de vulnerabilidade para parar a exploração de vulnerabilidades conhecidas.

- Desativar serviços desnecessários.

- Inspeção Stateful e filtragem de pacotes.

- VPNs para criptografar o tráfego de rede ao atravessar a Internet pública.

- Confiança e restrições de identidade.

- Autenticação.

- Aplicação da Política.

Passo 2 Monitor: Monitoramento de segurança envolve métodos ativos e passivos de detectar

violações de segurança. Administradores de sistemas devem garantir que todos os hosts sensível

e vital

na rede estão sendo auditadas. Eles também devem ter o tempo para verificar e interpretar

o arquivo de entradas de log.

Um benefício adicional de monitoramento de rede é verificar se as medidas de segurança

implementadas

na Etapa 1 estão funcionando corretamente.

Passo 3 teste: Medidas de segurança são testados de forma proativa. Especificamente, a

funcionalidade do

soluções de segurança implementadas na Etapa 1 e da auditoria do sistema de detecção de

intrusão e

métodos implementados na Etapa 2 são verificados.

Passo 4 Melhorar: Analisar os dados coletados durante as fases de monitoramento e testes a fim

para desenvolver e implementar mecanismos de melhoria que aumentam a política de segurança

e resulta em adicionando itens para a Etapa 1. O ciclo repete agora com o Passo 1.

Page 258: 31 Dias Para o CCNA
Page 259: 31 Dias Para o CCNA

Dia 7

Conceitos ACL e configurações

Exame CCNA 640-802 Tópicos

■ Descrever a finalidade e os tipos de ACLs.

■ Configurar e aplicar ACLs com base em requisitos de filtragem de rede.

■ Configurar e aplicar uma ACL para limitar o acesso Telnet e SSH para o roteador usando CLI e

SDM.

Tópicos-chave

Uma das habilidades mais importantes que um administrador de rede precisa é de domínio de

listas de controle de acesso

(ACLs). Os administradores usam ACLs para interromper o tráfego ou permitir apenas o tráfego

Page 260: 31 Dias Para o CCNA

especificado ao parar todos os

outro tráfego em suas redes. ACLs padrão e estendidas podem ser usados para aplicar uma série

de

recursos de segurança, incluindo a política de roteamento baseado, qualidade de serviço (QoS),

Network Address

Translation (NAT), e Port Address Translation (PAT).

Você também pode configurar ACLs padrão e estendidas em interfaces de roteador para controlar

o tipo de tráfego

que é permitido através de um roteador dado. Hoje, nós revisamos o propósito e os tipos de ACLs

como

bem como a configuração e aplicação de ACLs para filtrar o tráfego.

Conceitos ACL

A operação padrão do roteador é encaminhar todos os pacotes, desde que existe uma rota para o

pacote e os

link está ativo. ACLs podem ser usadas para implementar um nível básico de segurança. Eles

não são, no entanto, o

única solução de segurança de uma grande organização gostaria de implementar. Na verdade,

aumentar a ACLs

latência de roteadores. Então, se a organização é muito grande com roteadores gestão do tráfego

de centenas

ou milhares de usuários, você mais do que provavelmente vai usar uma combinação de outras

implementações de segurança,

como um firewall PIX Cisco e serviços de autenticação.

Definição de uma ACL

Uma ACL é um script de configuração do roteador (uma lista de declarações) que controla se um

roteador permite

ou nega pacotes para passar com base em critérios encontrados no cabeçalho do pacote. Para

determinar se um

pacote deve ser permitido ou negado, é testado contra as declarações ACL em ordem seqüencial.

Quando uma instrução partidas, sem mais declarações são avaliadas. O pacote é permitidos ou

Page 261: 31 Dias Para o CCNA

negado. Há uma implícita negar qualquer declaração no final da ACL. Se um pacote não

corresponde

qualquer das declarações no ACL, ele é descartado.

ACLs de processamento de Interface

ACLs podem ser aplicadas a uma interface para o tráfego de entrada e saída. No entanto, você

precisa de um

ACL separada para cada direção.

Para tráfego de entrada, as verificações router para uma ACL de entrada aplicada à interface

antes de fazer uma

tabela de rotas de pesquisa. Então, para o tráfego de saída, o roteador garante que existe uma

rota para o destino

antes de verificar para ACLs. Finalmente, se uma declaração resultados ACL em um pacote é

descartado, o

roteador envia uma mensagem ICMP unreachable destino.

Tipos de ACLs

Page 262: 31 Dias Para o CCNA

ACLs pode ser configurado para filtrar qualquer tipo de tráfego do protocolo de camada de rede,

incluindo outros

protocolos como o AppleTalk e IPX. Para o exame CCNA, nos concentramos em IPv4 ACLs, que

vêm

nos seguintes tipos:

■ ACLs Padrão: filtra o tráfego baseado no endereço única fonte

■ Extended ACLs: Posso filtrar o tráfego baseado em origem e destino, protocolos específicos,

bem como a origem eo destino portas TCP e UDP

Você pode usar dois métodos para identificar as ACLs padrão e estendidas:

■ ACLs numeradas usar um número para identificação.

■ Named ACLs use um nome descritivo ou número de identificação.

Embora ACLs nomeado deve ser usada com alguns tipos de configurações de IOS que estão

além do

âmbito dos temas exame CCNA, eles não fornecem dois benefícios básicos:

■ Ao usar um nome descritivo (como BLOCK-HTTP), um administrador de rede pode mais

determinar rapidamente o propósito de uma ACL. Isto é particularmente útil

■ Reduza a quantidade de digitação você deve fazer para configurar cada declaração em uma

ACL nomeada, como

você vai ver na seção "Configurando ACLs nomeados."

Ambos ACLs numeradas e nomeadas pode ser configurado tanto para implementações padrão e

estendida ACL.

ACL Identificação

A Tabela 7-1 lista as séries de números diferentes ACL para o protocolo IPv4, bem como alguns

protocolos outras.

A tabela não é exaustiva.

Page 263: 31 Dias Para o CCNA

ACLs IP chamado dar-lhe mais flexibilidade no trabalho com as entradas de ACL. Além de usarnomes mais memorável, a outra grande vantagem de ACLs nomeados através numeradas ACLs é quevocê pode excluir instruções individuais em uma lista chamada IP de acesso.Com o Software Cisco IOS 12,3 Release, IP de acesso lista de inscritos seqüência de numeração foi introduzidatanto para ACLs numeradas e nomeadas. IP de acesso lista seqüência de numeração entrada fornece as seguintesbenefícios:■ Você pode editar a ordem das declarações ACL.■ Você pode remover as declarações individuais de uma ACL.■ Você pode usar o número de seqüência para inserir novas instruções para o meio da ACL.Números de seqüência são automaticamente adicionados à ACL, se não entrou explicitamente no momento daACL é criado. Não existe suporte para seqüência de numeração nas versões de software mais cedo do que CiscoIOS Software Lançamento 12,3, portanto, todas as adições ACL para versões anteriores do software sãocolocada no final da ACL.

Diretrizes de design ACL

Bem projetado e bem implementada ACLs adicionar um componente de segurança importantes para a sua rede.Siga estes princípios gerais para garantir que as ACLs que você cría tenham os resultados pretendidos:■ Com base nas condições de teste, escolher uma ACL padrão ou estendido, numeradas, ou nomeado.■ Apenas um ACL por protocolo, por direção, e por interface é permitido.■ Organize a ACL para permitir o processamento de cima para baixo. Organize a sua ACL para que oreferências mais específicas a uma rede ou sub-rede comparecer perante aqueles que são mais gerais.Condições lugar que ocorrem com maior freqüência antes que as condições que ocorrem com menor freqüência.■ Todas as ACLs conter uma implícita negar qualquer declaração no final.■ Criar a ACL antes de aplicá-lo a uma interface.■ Dependendo de como você aplica a ACL, a ACL filtra o tráfego tanto de passar pelo roteadorou ir de e para o roteador, como o tráfego de ou para as linhas vty.■ Você normalmente deve colocar ACLs estendido o mais próximo possível da fonte do tráfego quevocê deseja negar. ACLs padrão porque não especificar endereços de destino, você deve colocara ACL padrão o mais próximo possível para o destino do tráfego você deseja negar de modo que ofonte pode chegar a redes de intermediários.

Configurando ACLs numeradas padrão

ACLs padrão IPv4, que são numerados ACLs na faixa de 1 a 99 e 1300-1999 ouACLs nomeadas, filtrar pacotes com base em um endereço de origem e uma máscara, e permitir ou negar toda aProtocolo TCP / IP. Configurando um ACL requer duas etapas:Passo 1 Crie a ACL.Passo 2 Aplique a ACL.Vamos usar a topologia simples mostrado na Figura 7-2 para demonstrar como configurar ambos

Page 264: 31 Dias Para o CCNA

padrãoe ACLs estendidas.Figura 7-2 Configuração ACL Topologia

Numeradas padrão ACL: Rede de licença específicaCriar uma ACL para evitar o tráfego que não faz parte das redes internas (172.16.0.0/16) de viajarde qualquer uma das interfaces Ethernet.Passo 1 Crie a ACL.Use a lista de acesso comando de configuração global para criar uma entrada em um padrão IPv4ACL:

Page 265: 31 Dias Para o CCNA

Numeradas padrão ACL: Negar uma sub-rede específica

Criar uma ACL para evitar o tráfego que se origina a partir da sub-rede 172.16.4.0/24 de viajar para foraInterface Ethernet E0. Criar e aplicar a ACL com os comandos mostrado no Exemplo 7-2.

Esta ACL é projetado para bloquear o tráfego a partir de uma sub-rede específica, 172.16.4.0, e para permitir que todos os outrostráfego a ser encaminhado para fora E0.

Numeradas padrão ACL: Negar acesso Telnet ao Router

Para controlar o tráfego de entrada e saída do roteador (não através do router), negar o acesso Telnet aorouter através da aplicação de uma ACL para os portos vty. Restringir o acesso vty é principalmente uma técnica paraaumentar a segurança da rede e definindo quais endereços são permitidos o acesso Telnet para o roteadorProcesso EXEC. Criar e aplicar a ACL com os comandos mostrado no Exemplo 7-3.

Configurando Extended ACLs numeradas

Page 266: 31 Dias Para o CCNA

Para mais controle de tráfego de filtragem preciso, uso prolongado ACLs IP, que são numerados ACLs nofaixa de 100 a 199 e 2000-2699 ou são nomeados ACLs, que verificar a origem eo destinoEndereço IP. Além disso, no fim da instrução ACL estendida, você pode especificar o protocoloe opcional TCP ou aplicação UDP para filtrar com mais precisão. Para configurar numeradas estendidaIPv4 ACLs em um roteador Cisco, crie uma ACL estendida IP e ativar a ACL em uma interface.Para fins de exame CCNA, a sintaxe do comando estendido ACL é a seguinte:.

Extended ACL Numerada: Negar FTP a partir de sub-redes

Para a rede na Figura 7-2, crie uma ACL para evitar o tráfego FTP originário da sub-rede172.16.4.0/24 e indo para a sub-rede 172.16.3.0/24 de viajar para fora da interface Ethernet E0.Criar e aplicar a ACL com os comandos mostrado no Exemplo 7-4.

Cancelar

Page 267: 31 Dias Para o CCNA

A negar declarações negar o tráfego FTP a partir de sub-rede 172.16.4.0 a sub-rede 172.16.3.0. a autorização dedeclaração permite que todos os outros tráfegos IP fora da interface E0. Duas declarações devem ser inseridos para o FTPaplicação porque a porta 20 é usada para estabelecer, manter e encerrar uma sessão de FTP enquanto a porta21 é usado para a tarefa real de transferência de arquivos.Extended ACL Numerada: Negar Apenas Telnet a partir de sub-redeCriar uma ACL para impedir o tráfego de Telnet que se origina a partir da sub-rede 172.16.4.0/24 de viajara interface Ethernet E0. Criar e aplicar a ACL com os comandos mostrado no Exemplo 7-5.

Configurando ACLs Named

O chamado recurso de ACL permite identificar ACLs padrão e estendida com um alfanumérico

string (nome) em vez das representações numéricas.

Porque você pode excluir entradas individuais com ACLs nomeadas, você pode modificar seu

ACL sem

ter que excluir e depois reconfigurar o ACL inteira. Com o Cisco IOS Software Lançamento 12.3 e

mais tarde, você pode inserir entradas individuais usando um número de seqüência apropriada.

Nomeado Passos padrão ACL e sintaxe

A seguir estão os passos e sintaxe usada para criar um padrão chamado ACL:

Passo 1 Nome da ACL.

A partir de modo de configuração global, use o ip access-list comando nome padrão

ao nome do ACL padrão. Nomes ACL são alfanuméricos e deve ser único:

Router (config) ip nome padrão lista de acesso

Passo 2 Crie a ACL.

De modo padrão chamado de configuração ACL, use a permitir ou negar as declarações de

especificar uma ou mais condições para determinar se um pacote é transmitido ou

caiu. Se você não especificar um número de seqüência, IOS irá incrementar a seqüência

número por 10 para cada declaração que você digitar:

Router (config-std-NaCl) # [número de seqüência-] {permit | deny} sourcewildcard fonte

[log]

Passo 3 Aplique a ACL.

