ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares...

151
UNIVERSIDADE FEDERAL DE PERNAMBUCO – UFPE CENTRO DE TECNOLOGIA E GEOCIÊNCIAS – CTG PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL -PPGEC ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM RADIER ESTAQUEADO UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS Oscar Bartra Pezo Orientador: Prof. Roberto Quental Coutinho, DSc. Co-orientador: Prof. Renato Pinto da Cunha, PhD. Recife, PE Julho - 2013

Transcript of ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares...

Page 1: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

UNIVERSIDADE FEDERAL DE PERNAMBUCO – UFPE

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS – CTG

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA

CIVIL -PPGEC

ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM RADIER

ESTAQUEADO UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS

Oscar Bartra Pezo

Orientador:

Prof. Roberto Quental Coutinho, DSc.

Co-orientador:

Prof. Renato Pinto da Cunha, PhD.

Recife, PE

Julho - 2013

Page 2: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

ii  

UNIVERSIDADE FEDERAL DE PERNAMBUCO – UFPE

CENTRO DE TECNOLOGIA E GEOCIÊNCIAS – CTG

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

- PPGEC

ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM RADIER

ESTAQUEADO UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS

Oscar Bartra Pezo

Dissertação de Mestrado submetida ao Departamento de Engenharia Civil da Universidade Federal de Pernambuco como parte dos requisitos necessários à obtenção do Grau de Mestre em Engenharia Civil

Orientador:

Prof. Roberto Quental Coutinho, DSc.

Co-orientador:

Prof. Renato Pinto da Cunha, PhD.

Recife, PE

Julho - 2013

 

Page 3: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

iii  

FICHA CATALOGRÁFICA

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

P521a Pezo, Oscar Bartra. Análises numéricas de provas de carga em radier estaqueado utilizando

o método dos elementos finitos / Oscar Bartra Pezo. - Recife: O Autor, 2013. xix, 132 folhas, il., gráfs., tabs. Orientador: Prof. DSc. Roberto Quental Coutinho. Co-orientador: Prof. Dr. Renato Pinto da Cunha. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG.

Programa de Pós-Graduação em Engenharia Civil, 2013. Inclui Referências e anexo. 1. Engenharia civil. 2. Radier estaqueado. 3. Retroanálise. 4. Método

Elementos Finitos. 5. César-LCPC. 6. Mohr-Coulomb. 7. Análises paramétricas. I. Coutinho, Roberto Quental. (Orientador). II. Cunha, Renato Pinto da. III. Título.

UFPE  624 CDD (22. ed.)       BCTG/2013‐205 

Page 4: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

iv  

 

 

 

UNIVERSIDADE FEDERAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL 

 

A comissão examinadora da Defesa de Dissertação de Mestrado    

ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM RADIER ESTAQUEADO UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS

 

Defendida por   

Oscar Bartra Pezo  

Considera o candidato APROVADO

Recife, 02 de julho de 2013

 

Orientadores:

___________________________________________ Prof. Dr. Roberto Quental Coutinho

(orientador)   

___________________________________________ Prof. Dr. Renato Pinto da Cunha

(co-orientador)

Banca Examinadora:

___________________________________________ Prof. Dr. Roberto Quental Coutinho – UFPE

(orientador)

___________________________________________

Prof. Dr. António Joaquim Pereira Viana da Fonseca – FEUP (examinador externo)

 

__________________________________________ Prof. Dr. Ivaldo Dario da Silva Pontes Filho – UFPE

(examinador interno)  

Page 5: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

v  

DEDICATÓRIA

À minha esposa Francoise e a nossas filhas, Celeste, Daphne e Amira.

Page 6: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

vi  

AGRADECIMIENTOS

A Deus;

Aos Professores Dr. Roberto Quental Coutinho e Dr. Renato Pinto de Cunha pela

orientação, apoio, incentivo, esforços, confiança e dedicação para a conclusão da

dissertação.

Aos docentes, colegas e funcionários da Universidade de Brasília pelo apoio e

contribuição no desenvolvimento deste trabalho.

Aos docentes, colegas e funcionários da Universidade Federal de Pernambuco, em

especial à equipe de Pós-Graduação da CTG, um sincero agradecimento por seus

ensinamentos e apoio a meu desenvolvimento profissional.

À minha família e amigos que de uma forma ou outra, apoiaram moralmente e

financeiramente na fase dos estudos de Pós-Graduação.

A CAPES pelo auxílio financeiro durante o curso de mestrado.

À minha esposa Francoise, e a nossas filhas, razões maiores de todo este esforço,

pelo apoio e compreensão para meu desenvolvimento profissional e pessoal.

Page 7: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

vii  

RESUMO

A presente dissertação analisa, em termos do comportamento carga-recalque, um

banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em

grupo de estacas e radier estaqueados, executados em solo arenoso de várias

camadas da área litorânea de João Pessoa/PB, com 07 provas de carga, estáticas,

em estacas do tipo Hollow Auger, construídas em escala real, com 300 mm de

diâmetro e 4,5 m de comprimento.

Os dados foram retroanalisados com o Método dos Elementos Finitos (MEF 3D),

utilizando o programa CESAR-LCPC v4 (Cleo 3D versão 1.07). Na modelagem do

comportamento tensão-deformação do solo foi utilizado o modelo constitutivo de

Mohr-Coulomb. Os parâmetros geotécnicos iniciais utilizados em cada um desses

modelos foram obtidos através de correlações a partir de valores de NSPT obtidos por

SOARES (2011). Os resultados dessas simulações numéricas foram comparados

com os resultados experimentais, medidos nas provas de carga.

Definiu-se os parâmetros geotécnicos do solo a partir da retroanálise por meio da

modelagem numérica para serem empregados em futuras simulações no maciço.

Análises paramétricas são executadas com o intuito de obter um maior conhecimento

do comportamento da fundação em radier estaqueado, usando o modelo elástico-

plástico de Mohr-Coulomb. Isso ocorre mediante algumas alterações de sua

configuração que inclui a espessura do radier, número, diâmetro, espaçamento e

comprimento das estacas embutido no solo. Carga vertical central está sendo

considerada para a análise paramétrica. O recalque máximo, recalque diferencial e

distorção angular do radier diminuem, com o aumento da espessura do radier, do

número, comprimento e diâmetro das estacas.

Palavras-chave: Radier Estaqueado. Retroanálise. Método Elementos Finitos.

César-LCPC. Mohr-Coulomb. Análises paramétricas.

Page 8: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

viii  

ABSTRACT

This dissertation analyzes, in terms of stress-strain behavior, a database organized by

Wilson Cartaxo Soares (2011), of foundations in group of piles and piled rafts,

executed in multiple layers of sandy soil of the coastal area of João Pessoa/PB, with

07 load tests, statics, piles on the type Hollow Auger, built in scale, with 300 mm in

diameter and 4.5 m lenght.

The data was backward analyzed with Finite Element Method (FEM 3D) using the

software CESAR-LCPC v4 (Cleo 3D version 1.07). In modeling the stress-strain

behavior of soil constitutive model was used Mohr-Coulomb. The initial geotechnical

parameters used in each of these models were obtained from correlation values NSPT

obtained by Soares (2011). The results of these numerical simulations were compared

with the experimental results, measured in the load tests.

We defined the geotechnical parameters of the soil from the back analysis by numerical

modeling to be used in future simulations in massif.

Parametric analysis were performed in order to obtain a better understanding of the

behavior of the foundation in piled raft, using the elastic-plastic model of Mohr-

Coulomb. This happens through some changes of their configuration that includes the

thickness of the raft, number, diameter; spacing and length of the pile embedded on

the soil. Vertical load center is being considered for the parametric analysis. Maximum

strain, differential strain and angular distortion of raft decreases when increasing the

thickness of the raft, the number, length and diameter of the piles.

Keywords: Piled raft. Backward analysis. Finite Element Method. Cesar-LCPC. Mohr-Coulomb. Parametric analyzes.

Page 9: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

ix  

SUMÁRIO

CAPÍTULO 1. INTRODUÇÃO--------------------------------------------------------------

1.1. OBJETIVO...................................................................................................

1.2. ORGANIZAÇÃO DA DISSERTAÇÃO..........................................................

CAPÍTULO 2. FUNDAMENTOS TEÓRICOS....................................................

2.1. CORRELAÇÕES COM OS ENSAIOS SPT.................................................

2.1.1. CLASIFICAÇÃO DO SOLO......................................................................

2.1.2. PESO ESPECÍFICO EFETIVO DO SOLO................................................

2.1.3. MÓDULO DE DEFORMABILIDADE.........................................................

2.1.4. COEFICIENTE DE POISSON..................................................................

2.1.5. ÂNGULO DE ATRITO INTERNO.............................................................

2.1.6. MÓDULO DE DILATÂNCIA.....................................................................

2.2. PROPRIEDADES MECÂNICAS DO AÇO E CONCRETO..........................

2.2.1. AÇO.........................................................................................................

2.2.2. CONCRETO.............................................................................................

2.3. CONSIDERAÇÕES GERAIS SOBRE MODELOS ELASTO–PLÁSTICOS.

2.3.1. TEORIA DA ELASTICIDADE..................................................................

2.3.2. TEORIA DA PLASTICIDADE...................................................................

2.4. MODELOS CONSTITUTIVOS....................................................................

2.4.1. MODELOS ELÁSTICOS.......................................................................

2.4.1.1. MODELO LINEAR ELÁSTICO..............................................................

2.4.2. MODELOS ELASTO-PLÁSTICOS DE SOLOS........................................

2.4.2.1. MODELO DE MOHR-COULOMB..........................................................

2.4.3. PROGRAMA CESAR LCPC.....................................................................

2.4.3.1. PROCEDIMENTO DE APLICAÇÃO DO PROGRAMA..........................

2.5. MODELAGEM NUMÉRICA.........................................................................

2.5.1. MODELAGEM DA GEOMETRIA..............................................................

2.5.1.1. MODELAGEM GEOMÉTRICA DAS ESTACAS....................................

2.5.1.2. MODELAGEM GEOMÉTRICA DO RADIER.........................................

2.5.1.3. MODELAGEM GEOMÉTRICA DO RADIER ESTAQUEADO................

1

3

3

5

5

6

6

7

7

7

8

8

8

8

9

9

10

11

11

12

12

13

14

15

15

16

16

17

18

Page 10: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

x  

2.5.2. MODELAGEM DO MATERIAL.................................................................

2.5.2.1. SOLO....................................................................................................

2.5.2.2. CONCRETO..........................................................................................

2.5.2.3. INTERFACE..........................................................................................

2.5.3. MODELAGEM DAS CARGAS..................................................................

2.5.4. MODELAGEM DAS CONDIÇÕES DE APOIO, BORDA OU

CONTORNO......................................................................................................

2.6. AJUSTE ESTATÍSTICO DOS DADOS........................................................

2.6.1. DISTRIBUIÇAO NORMAL........................................................................

2.7. RECALQUES..............................................................................................

2.7.1. RECALQUES DIFERENCIAIS ADMISSÍVEIS.........................................

2.7.2. RECALQUES TOTAIS LIMITES EM AREIAS..........................................

2.8. FATOR DE SEGURANÇA...........................................................................

2.9. SÍNTESE DO CAPÍTULO............................................................................

CAPITULO 3. LOCAL DE ESTUDO, MATERIAIS E MÉTODOS.....................

3.1. ESTUDO EXPERIMENTAL REALIZADA POR SOARES (2011)................

3.2. PARÂMETROS GEOTÉCNICOS INICIAIS.................................................

3.3. GEOMETRIA E CONDIÇÕES ADOTADAS PARA A MODELAGEM..........

3.3.1. GEOMETRIA DOS MODELOS................................................................

3.3.2. MODELAGEM DO MATERIAL.................................................................

3.3.2.1. SOLO....................................................................................................

3.3.2.2. CONCRETO..........................................................................................

3.3.2.3. ELEMENTOS DE INTERFACE.............................................................

3.3.3. ESFORÇOS APLICADOS NAS PROVAS DE CARGA.............................

3.3.4. PROPRIEDADES DOS MATERIAIS........................................................

3.3.5. CONDIÇÕES DE CONTORNO................................................................

3.3.6. DISCRETIZAÇÃO DA MALHA DE ELEMENTOS FINITOS......................

3.3.7. CALIBRAÇAO DO MODELO CONSTITUTIVO MOHR-COULOMB.........

3.4. PROCEDIMENTO DE APLICAÇÃO DO PROGRAMA CESAR LCPC........

3.4.1. CONFIGURAÇÃO DO PROGRAMA........................................................

3.4.2. MALHADO 3D – MÉTODO DE EXTRUSÃO..........................................

18

18

19

19

19

19

19

20

21

21

21

23

23

24

24

33

35

35

37

37

37

38

38

39

40

41

43

44

45

45

Page 11: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xi  

3.4.3. CONFIGURAÇÕES DE CÁLCULO..........................................................

3.5. METODOLOGIA UTILIZADA NAS ANÁLISES NUMÉRICAS.....................

3.6. SÍNTESE DO CAPÍTULO............................................................................

CAPITULO 4. RETROANÁLISES DE PROVAS DE CARGA...........................

4.1. RETROANÁLISES DOS RESULTADOS DAS PROVAS DE CARGA.........

4.1.1. ESTADO DE TENSÃO INICIAL................................................................

4.1.2. RETROANÁLISES DO MÓDULO DE DEFORMABILIDADE DO SOLO...

4.1.3. RETROANÁLISES DO ÂNGULO DE ATRITO INTERNO........................

4.2. AJUSTE ESTATISTICO DE DADOS...........................................................

4.3. DISCUSSÃO DOS RESULTADOS.............................................................

4.3. SÍNTESE DO CAPÍTULO............................................................................

CAPITULO 5. ANÁLISE PARAMÉTRICA........................................................

5.1. GEOMETRIA DAS ANÁLISES PARAMÉTRICAS.......................................

5.2. CARACTERÍSTICAS DAS ANÁLISES PARAMÉTRICAS...........................

5.2.1. PROPRIEDADES ELÁSTICAS DOS MATERIAIS...................................

5.2.2. MALHA DE ELEMENTOS FINITOS.........................................................

5.2.3. CONFIGURAÇÃO DA CARGA.................................................................

5.3. RESULTADOS DA ANÁLISE PARAMÉTRICA...........................................

5.3.1. DISTRIBUIÇÃO DE RECALQUES...........................................................

5.3.2. DISTRIBUIÇÃO DE CARGAS..................................................................

5.3.3. DISTORÇÕES ANGULARES...................................................................

5.4. FATOR DE SEGURANÇA E VALORES ADMISSÍVEIS..............................

5.5. APLICAÇÕES.............................................................................................

5.5.1. EXEMPLO PRÁTICO...............................................................................

5.6. SÍNTESE DO CAPÍTULO............................................................................

CAPÍTULO 6. CONCLUSÕES E SUGESTÕES................................................

6.1. CONCLUSÕES...........................................................................................

47

49

50

51

51

52

53

54

59

62

63

64

64

67

67

68

73

74

75

83

87

92

100

102

105

106

107

Page 12: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xii  

6.1.1. CONCLUSÕES DA RETROANÁLISES NUMÉRICA...............................

6.1.2. CONCLUSÕES DA ANÁLISE PARAMÉTRICA........................................

6.2. SUGESTÕES PARA TRABALHOS FUTUROS...........................................

REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO A – Provas de Carga segundo Soares (2011)

ANEXO B – Ajuste estatístico por distribuição normal

ANEXO C – Modelagem de Provas de Carga

ANEXO D – Modelagem da Análise paramétrica

107

107

108

110

120

124

126

132

Page 13: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xiii  

LISTA DE FIGURAS

Figura 2.1 Relações tensão - deformação: (a) linear (b) não linear (Desai &

Cristhian, 1977, citado por Thomé, 2009).

Figura 2.2 Critério de ruptura de Mohr-Coulomb

Figura 2.3 Curva Tensão/Recalque no modelo elástico-plástico de Mohr-

Coulomb. (Modificado, Wood 2004)

Figura 2.4 Tipos de comportamento tensão x deformação: (a) linear elástico;

(b) não linear elástico; (c) não elástico ou plástico; (d) rígido perfeitamente

plástico; (e) elástico-plástico: (1) perfeitamente plástico; (2) enrijecimento; (3)

amolecimento. (Fonte: Desai & Cristhian, 1977, citado por Thomé, 2009).

Figura 2.5 Limites do modelo em estacas (Sosa, 2010)

Figura 2.6 Limites do modelo em radier (Sosa, 2010)

Figura 2.7 Limites do modelo em radier estaqueado (Sosa, 2010)

Figura 2.8 Função de densidade para a distribuição normal padrão. Fonte:

IGM, PUC Goiás, 2010.

Figura 2.9 Distorções angulares e danos associados segundo Bjerrum, 1963.

Figura 3.1 Vista aérea do local da pesquisa (Soares, 2011).

Figura 3.2 Vista em planta da área de teste e dos furos de sondagens SPT.

(Fonte: Soares, 2011)

Figura 3.3 Perfil geológico-geotécnico obtido através das sondagens SPT

(Soares, 2011).

Figura 3.4 Locação das estacas Hollow Auger no Campo de Testes (Soares,

2011).

Figura 3.5 Provas de carga feita por Soares (2011): a) Grupo/radier uma

estaca, b) Grupo/radier duas estacas, c) Grupo/radier quatro estacas, e d)

Bloco isolado.

Figura 3.6 Curvas carga x recalque Grupo Uma Estaca, Bloco Isolado e

Radier Uma Estaca (Modificado, Soares, 2011).

Figura 3.7 Curvas carga x recalque Grupo Duas Estacas e Radier Duas

Estacas (Modificado, Soares, 2011).

Figura 3.8 Curvas carga x recalque Grupo Quatro Estacas e Radier Quatro

Estacas (Modificado, Soares, 2011).

Figura 3.9 Geometria em perfil para retroanálise (Modificado de Sosa, 2010).

9

13

13

16

17

17

18

20

21

24

25

26

27

29

31

32

32

35

Page 14: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xiv  

Figura 3.10 Geometria em planta para retroanálise.

Figura 3.11 Geometria em perfil dos modelos adotados.

Figura 3.12 Delimitação do solo em camadas para retroanálise.

Figura 3.13 Esquema de medição de carga nas provas de carga (Fonte:

Soares, 2011).

Figura 3.14 Condições de Contorno adotadas para retroanálise.

Figura 3.15 Curva Profundidade x Recalque em retroanálise.

Figura 3.16 Curva Profundidade x Tensão em retroanálise.

Figura 3.17 Curvas Carga/Recalque, Radier com Duas estacas.

Figura 4.1 Estado de tensão inicial do maciço na retroanálise.

Figura 4.2 Curvas Carga/Recalque, Bloco Isolado, experimental e Mohr-

Coulomb.

Figura 4.3 Carga/Recalque, Grupo Uma Estaca, experimental e Mohr-

Coulomb.

Figura 4.4 Carga/Recalque, Radier Uma Estaca, experimental e Mohr-

Coulomb.

Figura 4.5 Carga/Recalque, Grupo Duas Estacas, experimental e Mohr-

Coulomb.

Figura 4.6 Carga/Recalque, Radier Duas Estacas, experimental e Mohr-

Coulomb.

Figura 4.7 Carga/Recalque, Grupo Quatro Estacas, experimental e Mohr-

Coulomb.

Figura 4.8 Carga/Recalque, Radier Quatro Estacas, experimental e Mohr-

Coulomb.

Figura 4.9 Histograma e ajuste de curva dos dados Camada 1.

Figura 4.10 Histograma e ajuste de curva dos dados Camada 2.

