AMAZONIANA XII 484 Kiel, - MPG.PuRe

10
466 AMAZONIANA XII (3/4): 467 - 484 Kiel, Dezember 1993 From cooperation between Max-Planck-Institute for Limnologie, Tropical Ecology Working Group, plön, Germany, and National lnstitute for Amazonian Research, Manaus, Amazonas, Brazil. Da cooperação entre Instituto Max-Planck para Limnologia, Grupo de trabalho Ecologia Tropical, plön, Alemanha, e Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil. Herbaceous plants of the Amazon floodplain near Manaus: Species diversity and adaptations to the flood pulse by Wolfgang J. Junk & Maria T.F. Piedade Priv.-Doz. Dr. Wolfgang J. Junk, Max-Planck-Institut für Limnologie, AG Tropenökolo- gie, Posffach 165,D-24302 Plön, FRG. Dr. Maria T.F. Piedade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixa postal 478, 69011-970 Manaus/AM, Brasil. (Accepted for publication: December, 1993). Abstract In the floodplain of the Amazon river near Manaus, 388 herbaceous plant species, excepting epiphytes, were collected belonging to 64 families and 182 genera. 330 species are considered terrestrial, 34 aquatic, the others have an intermediate status. Most of the species occur in relatively small numbers. Only l7 species formed large monospecific stands. The largest number of species (273) was found during the dry phase in disturbed areas on the levees, as for instance in abandoned fields, because ofa reduced impact of the flood and high light intensity. Low numbers were recorded during low water period from the floor of floodplain forest (25) because of insufficient light conditions and from low lying lake beds (26), which were dominated by a few highly adapted species. The following attributes were found to favour the occurrence of herbaceous plants in the Amazon floodplain: resistance of seeds and spores to flooding and dessication; short reproductive cycles; high reproduction rates; high primary production; tolerance of adult plants to flooding and drought; adaptations to waterlevel fluctuations (for example a floating way of life). Short life cycles and high reproduction rates allow the quick colonization ofdisturbed habitats and the substitution of population losses (r-strategy). This strategy is supported by the elevated nutrient status of the Amazon river floodplain in comparison with the floodplain of the Negro River, where herbaceous plants are scarce. The number of ruderal species and weeds including a rising number of neophytes is large. The great species diversity is related to great habitat diversity, fertility of sediments and rxater, predictability of the floodpulse and the reduction of interspecifìc competition due to the annual set back of the populations by the flooding and drought. The observations are in concordance with the predictions of the floodpulse concept. Keywords: Floodplain, Amazon river, herbaceous plants, species diversity, adaptations. ISSN 0065-67551199314671 @ MPI für Limnologie, AG Tropenökologie, Plön; INPA, Manaus 467

Transcript of AMAZONIANA XII 484 Kiel, - MPG.PuRe

Page 1: AMAZONIANA XII 484 Kiel, - MPG.PuRe

466

AMAZONIANA XII (3/4): 467 - 484 Kiel, Dezember 1993

From cooperation between Max-Planck-Institute for Limnologie, Tropical Ecology Working Group, plön,

Germany, and National lnstitute for Amazonian Research, Manaus, Amazonas, Brazil.

Da cooperação entre Instituto Max-Planck para Limnologia, Grupo de trabalho Ecologia Tropical, plön,

Alemanha, e Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil.

Herbaceous plants of the Amazon floodplain near Manaus: Speciesdiversity and adaptations to the flood pulse

by

Wolfgang J. Junk & Maria T.F. Piedade

Priv.-Doz. Dr. Wolfgang J. Junk, Max-Planck-Institut für Limnologie, AG Tropenökolo-gie, Posffach 165,D-24302 Plön, FRG.Dr. Maria T.F. Piedade, Instituto Nacional de Pesquisas da Amazônia (INPA), Caixapostal 478, 69011-970 Manaus/AM, Brasil.(Accepted for publication: December, 1993).

Abstract

In the floodplain of the Amazon river near Manaus, 388 herbaceous plant species, excepting epiphytes,were collected belonging to 64 families and 182 genera. 330 species are considered terrestrial, 34 aquatic,the others have an intermediate status. Most of the species occur in relatively small numbers. Only l7species formed large monospecific stands. The largest number of species (273) was found during the dryphase in disturbed areas on the levees, as for instance in abandoned fields, because ofa reduced impact ofthe flood and high light intensity. Low numbers were recorded during low water period from the floor offloodplain forest (25) because of insufficient light conditions and from low lying lake beds (26), whichwere dominated by a few highly adapted species.

The following attributes were found to favour the occurrence of herbaceous plants in the Amazonfloodplain: resistance of seeds and spores to flooding and dessication; short reproductive cycles; highreproduction rates; high primary production; tolerance of adult plants to flooding and drought; adaptationsto waterlevel fluctuations (for example a floating way of life).

Short life cycles and high reproduction rates allow the quick colonization ofdisturbed habitats and thesubstitution of population losses (r-strategy). This strategy is supported by the elevated nutrient status ofthe Amazon river floodplain in comparison with the floodplain of the Negro River, where herbaceousplants are scarce. The number of ruderal species and weeds including a rising number of neophytes islarge.

The great species diversity is related to great habitat diversity, fertility of sediments and rxater,

predictability of the floodpulse and the reduction of interspecifìc competition due to the annual set back

of the populations by the flooding and drought. The observations are in concordance with the predictions

of the floodpulse concept.

Keywords: Floodplain, Amazon river, herbaceous plants, species diversity, adaptations.

ISSN 0065-67551199314671 @ MPI für Limnologie, AG Tropenökologie, Plön; INPA, Manaus

467

Page 2: AMAZONIANA XII 484 Kiel, - MPG.PuRe

Introduction

Along its middle and lower course, the Amazon River is accompanied by a largefringing floodplain locally called várzea. The hydrograph is monomodal and ratherpredictable: maximum flood is reached in June/July, the lowest water level is found inOctober/November. Near Manaus, average amplitude of the flood pulse is about l0 m.Sediments deposited in the várzea are of Andean origin and belong to the most fertilesoils in the Amazon basin. Levees are covered by a dense highly adapted floodplainforest, which can withstand on an average of up to 230 days of inundation (JUNK1989). Lowlying and strongly disturbed areas are colonized by a luxuriously growingherbaceous vegetation, rich in species, which shows adaptations to the flood pulse.