Ativar o ACL chamada em uma interface com o nome de comando ip access-group:

Router (config-if) # ip access-group nome [in | out]

Page 268: 31 Dias Para o CCNA

Nomeado ACL padrão: Negar um único host de um Dado

sub-rede

Para a rede mostrada anteriormente na Figura 7-2, crie uma ACL padrão chamado "encrenqueiro"

para

evitar que o tráfego que se origina a partir do host 172.16.4.13 de viajar para fora da interface

Ethernet E0.

Criar e aplicar a ACL com os comandos mostrado no Exemplo 7-6.

Extended Named Passos ACL e sintaxe

A seguir estão os passos e sintaxe usada para criar uma estendida chamado ACL:

Passo 1 Nome da ACL.

A partir de modo de configuração global, use o ip access-list comando nome estendido

ao nome do ACL estendida:

Router (config) nome ipaccess lista estendida

Passo 2 Crie a ACL.

A partir do modo de configuração chamado ACL estendida, use a permitir ou negar as

declarações para especificar

uma ou mais condições para determinar se um pacote é transmitido ou descartados:

Router (config-ext-NaCl) # [número de seqüência-] {deny |} permitir protocolo fonte

curinga-fonte [port operador] destino destino curinga [porto operador]

[estabelecido] [log]

Passo 3 Aplique a ACL.

Ativar o ACL chamada em uma interface com o nome de comando ip access-group:

Router (config-if) # ip access-group nome [in | out]

Nomeado ACL estendida: Negar um Telnet a partir de uma sub-rede

Usando a Figura 7-2 novamente, crie uma ACL estendida nomeada "badgroup" para impedir o

tráfego de Telnet que

origina-se da sub-rede 172.16.4.0/24 de viajar para fora da interface Ethernet E0. Criar e aplicar

o ACL com os comandos mostrado no Exemplo 7-7.

Page 269: 31 Dias Para o CCNA

Adicionando Comentários a ACLs nomeadas ou numeradas

Você pode adicionar comentários a ACLs usando o argumento de observação no lugar do permitir

ou negar.

Observações são afirmações descritivas você pode usar para melhor compreender e solucionar

qualquer chamado

ou numerada ACLs.

Exemplo 7-8 mostra como adicionar um comentário a uma ACL numerada.

ACLs complexo

ACLs padrão e estendida pode se tornar a base para outros tipos de ACLs que fornecem adicionaisfuncionalidade. Esses outros tipos de ACLs incluem o seguinte:■ ACLs dinâmico (lock-and-chave)■ Reflexive ACLs■ Time-based ACLsConfiguração destes tipos de ACL está além do escopo do exame CCNA, mas você deve pelo menosestar familiarizados com os conceitos por trás deles. Você pode rever os conceitos e configurações no seuRecursos estudo.

Page 270: 31 Dias Para o CCNA

Verificação e solução de problemas ACLimplementaçõesExame CCNA 640-802 Tópicos■ Verificar e monitorar ACLs em um ambiente de rede.■ Solucionar problemas ACL.

Tópicos-chave

Temas de hoje são bastante breve revisão em relação ao de ontem. Isso é para que você possa aproveitar a oportunidadepara revisar completamente implementações de ACL, incluindo sua configuração, resolução de problemas, verificação e.Hoje nós revemos os comandos de verificação e olhar para alguns cenários de resolução de problemas possível.

ACLs verificação

Quando você terminar de configurar uma ACL, use os comandos show para verificar a configuração. usar oshow access-lists de comando para exibir o conteúdo de todas as ACLs, como demonstrado no Exemplo 6-1.

Digitando o nome ou o número de ACL como uma opção para este comando, você pode exibir uma específicaACL. Para exibir apenas o conteúdo de todas as ACLs IP, use o comando show ip access-list.

Page 271: 31 Dias Para o CCNA

Observe na saída do comando show access-lists no Exemplo 6-1 que os números de seqüência sãoincrementado de 10 muito provavelmente porque o administrador não introduzir um número de seqüência. tambémnotar que este comando informa quantas vezes IOS tem acompanhado um pacote para uma declaração-25vezes no caso da declaração em primeiro lugar na ACL chamado ENG.O comando show ip interface exibe informações da interface IP e indica se qualquer IPACLs são definidas na interface. Na saída de ip comando show interface e0 mostrado no Exemplo 6 -2, ACL IP 1 foi configurado na interface E0 como uma ACL de entrada. Sem saída IP ACL temsido configurado na interface E0.

Finalmente, você também pode verificar a sua criação e aplicação ACL com o show running-configcomando (mostrado no Exemplo 6-3) ou show startup-config

Page 272: 31 Dias Para o CCNA

ACLs solução de problemas

Usando os comandos mostram descrito na seção anterior revela a maioria dos mais comunsACL erros antes que eles causem problemas na sua rede. Quando você solucionar problemas de uma ACL, verifique-contra as regras que você aprendeu sobre como criar ACLs corretamente. A maioria dos erros ocorrem porque estesregras básicas são ignoradas. Na verdade, os erros mais comuns estão entrando declarações ACL na erradaordem e não aplicação de critérios adequados para suas regras. Vamos olhar para uma série de problemas comunse suas soluções usando a topologia mostrada na Figura 6-1.

Page 273: 31 Dias Para o CCNA

Problema 1: Host não tem conectividade

Hospedeiro 192.168.10.10 não tem conectividade com o 192.168.30.12. A lista de acesso mostrado no Exemplo 6-4é aplicada de entrada para a interface do R3 s0/0/0.

Porque ACLs são processadas seqüencialmente até que uma correspondência é feita, o tráfego do host 192.168.10.10 énegado pela primeira afirmação. Declaração 20, que permite hospedar 192.168.10.10, nunca ficaprocessado. A solução é mudar a posição da declaração de 20 de modo que se trata antes da declaração10. Você pode fazer isso com os comandos mostrados no Exemplo 6-5.

Page 274: 31 Dias Para o CCNA

Primeiro, note que entrou no modo de configuração chamado ACL para editar os números de seqüênciapara o estendido numeradas ACL. Segundo, nós removemos declaração 20. Finalmente, reaplicado declaração20 com um número de seqüência novo inferiores 05/10 no exemplo. Aviso do showaccess-lists de saída que a ordem agora é declaração correta. Hospedeiro 192.168.10.10 será permitida,e todo o tráfego de outros da sub-rede 192.168.10.0/24 serão negados.

Problema 2: Protocolos negado

A rede 192.168.10.0/24 não pode usar TFTP para se conectar à rede 192.168.30.0/24. olista de acesso mostrado no Exemplo 6-6 é aplicado para a interface de entrada R1 Fa0 / 0 ..

A rede 192.168.10.0/24 não pode usar TFTP para se conectar à rede 192.168.30.0/24, porqueTFTP utiliza o protocolo de transporte UDP. Declaração de 30 em lista de acesso 120 permite todo o tráfego TCP outros.Porque TFTP utiliza o UDP, é implicitamente negado. A solução é substituir o tcp permitir que qualquer qualquerdeclaração com ip permitir que qualquer qualquer, como mostrado no Exemplo 6-7.

Repare que nós não tivemos de incluir um número de seqüência para o ip nova autorização qualquer declaração de qualquerporque esta declaração vem no final da lista. IOS irá incrementar automaticamente por 10.

Page 275: 31 Dias Para o CCNA

Problema 3: Telnet é permitido # 1

A rede 192.168.10.0/24 pode usar Telnet para conectar-se 192.168.30.0/24, mas esta ligaçãonão deve ser permitido. A lista de acesso é mostrado no Exemplo 6-8.

A rede 192.168.10.0/24 pode usar Telnet para conectar à rede 192.168.30.0/24, porqueTelnet na declaração de 10 de lista de acesso 130 está listado na posição errada. A porta de origem não seriaPorta telnet de 23, mas alguma porta escolhidos aleatoriamente numeradas acima de 1024. O número da porta de destino(ou aplicação) deve ser definido como Telnet como mostra a solução para este problema no Exemplo 6-9.

Problema 4: Telnet É admitidos # 2

Hospedeiro 192.168.10.10 pode usar Telnet para conectar-se 192.168.30.12, mas esta ligação não deve serpermitido. A lista de acesso é mostrado no Exemplo 6-10.

Host 192.168.10.10 pode usar Telnet para conectar-se 192.168.30.12 porque não há regras negar host192.168.10.10 ou de sua rede como fonte. Declaração de 10 nega a interface do roteador a partir do qual o tráfegoseria partida. No entanto, como pacotes Telnet partir do roteador, eles têm o endereço de origem192.168.10.10, não o endereço da interface do roteador. Exemplo 6-11 mostra a solução para este problema.

Page 276: 31 Dias Para o CCNA

Problema 5: É permitido Telnet # 3Host 192.168.30.12 pode usar Telnet para conectar-se 192.168.10.10, mas esta ligação não deve serpermitido. A lista de acesso mostrado no Exemplo 6-12 é aplicada de entrada para a interface do R3 s0/0/0.

Host 192.168.30.12 pode usar Telnet para conectar-se 192.168.10.10 por causa da direção em quelista de acesso 150 é aplicada à interface S0/0/0. Declaração de 10 nega o endereço de origem192.168.30.12, mas esse endereço seria a única fonte se o tráfego de saída na S0/0/0 foram,não de entrada. Exemplo 6-13 mostra a solução para este problema

Page 277: 31 Dias Para o CCNA

Dia 5

Conceitos NAT, Configuração e

Solução de problemas

Exame CCNA 640-802 Tópicos

■ Explicar o funcionamento básico do NAT.

■ Configurar NAT para os requisitos de determinada rede usando (CLI / SDM).

■ Solucionar problemas de NAT.

Tópicos-chave

Para lidar com o esgotamento de endereços IPv4, várias soluções de curto prazo foram

desenvolvidos. Um curto prazo

solução é utilizar endereços privados e Network Address Translation (NAT). NAT permite que no

interior

hosts da rede para pedir um endereço IP legítimos Internet ao acessar recursos da Internet.

Quando o

solicitado retorna tráfego, o endereço IP é legítima repurposed e disponíveis para a próxima

Internet

pedido por um host dentro. Usando NAT, administradores de rede precisam apenas um ou alguns

Page 278: 31 Dias Para o CCNA

endereços IP para

o roteador para fornecer para os anfitriões, ao invés de um único endereço IP para cada cliente

aderir à rede.

Hoje, nós revisamos os conceitos, configuração e resolução de problemas de NAT.

Conceitos NAT

NAT, definido na RFC 3022, tem muitos usos. Mas seu uso é fundamental para conservar

endereços IP, permitindo que as redes

usar endereços IP privados. NAT traduz não roteáveis, privado, endereços internos em roteáveis,

endereços públicos. NAT é também um firewall natural. Ele oculta os endereços IP de redes

externas.

Um dispositivo habilitado para NAT normalmente opera na fronteira de uma rede stub. Na Figura

5-1, R2 é o

roteador de borda.

Em NAT terminologia, a rede interna é o conjunto de redes que estão sujeitas a tradução (a cada

rede na região sombreada na Figura 5-1). A rede externa refere-se a todos os outros endereços.

Figura 5-2 mostra como fazer referência aos endereços ao configurar NAT.

■ endereço Dentro local: O mais provável é um endereço privado. Na figura, o endereço IP

192.168.10.10

atribuído ao PC1 é um endereço dentro de local.

■ Dentro endereço global: Um endereço válido público que o host dentro é dado quando ele sai

do NAT

router. Quando o tráfego de PC1 é destinada para o servidor web em 209.165.201.1, R2 deve

traduzir

o endereço dentro do local para um endereço dentro global, que é 209.165.200.226, neste caso.

■ endereço de Fora global: Um endereço de IP acessível atribuído a um host na Internet. Por

exemplo,

o servidor web pode ser contatado pelo endereço IP 209.165.201.1.

■ endereço Outside local: O endereço local IP atribuído a um host na rede externa. Na maioria

dos

situações, este endereço é idêntico ao endereço externo global de que o dispositivo fora. (Fora

endereços locais estão fora do escopo da CCNA.)

Figura 5-1 Topologia NAT

Page 279: 31 Dias Para o CCNA

Um exemplo de NAT

Os passos seguintes ilustram o processo de NAT quando PC1 envia o tráfego para a Internet:

1. PC1 envia um pacote destinado à Internet para R1, o gateway padrão.

2. Encaminha o pacote para R1 R2, como dirigido por sua tabela de roteamento.

3. R2 refere-se a sua tabela de roteamento e identifica o próximo hop como o roteador ISP. Em

seguida, verifica a

ver se o pacote corresponde aos critérios especificados para a tradução. R2 tem um ACL que

identifica

a rede de dentro como um host válido para a tradução. Portanto, ele traduz um endereço IP

dentro de locais

endereço para um endereço IP dentro mundial, que neste caso é 209.165.200.226. Ele armazena

esta

mapeamento dos locais de endereços global na tabela NAT.