Figura 4.11 Histograma e ajuste de curva dos dados Camada 3.

Figura 4.12 Histograma e ajuste de curva dos dados Camada 4.

Figura 5.1 Detalhe da geometria da malha da análise paramétrica.

Figura 5.2 Configurações de estacas para análise paramétrica.

Figura 5.3 Curva Profundidade x Recalque para análise paramétrica.

Figura 5.4 Curva Profundidade x Tensão para análise paramétrica.

Figura 5.5 Malha de elementos finitos usada na análise paramétrica.

36

36

37

39

40

42

42

44

52

53

56

56

57

57

58

58

60

60

61

61

65

66

69

69

72

Page 15: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xv  

Figura 5.6 Curva Carga/Recalque da modelagem x Van der Veen da estaca

isolada.

Figura 5.7 Gráficos típicos das análises paramétricas.

Figura 5.8 Plano e coordenadas consideradas para os resultados de recalque

no radier estaqueado.

Figura 5.9 Recalque Máximo no radier estaqueado x Espessura do Radier

para L=5,00 m.

Figura 5.10 Recalque Máximo no radier estaqueado x Espessura do Radier

para L=10,00 m.

Figura 5.11 Recalque Máximo no radier estaqueado x Espessura do Radier

para L=12,00 m.

Figura 5.12 Recalque Máximo no radier estaqueado x Comprimento das

Estacas.

Figura 5.13 Recalque Diferencial no radier estaqueado x Comprimento de

estacas

Figura 5.14 Recalque Diferencial no radier estaqueado x Diâmetro de estacas

e espessura do radier=0,50 m

Figura 5.15 Recalque Diferencial no radier estaqueado x Diâmetro de estacas

e espessura do radier=1,00 m

Figura 5.16 Recalque Diferencial no radier estaqueado x Relação (S/d) e

comprimento de estacas

Figura 5.17 Carga total nas estacas do radier estaqueado x Espessura do

Radier para L=5,00m.

Figura 5.18 Carga total nas estacas do radier estaqueado x Espessura do

Radier para L=10,00m.

Figura 5.19 Carga total nas estacas do radier estaqueado x Espessura do

Radier para L=12,00m.

Figura 5.20 Carga total nas estacas do radier estaqueado x Comprimento de

Estacas.

Figura 5.21 Distorção angular no radier estaqueado x Comprimento de

estacas

Figura 5.22 Distorção angular no radier estaqueado x diâmetro de estacas,

espessura do radier=0,50 m.

73

74

75

76

76

76

77

79

80

81

82

84

85

85

86

88

89

Page 16: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xvi  

Figura 5.23 Distorção angular no radier estaqueado x diâmetro de estacas,

espessura do radier=1,00 m.

Figura 5.24 Distorção angular no radier estaqueado x Relação (S/d) com

comprimento de estacas.

Figura 5.25 Carga de ruptura em radier isolado.

Figura 5.26 Carga de ruptura em estaca isolada, diâmetro=0,3 m.

Figura 5.27 Carga de ruptura em estaca isolada, diâmetro=0,5 m.

Figura 5.28 Recalque máximo no centro do radier estaqueado.

Figura 5.29 Distorção angular no radier estaqueado.

Figura 5.30 Fator de segurança parcial do grupo de estacas.

Figura 5.31 Fator de segurança global do radier estaqueado.

Figura 5.32 Gráfico recalque máximo / recalque admissível x relação S/d.

Figura 5.33 Gráfico distorção angular admissível / distorção angular atuante

x relação S/d.

Figura 5.34 Gráfico carga atuante / carga do grupo de estacas x relação S/d.

.

90

91

92

93

94

97

97

98

99

100

101

101

Page 17: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xvii  

LISTA DE TABELAS

Tabela 2.1 Estados de compacidade e de consistência (NBR 6484)

Tabela 2.2 Peso específico em solos arenosos segundo Godoy, 1972 (citado

em Constancio, 2010).

Tabela 2.3 Valores de E em função de NSPT (Décourt, 1995).

Tabela 2.4 Coeficiente de Poisson (Teixeira & Godoy, 1996).

Tabela 2.5 Propriedades mecânicas do Aço (NBR 8800).

Tabela 2.6 Modelos Constitutivos César LCPC (Fonte: Boletim LCPC 256-257,

2005).

Tabela 3.1 Valores de N obtidos dos ensaios SPT. (Soares, 2011)

Tabela 3.2 Parâmetros mecânicos do concreto (Soares, 2011).

Tabela 3.3 Agrupação preliminar para obtenção de parâmetros geotécnicos

iniciais.

Tabela 3.4 Parâmetros Geotécnicos obtidos por Correlação

Tabela 3.5 Esforços aplicados nas provas de carga (Modificado Soares,

2011).

Tabela 3.6 Propriedades mecânicas e geotécnicas iniciais dos materiais

Tabela 3.7 Características da Malha para retroanálise

Tabela 3.8 Discretização da malha para retroanálise

Tabela 3.9 Densidade da malha utilizada na retroanálise

Tabela 4.1 Parâmetros de Tensões iniciais

Tabela 4.2 Valores do módulo de deformabilidade

Tabela 4.3 Valores do ângulo de atrito interno

Tabela 4.4 Simulação numérica de Grupo de estacas.

Tabela 4.5 Simulação numérica de Radier com estacas e Bloco isolado.

Tabela 4.6 Ajuste dos valores do ângulo de atrito interno

Tabela 4.7 Propriedades mecânicas e geotécnicas finais dos materiais

Tabela 4.8 Comparativa de parâmetros geotécnicos

Tabela 5.1 Configurações de estacas para análise paramétrica

Tabela 5.2 Características da Malha para análise paramétrica

Tabela 5.3 Discretização da malha para análise paramétrica

Tabela 5.4 Densidade da malha utilizada nas análises paramétricas

6

6

7

7

8

14

28

31

34

35

38

40

41

41

43

52

54

55

55

55

59

59

63

67

68

68

71

Page 18: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xviii  

Tabela 5.5 Recalque Máximo do radier estaqueado segundo arranjo das

estacas

Tabela 5.6 Recalque Diferencial x Relação de espaçamento no radier

estaqueado.

Tabela 5.7 Percentagem de carga total nas estacas do radier estaqueado.

Tabela 5.8 Distorção angular no radier estaqueado x relação de espaçamento

Tabela 5.9 Carga e Recalque em Radier e Estacas isoladas

Tabela 5.10 Cargas de ruptura de elementos estruturais

Tabela 5.11 Quadro comparativo de resultados e fatores de segurança

Tabela 5.12 Configurações de radier estaqueado admissíveis.

Tabela 5.13 Recalque obtido para Qatuante = 28000 kN.

Tabela 5.14 Distorção angular obtido para Qatuante = 28000 kN.

Tabela 5.15 Carga no grupo de estacas para Qatuante = 28000 kN

Tabela 5.16 Pré-dimensionamento do número de estacas para Qatuante =

28000 kN

Tabela 5.17 Pré-dimensionamento do radier Isolado e fator de segurança do

radier estaqueado para Qatuante = 28000 kN.

75

78

84

87

92

95

96

99

102

102

102

103

103

Page 19: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

xix  

LISTA DE SÍMBOLOS

B Largura do radier m

CN Fator de correção pelo efeito do nível de tensões D, d Diâmetro das estacas

E Módulo de deformabilidade kPa

Ep Módulo de deformabilidade da estaca kPa

Er Módulo de deformabilidade do radier kPa

Es Módulo de deformabilidade do solo kPa h Profundidade m K Coeficiente de reação vertical L Comprimento da estaca m N Número de golpes SPT

N60 Número de golpes SPT padrão americano NA Profundidade do nível d'água Q Carga axial aplicada kN

S/d Relação Distância/Diâmetro entre estacas

Szz Tensão de compressão na direção z kN/m2 t Espessura m

U3 Componente do deslocamento na direção z mm ⱱ Coeficiente de Poisson

ⱱp Coeficiente de Poisson da estaca

ⱱr Coeficiente de Poisson do radier

ⱱs Coeficiente de Poisson do solo β Distorção angular δ Recalque diferencial mm ε Deformação linear mm μ Média aritmética ρ Recalque mm σ Tensão normal total kPa σ Desvio Padrão

σ1, σ2, σ3 Tensões principais kPa

σoct Tensão normal octaédrica kPa

σx, σy, σz Tensões normais em coord. retangulares kPa τ Tensão cisalhante kPa φ Ângulo de atrito interno do solo ° ψ Ângulo de dilatância °

Ϫ Peso específico kN/m3

Page 20: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

1  

CAPITULO 1. INTRODUÇÃO

A instrumentação das obras geotécnicas permite observar seu comportamento, e

através dos resultados de ensaios de prova de carga, analisa-se o mecanismo de

transferência de carga ao solo, diretamente, pelo sistema de fundação adotado.

Os ensaios SPT permitem a estimativa empírica de parâmetros geotécnicos através

de correlações, necessárias para solucionar problemas de engenharia geotécnica.

O surgimento de computadores possibilitou o desenvolvimento de ferramentas

numéricas para a análise numérica do comportamento solo-estrutura, como o Método

dos Elementos Finitos (MEF), e através de vários modelos constitutivos analisa

diversos problemas na Geotecnia. Essa análise obtida numericamente por meio de

comparações com resultados observados no campo determinam quais os modelos

que melhor representam o comportamento observado.

As fundações em radier estaqueados são estruturas compostas, pelas estacas, radier

e solo. O radier interage diretamente com o solo e é suportado pelo grupo de estacas.

As cargas verticais e horizontais transmitidas pela estrutura, assim como as cargas

devido ao vento, são transferidas ao solo pelo radier e as estacas.

Desde meados do século passado, vários autores vêm estudando as fundações em

radier estaqueado [Zeevaert (1957), Hooper (1974), Brown e Weisner (1975), Burland

et al (1977), Davis e Poulos (1980), Clancy e Randolph (1993), Lutz et al (1993),

Poulos (1994, 2001), Randolph (1994), Gandhi e Maharaj (1996), Ahner e Soukhov

(1997), El-Mossallamy e Franke (1997), Mandolini e Viggiani (1997), Smith e Wang

(1998), Russo (1998), Cunha et. al. (2000, 2001, 2002, 2004, 2006), Paiva e

Mendonça (2000, 2003), Reul (2000, 2002, 2004), Hartman e Jahn (2001), Poulos

(2001), Van Impe (2001), Cunha e Bezerra (2002), Reul e Randolph (2002, 2004),

Sales et al. (2002, 2005, 2009), Bacelar (2003), Bezerra (2003), Bezerra et al (2003,

2005), Mandolini (2003), Mandolini et. al. (2003), Liang et al (2003, 2004), Chow et al

(2004), Cunha e Zhang (2006), Garcia et al (2006), Ming-Hua et al (2006), Niandou e

Breysse (2006), Sanctis e Mandolini (2006), Chow (2007), Lima (2007), Small (2007),

Janda et. al. (2008), Lebeau (2008), Lorenzo (2009), Giretti (2009), Rabiei (2009), Cui

et al (2010), El-Mossallamy et al (2010), Rabiei (2010), Reinaldo (2010), Sosa (2010),

Souza (2010), Wang et al (2010), Yamashita et al (2010), Hassen et al (2011), Khoury

Page 21: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

2  

et al (2011), Poulos et al (2011), Soares (2011), Su et al (2011), Sharma et al (2011,

2012), Kalpakci e Ozkan (2012), Lehler e Bar (2012), etc.], desenvolvendo métodos

de cálculo aproximados e outros mais rigorosos considerando modelos numéricos a

partir da contribuição de cada um dos elementos envolvidos na solução, de modo que

as estacas começam a ser introduzidas para reduzir os recalques e otimizar a

fundação, e não com o propósito exclusivo de aumentar a capacidade carga de todo

o sistema.

O uso de fundações em radier estaqueados se tornou mais frequente nos últimos

anos, pela ação combinada do radier e as estacas para aumentar a capacidade

de carga, reduzir recalques absolutas e diferenciais no radier (Small et. al., 2007).

Na comparação do conjunto de parâmetros geotécnicos de laboratório e “in situ”

para modelar a falha das provas de campo com uma precisão suficiente, os

melhores resultados foram obtidos utilizando os valores da retroanálise (Janda et.

al., 2009).

Nesse sentido em um primeiro estágio o trabalho consiste na realização de

retroanálise numérica de um banco de dados de provas de carga instrumentadas

conduzidas por SOARES (2011) em grupo de estacas e radier estaqueados, visando

reproduzir adequadamente o comportamento carga-recalque obtido

experimentalmente e assim encontrar os valores dos parâmetros geotécnicos do solo

para futuras simulações. Para isto devem ser escolhidas a posição e os limites do

modelo que são de importância e que podem ter influência sobre os recalques

calculados, assim como a escolha dos outros fatores da modelagem numérica

(geometria, interface, bordas, etc.)

Num segundo estágio, serão feitas análises paramétricas de fundações em radier

estaqueados com o intuito de obter um maior conhecimento do comportamento da

fundação em radier estaqueado, mediante algumas alterações de sua configuração

que inclui a espessura do radier, número, diâmetro, espaçamento e comprimento das

estacas embutidos no solo.

A retroanálise e análise paramétrica são realizadas pelo Método dos Elementos

Finitos (MEF 3D), usando o modelo constitutivo elástico-plástico de Mohr-Coulomb.

Foi usado o programa computacional Cesar LCPC v4 (Cleo 3D versão 1.07).

Page 22: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

3  

1.1. OBJETIVO

GERAL

Conhecer o comportamento da fundação em radier estaqueado em um depósito

arenoso de várias camadas através da retroanálise numérica de um banco de dados

de prova de carga, e da análise paramétrica, e fazendo uso do Método de Elementos

Finitos 3D, com o modelo constitutivo de Mohr-Coulomb por meio do programa

CESAR LCPC v4.

ESPECÍFICOS

Representação adequada das curvas carga / recalque observadas em um banco de

dados de prova de carga por meio de retroanálise numérica.

Definir os parâmetros geotécnicos do solo a partir da retroanálise por meio da

modelagem numérica para serem empregados em futuras simulações no maciço.

Executar análise paramétrica para obter um maior conhecimento do comportamento

da fundação em radier estaqueado no depósito estudado.

1.2. ORGANIZAÇÃO DA DISSERTAÇÃO

A dissertação é estruturada em seis Capítulos que desenvolvem o tema abordado. O

Capítulo 1 apresenta introdução sobre o assunto, as abordagens do projeto em geral.

Citam-se os objetivos da pesquisa.

O Capítulo 2 consiste nos fundamentos teóricos em que se baseia o desenvolvimento

deste trabalho.

No Capítulo 3, apresentam-se, a localização, as provas de carga e os ensaios de

campo (ensaio SPT) executados no estudo experimental de SOARES (2011). Em

seguida, descreve-se a metodologia utilizada nas análises numéricas.

No Capítulo 4, mostram-se e discutem-se os resultados da retroanálise numérica, bem

como as comparações entre os resultados das curvas carga-recalque obtidas no

campo por SOARES (2011) e por meio da simulação numérica.

Page 23: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

4  

No Capítulo 5, mostram-se as análises paramétricas do radier estaqueado para

diversas configurações que inclui a espessura do radier, número, diâmetro,

espaçamento e comprimento das estacas embutidos no solo.

Finalmente no Capítulo 6, apresentam-se as principais conclusões do trabalho e

algumas sugestões para continuação desta pesquisa.

Page 24: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

5  

CAPITULO 2. FUNDAMENTOS TEÓRICOS

Neste capítulo, será apresentada uma breve revisão das abordagens, formulações,

equações e dos conceitos e definições básicas que englobam este estudo. São vistas

as correlações com os ensaios SPT, propriedades mecânicas do aço e concreto,

considerações gerais sobre modelos elástico-plásticos, modelagem numérica,

modelos constitutivos, ajuste estatístico dos dados e recalques admissíveis.

2.1. CORRELAÇÕES COM OS ENSAIOS SPT

O estudo procura correlações para obtenção de parâmetros geotécnicos com os

valores de N obtidos em sondagens SPT. Ao estabelecer correlações, as abordagens

modernas recomendam que os valores de N devem ser corrigidos devido ao efeito da

energia de cravação e do nível de tensões.

A correção pelo efeito da energia da cravação, normalizado com base no padrão

americano de N60, é realizada através da relação linear entre a energia empregada e

a energia de referência:

/60 (2.1)

Décourt et. al., 1989 (citado por Décourt et. al., 1998), indica que a eficiência do SPT

brasileiro, executado de acordo com a Norma Brasileira NBR 6484, é em média de

72%, e para a correção pelo efeito do nível de tensões, os valores de N60, devem ser

corregidos pela expressão:

´

´

, e (2.2)

Onde:

(σ´oct)1 = Tensão octaédrica para uma areia normalmente adensada sobre pressão

vertical efetiva (σ´vo) de 100 kPa.

σ´oct = Tensão octaédrica ao nível onde o SPT está sendo executado.

De acordo com o critério de Stroud, 1988 (citado por Décourt et. al., 1998), para

estabelecer correlações podem ocorrer duas situações:

Page 25: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

6  

a) N deve ser corrigido para estimar a densidade relativa (Dr) e para a avaliação do

ângulo de atrito.

b) Valores não corrigidos de N para estimar seu módulo de deformabilidade (E) e

seu módulo de cisalhamento (G).

Apresentam-se diversas correlações para estimar parâmetros geotécnicos de areias.

Os parâmetros geotécnicos considerados são os necessários para o modelo

constitutivo elástico-plástico de Mohr-Coulomb, tais como o Peso específico (Ϫ),

Módulo de deformabilidade (E), Coesão (C=0 para areias), Coeficiente de Poisson (ν),

Ângulo de atrito interno (Φ) e Ângulo de dilatância (ψ).

2.1.1. CLASSIFICAÇÃO DO SOLO

A Norma de sondagem com SPT (NBR 6484) fornece a tabela 2.1, com a classificação

do solo de acordo a sua compacidade ou consistência.

Tabela 2.1 Estados de compacidade e de consistência (NBR 6484) Solo Índice de resistência

N Designação

Areias e siltes arenosos

<5 5 - 8

9 - 18 19 - 40

>40

Fofa (o) Pouca compacta (o)

Medianamente compacta (o)Compacta (o)

Muito compacta (o)

2.1.2. PESO ESPECÍFICO EFETIVO DO SOLO

Pode-se adotar o peso específico efetivo do solo a partir dos valores aproximados da

Tabela 2.2, em função da compacidade da areia.

Tabela 2.2 Peso específico em solos arenosos segundo Godoy, 1972 (citado em Constancio, 2010).

N (Golpes)

Consistência Peso específico (kN/m3) Areia seca Úmida Saturada

<5 5 – 8

9 – 18 19 – 40

>40

Fofa (o) Pouca compacta (o)

Medianamente compacta (o) Compacta (o)

Muito compacta (o)

16

17

18

18

19

20

19

20

21

Page 26: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

7  

2.1.3. MÓDULO DE DEFORMABILIDADE

Décourt, 1995 (citado por Décourt et. al., 1998), apresenta correlação para sapatas

quadradas rígidas com recalque da ordem de 1% do seu lado:

Tabela 2.3 Valores de E em função de NSPT (Décourt, 1995). Tipo de Solo E (MPa)

Areias Solos intermediários

Argilas Saturadas

3,5 N72 3,0 N72 2,5 N72

Conde de Freitas et al (2012), em “Uma Estimativa do Módulo de Young em Areias

por Resultados de Golpes N60”, encontraram que o módulo de deformabilidade é igual

a 8,0 N72 (Mpa).