Inspite of the abundance of herbaceous plants in the várzea and its importance toagriculture and husbandry, information about the species occurring in this area and itsecology is scarce. Available literature deals mainly with the species that frequentlyoccur as weeds on cultivated fields (ALBUQLIERQUE 1978; LORENZI 1982;ARANHA et al. 1982; LEITÃO FILHO et al. 1982) or planrs growing in pasrures(OHLY 1987). Until how, a check-list of species is lacking. The present paper providesinformation on the species that occur in the main habitats of the várzea and discussesadaptations to the flood pulse.

Material and methods

The herbaceous plants were studied for several years at various locations in the floodplain of the

Amazon in a range of about 100 km which extended from upstream to downstream of Manaus. The study

does not include the transition zone of the non-flooded terra firme rainforest. Epiphytes were not consid-

ered, because they are not subject to flood stress.

According to environmental conditions, six major habitats were distinguished:- vórzea lakes representing permanent or periodic aquatic habitats.

- floating islands of organic material representing palustric habitats vvith a stable water level.

- low-lying lake beds, exposed only during short periods of time, and influenced by little deposition ofvery fine sediments.

- areas of intensive sedimentation and long lasting floods.- areas at higher elevations strongly distrubed by man or by natural events (wind, cunent, erosion).

- the floor of the inundation forest.

All of the collected specimens were pressed, dried, and labelled to show the site of collection, the

abundance ofthe species at the site, and its mode ofexistence. From these data, approximate informationon the location, frequency, and mode ofexistence was compiled. When occurrence and mode ofexistencewere non-specific, several symbols were employed for a single species. It is not intended for use inestablishing phytosociological units.

The material collected was lodged in the herbarium of Instituto Nacional de Pesquisas da Amazônia(INPA) at Manaus, Brazil. Taxonomic identification of the specimens was conducted in the herbarium ofINPA. In case of doubt, duplicate specimens were sent to specialists by the curator of the herbarium to

confirm the accuracy of the identification.

468

aResults

Herbaceous plant species and their occurrence in the várzeaAlternating between a well-defined terrestrial phase and an aquatic phase results in

the development of short-lived herbaceous plant communities, which subsequentlycolonize the same habitat during the terrestrial and the aquatic phases. Therefore it isuseful to classify the species as either aquatic or terrestrial. However, in some cases

such a classification is difficult, because many species show considerable adaptations onthe complementary phase, permitting their survival in both phases. Many species dependupon the change between the aquatic and the terrestrial phases and would not occur, ifthe flood pulse was eliminated. Therefore it seems advisable to speak of a gradient,

which extends over the spectrum from exclusively aquatic to purely terrestrial species.

Table I indicates the species and gives information about their frequency, mode ofexistence and principle habitats.

Table 1: Herbs, grasses, and sedges from various habitats inthe vdrzea of the Amazon River nea¡ Manaus.

Frequency (F): I - rarc,2 : widely distributed, 3.- common, 4 : forms monospecific stands,

5 : dominant over large areas.

Mode of existence (M): a - aquatic, b - aquatic with a terrestrial phase, p - palustric, t: terrestrial;

t* : tenestrial, but survives periods of submergence, v - vine.

Principlehabitats(H):A:vdrzealakes,B-floatingislands,C-low-lyinglakebeds,C*-moistdepressions, D - areas of intensive sedimentation; E - disturbed areas at higher elevations, F : inundation

forest.

FAMILY/SPECIESAcanthaceae

Justicia comata LAMJ. laevilinguis LINDAUStethoma cf. pectoralis (JACP.) RAF.

Alismataceae

S a g i tt ar i a s p r u c e i Ì'/ICHELIAmaranthaceae

Alternanthera brasiliana,

var. villosa R.E. FRIES.

A. hassleriana CHOD.

A. paronichoídes ST. HIL.A. pilosa MOQ.A. tenella COLLAAlthernanthera sp.

Amaranthus spinosus L.A. viridis L.Chamissoa altissima H.B.K.Apiaceae

Hydrocotyle sp.

Apocynaceae

Rhabdadenia macrostoma (BENTH) M. ARG

Rhabdadenia sp.

Odontadenia nitida (VAHL) M. ARG.

M

469

E

AD

CDEE

E

E

DEE

H

E

AE

c*

ta

t

p

F

3

2

2

1

4

I

)4

I

I

2a

I

p

tvtvtv

BEBEE

B

2

I1

Page 3: AMAZONIANA XII 484 Kiel, - MPG.PuRe

FAMILY/SPECIESAracea

M ont r ic har dia arbor e s c e ns SCHOTTPistia stratiotes L.Asclepiadaceae

Madanosperma sp.

Matelea sp.

Begoniaceae

Begonia sp.

Boraginaceae

Heliotropium cf . filiþrme H.B.K.H. indicum L.

H. procumbens H.B.K.

Campanulaceae

Sp he noc lea 7ey lanic a GAERTN.

Capparaceae = Cappar¡dâceae

Cleome spinosa IACQ.Ceratophyllaceae

C e ratophy I I um de mers um L.Ceratopteridaceae

C e rat opt e ri s pt er idoide s UNDERW.Chenopodiaceae

Chenopodium ambrosioides BERT. ex. STEUDCommelinaceae

Aneilema umbrosum (VAHL.) KUNTH.C omme I i na e r ec t a CH APM.Commelina sp.

Compositae = Asteraceae

Ac ant hos p e rmum hi s pidum DC.Ageratum sp.

Ambrosia artemisiaeþlia L.'Centratherum

sp.

Compositae = Asteraceae

Conyza bonariensis (L.) CRONQUIST.C. floribunda HB.K.Conyza sp.

Eclipta alba HASSK.

Egletes viscosa LESS.Emilia sonchifolia DC.Erechtites hieracifolia RAFIN. ex. DC.Eupatorium candolleanum HOOK. et. ARNGymnoc or o ni s s p i lantho ide s,

var. subcordaîa (DC.) BAKERMikania congesta DC.M. cordifolia V/ILLD.Mikania sp.

Pacourina edulís AUBL.Spilanthes acmella DC.Spilanthes sp.

Tr i c hos p ir a ment ho id es H.B.K.

Wedelia palwlosa DC.

F

4

4

2

2

M H

bp BC*A

tvtv

E

E

BI t

2.,

I

3

CDECDECDE

t D

D

A

A

D

E

B

E

t

2 a

3 a

) t

I

3

2

2)3

2

D

DEE

E

E

E

E

CDEDEBEBEBE

I

3

2

2

I

I

2

I

3

BDBEBEBECEE

E

E

E

470

FAMILY/SPECIESW. scaberrima BENTH.