Page 280: 31 Dias Para o CCNA

4. R2 modifica o pacote com o novo endereço IP de origem (o endereço dentro global) e envia-lo ao roteador do ISP.5. O pacote finalmente chega ao seu destino, que envia sua resposta para o interior globaisendereço 209.165.200.226.6. Quando as respostas do destino chegar de volta em R2, consulta a tabela NAT para coincidir com adentro de endereços global para o endereço correto no interior local. R2 em seguida, modifica o pacote como endereço dentro do local (192.168.10.10) e envia para R1.7. R1 recebe o pacote e encaminha para PC1.NAT dinâmico e estáticoOs dois tipos de tradução NAT são as seguintes:■ NAT dinâmico: Utiliza um pool de endereços públicos e atribui-los em um primeiro a chegar, primeiro a ser servidobase. Quando um host com um endereço IP privado pedidos de acesso à Internet, o NAT dinâmicoescolhe um endereço IP a partir do conjunto que já não esteja em uso por outro host.■ NAT estático: Utiliza um mapeamento um-para-um dos endereços locais e globais, e esses mapeamentospermanecem constantes. NAT estática é particularmente útil para servidores web ou hosts que deve ter umEndereço consistente, que é acessível a partir da Internet.Sobrecarga NATNAT sobrecarga (às vezes chamado Port Address Translation [PAT]) mapas IP múltiplos privadosendereços para um único endereço IP público ou alguns endereços. Para fazer isso, cada endereço privado também érastreados por um número de porta. Quando uma resposta volta do exterior, números de porta para determinarqual cliente o roteador NAT traduz os pacotes.Figura 5-3 e os passos a seguir ilustram o processo de sobrecarga NAT.

1. PC1 e PC2 enviar pacotes destinados à Internet.

2. Quando os pacotes chegam ao R2, sobrecarga NAT altera o endereço de origem para o

interior globais

Page 281: 31 Dias Para o CCNA

Endereço IP e mantém os números de porta atribuído (1555 e 1331, neste exemplo) para

identificar

o cliente a partir do qual o pacote foi originado.

3. R2 atualiza sua tabela NAT. Observe as portas atribuídas. R2 em seguida, encaminha

os pacotes para o

Internet.

4. Quando as respostas do servidor web, R2 usa a porta de origem de destino para traduzir

o pacote para

o cliente correto.

Sobrecarga NAT tenta preservar a porta de origem original. No entanto, se essa porta de

origem já está

utilizado, sobrecarga NAT atribui o primeiro número de porta disponível a partir do início do

grupo de porta apropriada 0-511, 512-1023, ou 1024-65535.

Benefícios NAT

Os benefícios de usar NAT incluem o seguinte:

■ NAT conserva espaço de endereçamento IP registado porque, com a sobrecarga NAT,

hosts internos podem

compartilhar um único endereço IP público para todas as comunicações externas.

■ NAT aumenta a flexibilidade de conexões à rede pública. Diversas piscinas, backup

piscinas, e balanceamento de carga piscinas podem ser implementadas para garantir uma

conexão de rede pública.

■ NAT permite que o regime existente de permanecer apoiando um regime público novo

endereçamento.

Isto significa que uma organização pode mudar ISPs e não precisa alterar qualquer de

suas interior

clientes.

■ NAT fornece uma camada de segurança de rede, porque as redes privadas não

anunciam seus

dentro de endereços locais fora da organização.

NAT Limitações

As limitações do uso NAT incluem o seguinte:

Desempenho ■ é degradada: NAT aumenta os atrasos de comutação porque traduzir cada

IP

endereço dentro os cabeçalhos dos pacotes leva tempo.

■ funcionalidade End-to-end é degradada: Muitos protocolos de Internet e aplicativos

Page 282: 31 Dias Para o CCNA

dependem

end-to-end funcionalidade, com pacotes sem modificações encaminhadas a partir da

origem para o destino.

■ rastreabilidade End-to-end IP está perdido: ele se torna muito mais difícil rastrear os

pacotes que

sofrer alterações de pacotes inúmeros endereços sobre vários saltos NAT, fazendo

resolução de problemas

desafiador.

■ Tunneling é mais complicada: usando NAT também complica protocolos de

encapsulamento, tais como

IPsec, porque NAT modifica valores nos cabeçalhos que interferem com a integridade

cheques

feito por IPsec e outros protocolos de tunelamento.

■ Serviços podem ser interrompidos: Os serviços que requerem a abertura de conexões

TCP do

rede externa, ou protocolos de apátridas, tais como aqueles que utilizam UDP, pode ser

interrompida.

2.

300 31 dias antes de seu exame CCNAConfigurando NAT estática

Estática NAT é um mapeamento um-para-um entre um endereço dentro e um endereço

externo. NAT estática

permite conexões iniciadas por dispositivos externos para dispositivos dentro. Por

exemplo, você pode querer

mapear um endereço dentro global para um endereço local específico dentro que é

atribuído ao seu servidor web.

Os passos ea sintaxe para configurar NAT estática são os seguintes:

Etapa 1 Configurar a tradução estática de um endereço dentro de locais para um endereço

dentro global:Router(config)#ip nat inside source static local-ip global-ipStep 2 Specify the

inside interface:Router(config)#interface type numberRouter(config-if)#ip nat insideStep 3

Specify the outside interface:Router(config)#interface type numberRouter(config-if)#ip nat

outsideFigure 5-4 shows a sample static NAT topology.

Page 283: 31 Dias Para o CCNA

Esta

configuração estaticamente mapeia o endereço IP dentro de 192.168.10.254 para o

endereço externo

de 209.165.10.254. Isso permite que hosts externos para acessar o servidor web interno

usando o IP público

endereço 209.165.10.254.

Configurando NAT dinâmico

NAT dinâmico IP mapas privados para endereços públicos retirados de um pool de NAT.

os passos

e sintaxe para configurar o NAT dinâmico são as seguintes:

Page 284: 31 Dias Para o CCNA

Configura

ndo NAT Overload

Comumente com redes domésticas e pequenas empresas e médias empresas, o ISP

atribui apenas um

endereço IP registado para seu roteador. Portanto, é necessário sobrecarga que um

endereço IP para

que os clientes dentro de múltiplos pode usá-lo simultaneamente.

A configuração é similar à dinâmica NAT, só que em vez de um pool de endereços, a

interface

palavra-chave é usado para identificar o endereço IP externo. Portanto, nenhuma piscina

NAT está definido. o

palavra-chave sobrecarga permite a adição do número de porta para a tradução.

Exemplo 5-3 mostra como R2 na Figura 5-5 seria configurado para sobrecarregar seu IP

registrado

endereço na interface serial.

Exemplo 5-3 Configurando NAT para Overload Endereço uma interface

Page 285: 31 Dias Para o CCNA

Você

também pode sobrecarregar um pool de NAT de endereços, que podem ser necessárias

em organizações que

potencialmente ter muitos clientes ao mesmo tempo a necessidade de traduções. Em

nosso exemplo anterior, 5-2,

NAT é configurado com um pool de 15 endereços (209.165.200.226 a 209.165.200.240).

Se, em qualquer

dado momento, R2 é traduzir todos os 15 endereços, os pacotes para o cliente 16 será

colocado em fila para

processamento e, possivelmente, timeout. Para evitar esse problema, adicione a

sobrecarga palavra-chave para o comando

que se liga a lista de acesso à piscina NAT da seguinte forma:Curiosame

nte, IOS irá utilizar o primeiro endereço IP na piscina, até que se esgote de números de

porta disponíveis.

Em seguida, ele irá se mover para o próximo endereço IP na piscina.

Verificando NAT

Suponha que tanto o NAT estáticas e dinâmicas topologias mostradas nas Figuras 5-4 e 5-

5 são configurados

em R2 com o servidor dentro traduzidos para estaticamente 209.165.200.254 eo NAT-

POOL1

configurado com a palavra-chave sobrecarga. Ainda supor que dois clientes no interior de

ter ligado para

um host remoto. Você pode usar o comando show ip nat traduções para verificar as

traduções atuais

na tabela NAT R2, como mostrado no Exemplo 5-4.

Page 286: 31 Dias Para o CCNA

A entrada estática está sempre em cima da mesa. Atualmente, existem duas entradas

dinâmicas. Note-se que ambos os

dentro clientes receberam o mesmo dentro de endereços global, mas os números de porta

são diferentes.

O show ip nat comando estatísticas mostrado no Exemplo 5-5 apresenta informações

sobre o total

número de traduções ativas, os parâmetros de configuração do NAT, quantos endereços

estão na piscina,

e quantas foram alocados.

Exemplo 5-5 Verificando Operações NAT com show ip nat estatísticasAlternativa

mente, use o comando show run e procure NAT, lista de comandos de acesso, interface,

ou

piscina comandos relacionados com os valores exigidos. Examine a saída desses

comandos com cuidado

para descobrir quaisquer erros.

Às vezes é útil para limpar as entradas dinâmicas mais cedo do que o padrão. Isto é

especialmente verdadeiro

ao testar a configuração do NAT. Para limpar entradas dinâmicas antes do tempo limite

expirou, use

do clear ip nat translation * comando EXEC privilegiado.Solução de problemas NAT

Quando você tem problemas de conectividade IP em um ambiente NAT, muitas vezes é

difícil determinar

a causa do problema. O primeiro passo para resolver o seu problema é excluir NAT como

a causa.

Siga estes passos para verificar se NAT está funcionando como esperado:

Passo 1 Com base na configuração, definir claramente o que NAT é suposto conseguir.

Page 287: 31 Dias Para o CCNA

este

pode revelar um problema com a configuração.

Passo 2 Verifique se traduções corretas existem na tabela de tradução usando o show ip

nat

traduções de comando.

Passo 3 Use os comandos claros e debug para verificar se NAT está funcionando como

esperado. verificar

para ver se entradas dinâmicas são recriados depois de serem apagadas.

Passo 4 comentário em detalhes o que está acontecendo com o pacote, e verificar que os

roteadores têm a correta

informações de roteamento para encaminhar o pacote.Use o comando debug ip nat para

verificar o funcionamento do recurso NAT, exibindo informações

sobre todos os pacotes que o router traduz, como mostrado no Exemplo 5-6.Você pode

ver que hospedam dentro 192.168.10.10 iniciado o tráfego para o host fora 209.165.201.30

e tem

foi traduzido para o endereço 209.165.200.226.

Ao decodificar a saída de depuração, note que os seguintes símbolos e valores indicam:

■ *: O asterisco ao lado NAT indica que a tradução está ocorrendo no fast-ligado

caminho. O primeiro pacote em uma conversa é sempre processo de comutação, que é

mais lento. o

pacotes restantes percorrer o caminho mais rápido de comutação se uma entrada de

cache existe.

■ s =: Refere-se ao endereço IP de origem.

■ abcd-> wxyz: Indica que abcd endereço de origem é traduzida em wxyz

■ d =: Refere-se o endereço IP de destino.

Page 288: 31 Dias Para o CCNA

■ [xxxx]: O valor entre parênteses é o número de identificação IP. Esta informação pode

ser útil

para a depuração, porque permite correlação com traços de outros pacotes de

analisadores de protocolo.

Page 289: 31 Dias Para o CCNA

WAN e

VPN Technologies

Exame CCNA 640-802 Tópicos

■ Descrever os diferentes métodos para conectar a uma WAN.

■ Descrever a tecnologia VPN (importância, benefícios, papel, impacto, componentes).

Tópicos-chave

Hoje é uma revisão turbilhão de tecnologias WAN, opções de conexão WAN e VPN.

Porque

esses tópicos do exame são de natureza conceitual, que não requer habilidades de

configuração, leia este comentário várias

vezes. Se necessário, consulte os recursos do seu estudo para mais uma análise em

profundidade.

Conceitos de Tecnologia WAN

Page 290: 31 Dias Para o CCNA

Padrões de acesso WAN tipicamente descrevem ambos os métodos de camada física de

entrega e os dados da camada de enlace

requisitos, incluindo endereçamento físico, controle de fluxo, e encapsulamento. Os

protocolos da camada física

descrevem como fornecer conexões elétricas, mecânica, operacional e funcional a um

fornecedor de serviços. Os dados protocolos de camada de enlace de definir como os

dados são encapsulados e os mecanismos

para transferir os quadros resultantes. Uma variedade de tecnologias são usadas, tais

como Frame Relay e

Asynchronous Transfer Mode (ATM). Alguns destes protocolos usar o mecanismo de

enquadramento mesmas

como de Alto Nível Data Link Control (HDLC), um padrão ISO, ou um de seus

subconjuntos ou variantes.

Componentes e Dispositivos WAN

Figura 4-1 ilustra a terminologia comumente usada para descrever física conexões WAN.

Os componentes WAN mostrado na Figura 4-1 são descritos em maiores detalhes na lista

a seguir:

■ Customer Premises Equipment (CPE): Os dispositivos localizados nas instalações da

WAN

assinante. O assinante possui ou aluga o CPE.

■ Data Communications Equipment (DCE): Consiste em dispositivos que colocar dados

sobre o local

loop. O DCE principalmente fornece uma interface para conectar os assinantes para a

nuvem WAN.

■ Data Terminal Equipment (DTE): Os dispositivos de cliente que passar os dados de um

cliente

rede para o DCE para transmissão através da WAN.

■ lacete local: O cabo de cobre ou fibra que liga o CPE o escritório central (CO) do

fornecedor de serviços. O lacete local é às vezes chamado de "última milha".

■ ponto de demarcação: um ponto onde o equipamento do cliente é separado do provedor

de serviços

equipamento. É o lugar onde a responsabilidade para as mudanças de conexão do cliente

ao prestador do serviço.

■ Central de escritório (CO): Uma instalação de provedor de serviço local ou edifício onde

os cabos locais apontam para

Page 291: 31 Dias Para o CCNA

de longo curso, totalmente digital, linhas de fibra óptica de comunicações através de um

sistema de interruptores e

outros equipamentos.WANs

usam vários tipos de dispositivos que são específicos para ambientes WAN:

■ Modem: modula e demodula entre os sinais analógico e digital.