2.1.4. COEFICIENTE DE POISSON

Para o coeficiente de Poisson (ν) podem ser usados os valores da Tabela 2.4,

apresentados por Teixeira & Godoy, 1996 (citado por Miná, 2005):

Tabela 2.4 Coeficiente de Poisson (Teixeira & Godoy, 1996). Solo ν

Areia pouco compacta Areia Compacta

Silte Argila saturada

Argila não saturada

0,2 0,4

0,3 – 0,5 0,4 – 0,5 0,1 – 0,3

2.1.5. ÂNGULO DE ATRITO INTERNO DO SOLO

O ângulo de atrito interno em areias densas está no intervalo de 300 – 450 (Escobar

et. al., 2002). O Estudo Comparativo do Comportamento Mecânico de Duas Areias

de Osório –RS (Marcon, 2005), verificou que o ângulo de atrito interno em areias

densas inundadas está no intervalo de 32,4º – 44, 7º.

Vários autores apresentam formulações para avaliar o ângulo de atrito via resultados

SPT (Miranda, 2006), sendo que o valor de Dunhan (1951), ajustou-se aos intervalos

descritos acima e aplicadas ao valor de N1.

Dunham (1951):

∅ 12 , 25 (2.3)

Page 27: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

8  

2.1.6. MÓDULO DE DILATÂNCIA

A dilatância é o aumento de volume na massa de solo provocado por tensões

cisalhantes atuantes. A dilatância nas areias depende do ângulo de atrito interno, Φ,

e da sua densidade relativa Dr. A expressão proposta por Bolton (1986):

1,25 (2.4)

Bolton (1986) indica que para areias de quartzo, a dilatância pode ser aproximada

pelas expressões:

∅ 30 30 ; 0 30 (2.5)

2.2. PROPRIEDADES MECÂNICAS DO AÇO E CONCRETO

2.2.1. AÇO

A Norma Brasileira ABNT NBR 8800 de Abril 1986: Projeto e Execução de Estruturas

de Aço em Edifícios (Métodos dos Estados Limites), na página 13, indicam adotar as

propriedades mecânicas do aço, como mostrado na Tabela 2.5.

Tabela 2.5 Propriedades mecânicas do Aço

Propriedade Valor

Peso específico Módulo de

deformabilidade Coeficiente de Poisson

77 kN/m3 205 GPa

0,30

2.2.2. CONCRETO

A Norma Brasileira ABNT NBR 6118 de Março 2004: Projeto de estruturas de concreto

– Procedimento, na página 24, diz que o Coeficiente de Poisson do concreto pode ser

tomado como igual a ⱱ = 0,20.

Page 28: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

9  

2.3. CONSIDERAÇÕES GERAIS SOBRE MODELOS ELASTO–PLÁSTICOS

Dependendo da história de carregamento e das tensões atuantes no solo,

deformações reversíveis (elásticas) e irreversíveis (plásticas) podem coexistir. Neste

contexto, a adoção de modelos elástico–plásticos, para a formulação das equações

constitutivas é justificada.

Define-se que o material está em regime elástico, quando apenas deformações

elásticas e, portanto, reversíveis estão ocorrendo. Por outro lado, no regime elástico–

plástico, as deformações totais são resultado de deformações reversíveis e

irreversíveis (plásticas).

A seguir, os conceitos fundamentais da teoria da elasticidade e da teoria da

plasticidade serão discutidos, introduzindo a apresentação dos modelos constitutivos.

2.3.1. TEORIA DA ELASTICIDADE

A relação linear entre tensão e deformação é o mais simples que pode ser proposta,

o que implica uma constante de proporcionalidade entre o incremento da tensão geral

e incrementos de deformação.

O comportamento de um material elástico é descrito pela lei de Hooke (1660), onde

as tensões são determinadas pelas deformações, ou seja, existe uma relação única

entre tensões e deformações.

Através da figura (2.1), percebe-se que podem ocorrer relações elásticas lineares e

não lineares entre tensão e deformação, mas devemos considerar também que muitos

estados de deformação podem corresponder a um único estado de tensão ou que

muitos estados de tensões correspondem a um único estado de deformação.

Figura 2.1 Relações tensão - deformação: (a) linear (b) não linear (Desai & Cristhian, 1977, citado por Thomé, 2009).

Page 29: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

10  

2.3.2. TEORIA DA PLASTICIDADE

Caso o limite elástico seja ultrapassado o material entra no regime plástico, e após a

remoção das cargas aplicadas o corpo ficará permanentemente deformado, com

características mecânicas e geométricas dependentes das trajetórias e valores das

deformações a que esteve sujeito. O comportamento plástico é assim caracterizado

por uma deformação irreversível, obtida depois de atingido um determinado nível de

tensão. Deformação plástica é quando a tensão não é mais proporcional à deformação

ocorrendo então uma deformação não recuperável e permanente. Para caracterizar o

comportamento do material na fase plástica é necessário definir:

Componentes de deformação. Na teoria da plasticidade infinitesimal as

deformações dos materiais são consideradas compostas por deformações elásticas

(reversíveis) e deformações plásticas (irreversíveis).

Condição de Cedência, a qual permite definir o limite a partir do qual se iniciam as

deformações plásticas irreversíveis.

Limite de escoamento. Estado de tensão a partir do qual o material passa a se

comportar como elástico-plástico, sendo definido por um critério de escoamento

matematicamente expresso por uma função dependente do tensor de tensões, a

chamada função de escoamento F. As características deste limite variam de acordo

com as propriedades do material. Assumindo propriedades de homogeneidade e

isotropia do material, a função de escoamento pode ser expressa em termos das

tensões principais ou dos invariantes de tensão. O comportamento para estados de

tensão situados no interior da superfície definida por F é considerado elástico,

tornando-se elástico-plástico para estados de tensão situados sobre a superfície

Potencial plástico (Q). Função dependente do tensor de tensões do material, cujo

gradiente determina a direção dos acréscimos de deformação plástica.

Lei de fluxo. Relação tensão x incremento de deformação plástica, durante

ocorrência de fluxo plástico, definida por meio da função potencial plástico. Caso o

potencial plástico Q coincida com a superfície de escoamento F, a lei de fluxo é dita

associada, caso contrário é chamada de não associada.

Endurecimento. Aumento na resistência do material à deformação plástica

(“hardening”), implicando na expansão da superfície de escoamento controlada pelo

Page 30: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

11  

valor do parâmetro k (equação 3.3). O fenômeno oposto, isto é da diminuição da

resistência do material com o fluxo plástico, denomina-se amolecimento (“softening”)

Condição de Consistência, que permite definir os incrementos dos potenciais

plásticos e da deformação plástica, para que não se viole a condição de cedência e a

lei de endurecimento.

Condições de Complementaridade, as quais permitem relacionar a evolução do

campo estático e do campo cinemático plástico (no enrijecimento cinemático

preservam-se o tamanho, forma e orientação, mas a superfície de plastificação muda

de posição no espaço das tensões).

2.4. MODELOS CONSTITUTIVOS

Um modelo constitutivo permite relacionar as tensões com as deformações unitárias

produzidas no interior do material em função de um número determinado de

parâmetros que dependem das propriedades mecânicas do solo. Para que o modelo

seja realmente útil, deve possuir parâmetros identificáveis (mediante um número

reduzido de ensaios simples) e deve ser capaz de reproduzir fisicamente a resposta

do material (frente a qualquer mudança de tensões ou deformações).

No presente trabalho, os materiais foram representados pelos modelos: elástico linear

isotrópico (aço e concreto) e elástico-plástico com critério de ruptura de Mohr-

Coulomb (solo), de acordo com os dados disponíveis dos materiais. Desta forma,

vamos apresentar uma descrição destes modelos.

Para uma pesquisa mais detalhada dos modelos constitutivos representativos do

comportamento dos solos recomenda-se a leitura de: Ibañez, 2003; Mendonça, 2005;

e França, 2006.

2.4.1. MODELOS ELÁSTICOS

A Teoria da Elasticidade tem sido empregada em soluções simplificadas de problemas

de engenharia prática. No entanto, o comportamento real dos solos se distancia do

comportamento elástico, principalmente no que diz respeito à reversibilidade das

deformações quando as solicitações mudam de sentido ou direção. Um tratamento

mais realista do comportamento do solo requer uma abordagem mais complexa do

que a dada pela Teoria da Elasticidade. Apesar das limitações dos modelos elásticos,

Page 31: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

12  

eles são bastante úteis para compreensão e elaboração de modelos constitutivos mais

sofisticados.

Existem vários tipos de modelos constitutivos elásticos: alguns assumem o material

como sendo isotrópico, outros assumem o material como sendo anisotrópico; alguns

assumem comportamento linear, outros assumem comportamento não linear, com

parâmetros dependentes dos níveis de tensão e/ou deformação a que o solo está

submetido.

2.4.1.1. MODELO LINEAR ELÁSTICO

Este modelo representa a teoria da elasticidade linear presumindo uma relação

constante entre tensão e deformação, como o indicado no item 2.2.1. No presente

trabalho, é considerado com comportamento linear elástico o aço (macacos) e o

concreto armado (bloco e estacas).

2.4.2. MODELOS ELASTO-PLÁSTICOS DE SOLOS

As limitações dos modelos elásticos, em relação à sua capacidade para representar

consistentemente os processos de escoamento e os estados de descarrega/recarga,

contribuíram no interesse pela pesquisa e formulação de modelos constitutivos mais

versáteis, realistas e abrangentes.

A diferença entre os modelos elásticos e elástico-plásticos é que neste se sabe, a

cada instante de aplicação de cargas e de descargas quais as deformações plásticas,

ao contrário daqueles, em que as deformações não recuperáveis somente serão

conhecidas quando do alívio de cargas.

No material com comportamento elástico-plástico perfeito, a superfície de plastificação

é fixa no espaço geral das tensões e não muda de tamanho ou posição quando

ocorrem deformações plásticas. Se o estado de tensões permanece “abaixo” ou

“dentro” da superfície de plastificação, o comportamento do material é puramente

elástico; se o estado de tensões se situa “sobre” a superfície de plastificação ocorrem

deformações plásticas. Critérios clássicos como os de Tresca, Von Mises, Mohr-

Coulomb e Drucker-Prager pertencem a essa categoria.

Page 32: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

13  

2.4.2.1. MODELO DE MOHR-COULOMB

O modelo elástico-plástico de Mohr-Coulomb é amplamente utilizado para a análise

geotécnica. Ele fornece bons resultados do comportamento ao cisalhamento dos

solos. Conforme o critério de ruptura de Mohr-Coulomb (surge na sequência da

interpretação física da lei de Coulomb em 1773 e feita por Mohr em 1882), a

resistência ao cisalhamento cresce com o acréscimo das tensões normais no plano

de ruptura e é apresentado graficamente na Figura 2.2. O conceito do círculo de Mohr

(que faz uma reta na envoltória de Mohr) pode ser usado para expressar o critério de

escoamento em termos das tensões principais.

Figura 2.2 Critério de ruptura de Mohr-Coulomb.

Os dois parâmetros do material c e Φ podem ser determinados a partir de ensaios de

compressão triaxial convencional (CTC) levando o material até a condição de ruptura.

O pressuposto do modelo de solo é que os incrementos de deformação que

acompanham qualquer mudança na tensão podem ser divididos em partes elásticas

(recuperáveis) e plásticas (irrecuperáveis). Figura 2.3.

Figura 2.3 Curva Tensão/Recalque no modelo elástico-plástico de Mohr-Coulomb. (Modificado, Wood 2004)

Page 33: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

14  

2.4.3. PROGRAMA CESAR LCPC

O programa CESAR LCPC foi desenvolvido pelo Laboratoire Central des Ponts et

Chaussées (LCPC), de Nantes em França, é um programa de cálculo com base no

Método dos Elementos Finitos, e com suas próprias características de pré e pós-

processamento. A solução de sua arquitetura modular permite também acomodar

módulos com base no Método dos Elementos Finitos de Contorno. Este programa é

particularmente adequado para resolver os problemas de engenharia e médio

ambiente: Estradas e pavimentos, estruturas de Engenharia Civil, Engenharia

Geotécnica e Riscos Naturais, projetos urbanos, túneis, mecânica dos solos e rochas,

térmica, hídrica, etc. Contém múltiplos modelos constitutivos (Tabela 2.6).

Para uma investigação mais detalhada sobre o programa recomenda-se a leitura do

Manual e Boletins do CESAR LCPC (Itech, 2003).

Tabela 2.6 Modelos Constitutivos César LCPC (Fonte: Boletim LCPC 256-257, 2005). Modelos constitutivos em Mecânica Materiais Padrão

Elasticidade: Linear isotrópico Linear ortotrópica Com dilatância isotrópica Elasticidade-plasticidade, critério com:

Mohr-Coulomb (com ou sem deformação por endurecimento, com ou sem elasticidade ortotrópica). Tresca Von Mises (com ou sem deformação por endurecimento)Drucker-Prager (com ou sem deformação por endurecimento) Parabólico Vermeer Nova Cam-Clay modificado Prévost-Hoeg Orientado Mélanie William - Warnke (Dois modelos constitutivos) Hoek-Brown

Areias, argilas, rochas.

Argilas Metais

Areias, argilas, rochas.

Concreto

Areias Areias Argilas Rochas

Média estratificada Argilas

Concreto Rochas

Outros: Início da cura do concreto

Concreto

Page 34: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

15  

2.5. MODELAGEM NUMÉRICA

A modelagem numérica é uma técnica baseada no cálculo numérico, utilizada para

validar ou refutar propostas de modelos conceituais a partir de observações ou

derivados de teorias anteriores. Se o cálculo das equações que representam o modelo

proposto é capaz de ajustar as observações, em seguida, se fala de um modelo de

acordo com o mesmo, e também se diz que o modelo numérico confirma a hipótese

(o modelo), se o cálculo não é permitido em qualquer caso, para reproduzir as

observações, falamos de um modelo e inconsistente com os dados que refutam o

modelo conceitual.

A qualidade dos resultados da modelação numérica só pode ser tão boa quanto

à qualidade da aproximação numérica. A partir do momento em que as

quantidades importantes tendem a mudar muito rapidamente com a posição ou

com o tempo, então é necessário, aumentar a densidade da discretização da

malha utilizada na modelação numérica, a fim de ser capaz de seguir as

alterações, ou mais para incorporar dentro da descrição numérica algumas

interpolações matemáticas que são capazes de acompanhar a variação real

entre pontos discretos de modelagem. De fato a velocidade e os custos de

modelagem numérica se incrementam enquanto à densidade dos pontos de

modelagem aumentam. Em geral, deve primeiramente ser verificada que um

procedimento que é desenvolvido para resolver numericamente o problema é de

fato capaz de dar resultados corretos quando aplicado a uma situação para a

qual uma resposta exata seja conhecida. Pode-se então aplicar com maior

confiança ao problema da nossa pesquisa (Wood, 2004).

No presente trabalho para as modelagens foi utilizado o Método dos Elementos Finitos

(MEF 3D), utilizando o programa CESAR-LCPC v4 (Cleo 3D versão 1.07). Na Figura

2.4 são mostrados os diversos tipos de comportamento tensão-deformação.

Page 35: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

16  

Figura 2.4 Tipos de comportamento tensão x deformação: (a) linear elástico; (b) não linear elástico; (c) não elástico ou plástico; (d) rígido perfeitamente plástico; (e)

elástico-plástico: (1) perfeitamente plástico; (2) enrijecimento; (3) amolecimento. (Fonte: Desai & Cristhian, 1977, citado por Thomé, 2009).

Para a modelagem numérica é preciso definir cada um dos 04 fatores envolvidos neste

processo: geometria; materiais; cargas e condições de apoio, contorno ou fronteiras.

2.5.1. MODELAGEM DA GEOMETRIA.

O conjunto radier estaqueado é formado por dois elementos estruturais e o solo, de

modo que cada um deles deve ser corretamente modelado de maneira que o resultado

final simule de forma real o comportamento do objeto de estudo. Uma modelagem do

ponto de vista geométrico deve ter em conta os seguintes aspectos:

- As dimensões em geral devem assegurar que o comportamento do objeto em

estudo não é influenciado pelas restrições dos contornos do modelo.

- Cada elemento deve ser modelado respeitando no possível sua forma e dimensões.

- Sempre que possível são feitas simplificações por simetria com o objetivo de

minimizar o tamanho do modelo.

2.5.1.1. MODELAGEM GEOMÉTRICA DAS ESTACAS.

Na modelagem geométrica das estacas é atribuída grande importância para simular

adequadamente o comportamento das mesmas. Ibáñez (2001) e Díaz (2008), citados

por Sosa (2010) indicam recomendações para a modelagem geométrica de uma

estaca:

Page 36: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

17  

- Os limites verticais do modelo devem ser definidos, pelo menos, duas vezes o

comprimento (L) da estaca.

- Os limites horizontais do modelo devem ser definidos, pelo menos, duas vezes o

comprimento (L) e em cada lado da estaca.

- O contato entre dois materiais ou elementos deve ser simulado usando elementos

de interface.

Figura 2.5 Limites do modelo em estacas (Sosa, 2010)

2.5.1.2. MODELAGEM GEOMÉTRICA DO RADIER.

Na transferência de cargas da superestrutura ao solo pelo Radier estaqueado, a

contribuição do radier é muito importante, por isso a sua análise em isolamento vai

permitir uma melhor compreensão da sua contribuição para o bom funcionamento do

sistema de fundação. Sosa (2010) indica recomendações para a modelagem do

radier:

- Os limites verticais do modelo devem ser definidos, pelo menos, duas vezes e meia

a largura (B) do radier.

- Os limites horizontais do modelo devem ser definidos, pelo menos, três vezes a

largura (B) do radier.

Figura 2.6 Limites do modelo em radier (Sosa, 2010)

2L

4L

2,5B

3B

Page 37: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

18  

2.5.1.3. MODELAGEM GEOMÉTRICA DO RADIER ESTAQUEADO.

Sosa (2010) indica, que as dimensões horizontais do modelo radier estaqueado são

três vezes a largura (B) do radier e a profundidade três vezes o comprimento das

estacas.

Figura 2.7 Limites do modelo em radier estaqueado (Sosa, 2010)

2.5.2. MODELAGEM DO MATERIAL.

Um dos aspectos fundamentais para a simulação de um dado fenômeno constitui o

modelo constitutivo a ser adotado para o material.

2.5.2.1. SOLO

No estudo de problemas associados com modelos geotécnicos são normalmente

utilizados comportamento elástico-plástico. No entanto, no caso de radier estaqueado

foi verificada em revisão da literatura vários autores usaram em suas pesquisas

modelos elásticos a citar: Liang et al. (2003, 2004), Mendonça e Paiva (2003), Nakai

et al. (2004), Wong e Poulos (2005), Chaudhary (2007) e Moyes et al. (2011); também

foram utilizados modelos elástico-plásticos como Drucker-Prager e Mohr-Coulomb,

especialmente para o estudo de cimentações profundas pelos autores: Comodromos

et al. (2003), Hoback y Rujipakorn (2004), Lorenzo (2009), Sosa (2010) e Souza

(2010). Para uma pesquisa mais detalhada dos modelos constitutivos representativos

do comportamento dos solos recomenda-se a leitura de: Ibañez, 2003; Mendonça,

2005; e França, 2006.

3L

3B

Page 38: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

19  

2.5.2.2. CONCRETO.

Para o concreto adotam-se modelo linear e elástico em correspondência com

pesquisadores consultados: Comodromos et al. (2003), Rujipakorn Hoback (2004),

Chaudhary (2007), Lorenzo (2009), Sosa (2010) e Souza (2010). Para isto deve-se

fazer coincidir os esforços aplicados na primeira fase do comportamento tensão x

deformação com o domínio elástico, controlando a segunda fase do domínio plástico

nos programas de cômputo, para a não ocorrência da deformação plástica.