W. trilobata A.S. HITCH.Wedelia sp.

WulJfia baccata O. KUNTZEW. stenoglossa DC.WulJfia sp.

Convolvulaceae

Ipomoea alba L.

I. aquatica FORSK.

I. ascoriJblia ROEM et SCHULT.

I. carnea JACQ. subsp.fslnlosø(MART. ex CHOYSY) D. AUSTIN

I. phillomega HOUSE

I. quamoclit L.

I. setifera POIRI. squamosa CHOISY in DC.

L umbellata C.F.V/. MEYERIpomoea sp.

Operculina ¿¡iata (HAM.) URB.

Operculina sp.

P revostea umbellata CHOISYTetraloc ularia pe nnel lii O'DONELLCostaceae Zingiberaceae

Costus arabicus L.

Cucurbitaceae

E I at e ri um amazonic unt MART.Elaterium sp.

Gurania cissoides COCN.

G. tricuspidata COGN.

Curania sp.

Luffa operculata COGN. in MART.Melothria sp.

Momordica charantia L.Cyperaceae

Bulbostylis capillaris C.B. CLARKEBulbostylis sp.

Cyperus compressus L.C. diffusus YAHL.C. distans L.C. esculentus L.

C. ferax L.C. RICH.

C. flavus BOECK.

C. haspan L.

C. imbricatus RETZC. laetus F. & C. PRESL.

C. ligularis L.C. Iuzulae (L.) RETZ.

C. meyerianus KtlNTH.C. mutusii (H.B.K.) GRISEB.

C. radiatus Y AHL.

FJ

a

2

2

2,)

2

2

')

3

')

)3

2

2

2

2

2

I

2

2

))I

I

I

2

2

2

3

22

I

2

3

3

)3

3

3

3

2

2

I,)

M HE

E

E

E

E

E

E

AE

t

t

tvavtv

E

E

E

BEBEBEE

E

E

E

E

tVtvtvtvtvtvtvtV

F

E

E

E

E

E

E

E

E

D

D

D

E

E

cD

D

D

D

D

D

E

D

D

D

E

471

Page 4: AMAZONIANA XII 484 Kiel, - MPG.PuRe

FAMILY/SPECIESC. roîundus BENTH.

C. sphacelatus ROTTB.

C. surinamensis ROTTB.

C. unicolor BOECK.

Cyperus sp.

E I eoc haris variegata PRESL.

Fimbristylis argentea Y AHL.F. dichotoma (L.) VAHL.F. miliacea (L.) VAHL.F. spadícea (L.) VAHL.Kylinga pumila MICHX.Rhynchospora cilidr¿ KÜKENTH.R. corymbosa (L.) BRITION.R. schomburgkiaza (CLARKE.) T. KOYAMAScirpus cubensis F0EPP. & KUNTH.Scleria cf . microcarpa NEF,S.

S. pterota PRESL.

S. secans (L.) URB.

S. uleana BOECK.

Scleria sp.

Toruliníum odoratum (L.) HOOPERDioscoreaceae

D ioscorea marginata GRISEB.Dioscorea sp.

Euphorbiaceae

Acalypha arvensis POEPP. & ENDL.A. poirettii SPRENG.

Acalypha sp.

Caperonia castanaeiþlia (L.) ST. HILL.Cr oton c hamae dryfo lius GRISEB.

C. lobatus L.C. miq ue I e ns is FERCUSON.

C. trinitatis MILLSP.Crolon sp.

D al e c hamp ia s cande ns Y ELL.D. liliaeþliaLAM.Dalechampia sp.

E uphorb ia br as il i e ns is LAM.E. hirta L.

E. pilulifera L.

E. thymiþlia L.

Euphorbia sp.

Phyltanthus flui¡ans BENTH. ex MÜLL.P. niruri L.

P. stipulatus (RAF.) 'WEBSTER.Gentianaceae

Coutobea ramosa AUBL.Gramineae = Poaceae

Acroceras cf. zizanioides (H.B.K.) DANDYAndropogon bicornis L.

FJ

2

3

)I

2

)2

-t

2

2

2

2

2

4

2

2

2

)2

J

M HCDEE

DEDED

B

D

D

D

D

D

D

B

B

ABEFE

E

F

E

D

p

t

tt

t

t

t

p

p

a

t

t

tvt

t

t

E

E

E

E

DEE

E

E

E

E

E

E

E

E

tvtv

a

t

t

2

2

l3

a

)2

I

I

I

lI

I

I

2

2)2

2

I

tvtv

DEDEDEA

DEE

E

E

B

t

t

t

I

3

1

472

MFAMILY/SPECIESAndropogon sp.

Brachiaria fasciculata (SWARTZ.) PARODI

B. mutica (FORSK.) STAPF

Coix lachryma JOBI L.

Cynodon dactylon (L.) PERS.

Digitaria ciliaris (RETZ.) KAEL.D. horizontalis WILLD.D. sanguinalis SCOP.

D. violascens LINKEchinochloa cruspavonis (L.) BEAUV.E. polystachya (H.B.K.) HITCH.

Echinochloa sp.

Eleusine indica (L.) GAERTN.

Eragrostis amabilis (L.) WIGHT. & ARN.

E. ciliaris (L.) R. Br.

E. glomerata L.H. DAWEY.E. hypnoides (LAM.) R. et. P.

Gramineae = Poaceae

È'. reptøns NEES.

Eriochloa punctata (HAM.)

Gynerium sagítlatum BEAUV.Homolepís aturensis (H.B.K.) CHASE.

Hymenachne amplucicaulis (RUDCE.) NEES

H. donaciþlia (RADDI.) CHASE.

I sac hne po Iy gono ide s DOELL.Isachne sp.

Lasiacis procerrima (HACK.) HITCH.

Leersia hexandr¿ SWARTZ.

Leptochloa domingensis (JACQ.) TRIND.L. sc¿åra NEES.

L. virgata (L.) BEAUV.Luziola spr uc eana BENTH.

Oryza grandigl¡¡mjs (DOELL.) PROD.

O. perennis MOENCH.

P anicum bolivieense HACK.P. chlorotícum NEES.

P. dichotomiflorun MICHX.P. elephantipes NEES.

P. laxum SW.

P. maximum JACQ.

P. mertensis ROTH.

P. micranthum H.B.K.

P. pilosum SW.

Panicum sp.

P aspalum amazonicum TRIND.