■ CSU / DSU: A unidade de serviço de canal (CSU) e uma unidade de serviço de dados

(DSU), muitas vezes combinados em

uma única peça de equipamento para fornecer o término para o sinal digital e garantir a

conexão

integridade através da correção de erros e de monitoramento de linha. Ele interpreta

quadros da

transportadora em quadros que os dispositivos de LAN pode interpretar e vice-versa.

■ servidor de Acesso: Concentrados dial-in e dial-out de comunicação do usuário. Um

servidor de acesso

pode ter uma mistura de interfaces analógicas e digitais e centenas de apoio simultâneo

usuários.

■ WAN switch: Um dispositivo de internetworking multiporta usados em redes de

operadoras. estes dispositivos

tipicamente mudar tráfego, tais como Frame Relay, ATM, X.25 ou e operam na camada de

enlace de dados

Page 292: 31 Dias Para o CCNA

do modelo de referência OSI. Rede telefónica pública comutada (PSTN) muda também

pode

ser usado dentro da nuvem para o circuito de comutação de conexões, tais como (ISDN)

ou dial-up analógico.

■ Router: Fornece internetworking e portas de acesso WAN interface que são utilizados

para conectar-se a

da rede do provedor de serviço.

■ router Core: Um roteador provedor de serviços que reside no meio ou espinha dorsal da

WAN e não na sua periferia. Para cumprir esse papel, um roteador deve ser capaz de

suportar múltiplas

interfaces de telecomunicações de alta velocidade em uso no núcleo WAN, e deve ser

capaz de encaminhar pacotes IP na velocidade máxima em todas as interfaces. O roteador

deve suportar também

os protocolos de roteamento a ser utilizado no núcleo.WAN

normas camada física

A camada física da WAN também descreve a interface entre o DTE e DCE. Um roteador

Cisco

interface serial é capaz de se conectar a um DSU CSU / que usa qualquer uma das

seguintes normas:

Page 293: 31 Dias Para o CCNA

■ EIA/TIA-232: Este protocolo permite velocidades de sinal de até 64 kbps em uma de 25

pinos D-conector

em curtas distâncias. Foi anteriormente conhecido como RS-232. A ITU-T V.24

especificação é efetivamente

o mesmo.

■ EIA/TIA-449/530: Este protocolo é mais rápido (até 2 Mbps) versão do EIA/TIA-232. Ele

usa um

36-pin D-conector e é capaz de cabos de grande comprimento. Existem diversas versões.

esse padrão

é também conhecido como RS-422 e RS-423.

■ V.35: Este é o padrão ITU-T para comunicações síncrona entre um acesso à rede

dispositivo e uma rede de pacotes. Originalmente especificado para suportar taxas de

dados de 48 kbps, ele agora suporta

velocidades de até 2.048 Mbps usando um conector de 34 pinos retangulares.

■ X.21: Este protocolo é um padrão ITU-T para comunicações síncronas digital. Ele usa

um

15-pin D-conector.

■ EIA/TIA-612/613: (não mostrado na Figura 4-3) Esta norma descreve a série de alta

velocidade

Interface (HSSI) protocolo, que permite o acesso a serviços de até 52 Mbps em uma

Dconnector de 60 pinos.

Observe na Figura 4-3 que a conexão router no topo é o mesmo, independentemente da

conexão

usado por CSU / DSU. O administrador de rede simplesmente escolhe o cabo correto para

o CSU / DSU

Page 294: 31 Dias Para o CCNA

conexão. Li

nk WAN protocolos de dados

Cada tipo de conexão WAN usa um protocolo de camada 2 para encapsular um pacote

enquanto ele estiver atravessando a

Link WAN. Para garantir que o protocolo de encapsulamento correto é usado, o

encapsulamento de camada 2

tipo usado para cada interface do roteador de série deve ser configurado, se diferente do

padrão. o

escolha de protocolos de encapsulamento depende da tecnologia WAN e os

equipamentos. o mais

comuns protocolos de enlace de dados WAN são as seguintes:

■ HDLC (padrão Cisco)

■ Point-to-Point Protocol (PPP)

■ Frame Relay

■ Asynchronous Transfer Mode (ATM)

WAN Switching

Redes WAN comutada são categorizados como de comutação de circuitos ou comutação

por pacotes. A circuitswitched

rede é aquela que estabelece um circuito dedicado (ou canal) entre os nós e terminais

antes que os usuários podem se comunicar. Embora o circuito é dedicado para a duração

do

chamada, a ligação física é social por vários usuários finais através de um processo

chamado de time-division multiplexing

(TDM). TDM dá a cada conversa uma parte da conexão de cada vez e garante que um

Page 295: 31 Dias Para o CCNA

fixa capacidade de conexão é disponibilizado para o assinante. PSTN e ISDN são dois

tipos de

comutação de circuitos tecnologia que pode ser usada para implementar uma WAN em um

ambiente corporativo.

Em contraste com a comutação de circuitos, comutação de pacotes de dados de tráfego se

divide em pacotes que são encaminhadas através

uma rede compartilhada. Redes de comutação de pacotes não necessitam de um circuito a

ser estabelecido, e eles

permitir que muitos pares de usuários finais para se comunicar através do mesmo canal.

Os comutadores em um de comutação por pacotes

rede utilize um dos métodos a seguir para determinar que ligam o pacote deve ser

enviado em seguida, das informações de endereçamento em cada pacote:■ sistemas sem

conexão, tais como a Internet, carregam informações de endereçamento completa em

cada

pacote. Cada switch de pacotes ou roteador deve avaliar o endereço IP de destino para

determinar

para onde enviar o pacote.

■ Conexão sistemas orientados a predeterminar rota que um pacote, e cada pacote só tem

de

realizar um identificador, como o Data Link Connection Identifiers (DLCIs) em Frame Relay.

Redes comutadas por pacotes pode estabelecer rotas através dos interruptores para

determinado fim-de-final conexões.

Estas rotas são chamados de circuitos virtuais (VCs). A VC é um circuito lógico entre duas

redes

dispositivos para ajudar a garantir comunicações confiáveis. Dois tipos de VCs existem:

■ circuito virtual permanente (PVC): Um circuito permanentemente estabelecido virtual que

consiste em

um modo de transferência de dados. PVCs são usados em situações em que a

transferência de dados entre dispositivos

é constante.

■ Circuito virtual comutado (SVC): A VC que é dinamicamente estabelecida sob demanda

e encerrado

quando a transmissão é completa. Comunicação através de uma SVC consiste em três

fases:

estabelecimento de circuito, a transferência de dados, e terminação de circuito. SVCs são

Page 296: 31 Dias Para o CCNA

usados em situações em

qual a transmissão de dados entre dispositivos é intermitente, em grande parte para

economizar custos.Opções de Conexão WAN

Muitas opções para implementação de soluções WAN atualmente disponíveis. Eles

diferem em tecnologia,

velocidade e custo. Figura 4-4 fornece uma visão de alto nível da conexão de vários links

WAN

opções, e as seções que seguem descrevem essas opções em mais detalhes.

Figura 4-4 Ligação WAN Opções de link

Linhas

alugadas são geralmente mais caros que os serviços comutados por causa do dedicado ",

sempre

em "custo da prestação de serviços WAN para o cliente. A capacidade dedicada remove a

Page 297: 31 Dias Para o CCNA

latência e

jitter e fornece uma camada de segurança porque o tráfego apenas o cliente é permitido no

link.

Tabela 4-1 lista as linhas alugadas disponíveis e seus tipos de taxa de bits capacidades.Circuit-

Switched Opções de Conexão

Os dois tipos principais de comutação de circuitos conexões dial-up são analógicas e

ISDN.

analógico Dialup

Analógico usando dialup modems e linhas telefônicas é uma solução ideal de conexão

WAN que intermitente,

transferências de baixo volume de dados são necessários. Figura 4-6 mostra uma conexão

dial-up analógico típico.Estes

relativamente conexões de baixa velocidade dialup são suficientes para a troca de

números de vendas,

preços, relatórios de rotina, e-mail. Usando dialup automática à noite ou nos finais de

semana para arquivos grandes

Page 298: 31 Dias Para o CCNA

transferências e backup de dados pode tirar vantagem de menor off-peak tarifas (taxa da

linha). as vantagens

de modem e linhas analógicas são a simplicidade, disponibilidade e baixo custo de

implementação. as desvantagens

são as taxas de dados de baixo e um tempo de conexão relativamente longo.

ISDN

ISDN voltas ao lacete local em uma conexão digital TDM, o que lhe permite transportar

sinais digitais

que resultam em maior capacidade de comutação de ligações. A conexão de 64 kbps usa

portador (B) canais

para transportar voz ou dados e uma sinalização, canal delta (D) para configuração de

chamadas e outros fins.

Existem dois tipos de interfaces ISDN:

■ Interface de Taxa Básica (BRI): Fornece dois de 64 kbps B canais para a transferência

de voz ou de dados e

um adolescente de 16 kbps canal D utilizado para sinalização de controle.

■ Interface de Taxa Primária (PRI): Oferece 23 canais B com 64 kbps e um canal D

com 64 kbps na América do Norte, para uma taxa de bits total de até 1,544 Mbps. Europa

usa 30 B

canais e um canal D, para uma taxa de bits total de até 2,048 Mbps.

Figura 4-7 ilustra as várias diferenças entre linhas ISDN BRI e PRI.

Packet Switched-Opções de Conexão

Os mais comuns de comutação de pacotes tecnologias utilizadas em WANs corporativas

atuais incluem legado

X.25, Frame Relay e ATM.

X.25

X.25 é um legado de protocolo de camada de rede. SVCs são estabelecidos através da

rede para intermitentes

uso de aplicativos como leitores de ponto-de-venda do cartão. X.25 redes variam de 2.400

bps até 2

Mbps e agora estão em declínio dramático, sendo substituído por novas tecnologias como

Frame Relay,

ATM, e DSL.

Frame Relay

Figura 4-8 mostra uma rede de retransmissão simplificado Frame

Page 299: 31 Dias Para o CCNA

Frame

Relay X.25 difere de várias maneiras. Mais importante, ele é um protocolo muito mais

simples,

estritamente operacional na camada 2, enquanto X.25 fornece adicionalmente Layer 3

serviços. Ao contrário X.25,

Frame Relay implementa nenhum erro ou controle de fluxo. O manuseio simplificado de

quadros leva a

Page 300: 31 Dias Para o CCNA

redução de latência, e as medidas tomadas para evitar o acúmulo de quadro de

interruptores intermediários ajudam a reduzir

jitter. Frame Relay oferece taxas de dados até 4 Mbps, com alguns provedores que

oferecem taxas ainda mais elevadas.

VCs Frame Relay são identificados exclusivamente por um DLCI, o que garante a

comunicação bidirecional

de um dispositivo DTE para outro. A maioria das conexões Frame Relay são PVCs e não SVCs. ATM

é baseado em uma arquitetura baseada em células, em vez de em uma arquitetura

baseada em quadros. As células ATM são

sempre um comprimento fixo de 53 bytes. A célula ATM contém um cabeçalho ATM de 5

bytes seguido por 48

bytes de payload ATM. Pequenos, células de tamanho fixo são bem adaptados para o

transporte de tráfego de voz e vídeo,

porque este tráfego é intolerante de atraso. Vídeo e tráfego de voz não tem que esperar

por uma maior

pacote de dados a ser transmitido. Embora ATM é menos eficiente que Frame Relay por

causa de seus 5

byte por sobrecarga celular, que oferece velocidades de conexão de T1/E1 para OC-12

(622 Mbps) e superior.

Opções de conexão Internet

Opções de conexão de banda larga normalmente são usados para conectar funcionários

Page 301: 31 Dias Para o CCNA

telecommuting a um

site corporativo através da Internet. Essas opções incluem DSL, cabo, wireless, e Metro

Ethernet.

DSL

Tecnologia DSL, mostrado na Figura 4-10, é uma tecnologia de conexão always-on que

usa existentes

par trançado de linhas telefônicas para o transporte de alta largura de banda de dados e

fornece serviços IP para assinantes.Tecnologia

s atuais DSL uso de codificação sofisticada e técnicas de modulação para obtenção de

dados

taxas de até 8,192 Mbps. A variedade de tipos de DSL, padrões e tecnologias emergentes

existe.

DSL é agora uma escolha popular para a empresa os departamentos de TI para apoiar os

trabalhadores para casa. Geralmente, um

assinante não pode escolher para se conectar a uma rede corporativa diretamente.

Cable Modem

Cable modems fornecer uma conexão always-on e uma instalação simples. Figura 4-11

mostra como

um assinante liga um roteador computador ou LAN para o modem a cabo, o que traduz o

digital

sinais em freqüências de banda larga usada para a transmissão em uma rede de televisão

a cabo.

Page 302: 31 Dias Para o CCNA

Figura 4-11 Teleworker conexão Cable Modembanda

larga sem fio

Até recentemente, a principal limitação de acesso sem fio foi a necessidade de estar

dentro do alcance de um

roteador sem fio ou um modem sem fio que tem uma conexão com fio à Internet. O novo

seguintes

desenvolvimentos na tecnologia de banda larga sem fio estão mudando essa situação:

■ Municipal Wi-Fi: Muitas cidades começaram a criação de redes sem fio municipal. alguns

dos

essas redes oferecem acesso de alta velocidade à Internet para livre ou para

substancialmente menos do que o

preço dos serviços de banda larga.