2.5.2.3. INTERFACE.

A interface é um dispositivo matemático para simular a interação que ocorre no contato

entre dois materiais diferentes ou elementos (por exemplo, solo-radier e solo-estaca).

A sua principal vantagem é a de permitir a ocorrência de deformações elásticas em

um elemento em relação a outro. Para descrever seu comportamento é usado o

modelo elástico-plástico de Mohr-Coulomb. Esta abordagem permite uma distinção

entre um comportamento elástico, onde pequenos deslocamentos ocorrem na

interface e o comportamento plástico que poderia levar ao deslocamento permanente.

Sosa (2010) indica que o parâmetro da interface tem uma influência marcada apenas

ao utilizar os modelos de solo com endurecimento.

2.5.3. MODELAGEM DAS CARGAS.

As fundações em Radier estaqueado dão suporte a colunas da superestrutura, e em

alguns casos, coincidem com a localização das estacas. As cargas aplicadas podem

ser horizontais, verticais e de momentos.

2.5.4. MODELAGEM DAS CONDIÇÕES DE APOIO, BORDA OU CONTORNO.

Estas devem ser definidas de tal forma que as restrições não causem qualquer

influência sobre o comportamento da tensão-deformação do fenômeno estudado.

2.6. AJUSTE ESTATÍSTICO DOS DADOS

Os solos e suas propriedades variam ponto a ponto, em resposta às mudanças dos

processos externos como, as condições ambientais durante a sua formação, os

carregamentos, a reologia do material e outros.

Page 39: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

20  

Existem várias fontes de incerteza nos parâmetros geotécnicos das camadas do solo,

como a heterogeneidade natural, a limitação de dados e os erros das medidas (erros

nas provas de carga e na modelagem). Nestes casos, para definir ditos valores,

ajustes estatísticos são necessários, pois um mesmo parâmetro geotécnico resulta

em diferentes valores.

2.6.1. DISTRIBUIÇAO NORMAL

A distribuição normal é uma das mais importantes distribuições da estatística,

conhecida também como Distribuição de Gauss ou Gaussiana. Foi primeiramente

introduzida pelo matemático Abraham de Moivre. Além de descrever uma série de

fenômenos físicos e financeiros, possui grande uso na estatística inferencial. É

inteiramente descrita por seus parâmetros de média e desvio padrão, ou seja,

conhecendo-se esses valores se consegue determinar qualquer probabilidade em

uma distribuição Normal. A equação da curva Normal é especificada usando Dois

parâmetros: a média µ, e o desvio padrão σ. Denotamos N (µ, σ) à curva Normal com

média e desvio padrão. A média refere-se ao centro da distribuição e o desvio padrão

ao espalhamento (ou achatamento) da curva. A equação da curva é:

(2.7)

Para a distribuição Normal, as proporções de valores caindo dentro de um, dois, ou

três desvios padrão da média são (Figura 2.5): Para um desvio padrão isto representa

cerca de 68% do conjunto, enquanto dois desvios padrões representam cerca de 95%,

e três desvios padrões cobrem cerca de 99.7%. Este fato é conhecido como regra 68-

95-99.7, ou a regra empírica, ou a regra dos 3-sigmas.

Figura 2.8 Função de densidade para a distribuição normal padrão. Fonte: IGM, PUC

Goiás, 2010.

Page 40: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

21  

2.7. RECALQUES

O recalque, designado por δ, é o fenômeno que ocorre quando uma edificação sofre

um rebaixamento devido ao assentamento do solo sob sua fundação. O recalque é a

principal causa de trincas e rachaduras em edificações, principalmente quando ocorre

o recalque diferencial, ou seja, uma parte da obra rebaixa mais que outra gerando

esforços estruturais não previstos e podendo até levar a obra à ruína.

2.7.1 RECALQUES DIFERENCIAIS ADMISSÍVEIS

A quantificação das deformações admissíveis é feita, em geral, em termos de

distorções angulares (β) ou de relações de deflexão (∆/L), conforme o tipo de

estrutura. Na figura 2.6 são apresentados os valores da distorção angular β e os danos

associados sugeridos por Bjerrum (1963) citado por Velloso & Lopes, 2004.

Figura 2.9 Distorções angulares e danos associados segundo Bjerrum, 1963.

2.7.2. RECALQUE TOTAIS LIMITES EM AREIAS

Segundo Velloso & Lopes (2004), para sapatas em areias, recomenda-se adotar

um recalque absoluto limite de 25 mm. Para fundações em radier, esse valor

pode ser elevado para 50 mm. Skempton e MacDonald (1956) sugerem 40 mm

para sapatas isoladas e 40 a 65 mm para radier, partindo da fixação de um β

limite igual a 1/500.

Page 41: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

22  

2.8. FATOR DE SEGURANÇA

A Norma Brasileira NBR 6122 (ABNT, 2010) estabelece o critério de controle para o

fator de segurança admissível, a qual é o fator de segurança global (FSPR > 2,0).

Para a determinação destes fatores de segurança, consideraram-se as

recomendações de Sanctis & Mandolini (2006), citado em Soares (2011), descritas

nas Eq.(2.8), (2.9) e (2.10), a seguir apresentadas:

0,8 ∗ . 2,0 (2.8)

(2.9)

(2.10)

Onde:

FSPR, FSR, FSP Fator de segurança do radier estaqueado, radier isolado e grupo de

estacas respectivamente.

QPR, QR, QP Cargas últimas do radier estaqueado, radier isolado e grupo de

estacas respectivamente.

Q Carga atuante.

2.9. SÍNTESE DO CAPÍTULO

As abordagens modernas indicam correções do valor de N (do ensaio SPT) devido ao

efeito da energia de cravação e do nível de tensões, para estabelecer correlações

para a avaliação do ângulo de atrito interno do solo. No Brasil a energia de cravação

é em média 72% (Décourt, et. al, 1989).

Foram definidas formulações e equações para usar correlações empíricas e

determinar o valor das propriedades geotécnicas do solo. As propriedades

geotécnicas consideradas são aquelas necessárias do modelo constitutivo de Mohr-

Coulomb.

As normas brasileiras, ABNT ANBR 1880 e ABNT ANBR 6118, estabelecem as

propriedades mecânicas do aço e concreto, respectivamente.

Page 42: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

23  

Os métodos de análises utilizam abordagens simplificadas, entre elas a Teoria da

elasticidade, teoria da plasticidade e ferramentas mais complexas através de

modelagem numéricas com softwares específicos e fazendo uso de modelos

constitutivos.

Ajustes estatísticos, por meio da distribuição normal, serão necessários para definir

valores dispersos que possam ser encontrados no transcurso da pesquisa.

Foi definido o recalque total limite em areias, onde Skempton e MacDonald (1956)

sugerem 40 mm e uma distorção angular limite igual a 1/500.

Finalmente foram definidos os critérios para encontrar os fatores de segurança do

sistema de fundação em radier estaqueado.

Page 43: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

24  

CAPITULO 3. LOCAL DE ESTUDO, MATERIAIS E MÉTODOS.

Este capítulo apresenta a localização e uma breve descrição do estudo experimental

e os resultados obtidos nas provas de carga realizada por SOARES (2011).

São apresentados os resultados das correlações, baseados no NSPT, para obter os

parâmetros geotécnicos iniciais, geometria e condições adotadas para a modelagem,

necessários para retroanálise do comportamento tensão-deformação dos solos, bem

como a metodologia empregada nas análises numéricas das provas de carga,

desenvolvidos neste trabalho.

3.1. ESTUDO EXPERIMENTAL REALIZADA POR SOARES (2011)

Os testes foram executados em solo arenoso da área litorânea de João Pessoa/PB,

no Campo Experimental de Fundações, da empresa Copesolo Estacas e Fundações

Ltda. (Figura 3.1). A cidade de João Pessoa, capital da Paraíba, localiza-se no

extremo leste do estado em sua zona costeira.

Figura 3.1 Vista aérea do local da pesquisa, João Pessoa / PB, (Soares, 2011).

Oceano A

tlântico

Page 44: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

25  

As investigações geotécnicas consistiram de sondagens SPT. Na Figura 3.2,

apresenta-se a vista em planta da área de teste e dos furos de sondagens.

Figura 3.2 Vista em planta da área de teste e dos furos de sondagens SPT. (Fonte:

Soares, 2011).

O perfil geológico-geotécnico obtido através das sondagens SPT mostra-se na Figura

3.3. Na Tabela 3.1 estão indicados os valores do ensaio SPT de cada um dos furos

de sondagem

Foram executadas catorze estacas testes do tipo Hollow Auger (estacas de concreto moldadas “in situ”) com 0,30 m de diâmetro e 4,5 m de comprimento. As estacas foram

divididas em dois tipos de fundação: grupo de estacas e radier estaqueado. O

posicionamento das estacas no campo de testes é mostrado na Figura 3.4.

Page 45: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

26  

Fig

ura 3.3 P

erfil geológico-geotécnico obtido através das sondagens S

PT

. Fonte: S

OA

RE

S (2011).

Page 46: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

27  

Figura 3.4 Locação das estacas Hollow Auger no Campo de Testes (Soares, 2011).

Page 47: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

28  

Tabela 3.1 Valores de N obtidos dos ensaios SPT. (Soares, 2011)

Profundidade (m) SP 01 SP 02 SP 03 SP 04 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 13 7 6 5

32 45 25 14 9 5 2

16 9

10 15 19 10 15 25 27 20 17 14 12 12 6

0 14 8 7

14 33 42 16 12 9 5 3 9

14 15 10 16 16 14 30 24 18 14 13 11 9 7

0 12 7

11 12 30 37 20 12 6 5 4 3

15 18 19 19 16 18 19 13 14 16 13 11 12 12 10

0 11 5 7 8 28 41 23 14 4 3 2 9 11 16 17 18 16 20 19 12 11 14 11 10 13

NA. (Julho 2011) NA. (Abril 2008)

2,35

2,30

1,69 1,75

Realizaram-se sete ensaios (Figura 3.5.), de provas de carga estáticas lentas (cujos

dados apresentam-se no Anexo A), em condições saturadas (profundidade média do

lençol freático a 1,72 m.), sendo três nos modelos em grupo de estacas, três nos radier

estaqueados e uma prova de carga direta segundo o seguinte:

1) Grupo de uma estaca

2) Radier com uma estaca

3) Grupo de duas estacas

4) Radier com duas estacas

5) Grupo de quatro estacas.

6) Radier com quatro estacas

7) Bloco isolado

Page 48: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

29  

Essas provas de carga foram conduzidas em blocos de concreto armado, rígidas,

quadradas, de lado igual a 1,55 m e altura 0.85 m.

(a) (b)

(c) (d)

Figura 3.5 Provas de carga feita por Soares (2011): a) Grupo/radier uma estaca, b) Grupo/radier duas estacas, c) Grupo/radier quatro estacas, e d) Bloco isolado.

SOARES (2011) teceu algumas considerações importantes sobre as provas de carga:

- As provas de carga direta e nas estacas foram realizadas conforme NBR 6489

(Prova de carga direta sobre terreno de fundação) e NBR 12131 (Estacas–Prova

de Carga Estática) respectivamente. Os carregamentos à compressão foram do

tipo “lento” e aplicado, em estágios sucessivos.

- Construiu-se um bloco único, pré-moldado de concreto armado, para atuar como

elemento rígido de transmissão de carga aos modelos de fundação. O modo de

apoio do bloco, apenas nas estacas ou nas estacas e no solo, caracteriza o tipo de

fundação, seja em grupo de estacas ou em radier estaqueado respectivamente.

- Nos modelos em grupo de estacas escavou-se o solo 5,0 cm abaixo da cota de

arrasamento e apoiou-se o bloco pré-moldado no topo das estacas. Nas fundações

Page 49: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

30  

em radier estaqueado, escavou-se até o nível de arrasamento das estacas

permitindo o contato do bloco com o solo (concreto de regularização magro). O

fundo do bloco pré-moldado encontra-se na profundidade de 0,50 m, na camada

superficial de areia. A cota de ponta das estacas localiza-se na profundidade de 5,0

m, em uma camada de areia média, pouco siltosa de compacidade compacta a

muito compacta.

- O carregamento, nos ensaios, foi aplicado diretamente sobre o bloco pré-moldado.

Este serviu de elemento rígido para a transferência de carga às estacas (nas

fundações em grupo de estacas) e às estacas e solo (nas fundações em radier

estaqueado). Aplicaram-se as cargas através de macaco hidráulico cilíndrico com

curso máximo de 0,15 m. Sua capacidade é de 5000 kN e acionado por bomba

manual. Mediu-se a carga total aplicada com a célula de 4000 kN, instalada no topo

do bloco. A carga nas estacas foi medida com as células de 1000 kN, instaladas

abaixo do bloco, no topo das estacas. A carga no topo da estaca instrumentada foi

medida pela célula de 1000 kN e pelo sensor de deformação. Nos ensaios com

radier estaqueado determinou-se a carga no solo pela subtração do valor da carga

total pela carga das estacas.

SOARES (2011) concluiu os seguintes aspectos:

- As curvas carga x recalque obtidas nos ensaios não apresentaram ruptura física

nos elementos de fundação. As cargas atingidas nas fundações em grupo de

estacas (estaca isolada e grupo com duas e quatro estacas) provocaram recalques

elevados. No caso da estaca isolada o recalque máximo foi de 86,32 mm. Em todos

os três ensaios a curva “carga x recalque” apresentou um formato mais pronunciado

no fim do carregamento. Uma evidência de que a carga de ruptura estava próxima

de ser atingida.

- O formato das curvas experimentais das provas de carga em radier estaqueado

com duas e quatro estacas apresentou um crescimento contínuo do recalque com

a carga sem evidenciar uma ruptura. O trecho final do carregamento tem

declividades menores em relação às curvas dos ensaios em grupo de estacas.

Ambas as curvas tiveram formatos muito parecidos com recalque máximos da

ordem de 16 mm. Observa-se uma tendência mais linear do gráfico com

declividades maiores no início do ensaio.

Page 50: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

31  

SOARES (2011) encontrou os seguintes parâmetros mecânicos do concreto:

Tabela 3.2 Parâmetros mecânicos do concreto (Soares, 2011).

PropriedadesϪ E

kN/m3 GPa Bloco 25 21,5 Estaca 24 21,5

Nas Figuras 3.6, 3.7 e 3.8 apresentam-se as curvas carga x recalque das provas de carga feitas por SOARES (2011).

Figura 3.6 Curvas carga x recalque Grupo Uma Estaca, Bloco Isolado e Radier Uma

Estaca (Modificado, Soares, 2011). Na Figura 3.6 pode ver-se um ganho mínimo do desempenho entre o Radier uma estaca e o Bloco isolado e um comportamento quase elástico face a curva do Grupo uma estaca.

Page 51: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

32  

Figura 3.7 Curvas carga x recalque Grupo Duas Estacas e Radier Duas Estacas

(Modificado, Soares, 2011).

Figura 3.8 Curvas carga x recalque Grupo Quatro Estacas e Radier Quatro Estacas (Modificado, Soares, 2011).

Page 52: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

33  

3.2. PARÂMETROS GEOTÉCNICOS INICIAIS

Os parâmetros geotécnicos do solo considerados no presente trabalho são aqueles

necessários para o modelo constitutivo de Mohr-Coulomb, tais como o Peso

específico (Ϫ), Módulo de deformabilidade (E), Coesão (C=0 para areias), Coeficiente

de Poisson (ν), Ângulo de atrito interno (Φ) e Ângulo de dilatância (ψ). Foram utilizados

parâmetros geotécnicos iniciais obtidos por correlações empíricas baseados nos

ensaios SPT feitos por SOARES (2011), indicadas na Tabela 3.1 e cujo perfil

geotécnico é mostrado na Figura 3.3.

Para estabelecer as correlações N foi corrigido para a avaliação do ângulo de atrito

interno. N foi corrigido devido ao efeito da energia da cravação e do nível de tensões

e normalizado com base no padrão americano, fazendo uso das equações 2.1 e 2.2.

O solo foi dividido em cinco camadas e cujo agrupamento foi feito considerando a

proximidade dos valores da média do NSPT. Foram usadas as seguintes formulações:

- Peso específico do solo da Tabela 2.1

- Módulo de deformabilidade do solo da Tabela 2.3

- Coeficiente de Poisson do solo da Tabela 2.4

- Ângulo de atrito interno do solo da equação 2.3, 2.4 e 2.5.

- Módulo de dilatância do solo da equação 2.6

O agrupamento preliminar dos parâmetros geotécnicos obtidos por correlações, com

as formulações indicadas acima se apresentam na Tabela 3.3. A formulação de

Dunhan,1951 (citado por Miranda, 2006) para o valor do ângulo de atrito interno, está

no intervalo dos valores encontrados por Escobar et. al, 2002 (30º - 45º).

Por limitações nos estudos dos parâmetros geotécnicos no depósito arenoso, para

obter a dilatância, assumiremos que o solo arenoso das camadas contém quartzo e

adotaremos a formulação de Bolton (1986) como indicado na equação 2.5.

O valor proposto para o módulo de deformabilidade, para as areias, por Décourt (1995)

foi estabelecido para sapatas quadradas e neste trabalho será utilizado inicialmente

para retroanalizar o módulo de deformabilidade da prova de carga direta no bloco

isolado do estudo experimental de Soares (2011). Na tabela 3.4 apresentam-se o

resumo dos Parâmetros Geotécnicos iniciais, assim obtidos.

Page 53: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

34  

Tabela 3.3 Agrupação preliminar para obtenção de parâmetros geotécnicos iniciais

Média SPT Godoy

(1) Décourt (2)

Dunhan (3) Décourt(4) Godoy(5)

Prof.(m) NSPT Ϫ

(kN/m3) N60(72%) CN (N1)60 Φ E (MPa) v 1 12,50 17 15,00 2,43

Solo 1 12,50 17 15,00 2,43 36,4 45,9 43,750 0,30 2 6,75 19 8,10 1,62 3 7,75 19 9,30 1,32 4 9,75 19 11,70 1,15

Solo 2 8,08 19 9,70 1,36 13,2 37,6 28,292 0,30 5 30,75 21 36,90 0,98 6 41,25 21 49,50 0,89 7 21,00 21 25,20 0,82

Solo 3 31,00 21 37,20 0,90 33,4 45,0 108,500 0,30 8 13,00 20 15,60 0,79 9 7,00 20 8,40 0,75

10 4,50 20 5,40 0,71 11 2,75 20 3,30 0,67 12 9,25 20 11,10 0,65 13 12,25 20 14,70 0,62 14 14,75 20 17,70 0,60

Solo 4 9,07 20 10,89 0,68 7,4 34,4 31,750 0,30 15 15,25 20 18,30 0,58 16 18,00 20 21,60 0,56 17 14,50 20 17,40 0,54 18 16,75 20 20,10 0,53 19 23,25 20 27,90 0,51 20 19,00 20 22,80 0,50 21 15,75 20 18,90 0,49 22 15,25 20 18,30 0,48 23 12,75 20 15,30 0,47 24 11,00 20 13,20 0,46 25 11,50 20 13,80 0,45 26 8,33 20 10,00 0,44 27 10,00 20 12,00 0,43

Solo 5 14,72 20 17,66 0,49 8,7 35,2 51,513 0,30 N.A (Julho 2011) 1,72N.A (Abril 2008) 2,33(1) Citado em Constancio, 2010. (2) e (4) Citado em Décourt et. al., 1998 (3) Citado em Miranda, 2006. (5) Citado em Miná, 2005.