P. conjugatum BERG.

P. fasciculatum WILLD. ex. FLUEGGE

P. melanospermum DESV. ex. POIR.

P. orbiculatum POIR.

P. repens BERG.

t

t

t

t

t*t

t

tt

b

b

tt

t

tt

t

F

2

2

J

I

5

J

3

J

3

I

5

I

3

t

2

3

2

a

)3

2

4

I

3

2

l4a

3

3

3

3

5

3

3

3

I

2

2

I

2

3

2

2

4

5

2)5

HE

E

E

E

DEDEDEDEE

D

ACDEE

DED

E

DED

D

E

DEE

ACDED

BEE

E

ABC*DEDEDEACACEFACEE

CEE

cE

E

E

DEE

E

E

E

DEDEE

ACD

p

tt

t

t

b

b

t

tt

bptt

t

b

b

b

t

b

t

b

tt

t

t

t

t

tt

t*tt

ab

473

Page 5: AMAZONIANA XII 484 Kiel, - MPG.PuRe

FAMILY/SPECIESPaspalum sp.

P enniselum l¡i¡s¡¿r¿m NEES

Pennisetum purpureum SCHUM

Raddiella esenbeckii (STEUD.)

CELDERON & SODERSTROM

Reimarochloa brasiliensis (SPRENG.) HITCH.Reimarochloa sp.

Setaria genicular¿ (LAM.) BEAUV.Sorghum arundinaceum (WILLD.) STAPF.

Spart i na b ras il ie ns is RADDIHeliconiaceae = Musaceae

Heliconia cf. marginata (GRIGGS.) PITTH. striataHORT.HydrocharitaceaeLimnobium laevigatum (HUMB. and BONPL.

ex. WILLD.) HEINELimnobium sp.

Hypnaceae

Vesicularía amphibola (SPRUCE.) BROTH.Labiâtae = Lamiaceae

Hyptis brevipes BENTH.H. lantanaeþli¡¿m POIT.H. mutabilis BRIG.H. parkeri BENTH.

H. recurvata POIT.Hyptis sp.

Ocimum c¿num SIMS.O. micranthum BENTH.Leguminosae(Leg. Caesalpinoidea):

Cassia nictitans var. disadena (STEUD.)

Cassia obtusiþlia L.C. occidentalis L.(Leg. Mimosoidea):

Mimosa dormiens HUMB. & BONPL.M. insidiosa BENTH.

M. invis¿ MART.

M. pigra L.M. polycarpa KUNTH.Mimosa sp.

Neptunia oleracea LOUR.(Leg. Papilionoidea - Fabaceae):

Aeschynomene ¡ødis BENTH.A. sensitiva SW. var. amazonica RUDD.Aeschynomene sp.

Arachis sp.

Cenlrosema sp.

Clitoria falcata LAM. var. falcataCrotalar ía ana gy r oide s H.B.K.C. nitens H.B.K.

t

t

t

F

2

)t

I

J

1

)4

2

J

J

M HE

E

E

E

D

D

E

E

E

F

F

A

A

B

E

E

E

E

E

E

E

E

a

a

p

')

2

)2

2

2)2

2

2

b

t

t

ttvtvt

t

2

3

2

3

3

2

3

2

2

3

2

3

3

I

2

I

2

I

DEE

D

a

E

E

E

E

E

E

A

B

BCDCDE

E

E

E

E

414

FAMILY/SPECIESC. pallida AlT.Cymbosema ros¿ø¡n BENTH.

I d i g ofe r a s uffr u t i co s a MILL.N eptunia ole racea LOUR.P haseolus campestrís MART.P. ovatus BENTH.

P. pilosus H.B.K.Phaseolus sp.

Rhynchosia minima (L.) DC.Rhynchosia sp.

Sesbania exasperata H.B.K.Teramnus voluhilis SW-

Vigna sp.

[,emnaceae

Lemna aequina¡ialls WELW.L. valdiviana PHIL.Spirodela intermedia W. KOCH.

Woffiella neotropica E. LANDOLT.W. lingulata HEGELM.

W. oblonga HEGELM.

LentibulariaceaeUtricularia foliosa L.U. gibba L.Utricularia sp.

LimnocharitaceaeLimnocharís flava BUCH. var. flavaLoganiaceae

Spigelia anthelmia L.Loranthaceae

P ho rade ndro n platy cau Io n EICHL.LythraceâeCouphea melvilla LINDLEYMalvaceae

Hibiscus abelmoschus (MEDIK.) DC.

H. dimidiatus SCHRANK.

H. furcatus WILLD.H. furcellatus LAM.H. sororius L.Malachra radiata L.Pavonia paniculata CAV. var. corymbosa GÙRKE.

Sida acuta BURM. var. obidensis H. MONTEIRO

S. rhombiþlia L. var. canariensis (WILLD.)

K. SCHUM.

S. setosa COLLA.

S. surinamensis MIQ.Slda sp.

IJrena c|. Iobata L. v^r. reticulata GÜRKE.

MalpighiaceaeStigmatophyllum sp.

M

a

a

a

a

a

a

a

a

a

p

F)I

I

3

2

2

2

2))2

2

I

)2

2

2

2

2

3

J

I

1

HE

E

E

AEFE

E

E

E

E

DEE

E

AA

AAAA

AA

A

c*

E

E

BE

t

t

t

I

I

I

I

1

I

I

2

2

2

I

1

I

BEBEBEBEBEE

BEE

tv

E

E

E

E

E

E

475

Page 6: AMAZONIANA XII 484 Kiel, - MPG.PuRe

FAMILY/SPECIES FMarantaceåe

Calathea cf . capitata LINDL. 3

C. comosa K. SCHUM. 3

C. lanata PETERS. 1

C. cf. Ioeseneri MACBR. 2

C. luba (AUBL.) MEYER. I

C. micans (MART.) KOERN. I

Calathea sp. 2

Ischnosiphon polyphyllus (P. & F.) KOERN. I

Marantha sp. 2

Thalia geniculafd LINN. I

MarsiliaceaeMarsilea polycarpa HOOK & GREV. 3

Melastomataceae

Aciotis aequatori¿lis COGN. 2

A. amazonica COGN. var. radicans COGN. ex. CHAR. 2

Acíotis sp. 2

Menispermaceae

Cissampelos andromorpha DC. 2

C. glaberrima ST. HIL. I

Cissampelos sp. t

Odontocarya arþlia BARNEBY. 2

O. tamoides (DC.) MIERS. 2

Nymphaeaceae

Nymphaea blanda G.F.W. MEYER I

Víctoria amaTonica SOWERBY 3

Onagraceae = OenotheraceaeLudwigia oclovalvis (JACQ.) RAVEN 2

L. ffinis (DC.) H. HARA 2

L. decurrens WALT. 3

L. densiflora (MICHELI.) H. HARA 4

L. elegans (CAMB.) H. HARA 2

L. helminthorrhi¿a (MART.) H. HARA:L. natans HUMB. & BONPL. 3

L. leptocarpa (NUTT.) H. HARA 2

L. lithospermiþiia (MICHELI.) H. HARA 2

L. octovalvis (JACQ.) RAVEN. 2

L. rigida (MIQ.) SANDWITH. 2

2Ludwigia sp.