■ WiMAX: Worldwide Interoperability for Microwave Access (WiMAX) é uma nova IEEE

802,16

tecnologia que está apenas começando a entrar em uso. Ele fornece serviço de alta

velocidade de banda larga

com acesso wireless e oferece ampla cobertura como uma rede de telefonia celular, em

vez de através de

pequena Wi-Fi hotspots.

■ Internet por satélite: Normalmente usado por usuários rurais onde o cabo eo DSL não

estão disponíveis.

metro Ethernet

Metro Ethernet utiliza chaves IP-aware Ethernet na nuvem do prestador de serviços de

rede para oferecer

empresas convergentes de voz, dados e serviços de vídeo a velocidades Ethernet. Alguns

benefícios do Metro

Page 303: 31 Dias Para o CCNA

Ethernet incluem o seguinte:

■ Redução de despesas e administração: permite que as empresas de forma barata

conectar vários

locais em uma área metropolitana uns aos outros e à Internet sem a necessidade de caros

conversões para ATM ou Frame Relay.

■ Fácil integração com as redes existentes: Conecta facilmente para LANs Ethernet

existentes.

■ a produtividade dos negócios aprimorada: Metro Ethernet permite às empresas

aproveitar

de melhoria de produtividade aplicações IP que são difíceis de implementar em TDM ou

Frame Relay

redes, tais como comunicações IP hospedado, VoIP e streaming e vídeo broadcast.

Escolhendo uma opção de ligação WAN

Tabela 4-2 compara as vantagens e desvantagens das várias opções de conexão WAN revista.

VPN

Tecnologia

Page 304: 31 Dias Para o CCNA

Uma rede privada virtual (VPN) é uma conexão criptografada entre redes privadas ao

longo de um público

rede como a Internet. Em vez de usar um dedicado Layer 2 de conexão, como um

alugadas

linha, uma VPN usa conexões virtuais chamados túneis VPN, que são encaminhadas

através da Internet

da rede privada da empresa para o local remoto ou host do empregado.

Benefícios VPN

Benefícios de VPN incluem o seguinte:

Poupança ■ Custo: Elimina a necessidade de caros dedicados links WAN e bancos de

modem.

■ Segurança: usa criptografia avançada e protocolos de autenticação que proteger os

dados de não-autorizado

acesso.

Escalabilidade ■: Pode-se adicionar grandes quantidades de capacidade de infra-estrutura

sem adicionar significativo.

■ Compatibilidade com tecnologia de banda larga: suportados pelos prestadores de

serviços de banda larga para

trabalhadores móveis e teletrabalhadores podem tirar proveito de sua casa Internet de alta

velocidade

serviço para acessar suas redes corporativas.

Tipos de acesso VPN

Dois tipos de acesso VPN existem:

■ Site-to-site VPNs: Conecte redes inteiras entre si. Por exemplo, eles podem se conectar

uma

rede de filiais a uma rede sede da empresa, como mostrado na Figura 4-12. cada site

está equipado com um gateway VPN, como um roteador, firewall, VPN concentrador, ou de

segurança

aparelho. Na figura, uma filial remota usa uma VPN site-to-site para conectar-se com a

sede social.

Page 305: 31 Dias Para o CCNA

■ VPNs de

acesso remoto: O acesso remoto VPNs permitem hosts individuais, tais como

teletrabalhadores,

usuários móveis, e os consumidores extranet, para acessar uma rede corporativa com

segurança pela

Internet, como mostrado na Figura 4-13. Cada host tem tipicamente VPN cliente software

carregado ou usa

um cliente baseado na web.VPN

Componentes

Figura 4-14 ilustra uma topologia VPN típica. Componentes necessários para estabelecer

Page 306: 31 Dias Para o CCNA

esta VPN incluem

o seguinte:

■ Uma rede corporativa existente com servidores e estações de trabalho

■ Uma conexão à Internet

■ gateways VPN, tais como roteadores, firewalls, concentradores VPN, e ASA, que agem

como terminais

estabelecer, gerenciar e controlar as conexões VPN

■ software apropriado para criar e gerenciar túneis VPN

Figura 4-14 Componentes VPNEstabelec

er conexões VPN seguras

VPNs seguras de dados através do encapsulamento e criptografá-los. Em relação a VPNs,

encapsulamento e

de criptografia são definidos como segue:

■ Encapsulamento também é chamado de túnel, porque encapsulamento transmite dados

de forma transparente

da rede de origem à rede de destino através de uma infra-estrutura de rede compartilhada.

■ códigos de criptografia de dados em um formato diferente usando uma chave secreta,

que é então utilizado na

outro lado da conexão para descriptografar.Cancelar VPN Tunneling

Tunelamento usa três classes de protocolos:

■ protocolo Carrier: O protocolo através do qual a informação viaja (Frame Relay, ATM,

MPLS).

Page 307: 31 Dias Para o CCNA

■ Encapsulating protocolo: O protocolo que é enrolado em torno dos dados originais (GRE,

IPSec,

L2F, PPTP, L2TP).

■ protocolo de Passageiros: O protocolo através do qual os dados originais foi realizada

(IPX, AppleTalk,

IPv4, IPv6).

Figura 4-15 ilustra uma mensagem de email que viajam através da Internet através de uma

conexão VPN.

Figura 4-15 encapsulamento de pacotes em um túnel VPN.Algoritmo

s de criptografia VPN

O grau de segurança oferecido por qualquer algoritmo de criptografia depende do

comprimento da chave. alguns dos

os algoritmos de criptografia mais comuns eo tamanho das chaves que eles usam são as

seguintes:

■ Data Encryption Standard (DES) algoritmo: Usa uma chave de 56 bits, garantindo alto

desempenho

criptografia. DES é um sistema de encriptação de chave simétrica.

■ algoritmo Triple DES (3DES): Uma nova variante do DES que criptografa com uma

chave, decifra

com uma chave diferente, e em seguida, criptografa uma última vez com outra tecla.

■ Advanced Encryption Standard (AES): AES fornece maior segurança do que DES e é

computacionalmente mais eficiente do que 3DES. AES oferece três tamanhos de chave:

128 -, 192 - e 256 -

chaves bit.

■ Rivest, Shamir e Adleman (RSA): Um sistema de criptografia de chave assimétrica. As

Page 308: 31 Dias Para o CCNA

teclas de usar um pouco

comprimento de 512, 768, 1024, ou maior.

Criptografia simétrica é quando a chave de criptografia e chave de decodificação são os

mesmos. com assimétrica

criptografia, que são diferentes.hashes

As VPNs utilizam um código de autenticação com chave de hash mensagem (HMAC)

integridade de dados algoritmo para

garantir a integridade de uma mensagem e autenticidade sem o uso de mecanismos

adicionais.

A segurança criptográfica do HMAC depende da força de criptografia do subjacente

função hash, sobre o tamanho da chave e de qualidade, eo tamanho do comprimento de

saída de hash em bits. os dois

algoritmos são comuns HMAC

■ Message Digest 5 (MD5): Usa um 128-bit chave secreta compartilhada.

■ Secure Hash Algorithm 1 (SHA-1): Usa uma chave de 160 bits secreta.

Figura 4-16 mostra um exemplo usando MD5 como algoritmo HMAC.

Figura 4-16 Criando e Verificando um Message Digest

Page 309: 31 Dias Para o CCNA

Um HMAC

tem dois parâmetros: a mensagem de entrada e uma chave secreta compartilhada

conhecida apenas para a mensagem

originador e receptores pretendidos. Na Figura 4-16, ambos R1 e R2 conhecer a chave

secreta compartilhada.

O processo na Figura 4-16 usa as seguintes etapas:

1. R1 usa MD5 para executar a função hash, que gera um valor hash. Este valor de hash

é então anexada à mensagem original e enviado para R2.

2. R2 o remove o valor hash da mensagem original, executa a operação mesmo hash, e

em seguida, compara seu valor de hash com o valor de hash enviado pelo R1. Se os dois

hashes corresponderem, o

integridade dos dados não foi comprometida.

VPN Autenticação

O dispositivo na outra extremidade do túnel VPN devem ser autenticados antes da

comunicação

caminho é considerado seguro. Os dois métodos de autenticação de pares são os

Page 310: 31 Dias Para o CCNA

seguintes:

■ chave pré-compartilhada (PSK): Uma chave secreta é compartilhada entre as duas

partes usando um canal seguro

antes ele precisa ser usado.

■ assinatura RSA: Usa a troca de certificados digitais para autenticar os pares.

Protocolos de segurança IPsec

IPsec explicita as mensagens necessárias para proteger as comunicações VPN mas

depende existentes

algoritmos. Os dois principais protocolos IPsec quadro são os seguintes:

■ Authentication Header (AH): Usado em sigilo, não é exigido ou permitido. AH

fornece autenticação e integridade dos dados para pacotes IP passou entre dois sistemas.

Ele verifica

os criadores de todas as mensagens e que qualquer mensagem passada não foi

modificada durante a

trânsito. AH não fornece confidencialidade de dados (criptografia) de pacotes. Usado

sozinho, o

Protocolo AH fornece proteção fraca. Conseqüentemente, ele é usado com o protocolo

ESP para fornecer

criptografia de dados e recursos de tamper-aware de segurança.

■ encapsular Security Payload (ESP): Fornece confidencialidade e autenticação por

criptografar o pacote IP. Embora a criptografia e autenticação são opcionais no ESP, em

mínimo, um deles deve ser selecionado.

IPsec depende de algoritmos existentes para implementar a criptografia, autenticação e

troca de chaves.

Figura 4-17 mostra como IPsec está estruturado.

IPsec fornece a estrutura, eo administrador escolhe os algoritmos usados para

implementar a

serviços de segurança nesse âmbito. Figura 4-17 ilustra como, o administrador deve

preencher o

IPsec quatro praças quadro:

■ Escolha um protocolo IPsec.

■ Escolha o algoritmo de criptografia que é apropriado para o nível desejado de segurança.

■ Escolha de um algoritmo de autenticação para assegurar a integridade dos dados.

■ O último quadrado é o Diffie-Hellman algoritmo (DH), que estabelece a partilha de

informações-chave entre pares. Escolher qual grupo a utilizar-DH1, DH2, ou DH5.

Page 311: 31 Dias Para o CCNA

Dia 4 325

dia 3

PPP de configuração e

Solução de problemas

Exame CCNA 640-802 Tópicos

■ Configurar e verificar uma conexão WAN básica serial.

■ Configurar e verificar uma conexão PPP entre roteadores Cisco.

Page 312: 31 Dias Para o CCNA

Tópicos-chave

Hoje fazemos uma revisão de configuração básica WAN serial e verificação com tanto link

de dados de alto nível

Control (HDLC) e Point-to-Point Protocol (PPP). HDLC é importante por duas razões:

■ É a base fundamental da maioria protocolo WAN todos os outros, incluindo PPP e Frame

Relay.

■ A versão da Cisco HDLC é o encapsulamento padrão para interfaces seriais síncronas

em

Routers Cisco.

PPP é suportado apenas em aproximadamente qualquer hardware que você escolher para

conectar-se. Além disso, oferece uma PPP

pacote de benefícios adicionais que podem seduzi-lo para usá-lo em vez de HDLC, mesmo

em um ambiente

com todos os routers Cisco.

HDLC

Alto Nível Data Link Control (HDLC) usa transmissão serial síncrona para fornecer livre de

erros

comunicação entre dois pontos. HDLC define uma camada de estrutura de enquadramento

2, que permite a

controle de fluxo e controle de erro por meio do uso de confirmações. Cada quadro tem o

mesmo formato,

se é um quadro de dados ou um quadro de controle. HDLC é a configuração padrão no

Cisco síncrona

interfaces seriais.

encapsulamento HDLC

Embora Cisco HDLC (também chamado cHDLC) é proprietário, Cisco permitiu rede muitos

outros

fornecedores de equipamentos para implementá-lo. Frames HDLC Cisco conter um campo

para identificar a rede

protocolo a ser encapsulado. Figura 3-1 compara padrão HDLC a Cisco HDLC.

Page 313: 31 Dias Para o CCNA

As

descrições a seguir resumem os campos ilustrados na figura:

■ Bandeira: O quadro começa e termina sempre com uma bandeira de 8 bits com o padrão

01111110. quando

frames são transmitidos consecutivamente, a bandeira final do primeiro quadro é usado

como bandeira de início de

o próximo quadro.

■ Endereço: No ponto-a-ponto ligações HDLC, este campo está vazio.

■ Controle: O campo de controle utiliza três formatos, dependendo do tipo de quadro

HDLC utilizados:

- Informação de quadro (I): I-frames carregam informações da camada superior e algumas

informações de controle.

- Frame (S) Supervisão: S-frames fornecer informações e controle são seqüenciados.

- Frame (U) não numerados: U-frames fins de controle de apoio e não são seqüenciados.

■ Protocol (utilizado apenas em Cisco HDLC): Este campo especifica o tipo de protocolo

encapsulado

dentro do quadro (como 0x0800 para IP).

■ Dados: um campo de comprimento variável que contém pacotes Layer 3.

■ Frame Check Sequence (FCS): Normalmente, uma verificação de redundância cíclica

(CRC) usado pelo

receptor para verificar se há erros.