Page 54: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

35  

Tabela 3.4 Parâmetros Geotécnicos obtidos por Correlação

Camada Prof. (m) Ϫ

Φ ψ E

ν kN/m3 MPa

Solo 1 0 1 17 45,9 15,9 43,750 0,3 Solo 2 1 4 19 37,6 7,6 28,292 0,3 Solo 3 4 7 21 45,0 15,0 108,500 0,3 Solo 4 7 14 20 34,4 4,4 31,750 0,3 Solo 5 14 27 20 35,2 5,2 51,513 0,3

3.3. GEOMETRIA E CONDIÇÕES ADOTADAS PARA A MODELAGEM

3.3.1. GEOMETRIA DOS MODELOS

As dimensões gerais dos modelos foi estabelecida com base nos critérios da seção

2.5.1, e modificados para garantir que as restrições não tenham influencia no

comportamento do objeto em estudo. Com a finalidade de obter uma melhor acurácia

da retroanálise se optou por uniformizar a geometria dos modelos nas estacas, radier

e radier estaqueado, adotando-se a seguinte situação: Na largura duas vezes o

comprimento da estaca e na profundidade três vezes o comprimento da estaca,

segundo mostrado nas Figuras 3.9 ao 3.10.

Figura 3.9 Geometria em perfil para retroanálise (Modificado de Sosa, 2010).

Devido à simetria da configuração relativa aos eixos horizontais e com a finalidade de

melhorar a densidade da malha, se procedeu à modelagem só da quarta parte.

Page 55: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

36  

Figura 3.10 Geometria em planta para retroanálise.

Em forma numérica a configuração adotada em perfil, dos modelos nas estacas, radier

e radier estaqueado, segundo as camadas já determinadas, é como a mostrada na

Figura 3.11.

Figura 3.11 Geometria em perfil dos modelos adotados.

Page 56: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

37  

A Figura 3.12, mostra as delimitações das camadas do solo por tipo de material.

Figura 3.12 Delimitação do solo em camadas para retroanálise.

3.3.2. MODELAGEM DO MATERIAL.

A seguir indicamos os modelos constitutivos adotados para a modelagem dos

materiais.

3.3.2.1. SOLO

Como indicado na seção 2.5.1 há múltiplos modelos constitutivos que podem ser

adotados para modelar o comportamento do solo. Por fornecer bons resultados do

comportamento ao cisalhamento dos solos e ser amplamente utilizado na análise

geotécnica no presente trabalho adotaremos o modelo constitutivo elástico-plástico

de Mohr-Coulomb (a direção do plano de fratura nem sempre coincide com os

resultados experimentais. O critério sobrevaloriza a resistência à tração.)

3.3.2.2. CONCRETO.

Para o concreto adota-se um modelo linear e elástico em correspondência com os

pesquisadores consultados e descritos na seção 2.5.2. De forma a evitar que o

concreto tenha deformação plástica, faremos coincidir os esforços aplicados, no

domínio elástico, controlando a segunda fase do domínio plástico na saída gráfica do

programa César LCPC para a não ocorrência da deformação plástica para o qual deve

Page 57: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

38  

selecionar-se nos resultados em opções de escala o tipo de gráfico “Norm of plastic

strain”.

3.3.2.3. ELEMENTOS DE INTERFACE.

Os elementos de interface presentes são as de solo-radier, solo-estaca e radier-

estaca. No estudo experimental de Soares (2011) usou-se bloco pré-moldado para

transmissão das cargas aplicadas ao solo e estacas, pelo que há uma interface entre

o bloco e o topo das estacas que não serão considerados no presente trabalho, já que

só se aplicarão forças verticais na análise paramétrica. 

Por limitações nos estudos dos parâmetros geotécnicos no depósito arenoso

adotamos a indicação de Sosa (2010) que diz que o parâmetro da interface tem uma

influência marcada apenas ao utilizar os modelos de solo com endurecimento. Por

este motivo, não foram considerados neste trabalho.

3.3.3. ESFORÇOS APLICADOS NAS PROVAS DE CARGA

O esquema  de medição de carga nos ensaios realizados por Soares (2011) é

mostrado na Figura 3.13, e aplicaram-se as cargas através de macaco hidráulico

cilíndrico de r=0,08 m.

Dos resultados das provas de carga (Anexo A) se determinam as cargas máximas, e

esforços máximos aplicados e os recalques máximos encontrados, com a finalidade

de serem utilizados e comparados nas análises numéricas (Tabela 3.5.).

Tabela 3.5 Esforços aplicados nas provas de carga (Modificado Soares, 2011).

Casos Carga

Máxima Área

MacacoEsforço Máximo

sob Macaco Recalque Máximo

kN m2 kN/m2 mm Bloco Isolado 1.200

0,0201

59.683 16,17 Radier Uma Estaca 1.200 59.683 15,71 Radier Duas Estacas 2.392 118.968 42,70 Radier Quatro Estacas 3.220 160.150 49,05 Grupo Uma Estaca 560 27.852 84,08 Grupo Duas Estacas 1.214 60.379 47,35 Grupo Quatro Estacas 2.400 119.366 60,44

Page 58: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

39  

Figura 3.13 Esquema de medição de carga nas provas de carga (Soares, 2011).

3.3.4. PROPRIEDADES DOS MATERIAIS

O coeficiente de Poisson do concreto é indicado pela Norma Brasileira ABNT NBR

6118. As propriedades geotécnicas do solo são as obtidas por correlações e

mostradas na Tabela 3.4.

Na modelagem numérica tratou-se de reproduzir a aplicação das cargas através do

macaco hidráulico, como o feito por Soares (2011). As propriedades mecânicas do

aço estrutural são definidas pela Norma Brasileira ABNT NBR 8800. O macaco

hidráulico é constituído de aço especial, pelo qual no presente trabalho os valores

r=0,08m

Page 59: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

40  

indicados (Ϫ, E) da Tabela 2.5 serão incrementados em 2% como mostrado na Tabela

3.6. O Peso especifico e módulo de deformabilidade do concreto foram obtidos do

estudo experimental realizado por Soares (2011).

Tabela 3.6 Propriedades mecânicas e geotécnicas iniciais dos materiais

Propriedades Ϫ E Ѵ Φ Ψ

kN/m3 kPa Macaco 78,5 2,100E+08 0,30 - - Bloco 25 2,150E+07 0,20 - - Estaca 24 2,150E+07 0,20 - - Solo 1 17 4,375E+04 0,30 45,9 15,9 Solo 2 19 2,829E+04 0,30 37,6 7,6 Solo 3 21 1,085E+05 0,30 45,0 15,0 Solo 4 20 3,175E+04 0,30 34,4 4,4 Solo 5 20 5,151E+04 0,30 35,2 5,2

3.3.5. CONDIÇÕES DE CONTORNO

Para as condições de contorno mostrado na Figura 3.14, são adotadas condições de

contorno padrão do programa César LCPC: na vertical deslocamentos horizontais

restritos, na base do modelo deslocamentos verticais restritos.

Figura 3.14 Condições de Contorno adotadas para retroanálise.

Page 60: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

41  

3.3.6. DISCRETIZAÇÃO DA MALHA DE ELEMENTOS FINITOS

A escolha da malha resultou de uma pesquisa preliminar, feitas no bloco isolado, na

qual foram testadas várias discretizações bem como as condições de contorno

laterais, com a finalidade de medir a influência da densidade da malha nos resultados

do modelo utilizado. Da Tabela 3.8, para uma densidade de malha de 20.000 nós

(malha fina, que é a melhor) com função quadrática, obtêm-se uma maior acurácia

nos valores do recalque e a tensão.

Tabela 3.7 Características da Malha para retroanálise

Número Camadas 4 Fundação Radier estaqueado Dimensão do Bloco (m) 1,55 x 1,55 x 0,85 Dimensão Total da Malha (m) 9,00 x 9,00 x 14,00 Diâmetro Estaca (m) 0,30 Comprimento Estaca (m) 4,50 Tipo de Análise Axissimétrica

Tipo de Elemento Quadrático Pentaedro de 15

nós

No máximo iterações 10.000 em tensões iniciais 100.000 em carregamentos

Tolerância 10-3 Tipo Elemento Malha Triângulo Função Geração Malha Quadrática

Tabela 3.8 Discretização da malha para retroanálise

Interpolação Linear Quadrática Tipo Fina Média Grossa Fina Média Grossa

Tempos (horas) Tensões Iniciais 0,093 0,013 0,002 0,337 0,047 0,008

Carregamento 1,466 0,381 0,141 24,797 0,556 0,145 Total (horas) 1,559 0,394 0,143 25,134 0,603 0,153

No Nós 20.373 10.128 5.064 20.903 10.877 5.187

No Elementos 36.744 17.678 8.494 7.352 3.768 1.720 Recalque Topo (mm) 24,52 24,06 23,47 27,47 26,60 25,64

Percentagem 89,26% 87,58% 85,43% 100,00% 96,81% 96,41%Tensão Topo (kN/m2) 344,59 343,23 341,59 388,48 381,10 368,61

Percentagem 88,70% 88,35% 87,93% 100,00% 98,10% 96,72%

Page 61: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

42  

Como o indicado por Wood (2004) em que a velocidade e os custos de modelagem

se incrementam enquanto a densidade da malha aumenta, no presente trabalho, com

a finalidade de otimizar o tempo de processamento da retroanálise, as modelagens

serão feitas, em média, com uma densidade de malha de 10.000 nós com função

quadrática, e que apresenta um aceitável desempenho, como mostrados nas Figuras

3.15 e 3.16.

Figura 3.15 Curva Profundidade x Recalque em retroanálise.

Figura 3.16 Curva Profundidade x Tensão em retroanálise

Page 62: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

43  

A seguir, o resumo da densidade da malha utilizada. O tempo de processamento

determinou-se logo da retroanálise.

Tabela 3.9 Densidade da malha utilizada na retroanálise

Casos Quantidade

Nós Elem Tempo Grupo Uma Estaca 11.806 4.040 6h14m67,48s Grupo Duas Estacas 7.700 2.554 2h39m57,26s Grupo Quatro Estacas 10.533 3.582 4h14m39,49s Radier Uma Estaca 12.400 4.330 0h54m66,27s Radier Duas Estacas 8.039 2.743 1h23m90,36s Radier Quatro Estacas 10.893 3.827 1h53m68,9s Bloco Isolado 12.432 4.360 0h30m49,35s

3.3.7. CALIBRAÇAO DO MODELO CONSTITUTIVO MOHR-COULOMB

Para realizar a calibração do modelo elástico-plástico de Mohr-Coulomb, utilizaram-

se os resultados dos ensaios de provas de carga realizados por SOARES (2011). Os

parâmetros necessários para a calibração do modelo e a metodologia usada para a

determinação destes parâmetros foram detalhados no capítulo 3, item 3.2.

Para o caso de Radier com duas estacas, o desempenho da análise numérica em

prever os recalques medidos experimentalmente não se mostrou adequado. Numa

segunda análise, procedeu-se a uma retroanálise com o objetivo de ajustar os

parâmetros geotécnicos de entrada, para calibrar o modelo constitutivo, de modo a

prever adequadamente o resultado experimental. O resultado obtido nesta segunda

análise apresentam uma boa comparação com o resultado experimental da prova de

carga, cujos resultados numéricos descrevem com fidelidade o comportamento

tensão-deformação do conjunto solo-fundação como mostrada na Figura 3.17.

Page 63: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

44  

Figura 3.17 Curvas Carga/Recalque, Radier com Duas estacas.

3.4. PROCEDIMENTO DE APLICAÇÃO DO PROGRAMA CESAR LCPC

- O trabalho considera retroanálise numérica de bloco isolado, grupo de estacas e

radier estaqueado; assim como análise paramétrica de fundações em radier

estaqueado submetida a uma carga vertical central. O depósito de solo é

composta de cinco camadas. Para a interação radier-estaca, solo-radier e solo-

estaca não foram modeladas com elementos de interface pelas limitações de

dados nos parâmetros geotécnicos.

- Uso de malha 3D (tetraedro com preenchimento e extrusão) e utilização de

ferramentas de pós-processamento 3D.

- Definir a geometria 3D das estruturas (bloco, estacas, etc.) e da malha de

elementos finitos assim como suas parâmetros geotécnicos e de resistência.

- São adotadas condições de contorno padrão: na vertical deslocamentos

horizontais restritos, na base do modelo deslocamentos verticais restritos.

- O módulo MCNL é usado para modelar o comportamento elástico-plástico do solo

e a interação solo-radier e solo-estaca.

- Cálculo das tensões iniciais do solo, utilizando a densidade reduzida com K = 0,5.

- Na retroanálise, a aplicação da carga tive dez estágios. Na análise paramétrica, a

aplicação da carga tive um estágio com exceção dos elementos estruturais

isolados (radier e estacas que foram feitos em dez estágios para permitir o cálculo

das cargas de ruptura).

Page 64: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

45  

3.4.1. CONFIGURAÇÃO DO PROGRAMA

- Executar CLEO3D.

- Defina o idioma no Menu Preferências, neste caso o Inglês.

- Defina as unidades no Menu em Preferences> Units.

- Na janela, selecione a opção General / Lenght e selecione a unidade m na caixa

de diálogo na parte inferior esquerda.

- Na janela, selecione a opção Mechanical / Force e selecione a unidade de kN na

caixa de diálogo na parte inferior esquerda.

- Na janela, selecione a opção Mechanical / Displacement e selecione a unidade

mm.

- Clique em Validate para fechar.

- Define a malha.

3.4.2. MALHADO 3D – MÉTODO DE EXTRUSÃO

DESENHO DOS SEGMENTOS

- Para o desenho da geometria da malha, radier, e eixos das estacas: na barra de

ferramentas à esquerda da tela, selecione a opção Point e ingresse as

coordenadas X e Y do modelo geométrico em planta, para cada valor ingressado

selecione Apply e ao terminar selecione Validate e Close para sair.

- Para o desenho circular das estacas: na barra de ferramentas à esquerda da

tela, selecione a opção Circle e desenhe os círculos das estacas segundo o

diâmetro.

SUPERFÍCIE

- Selecione todos os segmentos gerados anteriormente.

- Use região de superfície: Plane. As regiões da superfície são gerados.

- Estas superfícies será o apoio da malha gerada por extrusão.

GERAÇÃO DA MALHA

O método escolhido para a geração de malha 3D é a extrusão, já que as geometrias

do projeto são os adequados para sua aplicação. A extrusão, como padrão, é o

Page 65: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

46  

método mais fácil de obter uma malha 3D, o que gera um elevado número de

elementos em áreas onde não é necessária esta densidade.

DENSIDADE DA MALHA

O refinamento da malha é importante nas proximidades das áreas onde o alto nível

de tensões é esperado. Isto levará a resultados mais precisos. Aplicar uma densidade

adequado para a análise, irá conduzir a tempos de computação razoáveis. Usaremos

a definição de densidade progressiva para gerar uma evolução progressiva do

tamanho de pequenos segmentos em áreas de tensões altas (perto das estacas) e de

grandes segmentos nas bordas ou contorno.

MALHADO

CESAR-LCPC propõe dois tipos de interpolação de elementos finitos: quadrática ou

linear. A interpolação quadrática é necessário para todas as análises com

mecanismos de falha e as interações de contato. CESAR-LCPC propõe três níveis

para o procedimento de malhado das superfícies externas do volume. Ele permite

gerar uma malha grossa ou fina. Agora que a malha de superfície é completada,

podem-se utilizá-lo para a geração da malha de volume por meio de extrusão.

Começamos com a massa do solo e as estacas.

DEFINIÇÃO DE GRUPOS

Agora que todas as nossas elementos de volume são criados, podemos administrá-

los e agrupá-los por utilização, material, ordem de aparição na análise faseada.

Primeiro de tudo, temos que apagar a malha de superfície, o apoio de nossas

operações de extrusão.

VERIFICAÇÃO DA QUALIDADE DA MALHA

- Clique em informações Mesh.

- A caixa de ferramentas exibe o número de nós e elementos e o tipo de elementos.

- Clique na verificação da qualidade de elementos. A caixa de ferramentas é

atualizado. Se os elementos são errados e geram distorções, eles aparecem na

caixa de ferramentas.

Page 66: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

47  

3.4.3. CONFIGURAÇÕES DE CÁLCULO

DEFINIÇÃO DO MODELO

- Clique em Model definition.

- Digite Piled group loading como nome.

- Clique em Open.

- Escolher Static como domínio de aplicação. Selecione MCNL como módulo de

cálculo.

- Clique em Validate.

PROPRIEDADES DO MATERIAL

- Clique em Properties.

- Clique em Properties assignments.

- Selecione o grupo de elementos para a massa de solo.

- Escolher Mohr-Coulomb sem endurecer como modelo constitutivo e ingressar as

propriedades da massa do solo.

- Clique em Apply.

- Vamos ingressar as propriedades do concreto para o radier e as estacas.

Selecione estes elementos.

- Escolher o modelo constitutivo de elasticidade isotrópica linear e ingressar as

propriedades do concreto.

- Clique em Apply e em Close.

ESTADO DE TENSÃO INICIAL

O estado de tensão inicial é inicializado como um estado de tensões geostática

existente; a tensão vertical está ligada a tensão horizontal pelo valor K.

- Clique sobre as Initial conditions.

- Selecione Geostatic stresses.

- Clique em Insert para definir uma nova camada.

- Partindo de um nível de referência, digite os valores da altura das camadas com

seus pesos específicos e o fator de redução da densidade (no programa César

LCPC, K=0,5 nas direções X e Y)

- Clique em Validate.

Page 67: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

48  

CONDIÇÕES DE CONTORNO

Nós definimos as condições de contorno dos modelos. O fundo, os lados esquerdo e

direito será com suportes tipo rolo: o deslocamento normal é fixado em zero.

- Clique em Boundary condition sets.

- Digite Standard fixities. Clique em Open.

- Clique em Side and bottom supports. Isto prossegue para a definição automática

dos lados e dos suportes inferiores. Suportes são automaticamente afetado aos

limites da malha.

CASO DE CARGA

Nós definimos um tipo de carga: carga vertical.

- Clique em Loading sets.

- Digite Vertical load. Open.

- Selecionar as faces do topo do radier ou estaca onde será aplicada a carga.

- Clique sobre Surfaces forces e digite os esforços aplicados para cada caso das

provas de carga. Validate.

PARÂMETROS DE CÁLCULO:

Nas opções das janelas dessa caixa de ferramentas, podemos definir o algoritmo de

cálculo, o processo de iteração e a intensificação da carga.

- Clique sobre Calculation parameters.

- Na opção General parameter, digite os seguintes valores:

- Processo de iteração:

Número máximo de incrementos: 1 para tensões iniciais e cargas das fundações

em radier estaqueado na análise paramétrica. 10 para cargas na retroanálise e

cargas nos elementos isolados (radier e estacas) da análise paramétrica.

Número máximo de iterações por incremento: 10000 para tensões iniciais e 10000

para cargas.

Tolerância: 0,001

- Tipo de Cálculo: Padrão

- Método de Solução: 1 - tensões iniciais

- Feche usando Validate.

Page 68: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

49  

SOLUÇÃO

Agora que todos os dados foram introduzidos

- Clique no Calculations launcher.

- Selecione o cálculo criado.

- Selecione Create input files for the solver and calculate. Clique em Validate.