Orchidaceae

Eulophia alta (L.) FAWE & RENDL. I

Oxalidaceae

Oxalis barrelieri L. I

Oxalis sp. I

Parkeriaceae

Ceratopteris pteridoitles UNDEW. 3

Passifloraceae

Passiflora organensis GARDN. I

P. vespertilio L. I

Passiflora sp.

476

M

bp

H

F

F

F

F

F

F

F

F

F

c*

A

E

E

E

E

E

E

E

E

A

A

a

t

t

p

t

t

t

a

p

t

t

t

t

p

tvtvtvtvtv

^a

tvtvtv

D

BDD

D

D

B

E

E

A

E

E

E

t

t

a

AD

DED

D

DE

EFEFEFEFEFEFEFEF

I

3

)2

3

2

2

I

I

3

3

FAMILY/SPECIESPedaliaceae

Sesamum indicum L.

Phytolaccaceae

M icrorea d¿åilis SWARTZ.

Piperaceae

Peperomia pellucida (L.) H.B.K.Peperomia sp.

Piper øduncum LINN. var. aduncum

P. hispidum H.B.K. var. hispidum

P. malacophyllu¡n (PRESL.) C. DC.

P. striatipetiolatum YUM.Piper sp.

Pothomorphe pehata (L.) MlG.Polygonaceae

P o I y gonum ac umi naI um H.B.K.P. spectabile MART.Polypodiaceae

Lindsaya sp.

Nephrolepis biserrata (SW.) SCHOTT.

P ityrogramma calomelanos (L.) LINK.Thelypteris serrata (CAY.) ALSTON.T. toua (TUMB.) SCHELPE.

Thelypteris sp.

Pontederiaceae

Eíchhornia azurea (SW.) KNUTH.E. crassipes (MART.) SOLMS.

Pontederia rotundiþlia (L.F.) CASTELL.Portulacaceae

Portulaca oleracea L.

Tal inum p anic ul atum (JACQ.) CAERTN.Ricciaceae

Ricciocarpus natans (L.) CORDA.

Rubiaceae

Borreria capitata var. renella (H.B.K.)

B. Iaevis (LAM.) GRISEB.

B. verticillata (L.) G.F.W. MEYERBorreria sp.

Diodia kuntzei K. SCHUM.

D. ocimifolia (WILLD.) BREM.

Hedyotis corymbosa (L.) LAM.H. cf . herbacea L.Mitracarpum hirtum DC.Mitracarpum sp,

Oldenlandia corymbosa L.O. lancifolia (DC.) SCHUM.

Palicoarea marcgravii ST. HILL.Salvinaceae

Azolla cf. microphylla KAULF.Salvinia auriculata AUBL.S. minima BAKER.

MF H

E

E

t

t

tptptptptpt

CECE

AA

AC*

b

b

a

^

F

B

B

B

B

B

^

I

4

3

3

I

)

2

2

2)2

2

)2

2

2

2)2

J

4

3

ap

DEE

A

DEE

E

E

E

E

DEDEE

E

DEDEE

A

AA

a

A

a

477

Page 7: AMAZONIANA XII 484 Kiel, - MPG.PuRe

FAMILY/SPECIESS. sprucei KUHN in MART.Sapindaceae

C ardiospe r mum hal icacab um L.Paullinia stipularis BENTH. ex. RADLK.Scrophulariaceae

Alectra brasilie¿sis BENTH.Lindernia cruslacea (L.) F. VON MUELL.L. diffusa (L.) WETTST.

Lindernia sp.

Mecardonia procumbens (MILL.) SMALLScoparia dulcis L.Stemodia sp.

Torenia sp.

Solanaceae

Physalis angulata L.Physalis sp.

Solanum anceps RUIZ. & PAV.S. arborescens HUMB. & BONPL.S. cf . crinitum LAM.S. jamaicense MILL.S. kidniotrichum BITT.S. nigrum L. - Solanum americanum MILL.S. nodiflorum JACQ.

S. sisymbriifolium LAM.S. thelopodium SENDT. in MART.Solanum sp.

Turneraceae

Piriqueta cistoides G.F.W. MEYER.Urticaceae

Urera sp.

Verbenaceae

Lantana camara L.L. canescens H.B.K.L. rodonensis MOLDENKEPhyla betulaeþlia (H.B.K.) GREENE.Stachytarpheta ¿/a¡ior SCHRAD. ex SCHULTVitex cymosa BERT. ex SPRENG.

Vitaceae

Cissus erosa L.C. RICH.

C. gongylodes BURCH. ex BAKER.C. sicyoides L.

Cissls sp.

t

F)

2

I

I

3

J

2

2

3

l2

2

2

I

I

2

2

I

3

)I

I

I

2

Ma

HA

E

E

E

E

E

DEE

E

tvtv

E

DEDEDEDEE

E

DE

E

E

E

E

E

E

E

E

E

E

E

E

DE

Et

A total of 388 species were identifîed. They belong to 64 families and 182 generaThe best represented family is the Gramineae with 60 species. In second place is theCyperaceae with 37 species, followed by the Leguminosae with 30 and the Compositaewith 27 species. A total of 42 families were represented by one to three species. Thetotal number in the region investigated is about 10 Vo to 20 Eo greater than the valuereported here. This discrepancy is accounted for by plants that occur in isolated loca-

478

I.,

I

2

1

I

,)

)I

2

tvtvtvtv

BEBEBEBE

tions only. In sites at the highest elevations, which are subject to flooding at intervalsof several years and in areas used for agriculture, the occurrence of umeported speciescan be expected.

The classification of herbs according to their modes of existence showed that 330species, or 85 %o of the total, are terrestrial. There are 34 aquatic species, which is 9 7o

of the total, while only 20 species, oÍ 5 Vo, ¿ìre considered to be palustric. Aquaticspecies with terrestrial phases number 17 and account for 4 Vo of the total. The maingrowth period of two of them, Cynodon dactylon and Paspalum fasciculatum, is duringthe terrestrial phase, but they can survive for many months with their stems under water(Table 2).