Configurando HDLC

Por padrão, você usa Cisco HDLC como um protocolo ponto-a-ponto sobre as linhas

alugadas entre dois Cisco

dispositivos. Se você se conectar a um dispositivo não-Cisco que não suporta Cisco HDLC,

use síncrona

Page 314: 31 Dias Para o CCNA

PPP.

Se o método de encapsulamento padrão foi alterado, use o comando HDLC

encapsulamento para

reativar HDLC como mostra a seguinte configuração:Verificand

o HDLC

Quando configurado ou na configuração padrão, "HDLC Encapsulation" deve ser reflectida

no comando

saída do comando show interfaces, como mostrado no Exemplo 3-1.

HDLC Exemplo 3-1 Verificando com interfaces mostramConceitos

PPP

PPP fornece várias funções básicas, mas importantes, que são úteis em uma linha

dedicada que conecta

dois dispositivos, como revista à lista a seguir:

■ Definição de um cabeçalho e um trailer que permite a entrega de um quadro de dados

sobre o link

■ Suporte para ligações síncronas e assíncronas

■ Um campo de tipo de protocolo no cabeçalho, permitindo que múltiplos protocolos da

Camada 3 para passar sobre o mesmo

link

■ Built-in ferramentas de autenticação: Password Authentication Protocol (PAP) e

Challenge

Handshake Authentication Protocol (CHAP)

■ protocolos de controle para cada protocolo de camada superior que cavalga sobre PPP,

permitindo uma fácil integração

e apoio desses protocolos

O formato do quadro PPP

Page 315: 31 Dias Para o CCNA

Uma das características mais importantes incluídas no padrão PPP é o campo de

protocolo padronizado,

que identifica o tipo de pacote dentro do quadro. Observe na Figura 3-2 que o PPP foi

construído em cima

o quadro HDLC. O quadro HDLC mostrado é o formato Cisco.

PPP define um conjunto de Layer 2 mensagens de controle que executam várias funções

de controle de link. estes

funções de controle se dividem em duas categorias principais:

■ Aqueles necessários independentemente do protocolo de camada 3 enviados através do

link

■ Aqueles específicos para cada protocolo de camada 3

A ligação PPP Control Protocol (LCP) implementa as funções de controle que funcionam

da mesma,

independentemente do protocolo de camada 3.Para

recursos relacionados a quaisquer protocolos de camada superior, geralmente protocolos

da Camada 3, PPP utiliza uma série de

PPP controle de protocolos (CP), como o IP Control Protocol (IPCP). PPP usa uma

instância da LCP por

link, e uma CP para cada protocolo de camada 3 definida no link. Por exemplo, em um link

PPP usando

IPv4, IPv6, e Cisco Discovery Protocol (CDP), no link utiliza uma instância da LCP, mais

IPCP

(para IPv4), IPv6CP (para IPv6), e CDPCP (para CDP). Comumente na literatura, você vai

ver

esses referidos coletivamente como protocolos de rede Controle (PCN).

Page 316: 31 Dias Para o CCNA

Detecção

de ligação em loop

LCP avisos looped ligações rapidamente, usando um recurso chamado números mágicos.

Mensagens PPP LCP incluem

um número mágico, que é diferente em cada roteador. Se uma linha for repetido (como

durante o teste por um

Telco técnico), o roteador recebe uma mensagem de LCP com o seu número mágico

própria em vez de ficar

uma mensagem com o número mágico do outro router. PPP ajuda o router reconhecer um

link em loop

rapidamente para que ele possa derrubar a interface e, possivelmente, usar uma rota

alternativa. Se o roteador pode

logo perceberá que o link está em loop, ele pode colocar a interface em um "para baixo e

para baixo" status e

os protocolos de roteamento podem mudar suas atualizações de roteamento baseado no

fato de que o link está em baixo.

Detecção de erro melhorada

Quando uma rede possui links redundantes, você pode usar PPP para monitorar a

frequência com que

quadros são recebidos com erro. Após a taxa de erro configurado foi excedido, PPP pode

derrubar

a interface, permitindo que os protocolos de roteamento instalar uma rota melhor backup.

PPP LCP analisa o erro

as taxas em um link utilizando um recurso chamado PPP Monitoramento da qualidade da

ligação (LQM).PPP Multilink

Em uma configuração redundante entre dois roteadores, roteadores usam o

balanceamento de carga de camada 3 alternando

Page 317: 31 Dias Para o CCNA

tráfego entre os dois links, que nem sempre resulta em compartilhar verdadeiramente

equilibrada do tráfego.

Multilink PPP carga equilibra o tráfego igualmente sobre as ligações ao mesmo tempo

permitindo que a camada 3 lógica em cada

router para tratar as ligações paralela como um único link. Quando encapsular um pacote,

o pacote PPP fragmentos

em quadros menores, o envio de um fragmento sobre cada link. Multilink PPP permite o

encaminhamento de camada 3

tabelas para usar uma única rota que se refere às ligações combinado, mantendo a tabela

de roteamento de menor dimensão.

PPP autenticação

PAP e CHAP autenticar os pontos finais em cada extremidade de um link ponto-a-ponto

seriais. CHAP é

o método preferido hoje, porque o processo de identificação utiliza valores ocultos com

uma mensagem

Digest 5 (MD5) one-way hash, que é mais seguro do que as senhas em texto claro enviado

pelo PAP.

A Figura 3-3 mostra os diferentes processos utilizados por PAP e CHAP. Com PAP,

username e

senha são enviados na primeira mensagem. Com CHAP, o protocolo começa com uma

mensagem chamada

desafio, que pede a outro roteador para enviar o seu nome de usuário e senhaPAP é

menos seguro que o PAP CHAP porque envia o hostname ea senha em texto claro

Page 318: 31 Dias Para o CCNA

na mensagem. CHAP vez disso, usa um algoritmo de hash unidirecional, com entrada para

o algoritmo ser um

senha que jamais cruza o link, mais um número aleatório compartilhada. O desafio CHAP

afirma o

número aleatório; ambos os roteadores são pré-configurados com a senha. O roteador

desafiou corre o

algoritmo de hash usando o número de recém-aprendidas aleatórias e a senha secreta e

envia o

resultados de volta para o roteador que enviou o desafio. O roteador que enviou o desafio

é executado o mesmo

algoritmo usando o número aleatório (enviada através do link) ea senha não (enviados

através da

link). Se os resultados corresponderem, as senhas devem ser iguais. Com o número

aleatório, o valor de hash é

cada vez diferentes.básicos

PPP

Configurando o PPP exige apenas o encapsulamento de comando ppp nas duas pontas do

link.

Exemplo 3-2 mostra uma configuração simples usando os dois roteadores mostrado na

Page 319: 31 Dias Para o CCNA

Figura 3-4.

O comando show interfaces na parte inferior do exemplo mostra a saída normal quando o

link é para cima e de trabalho. Algumas linhas para a saída, as frases destacadas mostram

que PPP é

de fato configurado, e que LCP terminou o seu trabalho com sucesso, como foi observado

com o LCP "

Frase "Open. Além disso, a saída lista o fato de que dois CPs, CDPCP e IPCP, também

com sucesso

foi habilitado para todas as boas indicações que o PPP está funcionando

corretamente.CHAP

Apesar de CHAP é opcional, deve ser configurado para fornecer um link ponto-a-ponto

segura. o

versão mais simples do CHAP configuração requer apenas alguns comandos. A

configuração usa um

senha configurada em cada roteador. Como alternativa, a senha pode ser configurado em

um

autenticação externa, autorização e contabilidade servidor (AAA) fora do roteador. a

configuração

passos são os seguintes:

Etapa 1 Configurar os roteadores hostnames 'usando o hostname nome do comando de

configuração global.

Page 320: 31 Dias Para o CCNA

Etapa 2 Configurar o nome do outro roteador, ea senha secreta compartilhada, usando o

nome de usuário

nome password comando de configuração global.

Passo 3 Ative o CHAP na interface em cada roteador, usando o ppp autenticação chap

interface do subcomando.

Exemplo 3-3 mostra um exemplo de configuração utilizando os roteadores na Figura 3-4.

Porque os hostnames

já estão configurados, esse passo não é mostrado.Observe

que, logo que CHAP é configurado em R1, a interface vai para baixo. Então, em R2, após

a

senha estão configurados corretamente, a interface de volta para cima. Finalmente, ele vai

para baixo brevemente antes

voltando-se quando CHAP está configurado no R2.

Os próprios comandos não são complicados, mas é fácil misconfigure os hostnames e

senhas. Observe que cada roteador refere-se a outro roteador hostname é o nome de

usuário

comando, mas ambos os roteadores devem configurar o valor mesma senha. Além disso,

não são apenas as senhas

(itsasecret neste caso) case sensitive, mas os nomes de host, como mencionado no nome

de usuário

comando, também também são case sensitive.

CHAP porque é uma função da LCP, se o processo de autenticação falhar, LCP não for

concluída,

ea interface cai para um estado interface "de cima para baixo".

PAP

Como CHAP, PAP é opcional. Você só iria usá-lo se um dos dispositivos não suporta

CHAP.

Page 321: 31 Dias Para o CCNA

PAP usa os comandos mesma configuração CHAP, exceto que a autenticação pap ppp

comando é usado em vez da autenticação ppp cap. O resto dos comandos de verificação

Configura

ção de Frame Relay e

Solução de problemas

Exame CCNA 640-802 Tópicos

■ Configurar e verificar Frame Relay em roteadores Cisco.

■ Solucionar problemas de implementação WAN.

Tópicos-chave

Hoje nós terminamos nossa revisão dos tópicos do exame CCNA com um olhar para

Frame Relay e WAN básica

solução de problemas. Frame Relay é atualmente o mais popular escolha para

implementações de WAN.

Portanto, você deve ter uma compreensão básica de Frame Relay, incluindo a sua

estrutura conceitual,

configuração, verificação e. Como um tópico final, analisamos vários erros WAN e seus

causas potenciais.

Page 322: 31 Dias Para o CCNA

Conceitos Frane Relay

Frame Relay é uma tecnologia orientada a conexão de link de dados que é otimizado para

proporcionar alto desempenho

e eficiência. Para a proteção de erro, ele se baseia em protocolos de camada superior e

confiável

fibra e redes digitais.

Frame Relay define o processo de interligação entre o roteador eo Frame Relay local de

o prestador de serviços, como mostrado na Figura 2-1.Dispositivo

s conectados a uma queda de Frame Relay WAN em duas categorias a seguir:

■ equipamentos terminais de dados (DTE): Exemplos de dispositivos DTE são de acesso

Frame Relay

Dispositivos (FRAD), roteadores e pontes.

■ equipamentos de comunicação de dados (DCE): Na maioria dos casos, as chaves em

uma WAN são carcaça

Interruptores de revezamento.Frame Relay Componentes

Frame Relay fornece um meio para a multiplexação estatística muitas conversas de dados

lógicos, que se refere

como circuitos virtuais (VC), através de uma ligação única transmissão física através da

atribuição de identificadores de conexão

para cada par de dispositivos DTE. O serviço de provedor de equipamentos de comutação

constrói uma tabela de comutação

que mapeia o identificador de conexão com os portos de saída. Quando um frame é

recebido, o dispositivo de comutação

analisa o identificador de conexão e fornece o quadro para a porta de saída associada. a

completa

caminho para o destino é estabelecida antes da transmissão do primeiro quadro. Figura 2-

2 ilustra

uma conexão Frame Relay e identifica os vários componentes dentro de Frame Relay.

Page 323: 31 Dias Para o CCNA

Os

seguintes termos são usados com freqüência em discussões Frame Relay:

■ taxa de acesso Local: A taxa na qual os dados trafegam dentro ou fora da rede,

independentemente da

outras configurações.

■ Virtual circuito (VC): Circuito lógico, unicamente identificado por um identificador de

conexão de enlace de dados

(DLCI), que é criado para assegurar a comunicação bidirecional de um dispositivo DTE

para outro.

■ circuito virtual permanente (PVC): Fornece conexões que são estabelecidas de forma

permanente

usado para transferências freqüente e consistente de dados.

■ Circuito virtual comutado (SVC): Fornece conexões temporárias que são usados em

situações

que exigem apenas a transferência de dados entre dispositivos DTE esporádicos em toda

a rede Frame Relay.

■ identificador de conexão de link de dados (DLCI): contém um número de 10 bits no

campo de endereço do

Quadro de cabeçalho Frame Relay que identifica o VC. DLCIs têm significado local, pois o

referências identificador do ponto entre o roteador local eo Frame Relay mudar para locais

qual a DLCI está conectado. Portanto, os dispositivos em extremidades opostas de uma

conexão pode usar

diferentes valores DLCI para se referir a mesma conexão virtual ..Conforme mostrado na

Page 324: 31 Dias Para o CCNA

Figura 2-2, Router A tem dois circuitos virtuais que estão configuradas em uma física

interface. Um DLCI de 100 identifica o VC que se conecta ao roteador B. A DLCI de 400

identifica

o VC que se conecta ao Router C. No outro extremo, um número DLCI diferentes podem

ser usados

para identificar a VC.

■ Taxa de Informação Comprometida (CIR): Quando a subscrição de um serviço Frame

Relay, você

especificar o CIR, que é a taxa para acesso local exemplo, 56 kbps ou T1. Normalmente,

você

são igualmente convidados a especificar um CIR para cada DLCI. Se você enviar

informações mais rápido que o CIR em

um DLCI dado, a rede flags alguns quadros com um pouco de descarte elegíveis (DE).

