Albert einstein

20
COLEGIO NACIONAL «JUAN DE SALINAS» Biografía de Albert Einstein Trayectoria y Historia Integrantes: Daniel Álvarez Diego Pachacama Curso: 6to «J» Especialidad: Informática

Transcript of Albert einstein

Page 1: Albert einstein

COLEGIO NACIONAL «JUAN DE SALINAS»

Biografía de Albert EinsteinTrayectoria y Historia

Integrantes: Daniel Álvarez Diego Pachacama

Curso: 6to «J» Especialidad:

Informática

Page 2: Albert einstein

Biografía de Albert EinsteinNacimiento: 14 de marzo de 1879Fallecimiento: 18 de abril de 1955(76 años)Campo: FísicaConocido por: Teoría de la

Relatividad Movimiento browniano Efecto Foto electrónico Equivalencia Masa –

Energia La Teoría de Campo

UnificadaPremios destacados:

Premio Nobel de física (1921)

Medalla Copley(1925)

Medalla Max planck(1929)

FIRMA

Page 3: Albert einstein

Breve Historia Infancia.-Nació en la ciudad alemana de Ulm, cien kilómetros al este de Stuttgart, en el seno de una familia judía. Sus padres eran Hermann Einstein y Pauline Koch. En 1880 la familia se mudó a Munich, donde su padre y su tío fundaron en octubre una empresa dedicada a la instalación de agua y gas. Como el negocio marchaba bien, con el apoyo de toda la familia decidieron abrir un taller propio de aparatos eléctricos.

El colegio no lo motivaba, y aunque era excelente en matemáticas y física, no se interesaba por las demás asignaturas. A los 15 años, sin tutor ni guía, emprendió el estudio del cálculo infinitesimal. La idea, claramente infundada, de que era un mal estudiante proviene de los primeros biógrafos que escribieron sobre Einstein, que confundieron el sistema de calificación escolar de Suiza (un 6 en Suiza es la mejor calificación) con el alemán (un 6 es la peor nota).9 [www.blume.net] En este "Erziehungsrat" aparece con nota 6 en los todas las asignaturas: Álgebra, Física, Geometría, Geometría Analítica y Trigonometría.

Page 4: Albert einstein

Juventud.-

Se graduó en 1900, obteniendo el diploma de profesor de matemáticas y de física, pero no pudo encontrar trabajo en la Universidad, por lo que ejerció como tutor en Winterthur, Schaffhausen y en Berna. Su compañero de clase, Marcel Grossmann, un hombre que más adelante desempeñaría un papel fundamental en las matemáticas de la relatividad general, le ofreció un empleo fijo en la Oficina Federal de la Propiedad Intelectual de Suiza, en Berna, una oficina de patentes, donde trabajó de 1902 a 1909. Su personalidad le causó también problemas con el director de la Oficina, quien le enseñó a "expresarse correctamente".

Page 5: Albert einstein

Madurez.-

En 1908 a la edad de 29 fue contratado en la Universidad de Berna, Suiza, como profesor y conferenciante (Privatdozent). Einstein y Mileva tuvieron un nuevo hijo, Eduard, nacido el 28 de julio de 1910. Poco después la familia se mudó a Praga, donde Einstein obtuvo la plaza de Professor de física teórica, el equivalente a Catedrático, en la Universidad Alemana de Praga. En esta época trabajó estrechamente con Marcel Grossmann y Otto Stern. También comenzó a llamar al tiempo matemático cuarta dimensión. En 1913, justo antes de la Primera Guerra Mundial, fue elegido miembro de la Academia Prusiana de Ciencias. Estableció su residencia en Berlín, donde permaneció durante diecisiete años. El emperador Guillermo, le invitó a dirigir la sección de Física del Instituto de Física Káiser Wilhelm.

Page 6: Albert einstein

Muerte.-

El 17 de abril de 1955, Albert Einstein experimentó una hemorragia interna causada por la ruptura de un aneurisma de la aorta abdominal, que anteriormente había sido reforzada quirúrgicamente por el Dr. Rudolph Nissen en 1948. Tomó el borrador de un discurso que estaba preparando para una aparición en televisión para conmemorar el séptimo aniversario del Estado de Israel con él al hospital, pero no vivió lo suficiente para completarlo. Einstein rechazó la cirugía, diciendo: "Quiero irme cuando quiero.He hecho mi parte, es hora de irse. Yo lo haré con elegancia." Murió en el Hospital de Princeton (Nueva Jersey) a primera hora del 18 de abril de 1955 a la edad de 76 años. Los restos de Einstein fueron incinerados y sus cenizas fueron esparcidas por los terrenos del Instituto de Estudios Avanzados de Princeton. Durante la autopsia, el patólogo del Hospital de Princeton, Thomas Stoltz Harvey extrajo el cerebro de Einstein para conservarlo, sin el permiso de su familia, con la esperanza de que la neurociencia del futuro fuera capaz de descubrir lo que hizo a Einstein ser tan inteligente.