Table 2: Classification of herbs acording to frequency (F) of occunence, principle habitats (H), and mode

of existence (M). For explanation of symbols see Table l Many species show a wide range ofmode ofexistence and habitat preferences. Therefore total ofthese categories are greater than totalspecies numbers

Frequency Principle habitatsHnnF

Mode of existence

Mn

a

b

p

t

I

2

3

4

5

lt0r89

72

t25

34

t720

330

58

AB

C

D

E

F

42

44

26

92

273

25

The classification according to the main sites of occurrence shows that 273 terrestrialspecies, o.r 777o of the total prefer disturbed locations at higher elevations. A total of 92species, or 24 7o of the total, are characteristic of areas of fresh sediment deposition, butisolated individuals can also settle on sites at higher elevations. The low-lying beds oflakes are preferred by 26 species, 7 Vo, and the inundation forest supports 25species, 7 7o. Bays of the vórzea lakes with standing water are colonized by 42 species,11 7o of the total, during the aquatic phase, while 44 species, ll To,inhabit the floatingislands.

An analysis of species abundance shows that the great majority of them occur inrelatively small numbers. The frequency values of 1,2, or 3 were assigned to ll0 or29 7o;189 or 49 7o, and72 species or 18 Vo of the total, respectively. Only 12 species,or 3 Vo or the total, were very abundant, and 5 were so dominant that they were fre-quently able to form large, monospecific stands. Of the 11 very abundant, dominantspecies, four are classified in the category of aquatic macrophytes: Pistia stratiotes,Scirpus cubensis, Eichhornia crassipes, and Salvinia auriculata. Six species are aquaticwith a clearly evident terrestrial phase: Echinochloa polystachya, Hymenachne

amplexicaulis, Leersia hexandra, Oryza perennis, Paspalum repens, and Montrichardia

479

Page 8: AMAZONIANA XII 484 Kiel, - MPG.PuRe

arborescens. M. arboresce¿s is also classified as a swamp-dwelling plant. Two speciesare terrestrial but can survive for long periods of time with their stems submerged:Cynodon dactylon and Paspalum fasciculatum. Five species are purely terrestrial:Alternanthera pilosa, A. brasiliana, Paspalum conjugatum, Ludwigia densiflora, andSorghum arundinaceum.

Adaptations to the flood pulseThe following attributs are common to herbaceous plant species that grow in the

vórzea:- Resistance of seeds and spores to flooding and desiccation- Short reproductive cycles and high reproduction rates- High productivity- Tolerance of plants to flooding- Tolerance of plants to desiccation- Adaptations to water level fluctuationsIn most cases, the resistance of seeds and spores to flooding is a preadaptation rather

than an adaptation, as shown by the many ruderal species, which colonize the flood-plain. An adaptation is found in Ludwigia densiflora, which maintains the seeds inwoody seed sapsules during the flood period and releases them when the habitat is dryagain. This species seems to be restricted to the vórzea. Germination of diaspores ofmost aquatic species occurs during the dry period only.

The seed-bank in the sediment is very large. on the sediments of drying lakes up to10,000 seedlings per m2 were counted. On newly formed sediment bars in the middleof the river 10 to 100 seedlings per m2 were observed.

Short life cycles and high reproduction rates are essential for the colonization ofephemeral habitats in the floodplain. Many small annual species already produce seedsafter a period of four weeks. Tall ones, which grow 2.5 m high e.g. Ludwigia densifloraneed 2-3 months. Number of seeds is very high, e.g. Paspalum conjugatum 1,500,Eleusine indica up to 135,O(Ð, Portulaca oleracea 10,000 (HOLM et al. 1977). lnaquatic macrophytes, vegetative propagation is very effective, e.g. by fragmentation(Salvinia spp., Ricciocarpus natans, Lemna spp., Ceratophyllum demersum, Echinochloapolystachya), by runners (Eichhornia crassipes, Pistia stratiotes, Limnobium stolonifur-um) and by frond buds (Ceratopteris pteridioides).

High rates of primary production are necessary to compensate for great annual lossesin an unstable environment. The herbaceous plant communities of the vórzea belong tothe most productive ones in the world. Short living, annual terrestrial communitiesproduce between 6 to 16 t ha-' dry biomass within three months. Highly adaptedperennial species e.g. Paspalum fasciculaturz produce 72 t ha-t during a nine monthgrowth period and Echinochloa polystachya produce more than 100 t ha-l a' lJUt'II< &HOV/ARD-V/ILLIAMS 1984; JUNK 1986;JUNK & PIEDADE 1993; pIEDADE er al.l99r ).

Various morphological peculiarities can be interpreted as adaptations to flooding, e.g.facultative formation of aerenchyma in the roots and stems (many of the Ludwigiaspecies, Neptunia oleracea, Sesbania exasperata, Sphenoclea ceylanica), the blisterlikeswellings of submersed stems (Caperonia castaneiþlia, Polygonum tomentosum) andthe development of pneumatophores (Phaseolus cf. longiþlius, Ludwigia ffinis andother Ludwigia species). The stems of Paspalum fasciculatum and Cynodon dactylon

480

survive below water.Many aquatic species show astounding morphological and physiological plasticity to

survive the terrestrial phase. Free floating species, such as Eichhornia crassipes,Pontederia rotundiþlia, Ludwigia natans, Neptunia oleracea, and Paspalum repens,sliow reductions in size, the area of their leaf surfaces, water content, and, in the cases

of Ludwigia and Neptunia species, the amounts of aerenchymatic tissue in the roots and

stems when growing on land. The leaves of Paspalum repens, become more hairy. Therhizomes of Victoria amazonica and Nymphaea blanda survive in moist sediments.

During the aquatic phase, large fluctuations in water level and low transparency ofthe water require adaptations to maintain the organs of photosynthesis just below orabove the water surface. The majority of aquatic macrophytes have adapted to a free

floating way of life. All species rooted in the sediment have emergent or floating leaves.