■ Inverse Address Resolution Protocol (ARP): Um método de dinamicamente associar a

rede

endereço da camada do roteador remoto com um DLCI local.

■ Local Management Interface (LMI): Um padrão de sinalização entre o roteador

(dispositivo DTE)

eo interruptor do relé locais Frame (dispositivo DCE), que é responsável por gerenciar a

conexão

e manutenção de status entre o roteador eo switch Frame Relay.

■ notificação de congestionamento explícito Encaminhar (FECN): Um bit no campo de

endereço do Frame Relay

cabeçalho do quadro. Se a rede está congestionada, dispositivos DCE (switches Frame

Relay) definir o bit FECN

valor dos quadros a 1 para sinalizar a jusante dispositivos DTE que o controle de fluxo

pode ser garantida.

■ notificação de congestionamento explícito para trás (BECN): Um bit no campo de

endereço do quadro

Cabeçalho frame relay. Funciona como o bit FECN mas viaja na direção oposta,

informando

upstream dispositivos DTE que o congestionamento está ocorrendo e que o controle de

fluxo pode ser garantida.

Frame Relay Topologias

Frame Relay permite a interconexão de seus sites remotos em uma variedade de

Page 325: 31 Dias Para o CCNA

topologias.

Figura 2-3 ilustra estas topologias, que são descritos na lista que se segue.

Figura Frame Relay 03/02 Topologias

Dia 2 339

Completa-Mesh

Parcial-Mesh

Estrela (Hub-and-Spoke)■ parcial- ■

topologia parcial de malha: Nem todos os sites têm acesso direto a todos os outros sites.

■ topologia de malha completa: Todos os roteadores têm VCs a todos os outros destinos.

Use a n (n - 1) / 2 formula

para calcular o número total de links que são necessários para implementar uma topologia

full-mesh,

onde n é o número de pontos finais (nós).Inverse

ARP e Conceitos LMI

Roteadores podem detectar automaticamente o seu DLCI local do interruptor locais Frame

Relay usando o

LMI protocolo. Em seguida, o DLCI local podem ser mapeados dinamicamente para a

camada de roteador de rede remota

endereços com Inverse ARP.

Page 326: 31 Dias Para o CCNA

Conforme mostrado na Figura 2-5, usando Inverse ARP, o roteador da esquerda pode

detectar automaticamente o

endereço IP remoto router e depois mapeá-lo para o DLCI local. Neste caso, o DLCI local é

de 500

mapeado para o endereço IP 10.1.1.1.

Figura 2-5 Quadro Mapping Endereço reléQuadro de

sinalização de relé é necessária entre o roteador eo switch Frame Relay. Figura 2-6

mostra como a sinalização é usado para obter informações sobre o DLCIs diferentes.O LMI é

um padrão de sinalização entre o roteador eo switch Frame Relay. O LMI é

responsável por gerenciar a conexão e manutenção do status entre os dispositivos.

Embora o LMI é configurável, com início em Cisco IOS Release 11.2, o roteador Cisco

tenta

autosense que LMI digite o switch Frame Relay está usando. O roteador envia uma ou

mais completa

Solicitações de status LMI para o switch Frame Relay. O switch Frame Relay responde

com um ou mais tipos de LMI, eo router configura-se com o tipo de LMI última recebida.

roteadores Cisco

suporta os seguintes três tipos LMI: Cisco, ANSI, e Q 933A.

Quando o roteador recebe informações LMI, ele atualiza seu status VC para um dos

seguintes três estados:

Page 327: 31 Dias Para o CCNA

■ atividade: Indica que a conexão está ativa e VC que os roteadores podem trocar dados

através da

Rede Frame Relay.

■ Inativos: Indica que a conexão local para o switch Frame Relay está funcionando, mas o

conexão de roteador remoto para o switch Frame Relay remoto não está funcionando.

■ Deleted: Indica que seja não LMI está sendo recebido do switch Frame Relay ou

nenhuma

serviço existe entre o roteador eo interruptor do relé locais Frame.

Inverse ARP e LMI Operação

O seguinte é um resumo de como Inverse ARP e LMI sinalização trabalhar com um Frame

Relay

conexão:

1. Cada roteador se conecta ao switch Frame Relay através de um serviço canal de

serviço / unidade de dados

unidade (CSU / DSU).

2. Quando o Frame Relay é configurado em uma interface, o roteador envia um inquérito

sobre a situação LMI

mensagem para o switch Frame Relay. A mensagem informa o interruptor do status do

roteador e

pede a chave para o status da conexão do router VCs.

3. Quando o switch Frame Relay recebe o pedido, ele responde com uma mensagem de

status LMI

que inclui o DLCIs local do PVC para os roteadores remoto para qual roteador o local

pode enviar dados.

4. Para cada DLCI ativo, cada roteador envia um pacote ARP Inverso para se apresentar.

Figura 2-7 ilustra as quatro primeiras etapas deste processo.

Page 328: 31 Dias Para o CCNA

Quando

um roteador recebe uma mensagem de ARP Inverso, ele cria uma entrada de mapa em

seu Frame Relay

tabela de mapa que inclui o DLCI local eo remoto router endereço da camada de rede.6. A

cada 60 segundos, os roteadores enviam mensagens Inverse ARP em todos os DLCIs

ativo. A cada 10 segundos,

o roteador intercâmbio de informações LMI com o switch (keepalives).

7. O roteador altera o status de cada DLCI para ativos, inativos, ou excluído, com base na

LMI

resposta do switch Frame Relay.

Figura 2-8 ilustra os passos 5-7 deste processo.

Figura 2-8 Etapas da Inverse ARP e Operação LMI ContinuaçãoConfigura

ndo e Verificando Frame Relay

A lista a seguir resume o quadro de etapas de configuração Relay.

Etapa 1 Configurar a interface física de usar encapsulamento Frame Relay

(encapsulamento

Page 329: 31 Dias Para o CCNA

frame-relay interface do subcomando).

Etapa 2 Configurar um endereço IP na interface ou subinterface (endereço ip

subcomando).

Etapa 3 (opcional) manualmente definir o tipo de LMI em cada interface física serial (frame-

relay

lmi-tipo de interface subcomando).

Passo 4 (Opcional) Altere a partir do padrão de encapsulamento cisco para ietf fazendo o

seguinte:

a. Para todos os VCs na interface, adicionar a palavra-chave ietf para o encapsulamento

frame-relay interface do subcomando.

b. Para um único VC, adicione a palavra-chave ietf ao frame-relay interface interface dlci

subcomando (ponto-a-ponto subinterfaces apenas) ou para o frame-relay

comando map.

Passo 5 (Opcional) Se você não estiver usando o (padrão) Inverse ARP para mapear o

DLCI para o nexthop

endereço IP do roteador, define mapeamento estático usando o frame-relay map ip dlci

ipaddress

subinterface transmissão subcomando.

Passo 6 Em subinterfaces, associar uma (ponto-a-ponto) ou mais (multiponto) DLCIs com

o

subinterface em uma de duas maneiras:

a. Usando o frame-relay interface-dlci subinterface dlci subcomando

b. Como um efeito colateral de mapeamento estático usando o frame-relay map ip dlci

ipaddress

transmissão subinterface subcomando

Malha completa com uma sub-rede

O primeiro exemplo mostra o mais breve possível Frame Relay uma configuração que usa

apenas o

dois primeiros passos do checklist de configuração neste capítulo. Para a topologia

mostrada na Figura 2-9,

configurar uma malha completa rede Frame Relay utilizando 10.1.1.0/24 subnet. Usar

configurações padrão para LMI,

Inverse ARP, e encapsulamento. Exemplos 2-1, 2-2, e 2-3 mostram a configuração

completa usando

EIGRP como o protocolo de roteamento.

Page 330: 31 Dias Para o CCNA

Figura 2-9 topologia de malha completa com uma sub-rede

Esta

configuração simples aproveita as seguintes configurações padrão IOS:

■ O tipo LMI é automaticamente detectado.

Page 331: 31 Dias Para o CCNA

■ O encapsulamento (default) é a Cisco, em vez de IETF.

■ PVC DLCIs são aprendidas através de mensagens de status LMI.

■ Inverse ARP é ativada (por padrão) e é acionado quando a mensagem de status

declarando que

os VCs estão acima é recebido.

Configurando o encapsulamento

Se um dos roteadores em uma malha completa, uma configuração de sub-rede não

suporta o Frame Relay Cisco

encapsulamento, mudar o encapsulamento para IETF nos roteadores Cisco com o

seguinte comando:

Router (config-if) # encapsulation frame-relay ietf

Configurando o tipo de LMI

LMI opera entre o roteador local eo interruptor do relé locais Frame. O tipo de mensagem

LMI

utilizado pela central local Frame Relay pode precisar ser embutida no roteador local, seja

porque a versão do IOS não suporta autosensing ou política de administração de rede

requer

que o tipo de LMI ser documentado na interface para verificação e solução de problemas.

Suponha que o switch Frame Relay usado por R2 é um switch ANSI. O comando a seguir

alterar o tipo de LMI em R2 para usar o ANSI tipo LMI:

R2 (config) # interface de série 0/0/0

R2 (config-if) # frame-relay lmi-type ansi

A configuração LMI é uma configuração por interface física, mesmo se subinterfaces são

utilizados, de modo que o framerelay

lmi tipo de comando é sempre um subcomando sob a interface física.Cancelar

Configurando mapas relé estático de quadros

Embora o DLCIs para cada PVC são mostrados na Figura 2-9, que não eram necessários

para o nosso fundamental

Configuração de Frame Relay. Inverse ARP mapeadas automaticamente o endereço IP

remoto com o

DLCI local necessário para atingir a rede remota. Este processo dinâmico pode ser

verificado com o

show frame-relay pvc e mostrar frame-relay map como mostrado no Exemplo 2-4 para R2.

Page 332: 31 Dias Para o CCNA

Embora em

uma rede de produção você provavelmente usaria Inverse ARP, para o exame, é

necessário

saber como configurar as declarações de comando static mapa. Exemplo 2-5 lista as

Frame Relay estática

mapa para os três routers mostrado na Figura 2-9, juntamente com a configuração usada

para desativar ARP Inverso.Nota A

palavra-chave de transmissão é necessária quando o roteador precisa enviar transmissões

ou

multicasts para a vizinha router, por exemplo, para dar suporte a mensagens do protocolo

de roteamento

como Hellos.

Malha parcial com uma sub-rede por PVC

Page 333: 31 Dias Para o CCNA

A rede na Figura 2-10 é uma modificação da Figura 2-9. R2 agora está servindo como

roteador hub

para o raio roteadores R1 e R2. Isso reduz o custo da implementação do Frame Relay

PVCs três a dois PVCs. Esta configuração usa uma sub-rede por PVC e ponto-a-ponto

subinterfaces.

Exemplos 2-6 2-8 através de mostrar a configuração para esta rede.

Figura 2-10 topologia de malha parcial com uma sub-rede por PVC

Dois novos

comandos criar a configuração necessária com o ponto-a-ponto subinterfaces. Primeiro, o

interface serial 0/0/0.201 comando ponto-a-ponto cria número 201 sob subinterface lógica

Page 334: 31 Dias Para o CCNA

0/0/0 interface física serial em R2. O frame-relay interface-dlci 201 subinterface

subcomando

em seguida, informa ao roteador que DLCI único é associado a esse subinterface. No

exemplo,

números subinterface e DLCIs partida, mas isso não é um requisito-somente um método

conveniente

para ajudar a identificar qual a DLCI subinterface pertence.

Para entender por que precisamos do comando frame-relay interface-dlci, considere R2.

R2 recebe

Mensagens LMI em Serial0/0/0 afirmando que dois PVCs, com DLCIs 201 e 203, estão em

alta. Que PVC

vai com o qual subinterface? Cisco IOS Software precisa associar o PVC correta com o

subinterface correta. Isto é realizado com o frame-relay interface de comando dlci.

Verificação Frame Relay

Exemplos do show frame-relay pvc e comandos show frame-relay map foram mostrados

anteriormente

no Exemplo 2-4. O show frame-relay pvc comando listas de gerenciamento de informações

úteis.

Por exemplo, os contadores de pacotes para cada VC, mais os contadores para FECN e

BECN, pode ser

particularmente útil. Da mesma forma, comparando os pacotes / bytes enviados em um

router contra os contadores

do que é recebido no roteador na outra extremidade da VC também é bastante útil. Isso

reflete a

número de pacotes / bytes perdidos dentro da nuvem Frame Relay. Além disso, o status do

PVC é um ótimo lugar para

quando começar a solução de problemas.

O comando show frame-relay map lista informações de mapeamento. Em uma rede

totalmente entrelaçada, em

qual a configuração não utiliza nenhum subinterfaces, um Layer 3 endereço está listado

com cada DLCI.

Para uma configuração subinterface ponto-a-ponto, um DLCI é listado em cada entrada,

mas nenhuma menção de

correspondente Layer 3 endereços é feita. A razão é que as informações são armazenadas

em algum lugar

Page 335: 31 Dias Para o CCNA

mais. Subinterfaces requerem o uso do comando frame-relay interface-dlci configuração.

A depuração frame-relay comando lmi mostrado no Exemplo 2-9 pode ser usada para

verificar que o físico

interface é enviar e receber mensagens LMI do switch Frame Relay locais.Implement

ações solução de problemas WAN

Solução de problemas de aplicação geral WAN não apenas Frame Relay aspectos muitas

vezes começa-

de investigar o estado da interface serial do roteador local. O show interfaces seriais

Exemplo de comando em 10/02 tem o encapsulamento HDLC padrão.