Page 7: Albert einstein

TRAYECTORIA CIENTIFICAEn 1901 apareció el primer trabajo científico de Einstein: trataba de la atracción capilar. Publicó dos trabajos en 1902 y 1903, sobre los fundamentos estadísticos de la termodinámica, corroborando experimentalmente que la temperatura de un cuerpo se debe a la agitación de sus moléculas, una teoría aún discutida en esa época.1. Teoría de la

Relatividad.-Incluye dos teorías (la de la relatividad especial y la de la relatividad general) formuladas por Albert Einstein a principios del siglo XX, que pretendían resolver la incompatibilidad existente entre la mecánica newtoniana y el electromagnetismo.La primera teoría, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias, en el que se hacían compatibles las ecuaciones de Maxwell del electromagnetismo con una reformulación de las leyes del movimiento. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero coincide numéricamente con ella en campos gravitatorios débiles. La teoría general se reduce a la teoría especial en ausencia de campos gravitatorios.

Page 8: Albert einstein

2.- Movimiento browniano El movimiento browniano es el movimiento aleatorio que se

observa en algunas partículas microscópicas que se hallan en un medio fluido (por ejemplo, polen en una gota de agua). Recibe su nombre en honor al escocés Robert Brown, biólogo y botánico que descubrió este fenómeno en 1827 y observó que pequeñas partículas de polen se desplazaban en movimientos aleatorios sin razón aparente. En 1785, el mismo fenómeno había sido descrito por Jan Ingenhousz sobre partículas de carbón en alcohol.

El movimiento aleatorio de estas partículas se debe a que su superficie es bombardeada incesantemente por las moléculas (átomos) del fluido sometidas a una agitación térmica.

Este bombardeo a escala atómica no es siempre completamente uniforme y sufre variaciones estadísticas importantes. Así, la presión ejercida sobre los lados puede variar ligeramente con el tiempo, y así se genera el movimiento observado.

Page 9: Albert einstein

De esta definición corresponde a la ecuación que gobierna la evolución temporal de la función probabilística de densidad asociada con la ecuación de difusión de una partícula browniana, y en definitiva es una ecuación diferencial parcial.Otras maneras de conseguir su modelo matemático consideran un movimiento browniano como un proceso de Gauss central con una función covariante para toda . El resultado de un proceso estocástico se le atribuye a Norbert Wiener, quedó demostrado en la teoría de probabilidad, existente desde 1923, y se conoce con el nombre de proceso de Wiener. Muchos detalles importantes aparecen en sus publicaciones.

EXPOSICIÓN MATEMÁTICA

Es un movimiento browniano

Page 10: Albert einstein

Movimiento FotoeléctricoLa emisión de electrones por metales iluminados con luz de determinada frecuencia fue observada a finales del siglo XIX por Hertz y Hallwachs. El proceso por el cual se liberan electrones de un material por la acción de la radiación se denomina efecto fotoeléctrico o emisión fotoeléctrica. Sus características esenciales son: Para cada sustancia hay una frecuencia mínima o umbral de la radiación electromagnética por debajo de la cual no se producen fotoelectrones por más intensa que sea la radiación.La emisión electrónica aumenta cuando se incrementa la intensidad de la radiación que incide sobre la superficie del metal, ya que hay más energía disponible para liberar electrones.En los metales hay electrones que se mueven más o menos libremente a través de la red cristalina, estos electrones no escapan del metal a temperaturas normales por que no tienen energía suficiente. Calentando el metal es una manera de aumentar su energía. Los electrones "evaporados" se denominan termoelectrones, este es el tipo de emisión que hay en las válvulas electrónicas. Vamos a ver que también se pueden liberar electrones (fotoelectrones) mediante la absorción por el metal de la energía de radiación electromagnética.

Page 11: Albert einstein

Descripción.-

Sea f la energía mínima necesaria para que un electrón escape del metal. Si el electrón absorbe una energía E, la diferencia E-f, será la energía cinética del electrón emitido.

Einstein explicó las características del efecto fotoeléctrico, suponiendo que cada electrón absorbía un cuanto de radiación o fotón. La energía de un fotón se obtiene multiplicando la constante h de Planck por la frecuencia f de la radiación electromagnética. E=hf

Si la energía del fotón E, es menor que la energía de arranque f, no hay emisión fotoeléctrica. En caso contrario, si hay emisión y el electrón sale del metal con una energía cinética Ek igual a E-f.

Page 12: Albert einstein

Por otra parte, cuando la placa de área S se ilumina con cierta intensidad I, absorbe una energía en la unidad de tiempo proporcional a IS, basta dividir dicha energía entre la cantidad hf para obtener el número de fotones que inciden sobre la placa en la unidad de tiempo. Como cada electrón emitido toma la energía de un único fotón, concluimos que el número de electrones emitidos en la unidad de tiempo es proporcional a la intensidad de la luz que ilumina la placa

Page 13: Albert einstein

Aplicación.-

La ventana es de cuarzo y se han tomado las siguientes precauciones:• el tubo de vacío ha sido cocido previamente para que desprenda la

mayor cantidad de gas. Este gas luego podría ser ionizado por la luz e interferir en el proceso.