Discussion

With 64families, 182 genera, and 388 species, excluding epiphytes, the herbaceous

vegetation in the central part of lhe várzea near Manaus is astoundingly rich. In con-trast, there are about 350 tree species in the inundation forest. If the epiphytes and the

species occurring in the border region of the tena firma were also counted, the totalnumber of higher plant species would number about 1000. Of these, about 450 are

shrubs and trees and 550 are herbaceous species. In the Bolivian lowlands, BECK(1983) found about 4{Ð plant specieS, including trees. The flora of the savannas inHumaitá, where about 4O Vo of the area is periodically flooded during the rainy season,

encompasses 314 species from the open grasslands, 151 species of the sparcely scatteredpatches of shrub growth, and 67 ruderal species (JANSSEN 1986). SEIDENSCHWARZ(1986) reported 245 species of herbaceous plants from the open areas of the river banksalong the Rio Yuyapichis and Rio Pachitea and on the nearby areas of newly cultivatedfields and roadsides in the tropical lowlands of Peru.

The great species diversity is in part a result of great habitat diversity. There is agradient from permanently aquatic to nearly permanently terrestrial conditions. Further-more, there is a patchy distribution of soils of different grain size. Sand dunes mayaltemate with silt depositions, waterlogged soils alternate with water deficient ones.

Annual variability in local precipitation at the beginning of the dry period has a verystrong effect on the seedling establishment and leads to great interannual variability inthe community structure of annual herbaceous plants.

However, by examining the distribution of the herbaceous plants that occur in the

vórzea, we find that the great majority of terrestrial species,273 or71 Vo of the total,prefer distrubed locations at high elevations which are flooded for a short time duringthe average year but often remain dry for several years in a row. The total number ofspecies is even greater because most of the species that prefer to settle in low-lyinghabitats also occur there occasionally. However, these areas are normally occupied by

the floodplain forest which is colonized by only 25 herbaceous plant species, whichaccount for 7 7o of the total number in the region, because of insufficient light. Anincrease in the number of herbaceous species after clearing of the forest and the immi-gration of ruderal species onto the river banks was observed by SEIDENSCHWARZ(1986) at two areas he investigated in the Peruvian lowlands. Many of these species are

481

Page 9: AMAZONIANA XII 484 Kiel, - MPG.PuRe

Primarily terrestrial:Cyperus rotundus

Cyperus esculentus

Fimbristylis miliacea

F imb r istyl is dichotoma

Cynodon dactylon

Eleusine indica

Paspalum conjugatum

Panicum maximum

Brachiaria mutica

(P anicum purpurasc ens)

Penníselum purpureum

Portulaca oleracea

Digitaria sanguinalis

Amaranthus spinosus

Heliotropium indicum

Lanlana camara

Sida acuta

Solanum nigrum

Sphenoclea Teylanica

Primarily aquatic:

Ceratophy ll um demers um

Pistia stratiotes

Salvinia auriculata

Eichhornia crassipes

Leersia hexandra

India,!

Tropical America

Tropical America

Africa or Indo-Malaysia

Probably Southeast Asia

Tropical America

AfricaTropical Africa

Tropical AfricaNorth Africa or Europe

Europe

Tropical America

Paleotropical

Tropical Ämerica

Central America

Europe

Tropical Africa

Unknown

Unknown

Tropical South America

Tropical South'America

Tropical America

Primarily the tropics and subtropics worldwide

Primarily the tropics and subtropics worldwide

Moist tropics, worldwide

Moist tropics, worldwide

Primarily the tropics and subtropics worldwide

Primarily the tropics and subtropics worldwide

Moist tropicò, worldwide

Tropics and substropics, worldwide

Moist tropics and subtropics, worldwide

Tropics and subtropics, worldwide

Worldwide except for high northern latitudes

Worldwide except for high northem latitudes

Tropics and subtropics, worldwide

Tropics, worldwide

Tropics and subtropics, worldwide

Tropics, worldwide

Worldwide

Tropics, worldwide except Australia

rr'r'orldwide

Tropics and subtropics, worldwide

Tropics, worldwide

Tropics, worldwide

Tropics and subtropics, worldwide

ruderal plants and weeds, which are not confined to the várzea (CHASE 1944; HOLMetal. 1977,1979; LORENZI1982; LEITÃO FILHO et al. 1982; ARANHA er al. 1982).Among them are a group of neophytic weeds (Table 3).

Table 3: Important weeds in the vórzea of the Amazon River and their regions of origin.

NAME REGION OF ORIGIN DISTRIBUTION

Many of the adaptations shown by herbaceous plants in the várzea point.to the needfor quick growth, early maturity and high reproduction rates by seeds or by vegetativepropagation. These mechanisms are characteristic of pioneer plants colonizing frequentlydisturbed areas, generally considered r-strategists. Flood-resistant seeds are the mainprerequisite for the great number of weeds and ruderal species for a successful estab-lishment in the várzea.

However, the predictability of the flood pattern allows for development of adapta-tions to the change between the terrestrial and aquatic phases. The aquatic and semi-aquatic grasses Oryza spp., Luziola spruceana, Echinochloa polystochya, Hymenachneamplexicaulis, Paspalum repens, and Paspalum fasciculatum beloîg to the group ofadapted species. They accomplish specific parts of their life cycles during the tenestrialand the aquatic phases. Because of these adaptations they are quantitatively dominant

482

along the middle and lower Amazon River. However, they have not been reported inhabitats outside the floodplain. They do not occur along the upper reaches of the riverand its small tributaries, because these habitats are subject to rapid, unpredictable floodpulses.

Quick growth and great primary production of adapted species can, in the long run,lead to strong interspecific competition and exclusion of other species. ln the vórzea thisis not the case, because the perturbation caused by the flood pulse leads annually to aset-back in the community development, avoids the elimination of species byinterspecific competition and maintains the system at a low seral stage.

with the periodic losses caused by the flood pulse and associated factors (e.g.culrent, sedimentation, erosion), a dense herbaceous vegetation can only be establishedover the long term when sufficient nutrients are present to permit a replacement of thelosses. This is the case in the vórzea of the Amazon River, but not in the neighbouringfloodplain of the nutrient poor Negro River as shown by the sparcity of the herbaceousvegetation (JUNK 1983).' These findings agree with the predictions of the flood pulse concept (JUNK et al.

1989) that predictability of inundation, great habitat diversity, low interspecific concur-rence and good nutrient supply allow a great number of species to colonize the várzeainspite of the heavy stress caused by the periodic changes between aquatic and terrestri-al phases.