Se o cálculo não é exibida na lista, isto significa que o modelo não está pronta para

o cálculo. Clique na definição do modelo. Selecione o modelo. Clique em Info. O

status de modelo é exibido, todos os passos devem ser validados com uma marca

de verificação. O cálculo levará alguns minutos, dependendo da configuração do

computador. Todas as mensagens durante a análise será mostrado em uma janela

de saída. Especialmente, é preciso ser muito cauteloso sobre as mensagens de

aviso, porque essas mensagens indicam que os resultados da análise podem não

estar corretas.

3.5. METODOLOGIA UTILIZADA NAS ANÁLISES NUMÉRICAS

As análises numéricas foram feitas usando o programa Cesar LCPC Versão 4 (Cleo3D

Versão 1.07) desenvolvido pelo Laboratoire Central des Ponts et Chaussées (LCPC),

de Nantes em França. Para as análises foi usado o modelo elástico-plástico de Mohr-

Coulomb. No presente trabalho, por limitações nos estudos dos parâmetros

geotécnicos no depósito arenoso, assim como na instrumentação das provas de

carga, a simulação será feita em dois estágios: tensão inicial do solo e aplicação das

cargas (o ideal é simular em mais estágios tendo em consideração também a

perfuração, concretagem e curado das estacas, a colocação do bloco de concreto

armado e a prova de carga).

As análises foram realizadas em cinco etapas:

1) Cálculo do estado de tensão inicial do solo, baseados nos parâmetros geotécnicos

iniciais obtidos por correlações empíricas do valor N do ensaio SPT (Tabela 3.5).

2) Determinação do módulo de deformabilidade. Adotando a proposta de Dunhan,

1951 (citado por Miranda, 2006), para o valor do ângulo de atrito interno. Com o

valor da força aplicada nas provas de carga (Tabela 3.5), no Bloco Isolado (prova

direta), foi simulado o recalque para várias condições do valor do módulo de

deformabilidade, para atingir o recalque obtido experimentalmente.

Page 69: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

50  

3) Determinação do ângulo de atrito interno do solo. Com o módulo de

deformabilidade obtido anteriormente, e com o valor da força aplicada nas provas

de carga (Tabela 3.5), procedeu-se a simulação dos demais casos, para vários

valores de redução do ângulo de atrito interno, determinando por tentativas os

recalques obtidos nas provas de carga. Foram assim obtidos ângulos de atrito

interno para cada um dos casos (Grupo/Radier uma estaca, Grupo/Radier duas

estaca e Grupo/Radier quatro estacas), que resultaram em valores diferentes.

4) Os dados dos ângulos de atrito interno do solo foram ajustados estatisticamente

por meio da distribuição normal, no intervalo de duas vezes o desvio padrão (±

2σ), que representa cerca do 95% do conjunto, obtendo assim o valor médio do

ângulo de atrito interno.

5) Com as propriedades geotécnicas do solo assim obtidos foram feitas análises

paramétricas do radier estaqueado para diversas configurações que inclui

distintas condições de espessura do radier, número, diâmetro, espaçamento e

comprimento das estacas embutidas no solo.

3.6. SÍNTESE DO CAPITULO

É apresentada uma breve descrição do trabalho feito por Soares (2011), com

indicação dos furos de sondagens do ensaio SPT e das estacas Hollow Auger,

resultados do valor N obtidos do ensaio SPT, perfil geotécnico do maciço e os sete

ensaios de provas de carga estáticas.

Foram definidos parâmetros geotécnicos iniciais (necessários para o modelo

constitutivo Mohr-Coulomb) obtidos por correlações empíricas, baseados na média

dos valores dos ensaios SPT feitos por Soares (2011).

Definiram-se dados para serem usados na retroanálise: os esforços aplicados nas

provas de carga, as propriedades dos materiais, as condições de contorno, a

discretização da malha de elementos finitos e a calibração do modelo constitutivo de

Mohr–Coulomb. A geometria da malha e dos modelos ficou definida com a largura de

duas vezes o comprimento da estaca, e a profundidade de três vezes o comprimento

da estaca.

Ao final do capítulo, descreve-se a metodologia utilizada nas análises numéricas.

Page 70: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

51  

CAPITULO 4. RETROANÁLISES DE PROVAS DE CARGA

Neste capítulo, os ensaios realizados experimentalmente por SOARES (2011) são

retroanalisados com a finalidade de se obter os parâmetros elásticos do solo (módulo

de deformabilidade e ângulo de atrito interno do solo), isto com o objetivo de prever o

comportamento carga x recalque do sistema de fundação. Finalmente o ângulo de

atrito interno do solo é ajustado estatisticamente por apresentar valores dispersos.

Será utilizado, na modelagem do problema, o programa Cesar LCPC Versão 4

(Cleo3D Versão 1.07), e o modelo elástico-plástico de Mohr-Coulomb.

4.1. RETROANÁLISES DOS RESULTADOS DE PROVAS DE CARGA

As provas de carga de SOARES (2011) foram executadas em bloco isolado, grupos

de estacas e radier estaqueados, com dimensões do bloco de 1,55 x 1,55 x 0,85 m,

diâmetro de estacas de 0,30 m, e comprimento de 4,50 m. A análise numérica foi

realizada supondo o problema axissimétrico, com o Método de Elementos Finitos

tridimensional, tendo-se modelado apenas um quarto do problema devido às

condições de simetria em relação aos eixos horizontais.

Dispunham-se dos resultados das provas de carga (Tabela 3.5), dos parâmetros dos

materiais (Tabela 3.6) necessários para a modelagem, e o solo foi dividido em 4

camadas até a profundidade de 14,00 m (Figura 3.12).

 A retroanálise das provas de carga tem como objetivo avaliar sua eficiência e

aplicabilidade para que possam ser empregadas na estimativa de parâmetros do solo,

no depósito estudado, especialmente o valor do módulo de deformabilidade e o ângulo

de atrito interno. Para as análises foram usados três computadores com as seguintes

características:

- CPU Intel Core 2 Duo E7500 @2,93 Hz, GRAM 2,00 Gb - 32 Bits. Windows XP

- CPU Intel Core 2 Duo T5550 @1,83 GHz, RAM 4,00 Gb - 32 Bits. Windows 7

Ultimate.

- CPU Intel Core 2 Duo E7500 @2,93-2,40 GHz, RAM 4,00 Gb - 64 Bits. Windows 7

Ultimate.

Page 71: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

52  

4.1.1. ESTADO DE TENSÃO INICIAL

Estado de tensão inicial do maciço: com o peso específico do solo (Ϫ) e o fator de

redução da densidade (no programa César LCPC, K=0,5 nas direções X e Y). A

geometria, o número de camadas, a malha de elementos finitos e as condições de

contorno do problema foram simuladas neste estágio, para todos os casos analisados

nas provas de carga. Para o nível de referência o topo do bloco, os parâmetros são

apresentados na Tabela 4.1.

Tabela 4.1 Parâmetros de Tensões iniciais

Profundidade Ϫ K-X K-Y

(m) (kN/m3) -7,35 20 0,5 0,5 -4,35 21 0,5 0,5 -1,35 19 0,5 0,5 -0,35 17 0,5 0,5

Na Figura 4.1 apresenta-se o resultado da modelagem das tensões iniciais do maciço,

em cuja base tem um valor de 277 kN/m2 (que analiticamente pode ser conferido com

1x17+3x19+3x21+7x20, de acordo com as espessuras das camadas mostradas na

Figura 3.12).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 4.1 Estado de tensão inicial do maciço na retroanálise.

Page 72: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

53  

4.1.2. RETROANÁLISES DO MÓDULO DE DEFORMABILIDADE DO SOLO

O desempenho da análise numérica em prever os recalques medidos

experimentalmente não se mostro adequado e o modelo de Mohr-Coulomb não foi

capaz de reconstituir com fidelidade a curva carga-recalque. Para melhorar os

resultados, procedeu-se a uma retroanálise para ajustar os parâmetros geotécnicos

(E e Φ).

Para obtenção do módulo de deformabilidade das quatro camadas do solo através da

aplicação de retroanálise, foi empregada a seguinte metodologia: Adotou-se a

proposta de Dunhan, 1951 (citado por Miranda, 2006), para o valor do ângulo de atrito

interno do solo, e com o valor da força aplicada na prova de carga (Tabela 3.4) no

Bloco Isolado, foi simulado o recalque para várias condições do valor do módulo de

deformabilidade, para atingir o recalque obtido experimentalmente, para o qual em

todas as camadas, procurou-se estabelecer um mesmo fator que multiplique o valor

médio N72% do ensaio SPT. A retroanálise demandou um grande período de tempo de

processamento computacional, além da avaliação e tabulação dos dados. O fator de

5,58 (Ou seja o módulo de deformabilidade é igual a 5,58 vezes o valor médio N72%

do ensaio SPT), dá-nos o valor do módulo de deformabilidade, que combinados com

a força aplicada nas provas de carga (Tabela 3.5), as propriedades dos materiais

(Tabela 3.6), e por meio da modelagem numérica, atingiu-se o recalque experimental,

que graficamente é mostrado na Figura 4.2.

Figura 4.2 Curvas Carga/Recalque, Bloco Isolado, experimental e Mohr-Coulomb.

Page 73: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

54  

Na Tabela 4.2 apresentam-se os resultados dos valores do módulo de

deformabilidade, obtida conforme descrito anteriormente.

Tabela 4.2 Valores do módulo de deformabilidade

Camada Média NSPT Fator Es (MPa)Solo 1 12,50 5,58 69,8Solo 2 8,08 5,58 45,1Solo 3 31,00 5,58 173,0Solo 4 9,07 5,58 50,6

O fator de 5,58 (em MPa) aplicado a todas as camadas do solo e mostrado na Tabela

4.2 está no intervalo definido pelos autores, 3.5 (Décourt, 1995) e 8,0 (Conde de

Freitas et al, 2012), portanto, conclui-se que o valor encontrado no presente trabalho

é aceitável.

4.1.3. RETROANÁLISES DO ÂNGULO DE ATRITO INTERNO

Obtido o módulo de deformabilidade, procedeu-se a retroanálise do ângulo de atrito

interno, para o qual foram testados vários valores de redução deste ângulo, para

determinar por tentativas os recalques obtidos nas provas de carga. A metodologia da

retroanálise foi: o valor do ângulo do atrito interno do solo para o Bloco Isolado é

adotada da proposta de Dunhan, e, para cada camada, procurou-se estabelecer uma

mesma correlação direta com dito valor (Para o caso do bloco isolado é 1.00). Foram

assim obtidas ângulos de atrito interno para cada um dos ensaios (Grupo/Radier uma

estaca, Grupo/Radier duas estaca e Grupo/Radier quatro estacas), que resultaram em

valores diferentes. Os resultados dos valores do ângulo de atrito interno do solo

(Tabela 4.3) foram obtidos por tentativas até obter um fator que ao multiplicar os

valores do ângulo de atrito do Bloco Isolado (Para obter os valores dos ângulos das

demais provas, multiplicar o fator pelo valor do ângulo do Bloco Isolado na respetiva

camada) e combinado com a força aplicada nas provas de carga (Tabela 3.5), as

propriedades dos materiais (Tabela 3.6), e por meio da modelagem numérica, atingiu-

se o mesmo recalque (experimental).

Nas Tabelas 4.4 e 4.5 apresentamos os resultados da simulação numérica dos sete

casos analisados.

Page 74: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

55  

Tabela 4.3 Valores do ângulo de atrito interno

Tipo

Grupo de Estacas Radier com Estacas

Um

a

Du

as

Qu

atro

Iso

lad

o

Um

a

Du

as

Qu

atro

Solo 1 31,3 32,7 32,1 45,9 37,3 33,4 32,4 Solo 2 25,7 26,8 26,3 37,6 30,5 27,4 26,5 Solo 3 30,7 32,1 31,5 45,0 36,6 32,8 31,8 Solo 4 23,5 24,6 24,1 34,4 28,0 25,1 24,3 Fator 0,683 0,713 0,700 1,00 0,812 0,728 0,706

Tabela 4.4. Simulação numérica de Grupo de estacas

Grupo Uma Estaca Grupo Duas Estacas Grupo Quatro Estacas Carga (kN)

Recalque (mm)

Carga (kN)

Recalque (mm)

Carga (kN)

Recalque (mm)

0 0,000 0 0,000 0 0,000 56 0,377 121 0,537 240 0,797

112 1,690 243 1,322 480 2,023 168 5,119 364 3,460 720 4,770 224 10,503 486 6,782 960 9,102 280 17,974 607 11,374 1.200 14,784 336 27,240 728 17,071 1.440 21,651 392 38,436 850 23,489 1.680 29,520 448 51,579 971 30,690 1.920 38,522 504 66,790 1.093 38,723 2.160 48,696 560 84,218 1.214 47,633 2.400 60,143

Tabela 4.5. Simulação numérica de Radier com estacas e Bloco Isolado

Radier Uma Estaca Radier Duas Estacas Radier Quatro Estacas Bloco Isolado Carga (kN)

Recalque (mm)

Carga (kN)

Recalque (mm)

Carga (kN)

Recalque (mm)

Carga (kN)

Recalque (mm)

0 0,000 0 0,000 0 0,000 0 0,000 120 0,620 239 0,984 322 1,053 120 1,121 240 1,460 478 2,833 644 2,809 240 2,375 360 2,633 718 5,687 966 5,781 360 3,806 480 4,033 957 9,269 1.288 9,739 480 5,367 600 5,602 1.196 13,412 1.610 14,500 600 7,023 720 7,317 1.435 18,124 1.932 19,987 720 8,751 840 9,177 1.674 23,351 2.254 26,152 840 10,535 960 11,215 1.914 29,168 2.576 33,030 960 12,364

1.080 13,419 2.153 35,592 2.898 40,721 1.080 14,242 1.200 15,756 2.392 42,684 3.220 49,185 1.200 16,175

Page 75: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

56  

Observando-se as Figuras 4.3 a 4.8 conclui-se que, embora as curvas sejam

razoavelmente próximas, o modelo Mohr-Coulomb (com valores de E e Φ ajustados

na retroanálise) representou bem o comportamento tensão-deformação do solo de

fundação, e forneceu, em média resultados próximos das provas de carga. O critério

adotado no presente trabalho, para a retroanálise, foi  determinar os mesmos

recalques obtidos nas provas de carga, embora outro critério fosse uma maior

proximidade das curvas carga-recalque. Porém isso implicaria em um maior módulo

de deformabilidade e menores valores do ângulo de atrito interno.

Figura 4.3 Carga/Recalque, Grupo Uma Estaca, experimental e Mohr-Coulomb.

Figura 4.4 Carga/Recalque, Radier Uma Estaca, experimental e Mohr-Coulomb.

Page 76: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

57  

Figura 4.5 Carga/Recalque, Grupo Duas Estacas, experimental e Mohr-Coulomb.

Figura 4.6 Carga/Recalque, Radier Duas Estacas, experimental e Mohr-Coulomb.

Page 77: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

58  

Figura 4.7 Carga/Recalque, Grupo Quatro Estacas, experimental e Mohr-Coulomb.

Figura 4.8 Carga/Recalque, Radier Quatro Estacas, experimental e Mohr-Coulomb.

Page 78: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

59  

4.2. AJUSTE ESTATÍSTICO DE DADOS

Com os valores do ângulo de atrito interno apresentados na Tabela 4.3 tem-se uma

variabilidade dos dados que precisam definir-se (Figuras 4.9 a 4.12) e podem ser

ajustados à distribuição Normal no intervalo de ±2σ (representando 95% do conjunto

de dados), ficando fora do intervalo os dados do bloco isolado e do radier uma estaca.

Na Tabela 4.6 apresentam-se os valores ajustados do ângulo de atrito interno, a fim

de obter os valores médios.

Tabela 4.6 Ajuste dos valores do ângulo de atrito interno

Tipo Solo 1 Solo 2 Solo 3 Solo 4

Φ

33,4 27,4 32,77 25,1 32,4 26,5 31,78 24,3 31,3 25,7 30,74 23,5 32,7 26,8 32,09 24,6 32,1 26,3 31,51 24,1

Média 32,4 26,5 31,8 24,3 Desvio 0,76 0,62 0,75 0,57

Na tabela 4.7 apresenta-se o resumo das propriedades finais dos materiais, obtidos

com o procedimento descrito no presente trabalho. Com esses valores poderão ser

feitas simulações futuras para outras condições de carga no depósito estudado. Para

a camada 5 são assumidos os valores da camada 4.

Tabela 4.7 Propriedades mecânicas e geotécnicas finais dos materiais

Propriedades Ϫ E Ѵ Φ Ψ

kN/m3 kN/m2 Bloco 25 21500000 0,20 - - Estaca 24 21500000 0,20 - - Solo 1 17 69750 0,30 32,4 2,4 Solo 2 19 45110 0,30 26,5 0,0 Solo 3 21 173000 0,30 31,8 1,8 Solo 4 20 50620 0,30 24,3 0,0 Solo 5 20 50620 0,30 24,3 0,0

Janda et al (2008) encontraram que os parâmetros geotécnicos resultantes de

retroanálise fornecem melhores resultados para modelar as falhas das provas de

campo com uma precisão suficiente face aos dados de laboratório e “in-situ”.

Page 79: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

60  

Figura 4.9 Histograma e ajuste de curva dos dados Camada 1.

Figura 4.10 Histograma e ajuste de curva dos dados Camada 2.

Page 80: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

61  

Figura 4.11 Histograma e ajuste de curva dos dados Camada 3.

Figura 4.12 Histograma e ajuste de curva dos dados Camada 4.

Page 81: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

62  

4.3. DISCUSSÃO DOS RESULTADOS

Na modelagem numérica, ao utilizar os parâmetros geotécnicos obtidos por

correlações empíricas, o modelo de Mohr-Coulomb não foi capaz de reconstituir com

fidelidade a curva carga-recalque e para tentar melhorar os resultados, procedeu-se

a uma retroanálise para ajustar os parâmetros geotécnicos (E e Φ). Os resultados

obtidos nesta segunda análise apresentam uma boa comparação com os resultados

experimentais da prova de carga.

Duarte (2006) e Burnier (2006) na modelagem de provas de carga de um banco de

dados com o modelo constitutivo de Mohr-Coulomb, reconstituíram com fidelidade as

curvas carga-recalque experimentais, para o qual utilizaram a sugestão de Terzagui

(1943) de se fazer uma redução nos parâmetros de resistência, ângulo de atrito e

coesão, quando existir uma ruptura do tipo de puncionamento, que pode ser o caso

do presente trabalho, isto baseado no perfil geológico-geotécnico mostrado na Figura

3.3 onde até a profundidade de 4,00 m (influência do bulbo de pressões) têm-se a

presença de Arena fina pouco compacta a medianamente compacta (Largura do bloco

igual 1,55 m). A redução sugerida por Terzaghi (1943), correspondem a:

∗ e Ф ∗ Ф

Na Tabela 4.8 apresenta-se uma comparação dos módulos de deformabilidade e

ângulo de atrito interno do solo obtidos por correlações empíricas e por retroanálise,

assim como os valores reduzidos do ângulo de atrito interno do solo sugeridos por

Terzagui. Definiram-se fatores (Fator Φ e Fator Φ*) para comparar os valores do

ângulo de atrito interno do solo obtidos por retroanálise (intervalo de 0,70 – 0,71) e o

valor sugerido por Terzagui (intervalo de 0,71 – 0,75), onde os obtidos por retroanálise

são mais conservadores.

O Módulo de Deformabilidade inicialmente adotado para a modelagem numérica foi

baseado na formulação de Décourt (1995), que é igual a 3,5N72 (MPa). Na retroanálise

foi obtido um valor maior sendo igual a 5,88N72 (Mpa), valor este que se encontra no

intervalo descrito na literatura consultada e indicada na seção 2.1.3 (Décourt, 1995:

E=3,5N72 e Conde de Freitas et al, 2012: E=8,0N72).