Exemplo de Saída 10/02 do Comando show interfacesDestaque

na produção são as três principais áreas de olhar primeiro para possíveis erros.

■ A interface deve ser "para cima" e "up" antes que ele possa encaminhar o tráfego.

Page 336: 31 Dias Para o CCNA

■ O endereço IP e máscara de sub-rede deve ser configurado corretamente.

■ O encapsulamento deve ser correta: HDLC, PPP ou Frame Relay.

Erros potenciais de dois e três e suas soluções são relativamente simples: IP correto

abordar ou corrigir o encapsulamento. O show interfaces de comando serial retorna um

dos seis

estados possíveis. Você pode ver qualquer um dos seguintes estados possíveis na linha

de status interface:

■ x Serial é para cima, protocolo de linha é de até

■ x Serial é baixo, protocolo de linha está em baixo

■ x Serial é para cima, protocolo de linha está em baixo

■ Serial x é para cima, protocolo de linha está acima (em loop)

■ Serial x é para cima, protocolo de linha está em baixo (desativado)

■ Serial x é administrativamente para baixo, protocolo de linha está em baixo

Resolução de problemas Problemas Layer 1

Um estado da linha para baixo no link serial normalmente aponta para um problema de

camada 1. A lista a seguir

descreve as razões mais prováveis:

■ A linha é alugada para baixo (um problema telco).

■ A linha da telco não está conectado a um ou ambos CSU / DSUs.

■ A CSU / DSU falhou ou está mal configurado.

■ Um cabo serial de um roteador à sua CSU / DSU está desconectado ou com defeito.

Os detalhes de como isolar ainda mais esses quatro problemas está além do escopo do

exame CCNA.

Um problema comum outra camada física pode ocorrer que resulta em interfaces de

ambos os roteadores "ser

em cima / estado para baixo. Em um link back-to-back de série, se o comando taxa exigida

relógio está faltando

no roteador com um cabo DCE instalado, interfaces ambos os routers 'serial irá falhar e

acabar com um

estado da linha de cima, mas um status protocolo de linha de baixo.

Para verificar esse erro, use o comando show controladores do lado que deve ser DCE.

Você

pode se surpreender ao descobrir que um cabo DTE está conectado. Ou você pode

descobrir que nenhum relógio está definido,

como mostrado no Exemplo 2-11.

Page 337: 31 Dias Para o CCNA

Problema exemplo 11/02: No comando clock na End DCEO primeiro

problema é fácil de identificar e corrigir. Como vimos, o comando show interfaces serão

dizer-lhe o tipo de encapsulamento usado atualmente na interface.

O segundo problema na Tabela 2-1 relaciona com keepalives enviadas pelos roteadores

Cisco por padrão a cada 10

segundos. Esse recurso ajuda a um roteador reconhecer quando um link não está mais

funcionando para que o

roteador pode derrubar a interface, esperando para usar uma rota alternativa IP. Se uma

das extremidades do

link é configurado com o comando não keepalives, ele permanecerá no "up" e do estado

"para cima".

No entanto, do outro lado do link continuamente aba voltada para cima e para baixo,

porque não está recebendo

keepalives. Você pode ver se keepalives estão sendo enviados com o comando show

interfaces, como

destaque na saída parcial no Exemplo 2-12.O terceiro

Page 338: 31 Dias Para o CCNA

problema na Tabela 2-1 é o resultado de uma falha de autenticação entre os dois

roteadores em

cada lado do link. Use o comando debug ppp autenticação para descobrir a causa raiz por

autenticação está falhando.

No Exemplo 2-13, sabemos que o nome de usuário ou senha está errada em um ou ambos

os lados do link.

Exemplo 2-13 PPP CHAP Falha de autenticação na saída de depuração de autenticação ppp Resolu

ção de problemas Problemas Layer 3

A interface serial pode ser no "up" e estado "up" em ambos os lados do roteador, mas a

conectividade

entre os dois roteadores falhar devido a um erro de configuração de camada 3.

Para interfaces HDLC padrão, se os endereços IP configurados nas interfaces de série nas

duas

roteadores estão em sub-redes diferentes, um ping para o endereço IP do outro lado da

ligação falhará

porque os routers não têm uma rota correspondente.

Tenha cuidado com PPP na mesma situação. Com misconfigured endereços IP, interfaces

ambos os roteadores "

estão no "up" e estado "para cima", mas o ping para o endereço do roteador do outro IP

realmente funciona. PPP

anuncia o seu endereço IP da interface serial para outro roteador, com um prefixo / 32, que

é uma rota para chegar

só que um host. Assim, ambos os roteadores tem uma rota com a qual para rotear pacotes

para a outra extremidade do

link, mesmo que dois roteadores em extremidades opostas de um link serial tem

incompatíveis seus endereços IP.

Embora o ping para o outro lado do link funciona, os protocolos de roteamento ainda não

Page 339: 31 Dias Para o CCNA

anunciar

rotas por causa da incompatibilidade de sub-rede IP nas extremidades opostas do link.

Então, a solução de problemas

um problema de rede, não assuma que uma interface serial de um "up" e estado "para

cima" é totalmente

de trabalho, ou mesmo que uma interface serial através da qual um ping funciona é

totalmente funcional. Certifique-se também

o protocolo de roteamento é a troca de rotas e que os endereços IP estão na mesma sub-rede.

1 dia

CCNA comentário Competências e Prática

Tópicos-chave

Amanhã você fazer o exame CCNA. Portanto, hoje você deve ter o tempo para fazer

alguma

desnatação descontraído de todos os dias anteriores temas com foco em áreas onde ainda

estão fracos. se

Page 340: 31 Dias Para o CCNA

você tem acesso a um teste de treinos cronometrados, como os disponíveis no Exame

CCNA Oficial

Biblioteca de certificação, Terceira Edição, usá-las para ajudar a isolar áreas em que você

pode precisar de um pouco

estudo mais aprofundado.

Como parte deste livro, eu incluí um CCNA Practice Skills que inclui a maior parte da

configuração CCNA

habilidades em uma topologia. Este cenário deve ajudá-lo a rever rapidamente muitos dos

comandos

abrangidas pelo CCNA.

CCNA Practice Skills

Nota para os alunos Cisco Networking Academy: Embora existam algumas

pequenas diferenças,

este cenário é baseado na versão online da Integração Skills CCNA

Atividade desafio Packet Tracer você pode encontrar no final do capítulo 8, "Rede

Solução de problemas "na versão online do curso CCNA Exploration: Acessando o WAN.

introdução

Neste abrangente atividade habilidades CCNA, a Corporação XYZ utiliza uma combinação

de quadros

Relé e PPP para conexões WAN. O roteador HQ fornece acesso à fazenda do servidor eo

Internet através de NAT. HQ também usa um firewall básico ACL para filtrar o tráfego de

entrada. B1 está configurado

para inter-VLAN de roteamento e DHCP. Os interruptores ligado a B1 são configurados

com segurança portuária,

VLANs, VTP e STP. Roteamento é conseguido através de EIGRP, assim como rotas

estáticas e padrão.

Seu trabalho é de implementar com sucesso todas estas tecnologias, aproveitando o que

você aprendeu

durante seus estudos de CCNA.

Você é responsável por configurar HQ e os roteadores Branch, B1, B2, e B3. assumir

roteadores

e switches sob sua administração não tem configuração.

Diagrama de topologia

A Figura 1-1 mostra a topologia para este comentário Skills CCNA.

Page 341: 31 Dias Para o CCNA
Page 342: 31 Dias Para o CCNA
Page 343: 31 Dias Para o CCNA

- O site

www.xyzcorp.com em 10.0.1.2 está registrado com o DNS público

sistema no endereço IP 209.165.200.246.

Passo 2 Verifique se NAT está funcionando usando ping estendido.

De HQ, faça ping na interface serial em 0/0/0 ISP usando o HQ LAN interface como o

endereço de origem. Esse ping deve suceder.

Verifique se NAT traduziu o ping com o show ip nat comando traduções.

Page 344: 31 Dias Para o CCNA

Tarefa 4: Configurar o roteamento padrão

Etapa 1 Configurar HQ com uma rota padrão para ISP.

Use a interface de saída como um argumento.

Passo 2 Verifique a conectividade para além ISP.

O PC NetAdmin deve ser capaz de executar ping no servidor web www.cisco.com.

Tarefa 5: Configurar o Inter-VLAN Routing

Etapa 1 Configurar B1 para a inter-VLAN routing.

Usando a tabela de endereçamento B1, configurar e ativar a interface LAN para a inter-

VLAN de roteamento.

Passo 2 Verifique as tabelas de roteamento.

B1 deve ter agora seis redes diretamente conectadas e uma rota estática padrão.

Tarefa 6: configurar e otimizar o roteamento EIGRP

Etapa 1 Configurar HQ, B1, B2, B3 e com EIGRP.

- Use AS 100.

- HQ deve redistribuir a sua rota padrão para os roteadores ramo.

- Manualmente resumir rotas EIGRP para que B1 anuncia a 10.1.0.0/16

espaço de endereço apenas para HQ.

Passo 2 Verifique as tabelas de roteamento e conectividade.

HQ e os roteadores Poder deve ter agora completa tabelas de roteamento.

O PC NetAdmin agora deve ser capaz de executar ping cada interface LAN e VLAN

subinterfaces em B1.

Tarefa 7: Configurar VTP, Trunking, a Interface de VLAN, e

VLANs

Etapa 1 Configurar os switches B1 com VTP.

- B1-S1 é o servidor VTP. B1-S2 e S3-B1 são clientes VTP.

- O nome de domínio é XYZcorp.

- A senha é xyzvtpPasso 2 Configure trunking.

Configure as interfaces apropriadas no modo de trunking.

Etapa 3 Configurar a interface de VLAN e gateway padrão em B1-S1, B1-S2, e B1-S3.

Passo 4 Crie a VLANs em B1-S1.

Criar e nomear as VLANs listadas na Tabela 1-2 na B1-S1 apenas. VTP anuncia o

VLANs novo para B1 e B1-S2-S3.

Passo 5 Verifique se VLANs foram enviados para B1 e B1-S2-S3.

Tarefa 8: Atribuir VLANs e configurar Segurança Portuária

Passo 1 VLANs Atribuir às portas de acesso em B1-S2.

Page 345: 31 Dias Para o CCNA

Use a Tabela 1-2 para completar os seguintes requisitos:

- Configurar as portas de acesso.

- Atribuir VLANs para as portas de acesso.

Etapa 2 Configurar a segurança do porto.

Use a seguinte política para estabelecer a segurança do porto nas portas B1-S2 acesso:

- Permitir somente um endereço MAC.

- Configure o primeiro aprendeu endereço MAC para "stick" para a configuração.

- Defina a porta a fechar, se ocorre uma violação de segurança.

Passo 3 Verifique as atribuições de VLAN e segurança portuária.

Use os comandos apropriados para verificar se VLANs de acesso são atribuídos

corretamente e

que a política de segurança do porto foi ativado.

Tarefa 9: Configurar STP

Etapa 1 Configurar B1-S1 como a ponte raiz.

Definir o nível de prioridade para 4096 em B1-S1, para que essa opção é sempre a ponte

raiz para

todas as VLANs.

Etapa 2 Configurar B1-S3 como a ponte raiz backup.

Definir o nível de prioridade para 8192 em B1-S3 para que esta opção sempre é a raiz de

backup

ponte para todas as VLANs.

Passo 3 Verifique se B1-S1 é a ponte raiz.

358 31 dias antes de seu exame CCNATarefa 10: Configurar DHCP

Etapa 1 Configurar piscinas DHCP para cada VLAN.

Em B1, configurar pools DHCP para cada VLAN utilizando os seguintes requisitos:

- Excluir os primeiros 10 endereços IP de cada grupo para as LANs.

- O nome do pool é B1_VLAN # # onde # # é o número da VLAN.

- Incluir o servidor DNS anexado ao farm de servidores HQ como parte do DHCP

configuração.

Passo 2 Verifique se o PC tem um endereço IP.

Etapa 3 Verificar a conectividade.

Todos os PCs fisicamente conectado à rede deve ser capaz de ping no www.cisco.com

servidor web.

Tarefa 11: Configurar uma ACL Firewall

Passo 1 Verificar a conectividade de host fora.

Page 346: 31 Dias Para o CCNA

O PC Host Fora devem ser capazes de pingar o servidor em www.xyzcorp.com.

Passo 2 Implementar um firewall básico ACL.

ISP porque representa a conectividade com a Internet, configurar uma ACL chamada

chamada

FIREWALL na seguinte ordem:

1. Permitir que os pedidos de entrada para o servidor HTTP www.xyzcorp.com.

2. Permitir que apenas as sessões TCP estabelecida a partir de ISP e de qualquer fonte

além ISP.

3. Permitir que apenas as respostas de ping de entrada de ISP e de qualquer fonte além

ISP.

4. Explicitamente bloquear todo o acesso de entrada de outros ISP e qualquer fonte além

do ISP.

Etapa 3 Verificar a conectividade de host fora.

O PC Host externos não devem ser capazes de pingar o servidor em www.xyzcorp.com.

No entanto, o PC Host Fora deve ser capaz de solicitar uma página web.

Dia 1 359