Resumo

Na área alagável (várzea) do rio Amazonas, perto de Manaus, foi encontrado um total de 388 espécies

de plantas herbáceas não epífitas, pertencentes a 64 famílias e 182 gêneros. Destas,330 espécies são

consideradas terrestres, 34 aquáticas, e as restantes ocupam categorias intermediárias. Somente l7 espécies

formam grandes populaçiles monoespecíficas, enquanto que a maioria ocorre em baixas densidades. Omaior número de espécies (273) foi encontrado durante a seca nas porções elevadas da planície inundávelem áreas pertubadas, tais como plantios abandonados, onde a insolação é grande devido ao desmatamento,e o impacto da inundação é relativamente pequeno. Um reduzido número de espécies (25) foi encontradono solo da mata inundável devido aos baixos índices de insolação, e no fundo seco dos lagos (26), que se

encontra coberto por poucas espécies bem adaptadas.

Os seguintes fatores foram considerados como favoráveis à occorência de plantas herbáceas na vârzeado Rio Amazonas: resistência das sementes e esporos contra a inundação e seca; ciclos reprodutivos curtos;altas taxas de reprodução; alta produção primária; tolerância de plantas adultas à inundação e seca;

adaptações às flutuações de nível da água como, por exemplo o hábito de vida flutuante.Os ciclos de vida curtos e as altas taxas de reprodução permitem a colonização rápida de áreas

perturbadas e a reposição de perdas populacionais (estratégia-r). Esta estratégia é favorecida pelo elevadoestatus de nutrientes da várzea do Rio Amazonas em comparação com a ârea alagâvel do Rio Negro(igapo), aonde plantas herbáceas ocorrem em número reduzido. O número de plantas ruderais e ervas

daninhas é grande, incluindo-se um crescente número de neófitas.

A grande diversidade de espécies verificada é relacionada à grande diversidade de habitats, à

fertilidade dos sedimentos e da água, à previsibilidade do pulso de inundação e à redução da competição

interespecífica decorrente da redução anual das populações, provocada pelos ciclos de inundação e seca.

Estes resultados corroboram o Conceito do Pulso de Inundação.

483

Page 10: AMAZONIANA XII 484 Kiel, - MPG.PuRe

Acknowledgments

The research was funded by the European Community. We thank Dr. William Rodrigues, Dr. Marlene

Freitas and co-workers of the herbarium at INPA, Manaus (Brazil), for their help.

References

ALBUQUERQUE, J.M. DE (1978): Identificação de plantas invasoras de cultura da região de Manaus. -

Tese de Mestrado, CNPq/INPA/FUA, ManauVAmazonas, Brasil: 124 p.

ARANHA, C., BACCHI, O. & H. DE F. LEITÃO FILHO (1982): Planras invasoras de culruras 2. -

Instituto Campineiro de Ensino Agricola (Campinas, São Paulo, Brazil):297-597.

BECK, S. (1983): Vegetationsökologische Grundlagen der Viehwirtschaft in den Überschwemmungs-

Savannen des Rio Yacuma (Departamento Beni, Bolivien). - Dissertationes Botanicae 80 J. Cramer,

Vaduz: 186 S.

CHASE, A. (1944): Grasses of Brazil and Venezuela. - Agriculture in the Americas 4('l):123-126.

HOLM, L.G., PLUCKNETT, D.L., PANCHO, J.V. & I.P. HERBERGER (1977): The worlds worst weeds.

Distribution and biology. - Honolulu Univ. Press, Hawai: 609 pp.

HOLM, L., PANCHO, J.V., HERBERGER, J.P. & D.L. PLUCKNETT (1979): A geographical atlas ofworld weeds. - John Wiley & Sons, New York: 391 pp.

JANSSEN, A. (198ó): Flora und Vegetation der Savannen von Humaitá und ihre Standortbedingungen. -

Dissertationes Botanicae 93 J. Cramer, Berlin: 321 S.

JUNK, W.J. (1983): Ecology of swamps on the middle Amazon. - In: GORE, A.J.P. (ed.): Ecosystems ofthe World. Mires, Swamp, Bog, Fen and Moor. 3. Regional studies: 269-294, Elsevier Publ. Comp.,

Amsterdam: 479 pp.

JUNK, W.J. (198ó): Aquatic plants of the Amazon system. - In: DAVIES, B.R. & K.F. WALKER (eds.):

. The ecology of River Systems: 319-337 , W. Junk Publ., Dordrecht: 7ó3 pp.

JUNK, W.J. (1989): Flood tolerance and tree distribution in central Amazonian floodplains. - In: HOLM-

NIELSEM, L.8., NIELSEN, L & H. BALSLEV (eds.): Tropical forests: botanical dynamics, speciation

and diversity: 4?-64, Academic Press, London: 380 pp.

JUNK, W.J. & C. HOWARD-WILLIAMS (1984): Ecology of aquatic macrophytes in Amazonia. - In:

SIOLI, H. (ed.): The Amazon: limnology and landscape ecology of a mighty tropical river and its

basin: 269-293, rW. Junk Publ., Dordrecht:763 pp.

JUNK, W.J., BAYLEY, P.B. & R.E. SPARKS (1989): The flood pulse concept in river-floodplain systems.

- In: DODGE, D.P. (ed.): hoceedings of the International: Large River Symposium (LARS), Can.

Spec. Publ. Fish. Aquat. Sci. 106: 110-127.

JUNK, \tY.J. & M.T.F. PIEDADE (1993): Biomass and primary-production of herbaceous plant communi-

ties in the Amazon floodplain. - Hydrobiologia 263 155-162.

LEITÃO HLHO, H. DE F., ARANHA, C. & O. BACCHI (1982): Plantas invasoras de culruras l. -

Instituto Campineiro de Ensino Agícola. Campinas, São Paulo, Brazil 291 p.

LORENZI, H. (1982): Plantas daninhas do Brasil. - Nova Odessa, São Paulo, Brasil: 425 p.

OHLY, J.J. (1987): Untersuchungen über die Eignung der natürlichen Pflanzenbestände auf den

Ûberschwemmungsgebieten (Várzea) am mittleren Amazonas, Brasilien, als Weide für den

Wasserbüffel (Bubalus bubalis\ während der terrestrischen Phase des Ökosystems. - Cöttinger Beiträge

zur Land- und Forstwirtschaft in den Tropen und Subtropen 24: 1-199.

PIEDADE, M.T.F., JUNK, W.J. & S.P. LONG (1991): The productivity of the Co grass Echinochloa

polystachya on the Amazon floodplain. - Ecology 72(4): 1456-1463.

SEIDENSCHWARZ, F. (1986): Pioniervegetation im Amazonasgebiet Perus. Ein Pflanzensoziologischer

Vergleich von vorandinem Flußufer und Kulturland. - Monographs on Agriculture & Ecology of

Warmer Climates, Vol. 3, J. Margraf, Triops Verlag, Langen: 226 S.

484