Page 82: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

63  

Ϫ Ѵ SPT Fator N E Φ Fator Φ Φ*

kN/m3 N72 MpaCorrelações (1) (2) (3) (4) (6) (8) (11)Solo 1 17 0,30 12,50 3,50 43,750 45,9 1,00 34,5Solo 2 19 0,30 8,08 3,50 28,292 37,6 1,00 27,2Solo 3 21 0,30 31,00 3,50 108,500 45,0 1,00 33,7Solo 4 20 0,30 9,07 3,50 31,750 34,4 1,00 24,6Retroanálise (1) (2) (3) (5) (7) (9) (10) Fator Φ* (12)Solo 1 17 0,30 12,50 5,58 69,750 32,4 0,71 0,75Solo 2 19 0,30 8,08 5,58 45,105 26,5 0,70 0,72Solo 3 21 0,30 31,00 5,58 172,980 31,8 0,71 0,75Solo 4 20 0,30 9,07 5,58 50,619 24,3 0,71 0,71

Fator N: (4) Décourt, 1995. (5) Da retroanálise. (6)=(3)x(4). (7)=(3)x(5)

(11) Sugestão de Terzaghi, 1943. (12)=(11)/(8)

(1) Godoy, 1972. (2) Texeira & Godoy , 1976. (3) Média SPT, Soares, 2011

(8) Dunham, 1951. (9) Da retroanálise. (10)=(9)/(8)

Camada

Tabela 4.8 Comparativa de Parâmetros geotécnicos.

Dos resultados da retroanálise conclui-se que o valor do módulo de Deformabilidade

aumentam com respeito ao valor inicial e os valores do ângulo de atrito interno do solo

foram reduzidos.

4.4. SÍNTESE DO CAPITULO

Para representar, adequadamente, as curvas carga-recalque das provas de carga

feitas por SOARES (2011), foi necessária realizar a retroanálise dos valores de E e Φ.

Determinou-se o módulo de deformabilidade das camadas do solo na prova direta do

bloco isolado e os ângulos de atrito interno do solo em cada uma das seguintes provas

de carga, as mesmas que foram ajustadas estatisticamente por meio da distribuição

normal.

O modelo constitutivo elástico-plástico de Mohr-Coulomb (com parâmetros

geotécnicos retroanalisados) representou bem o comportamento tensão-deformação

do solo de fundação nos modelos de radier estaqueado das provas de carga realizado

por SOARES (20011), reconstituindo com razoável concordância as curvas carga-

recalque.

Page 83: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

64  

CAPITULO 5. ANÁLISE PARAMÉTRICA

No depósito estudado, de modo a avaliar a influência da configuração da fundação

em radier estaqueado nos recalques máximos, recalques diferenciais e sua

minimização, na distribuição de cargas e as distorções angulares, foram procedidas

análises considerando as influências das características geométricas mais

determinantes que permitam formular concepções para este tipo de sistema de

fundação.

No presente trabalho as análises paramétricas foram desenvolvidas para fundações

em radier estaqueados submetidas apenas a carregamento vertical central, análises

estas que vão fornecer uma primeira visão prática do comportamento esperado destes

sistemas.

São apresentadas a geometria e as características adotadas, bem como os resultados

da análise paramétrica como a distribuição de recalques máximos, recalques

diferenciais, distribuição de cargas, distorções angulares e fatores de segurança

global. Para finalmente apresentar aplicações para o sistema de fundação em radier

estaqueado.

5.1. GEOMETRIA DAS ANÁLISES PARAMÉTRICAS

A geometria em perfil das análises paramétricas é mostrada na Figura 5.1 (por simetria

aos eixos horizontais só é mostrada a quarta parte). A configuração do radier

estaqueado é como segue: o radier tem dimensões de 7,00 x 7,00 m, e espessuras t

= 0,50 m e 1,00 m, submetido a uma carga pontual Q=14.000 kN (proveniente da

configuração da carga). O solo consiste de quatro camadas (junção da quarta e quinta

camada), elástico-plásticas, isotrópicas e heterogêneas de espessura total h = 24 m.

As estacas têm seção transversal circular com diâmetro d = 0,50 m (d1) e 0,30 m (d2)

e valores de comprimento L = 5,00 m, 10,00 m e 12,00 m. A quantidade de estacas é

de 4, 9, 16 e 25. A configuração acima descrita é mostrado na Figura 5.2 e na Tabela

5.1.

Page 84: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

65  

Page 85: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

66  

Figura 5.1 Detalhe da geometria da malha da análise paramétrica.  

(1) Radier com 25 estacas(a) (2) Radier com 16 estacas(a) (3) Radier com 9 estacas(a)  

(4) Radier com 4 estacas(a) (5) Radier com 25 estacas(b) (6) Radier com 16 estacas(b)

(7) Radier com 9 estacas(b) (8) Radier com 4 estacas(b)

Figura 5.2 Configurações de estacas para análise paramétrica

Page 86: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

67  

Tabela 5.1 Configurações de estacas para análise paramétrica.

Estacas Relações Quant. Diâm. (d) Comp. (L) L/d t/d (0,5) t/d (1,0) S/d

25

0,50 5 10,0

1,0 2,0 3 10 20,012 24,0

0,30 5 16,7

1,7 3,3 5 10 33,312 40,0

16

0,50 5 10,0

1,0 2,0 4 10 20,012 24,0

0,30 5 16,7

1,7 3,3 6,7 10 33,312 40,0

9

0,50 5 10,0

1,0 2,0 6 10 20,012 24,0

0,30 5 16,7

1,7 3,3 10 10 33,312 40,0

4

0,50 5 10,0

1,0 2,0 8 10 20,012 24,0

0,30 5 16,7

1,7 3,3 13,3 10 33,312 40,0

Onde: t é a espessura do radier. S é o espaçamento entre estacas

5.2. CARACTERÍSTICAS DAS ANÁLISES PARAMÉTRICAS

5.2.1. PROPRIEDADES ELÁSTICAS DOS MATERIAIS

As propriedades dos materiais foram definidas na Tabela 4.7. O solo é admitido com

comportamento elástico-plástico, apresentando diferente módulo de deformabilidade

Es, de acordo com a resistência de cada camada, e coeficiente de Poisson ⱱs

constantes em todas estas.

Page 87: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

68  

5.2.2. MALHA DE ELEMENTOS FINITOS

Para definição da malha, apenas um quarto do problema foi modelado devido às

condições de simetria em relação aos eixos horizontais. A escolha da malha resultou

de uma pesquisa preliminar na qual foram testadas várias discretizações bem como

as condições de contorno laterais, segundo o mostrado nas Tabelas 5.2 e 5.3. A

configuração do radier, para a discretização, foi a seguinte: espessura do radier = 1,50

m; número de estacas = 25; comprimento de estacas = 12 m.

Tabela 5.2 Características da Malha para análise paramétrica

Número Camadas 4 Fundação

Radier: Concreto armado Estacas: Concreto simples

Dimensões do Radier (m) 7,00 x 7,00 x (0,50 e 1,00) Dimensão da Malha Total (m) 28,00 x 28,00 x 24,00 Diâmetros Estacas (m) 0,30 e 0,50 Comprimentos Estacas (m) 5, 10 e 12 Tipo de Análise Axissimétrica

Tipo de Elemento Quadrático Pentaedro de 15

nós

No máximo iterações 10.000 em tensões iniciais 100.000 em carregamentos

Tolerância 10-3 Tipo Elemento Malha Triângulo Função Geração Malha Quadrática

Tabela 5.3 Discretização da malha para análise paramétrica

Interpolação Quadrática Tipo Grossa Média Fina

Tempos (horas) Tensões Iniciais 0,085 0,188 0,370

Carregamento 0,559 5,159 7,498 Total (horas) 0,644 5,348 7,868

No Nós 16.057 20.859 28.655

No Elementos 5.674 7.480 10.466 Recalque Topo (mm) 72,26 76,69 77,28

Percentagem 93,50% 99,23% 100,00% Tensão Topo (kN/m2) 1.356,78 1.379,22 1.969,62

Percentagem 68,89% 70,02% 100,00%

Page 88: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

69  

Uma maior densidade de malha inclui em maiores tempos de processamento e custos

computacionais. Da Tabela 5.3, para uma densidade de malha de 28.655 nós (malha

fina, que é a melhor) com função quadrática, obtêm-se uma maior acurácia nos

valores do recalque e da tensão (Figuras 5.3 e 5.4).

Figura 5.3 Curva Profundidade x Recalque para análise paramétrica.

Figura 5.4 Curva Profundidade x Tensão para análise paramétrica.

Page 89: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

70  

No presente trabalho, com a finalidade de otimizar o tempo de processamento das

análises, as modelagens serão feitas com uma densidade de malha de 20.000 nós

em média e que apresenta um aceitável desempenho, indicando que configurações

mais simples terão menos nós, enquanto as mais complexas, maior densidade de

malha.

Para as modelagens foram usados quatro computadores com as seguintes

características:

- CPU Intel Core 2 Duo E7500 @2,93 GHz, RAM 2,00 Gb - 32 Bits. Windows XP

- CPU Intel Core 2 Duo T5550 @1,83 GHz, RAM 4,00 Gb - 32 Bits. Windows 7

Ultimate.

- CPU Intel Core 2 Duo E7500 @2,93-2,40 GHz, RAM 4,00 Gb - 64 Bits. Windows 7

Ultimate.

- CPU Intel (R) Core (TM) 4 Quatro i7-3770k @3,50 GHz, RAM 16,00 Gb - 64 Bits.

Windows 7 Ultimate.

A seguir, na Tabela 5.4, o resumo da densidade da malha utilizada. O tempo de

processamento determinou-se a partir das modelagens. A nomenclatura utilizada para

descrever os casos, em dita tabela, é como se segue:

- E50, E100 indicam a espessura do radier (0,50 e 1,00 metros).

- Os números 25, 16, 9, 4 indicam a quantidade de estacas.

- D30, D50 indicam o diâmetro da estaca (0,30 e 0,50 metros)

- L5, L10, L12 indicam o comprimento das estacas (5, 10 e 12 metros)

Por exemplo: RadierE50 significa radier isolado de espessura = 0,5 m;

Radier25E50D50L5 significa radier com 25 estacas e espessura = 0,5 m, diâmetro e

comprimento de estacas de 0,5 m e 5 m respectivamente.

Page 90: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

71  

Tabela 5.4 Densidade da malha utilizada nas análises paramétricas

No Casos Nós Elementos Início Final Total 1 RadierE50 18.030 6.488 0,093 0,132 0,2252 RadierE100 22.747 8.290 0,084 0,527 0,6113 Radier25E50D30L5 42.759 15.810 0,482 3,620 4,1014 Radier25E50D30L10 42.759 15.810 0,479 2,864 3,3435 Radier25E50D30L12 42.759 15.810 0,476 2,497 2,9736 Radier25E100D30L5 42.759 15.810 0,480 4,874 5,3547 Radier25E100D30L10 42.759 15.810 0,477 3,584 4,0618 Radier25E100D30L12 42.759 15.810 0,498 2,671 3,1699 Radier25E50D50L5 28.655 10.466 0,139 1,469 1,60810 Radier25E50D50L10 28.655 10.466 0,139 1,696 1,83511 Radier25E50D50L12 28.655 10.466 0,139 0,716 0,85512 Radier25E100D50L5 28.655 10.466 0,140 2,006 2,14613 Radier25E100D50L10 28.655 10.466 0,138 1,472 1,61114 Radier25E100D50L12 28.655 10.466 0,136 0,767 0,90315 Radier16E50D30L5 34.306 12.682 0,270 1,865 2,13516 Radier16E50D30L10 34.306 12.682 0,274 2,223 2,49617 Radier16E50D30L12 34.306 12.682 0,271 2,170 2,44118 Radier16E100D30L5 34.306 12.682 0,722 19,275 19,99719 Radier16E100D30L10 34.306 12.682 0,767 2,593 3,36020 Radier16E100D30L12 34.306 12.682 0,784 2,556 3,34121 Radier16E50D50L5 22.747 8.290 0,279 3,492 3,77122 Radier16E50D50L10 22.747 8.290 0,081 0,811 0,89123 Radier16E50D50L12 22.747 8.290 0,195 1,287 1,48224 Radier16E100D50L5 22.747 8.290 0,082 1,102 1,18425 Radier16E100D50L10 22.747 8.290 0,182 1,506 1,68826 Radier16E100D50L12 22.747 8.290 0,081 0,519 0,59927 Radier9E50D30L5 24.319 8.806 0,277 2,002 2,27928 Radier9E50D30L10 24.319 8.806 0,271 2,484 2,75429 Radier9E50D30L12 24.319 8.806 0,253 2,434 2,68730 Radier9E100D30L5 24.319 8.806 0,254 2,673 2,92631 Radier9E100D30L10 24.319 8.806 0,261 2,891 3,15232 Radier9E100D30L12 24.319 8.806 0,253 3,218 3,47033 Radier9E50D50L5 20.681 7.440 0,214 3,529 3,74234 Radier9E50D50L10 20.681 7.440 0,238 3,619 3,85635 Radier9E50D50L12 20.681 7.440 0,218 3,228 3,44636 Radier9E100D50L5 20.681 7.440 0,218 5,685 5,90337 Radier9E100D50L10 20.681 7.440 0,224 3,238 3,46138 Radier9E100D50L12 20.681 7.440 0,236 4,379 4,61439 Radier4E50D30L5 18.742 6.760 0,117 0,179 0,29640 Radier4E50D30L10 18.742 6.760 0,116 0,223 0,33941 Radier4E50D30L12 18.742 6.760 0,116 0,234 0,34942 Radier4E100D30L5 18.742 6.760 0,125 0,180 0,30543 Radier4E100D30L10 18.742 6.760 0,116 0,226 0,34344 Radier4E100D30L12 18.742 6.760 0,104 0,217 0,32145 Radier4E50D50L5 18.030 6.488 0,112 0,159 0,27146 Radier4E50D50L10 18.030 6.488 0,094 0,171 0,26447 Radier4E50D50L12 18.030 6.488 0,119 0,172 0,29148 Radier4E100D50L5 18.030 6.488 0,105 0,153 0,25849 Radier4E100D50L10 18.030 6.488 0,104 0,169 0,27350 Radier4E100D50L12 18.030 6.488 0,105 0,179 0,283

Total Tempo Processamento (horas) 12,134 109,930 122,065

Page 91: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

72  

(a) malha completa

(b) Detalhe da malha no topo do radier (c) Detalhe da malha na base do radier

Figura 5.5 Malha de elementos finitos usada na análise paramétrica.

Os contornos finais da malha foram posicionados nas seguintes distâncias: na direção

vertical, 24m abaixo da base do radier, ou seja, 2 vezes o máximo comprimento L

adotado para as estacas; e na direção horizontal: 28 m em cada direção, ou seja, 4

vezes a Largura do radier.

Page 92: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

73  

5.2.3 CONFIGURAÇÃO DA CARGA

No presente trabalho, para a análise paramétrica a carga é vertical e aplicada no

centro do radier, e para a configuração desta foi assumido um sistema de fundação

em radier estaqueado (como situação ideal), com o arranjo (2) da Figura 5.2, caso de

um Radier com 16 estacas (a) com espessura do radier de 0,50 m, diâmetro das

estacas de 0,50 m, e comprimento de estaca de 10 m. A carga a ser encontrada não

deve causar o recalque máximo para o sistema de fundação assumido.

Para o qual, primeiramente, se precisa saber a carga última da estaca isolada, e

procedeu-se à modelagem numérica, com a malha definida na seção anterior, em 10

estágios de carga, da estaca isolada de diâmetro = 0,50 m e cumprimento L= 10 m,

com uma carga inicial de 1.000 kN, e ingressando os parâmetros dos materiais da

Tabela 3.6. O objetivo da simulação foi a de se obter os dados da curva carga-

recalque para encontrar sua carga última por meio do método de Van der Veen (1953).

O valor da carga última assim determinado é de 1.100 kN, como mostrado na Figura

5.6.

Figura 5.6 Curva Carga/Recalque da Modelagem x Van der Veen da estaca isolada.

Page 93: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

74  

Logo, a carga Q=14.000 kN, é o resultado (aproximado) de multiplicar 80% da carga

última do grupo de estacas (1.100kN pelo número de estacas do sistema de fundação

assumido). O fator 80% foi escolhido por tentativas, procurando que o recalque

máximo, não exceda do admissível, determinado na seção 2.7.2 que para o presente

trabalho é de 40 mm.

5.3. RESULTADOS DA ANÁLISE PARAMÉTRICA

Alguns gráficos típicos do modelo tridimensional do radier estaqueado gerado usando

César LCPC são mostrados na Figura 5.7. O programa permite visualizar recalques,

tensões, a forma da deformada da estrutura, a deformação plástica nos elementos

estruturais do concreto (para conferir que os esforços encontram-se na fase elástica),

etc. Na presente análise, os parâmetros de saída relevantes que merecem atenção

são os recalques máximos e diferenciais em diferentes pontos do radier, a distribuição

de cargas, assim como a distorção angular.

O recalque em qualquer nó é facilmente determinado, e, assim, os recalques

diferenciais no topo de qualquer estaca ou em qualquer ponto abaixo do radier podem

ser calculados. Estes resultados são comparados, em seguida, com o objetivo de tirar

conclusões definitivas sobre a influência da configuração do grupo de estacas sobre

o comportamento do radier estaqueado.

(a) Recalques na fundação (b) Deformação plástica no concreto

Figura 5.7 Gráficos típicos das análises paramétricas.

Page 94: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

75  

5.3.1 DISTRIBUIÇÃO DE RECALQUES

A seguir serão mostrados os recalques dos pontos, tomados no nível do terreno (base

do radier), considerando um plano que corta o centro e borda mais distante do radier

estaqueado (Corte XX), conforme mostrado na Figura 5.8.

Figura 5.8 Plano e coordenadas consideradas para os resultados de recalque no

radier estaqueado.

Os recalques máximos no centro e na borda do radier estaqueado, para cada arranjo

de estacas, foram obtidos diretamente da saída gráfica do programa César LCPC. O

efeito do arranjo das estacas é apresentado na Tabela 5.5 e nas Figuras 5.9 a 5.12.

Tabela 5.5 Recalques Máximos no centro do radier estaqueado

Comprim. Diâmetro Espessura Recalque Máximo no Radier (mm) Estaca (m) Estaca (m) Radier (m) Grup2x2 Grup3x3 Grup4x4 Grup5x5

5 0,30 0,50

59,9 56,5 51,7 49,610 55,7 50,2 45,9 40,612 53,8 46,8 41,5 35,25

0,30 1,00 43,0 37,9 35,6 33,6

10 38,3 31,9 28,1 25,312 36,5 28,7 23,7 20,05

0,50 0,50 56,0 50,9 43,6 41,2

10 52,3 45,5 39,2(*) 33,612 49,4 41,2 34,2 27,95

0,50 1,00 39,5 35,4 32,7 31,1

10 35,9 28,1 24,4 23,112 33,0 23,6 19,0 17,5

(*) Recalque testado para configuração da carga indicado na seção 5.2.3

Page 95: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

76  

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.9 Recalque Máximo no radier estaqueado x Espessura do Radier para L=5,00m.

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.10 Recalque Máximo no radier estaqueado x Espessura do Radier para

L=10,00m.

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.11 Recalque Máximo no radier estaqueado x Espessura do Radier para

L=12,00m.