• el ánodo está recubierto de óxido de cobre (II)-CuO- de color negro, para que no desprenda electrones al ser iluminado, de este modo todos proceden de la extracción efectuada sobre el cátodo.

• las superficies del cátodo deben estar limpias, bien orientadas, etc.

•.

                                     

Realizamos primero la conexión que se observa en la figura, poniendo el potenciómetro de manera que la parte negativa (cátodo) esté conectada a placa iluminada. De esta manera un aumento de potencial hará que los electrones arrancados sean encaminados por un campo eléctrico hacia la otra placa (ánodo). Cuanto mayor sea el potencial aplicado más cantidad de electrones llegan al anodo (atraviesan el tubo).

Page 14: Albert einstein

• Con los datos obtenemos una tabla de valores que representados dan la grafica que está arriba en la gráfica la derecha.

Incluso para V=0 , algunos de los electrones arrancados del metal son capaces de atravesar el tubo y detectamos una intensidad de corriente -i- . Si aumentamos el potencial, el número de electrones que atraviesan el tubo aumenta, pero llega un momento en que todos los electrones arrancados del metal son captados por el ánodo y, aunque aumentemos el potencial, la corriente eléctrica -i- no aumenta.

Fotones con energía suficiente

Fotones con energía insuficiente

Page 15: Albert einstein

Si mantenemos la polaridad y el tipo de luz (la misma frecuencia) pero utilizamos más potencia de iluminación (bombilla más potente o varias bombillas) el nº de electrones extraído es mayor y llegan más al amperímetro. Mayor intensidad de luz (I) significa mayor flujo de fotones y la corriente en el circuito externo ( i ) aumenta.

Invirtiendo las conexiones del potenciómetro (figura 3), podemos hacer que el metal del cual la luz arranca electrones sea ahora positivo y muchos electrones arrancados retornan a él. Los más rápidos llegan al otro lado y el amperímetro indica conducción. Si aumentamos el potencial con esta conexión invertida llegará un momento en que todos los electrones arrancados retornan, no cruza ninguno, y por lo tanto i=0. El valor del potencial en ese momento se llama potencial de corte -Vo-.

Page 16: Albert einstein

Equivalencia Masa - Energía

Pocos meses después de publicar la teoría especial de la relatividad, en un trabajo muy breve Einstein demostró la que probablemente es la consecuencia más importante de su teoría: existen procesos naturales en los que una porción de la masa inicial se convierte en una cantidad de energía . Y viceversa. La equivalencia entre la masa y la energía dada por la

expresión de la teoría de la relatividad de Einstein.

Indica que la masa conlleva una cierta cantidad de energia aunque la primera se encuentre en reposo, concepto ausente en mecánica clásica, esto es, que la energía en reposo de un cuerpo es el producto de su masa por su factor de conversión (velocidad de la luz al cuadrado), o que cierta cantidad de energía de un objeto en reposo por unidad de su propia masa es equivalente a la velocidad de la luz al cuadrado:

Page 17: Albert einstein

• Para la física (y la química) clásica, masa y energía eran cantidades que se conservaban independientemente. En una reacción química, se pensaba que “la masa de los reactivos es igual a la masa de los productos”. En un proceso físico cualquiera, se asumía por un lado la conservación de la masa, y por el otro la conservación de la energía (primer principio de la termodinámica). A partir del trabajo de Einstein, ambas leyes de conservación se unifican en una sola.

Page 18: Albert einstein

La teoría del campo unificado

A mediados del siglo XIX se conocían cuatro fenómenos que eran capaces de hacerse notar a través del vacío. Eran

1. gravitación2. luz,3. atracción y repulsión eléctrica y 4. la atracción y repulsión magnéticas.

Al principio parecía que los cuatro fenómenos completamente independientes, que no tenían necesariamente ninguna conexión entre sí. Pero entre 1864 y 1873 el físico teórico escocés J. Clerk Maxwell analizó matemáticamente los fenómenos eléctricos y magnéticos, en ciertas relaciones básicas las “ecuaciones de Maxwell” describían tanto los fenómenos eléctricos como los magnéticos y que demostraban que los unos dependían de los otros.

Page 19: Albert einstein

La fuerza o interacción nuclear fuerte es la que mantiene unidos los componentes de los núcleos atómicos, y actúa indistintamente entre dos nucleones cualesquiera, protones o neutrones. Su alcance es del orden de las dimensiones nucleares, pero es más intensa que la fuerza electromagnética.

La fuerza o interacción nuclear débil es la responsable de la desintegración beta de los neutrones; los neutrinos son sensibles únicamente a este tipo de interacción. Su intensidad es menor que la de la fuerza electromagnética y su alcance es aún menor que el de la interacción nuclear fuerte.

Page 20: Albert einstein

Gracias por su atención

FIN