Page 96: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

77  

As Figuras 5.9 a 5.12 mostram que, com o aumento do grupo de estacas, a espessura

do radier, diâmetro e o comprimento das estacas os recalques máximos são

reduzidos, sendo isto consistente com o encontrado por: Kalpakci e Ozkan (2012),

Khoury (2011), Sosa (2010), Souza (2010), Lorenzo (2009), Rabiei (2009), Cunha et

al (2006), Cunha e Zhang (2006), Poulos et al (2006), Maharaj e Anshuman (2004),

Bacelar (2003), Bezerra e Cunha (2003), Maharaj (2003), Cunha et al (2001), Poulos

(2001), Cooke (1986).

(a) Diâmetro=0,30 m; espessura=0,50 m (b) Diâmetro=0,50 m; espessura=0,50 m

(c) Diâmetro=0,30 m; espessura=1,00 m (d) Diâmetro=0,50 m; espessura=1,00 m

Figura 5.12 Recalque Máximo no radier estaqueado x Comprimento das Estacas.

Page 97: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

78  

O recalque diferencial é obtido pela diferença do recalque no centro e na borda mais

distante do radier estaqueado sendo apresentados na Tabela 5.6 e nas Figuras 5.13

a 5.16.

Tabela 5.6 Recalque Diferencial x Relação de espaçamento no radier estaqueado

Relação Comp. δ (mm), e=0,50 m δ (mm), e=1,00 m Espaçamento Estaca (m) Centro Canto Difer Centro Canto Difer

S/d = 3 5 41,2 15,3 25,9 31,1 23,8 7,2

10 33,6 10,5 23,1 23,1 16,9 6,112 27,9 7,5 20,4 17,5 12,1 5,4

S/d = 4 5 43,6 12,3 31,3 32,7 24,7 8,0

10 39,2 9,4 29,8 24,4 17,3 7,012 34,2 6,8 27,4 19,0 12,7 6,3

S/d = 6 5 50,9 14,8 36,1 35,3 26,8 8,5

10 45,5 9,8 35,7 28,1 20,0 8,112 41,2 7,2 33,9 23,6 15,9 7,7

S/d = 8 5 56,0 17,8 38,2 39,5 30,4 9,1

10 52,3 14,6 37,7 35,9 27,1 8,912 49,4 12,2 37,2 33,0 24,4 8,6

S/d = 5 5 47,6 13,1 34,6 33,5 25,0 8,6

10 40,6 8,4 32,2 25,3 18,0 7,312 35,2 6,1 29,1 20,0 13,5 6,5

S/d = 6,7 5 51,7 13,5 38,2 35,5 26,4 9,2

10 45,9 8,8 37,2 28,1 19,8 8,312 41,5 6,5 35,0 23,6 15,9 7,7

S/d = 10 5 54,6 14,9 39,7 37,9 28,4 9,5

10 50,1 10,7 39,4 31,9 22,9 9,012 46,8 8,5 38,3 28,6 19,9 8,7

S/d = 13,3 5 58,3 18,1 40,2 41,5 31,6 9,9

10 55,7 15,8 39,9 38,3 29,1 9,212 53,8 14,2 39,6 36,5 27,4 9,1

As Figuras 5.13 a 5.16 mostram que, com o aumento do grupo de estacas, a

espessura do radier, diâmetro e comprimento das estacas os recalques diferenciais

são reduzidos, sendo isto consistente com o encontrado por: Kalpakci e Ozkan (2012),

Khoury (2011), Sosa (2010), Souza (2010), Lorenzo (2009), Rabiei (2009), Cunha et

al (2006), Cunha e Zhang (2006), Poulos et al (2006), Maharaj e Anshuman (2004),

Bacelar (2003), Bezerra e Cunha (2003), Maharaj (2003), Cunha et al (2001), Poulos

(2001), Cooke (1986).

Page 98: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

79  

Na figura 5.13 concluiu-se que ao se aumentar o número e comprimento das estacas

há um efeito positivo em termos de redução dos recalques diferenciais do radier

estaqueado, mas esta redução não é proporcional. Por isso, os estudos devem

procurar determinar o número e o comprimento necessário de estacas para se atingir

os recalques desejados.

(a) Diâmetro=0,30 m; espessura=0,50m (b) Diâmetro=0,50 m; espessura=0,50 m (c) Diâmetro=0,30 m; espessura=1,00m (d) Diâmetro=0,50 m; espessura=1,00 m

Figura 5.13 Recalque Diferencial no radier estaqueado x Comprimento de estacas

Page 99: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

80  

(a) Grupo 25 Estacas (b) Grupo 16 estacas

(c) Grupo 9 estacas (d) Grupo 4 estacas

Figura 5.14 Recalque Diferencial no radier estaqueado x Diâmetro de estacas e espessura do radier=0,50 m

Na Figura 5.14 e 5.15 quando comparadas as duas distintas espessuras do radier,

nota-se que para o radier de 0,5 m de espessura foram geradas recalques diferenciais

um pouco superiores aos recalques diferenciais do radier de 1,0 m, o que era

esperado uma vez que o radier de 0,5 m é mais flexível que a outra.

Page 100: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

81  

(a) Grupo 25 Estacas (b) Grupo 16 estacas

(c) Grupo 9 estacas (d) Grupo 4 estacas

Figura 5.15 Recalque Diferencial no radier estaqueado x Diâmetro de estacas e espessura do radier=1,00 m

Page 101: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

82  

Tal como acontece com o diâmetro, um maior comprimento de estacas também

significa uma redução dos recalques diferenciais no radier estaqueado, como

mostrado na Figura 5.16. Comparando-se a diminuição do recalque diferencial

alcançada do radier de 50 cm e 100 cm de espessura, pode-se ver que a espessura

do radier e o comprimento das estacas influenciam nos valores obtidos.

(a) Comprimento L = 5 m (b) Comprimento L = 10 m

(c) Comprimento L = 12 m

Figura 5.16 Recalque Diferencial no radier estaqueado x Relação (S/d) e comprimento de estacas

Page 102: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

83  

5.3.2. DISTRIBUIÇÃO DE CARGAS

A carga atuante individualmente no topo de cada uma das estacas para cada caso

analisado foi obtida indiretamente neste estudo, considerando que:

(5.1)

Onde:

é a carga atuante no topo da estaca i;

é a tensão vertical média atuante no topo da estaca i, obtida na saída gráfica

do programa César LCPC;

é a área da seção transversal da estaca.

Desse modo, pode-se obter a carga Qp suportada pelo grupo de n estacas:

∑ (5.2)

Logo, a carga transmitida diretamente do radier para o solo de fundação Qr pode ser

estimada como:

(5.3)

Onde Qt é a resultante do carregamento total aplicado na fundação pela

superestrutura.

A Tabela 5.7 mostra as parcelas do carregamento total suportadas pelas estacas (Qp)

em cada caso analisado nas análises paramétricas e mostra que, aumentando a

espessura do radier, mais carga é absorvida por este elemento estrutural. Observa-

se também que a diminuição desta parte da carga é proporcional à diminuição do

número de estacas em cada uma das configurações (para uma espessura do radier

em particular). Como esperado, quanto menor o número de estacas para uma

espessura específica de configuração do radier, menor será a percentagem da carga

suportada pelas estacas, sendo isto consistente com o encontrado por: Kalpakci e

Ozkan (2012), Khoury (2011), Sosa (2010), Souza (2010), Lorenzo (2009), Rabiei

(2009), Cunha et al (2006), Cunha e Zhang (2006), Poulos et al (2006), Maharaj e

Anshuman (2004), Bacelar (2003), Bezerra e Cunha (2003), Maharaj (2003), Cunha

et al (2001), Poulos (2001), Cooke (1986).

Page 103: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

84  

Tabela 5.7 Percentagem de carga total nas estacas do radier estaqueado

Comprim. Diâmetro Espessura Carga nas Estacas (%) Estaca (m) Estaca (m) Radier (m) Grup2x2 Grup3x3 Grup4x4 Grup5x5

5 0,30 0,50

12,28% 17,62% 40,26% 40,05%10 18,51% 24,37% 53,43% 47,36%12 21,24% 26,24% 56,85% 47,39%5

0,30 1,00 9,92% 13,91% 33,16% 34,76%

10 14,85% 20,08% 44,44% 41,46% 12 16,99% 22,32% 47,60% 41,83%

5 0,50 0,50

20,72% 21,86% 32,59% 54,47%10 29,22% 28,91% 45,05% 55,43%12 33,88% 30,10% 49,41% 54,36%5

0,50 1,00 17,54% 21,23% 42,78% 45,53%

10 24,27% 27,98% 51,16% 46,25%12 27,75% 30,87% 52,29% 46,29%

As Figuras 5.17 a 5.20 apresentam as cargas totais no grupo de estacas de acordo

com o tipo de arranjo, e em função do número de estacas do grupo. Ao reduzir o

número de estacas, há uma tendência para se aumentar a carga suportada pelo

radier.

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.17 Carga total nas estacas do radier estaqueado x Espessura do Radier

para L=5,00m.

Page 104: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

85  

Como mostrado nas Figuras 5.17 a 5.20 o número de estacas no radier afetam

diretamente a proporção da carga transmitida diretamente do radier para o solo, sendo

este efeito mais representativo à medida que se aumentam o comprimento das

estacas e a espessura do radier.

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.18 Carga total nas estacas do radier estaqueado x Espessura do Radier

para L=10,00m.

(a) Diâmetro estacas = 0,30 m (b) Diâmetro estacas = 0,50 m

Figura 5.19 Carga total nas estacas do radier estaqueado x Espessura do Radier

para L=12,00m.

Page 105: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

86  

(a) Diâmetro=0,30 m; espessura=0,50 m (b) Diâmetro=0,50 m; espessura=0,50 m

(c) Diâmetro=0,30 m; espessura=1,00 m (d) Diâmetro=0,50 m; espessura=1,00 m

Figura 5.20 Carga total nas estacas do radier estaqueado x Comprimento das estacas.

Um fato no previsto nos resultados de algumas configurações em radier estaqueado,

onde obtive-se que a maior espessura do radier, número, diâmetro e comprimento das

estacas menores valores de carga suportadas pelo radier e que não refletem o

comportamento padrão, que é de aumentar a carga suportada. Isto pode dever-se a

que o modelo constitutivo Mohr-Coulomb assumiu algumas estacas como submetidas

a esforços de tração.

Page 106: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

87  

5.3.3. DISTORÇÕES ANGULARES

A distorção angular é o resultado da divisão do recalque diferencial entre a distância

(4,95 m) dos pontos considerados (da Figura 5.8: 3,5 3,5 ), e os resultados são

apresentados, como uma fração para serem comparados com o limite estabelecido

na seção 2.7.2 (1/500). Na Tabela 5.8 e nas Figuras 5.21 a 5.24 são apresentadas as

distorções angulares determinadas na análise paramétrica.

Tabela 5.8 Distorção angular no radier estaqueado x relação de espaçamento

Relação Comp. Distorção angular Espaçamento Estaca (m) e=0,50 m e=1,00 m

S/d = 3 5 1 / 191 1 / 683 10 1 / 215 1 / 808 12 1 / 243 1 / 916

S/d = 4 5 1 / 158 1 / 617 10 1 / 166 1 / 704 12 1 / 181 1 / 782

S/d = 6 5 1 / 137 1 / 579 10 1 / 139 1 / 611 12 1 / 146 1 / 643

S/d = 8 5 1 / 129 1 / 542 10 1 / 131 1 / 559 12 1 / 133 1 / 574

S/d = 5 5 1 / 143 1 / 578 10 1 / 154 1 / 674 12 1 / 170 1 / 757

S/d = 6,7 5 1 / 130 1 / 541 10 1 / 133 1 / 596 12 1 / 141 1 / 640

S/d = 10 5 1 / 125 1 / 523 10 1 / 125 1 / 549 12 1 / 129 1 / 568

S/d = 13,3 5 1 / 123 1 / 499 10 1 / 124 1 / 536 12 1 / 125 1 / 542

Das Figuras 5.21 a 5.24 se pode dizer que, em quase todos os arranjos, para o radier

estaqueado de espessura = 1,00 m, estão reunidas todas as condições limites

estabelecidas para a distorção angular, independentemente do número, comprimento

e diâmetro das estacas. O aumento do comprimento das estacas tem pequena

influência sobre os resultados.

Page 107: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

88  

(a) Diâmetro=0,30 m; espessura=0,50m (b) Diâmetro=0,50 m; espessura=0,50 m (c) Diâmetro=0,30 m; espessura=1,00m (d) Diâmetro=0,50 m; espessura=1,00 m

Figura 5.21 Distorção angular no radier estaqueado x Comprimento de estacas

Ao aumentar a espessura do radier (t), há uma tendência para se aumentar a

inclinação do parâmetro n (diminuindo assim a proporção de 1 / n); sendo isto

consistente como o encontrado por: Kalpakci e Ozkan (2012), Khoury (2011), Sosa

(2010), Souza (2010), Lorenzo (2009), Rabiei (2009), Cunha et al (2006), Cunha e

Zhang (2006), Poulos et al (2006), Maharaj e Anshuman (2004), Bacelar (2003),

Bezerra e Cunha (2003), Maharaj (2003), Cunha et al (2001), Poulos (2001), Cooke

(1986).

Page 108: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

89  

(a) Grupo 25 estacas (b) Grupo 16 estacas

(c) Grupo 9 estacas (d) Grupo 4 estacas

Figura 5.22 Distorção angular no radier estaqueado x diâmetro de estacas, espessura do radier=0,50 m.

Os resultados mostram que, para todas as configurações das estacas com espessura

do radier de 1,00 m, as distorções angulares excedem às admissíveis já definidos no

presente trabalho (1/500). Já para o sistema de fundações em radier estaqueado com

espessura do radier de 0,50 m, nenhuma das configurações excede o limite

estabelecido.

Page 109: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

90  

(a) Grupo 25 estacas (b) Grupo 16 estacas

(c) Grupo 9 estacas (d) Grupo 4 estacas

Figura 5.23 Distorção angular no radier estaqueado x diâmetro de estacas, espessura do radier=1,00 m.

Page 110: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

91  

(a) Comprimento L = 5 m (b) Comprimento L = 10 m

(c) Comprimento L = 12 m

Figura 5.24 Distorção angular no radier estaqueado x Relação (S/d) com comprimento de estacas

Page 111: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

92  

5.4. FATOR DE SEGURANÇA E VALORES ADMISSÍVEIS

Para a determinação dos fatores de segurança, primeiramente se precisa saber a

carga de ruptura do solo para os elementos estruturais isolados: Radier isolado de

0,50 m e 1,00 m de espessura, e estacas isoladas de diâmetros 0,30 m e 0,50 m com

comprimentos de 5 m, 10 m e 12 m respectivamente. Da modelagem obteve-se os

dados da curva carga-recalque (Tabela 5.9), e por meio do método de Van der Veen

(1953) foram definidos as cargas de ruptura de ditas estruturas, como mostrado nas

Figuras 5.25 a 5.27.

Tabela 5.9 Carga e Recalque em Radier e Estacas isoladas

a) Espessura=0,50m (b) Espessura=1,00 m

Figura 5.25 Carga de ruptura em radier isolado

t=0,5m t=1,0mD=0,3m L=5m

D=0,5m L=5m

D=0,5m L=12m

D=0,3m L=10m

D=0,3m L=12m

D=0,5m L=10m

δ (mm) δ (mm) δ (mm)0 0,0 0,0 0 0,0 0,0 0,0 0 0,0 0,0 0,0

3000 9,8 6,3 120 0,7 0,5 0,4 100 0,5 0,5 0,36000 21,3 14,0 240 3,0 1,0 0,7 200 1,1 1,0 0,69000 34,3 23,2 360 8,0 2,3 1,1 300 1,7 1,7 1,012000 48,8 33,8 480 15,1 4,6 1,5 400 2,6 2,4 1,315000 64,8 46,1 600 24,4 7,7 2,0 500 3,8 3,3 1,718000 82,8 60,4 720 35,9 11,7 2,5 600 6,6 4,3 2,221000 102,9 77,2 840 49,8 16,4 3,2 700 12,5 5,6 2,824000 126,3 97,5 960 66,9 22,1 4,0 800 20,3 8,1 3,827000 153,0 122,1 1080 87,7 28,8 4,9 900 29,9 13,7 5,830000 184,9 151,6 1200 112,2 36,7 6,8 1000 41,5 21,5 9,3

Q (kN) Q (kN)

Estaca Isolada

δ (mm) δ (mm)Q (kN)

Radier Isolado

Page 112: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

93  

a) Comprimento=5 m (b) Comprimento=10 m

c) Comprimento=12 m

Figura 5.26 Carga de ruptura em estaca isolada, diâmetro=0,3 m.

Page 113: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

94  

a) Comprimento=5 m (b) Comprimento=10 m

c) Comprimento=12 m

Figura 5.27 Carga de ruptura em estaca isolada, diâmetro=0,5 m.

Page 114: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

95  

O Resumo das cargas de ruptura encontradas são mostrados na Tabela a seguir:

Tabela 5.10 Cargas de ruptura de elementos estruturais

Elemento Estrutural Qrupt (kN) Radier Isolado (7mx7m), t=0,5 m 45000 Radier Isolado (7mx7m), t=1,0m 45000 Estaca Isolada d=0,3m, L=5m 300 Estaca Isolada d=0,3m, L=10m 800 Estaca Isolada d=0,3m, L=12m 1000 Estaca Isolada d=0,5m, L=5m 850 Estaca Isolada d=0,5m, L=10m 1100 Estaca Isolada d=0,5m, L=12m 1350

Na Tabela 5.11 apresentamos um quadro comparativo dos resultados já analisados,

assim como os valores do fator de segurança parcial e global para cada um das

configurações do sistema de fundação em radier estaqueado. Para o cálculo do fator

de segurança seguiu-se as recomendações de Sanctis & Mandolini (2006) descrita na

seção 2.8. A nomenclatura utilizada para descrever os casos, em dita Tabela, é como

se segue:

- E50, E100 indicam a espessura do radier (0,50 e 1,00 metros).

- Os números 25, 16, 9, 4 indicam a quantidade de estacas.

- D30, D50 indicam o diâmetro da estaca (0,30 e 0,50 metros)

- L5, L10, L12 indicam o comprimento das estacas (5, 10 e 12 metros)

- δmax é o recalque máximo no centro do radier

- δdif é o recalque diferencial

- β é a distorção angular

- Qrupt e Qatuante são as cargas de ruptura e cargas atuantes respectivamente

- FSP, FSR e FSRP são os fatores de segurança do grupo de estacas, radier isolado

e radier estaqueado respectivamente.

Por exemplo: RadierE50 significa radier isolado de espessura = 0,5 m;

Radier25E50D50L5 significa radier com 25 estacas e espessura = 0,5 m, diâmetro e

comprimento de estacas de 0,5 m e 5 m respectivamente.

Page 115: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

96  

Estacas Radier FSP FSR FSRP

1 RadierE50 (Q=14000) 61,02 39,18 126 45000 - 100,0% 3,2 2,6

2 RadierE100 (Q=14000) 44,49 7,88 628 45000 - 100,0% 3,2 2,6

3 EstacaD30L5 - - - 300 - - - - -

4 EstacaD30L10 - - - 800 - - - - -

5 EstacaD30L12 - - - 1000 - - - - -

6 EstacaD50L5 - - - 850 - - - - -7 EstacaD50L10 - - - 1100 - - - - -8 EstacaD50L12 - - - 1350 - - - - -9 Radier25E50D30L5 47,6 34,6 143 7500 40,1% 60,0% 0,5 3,2 3,010 Radier25E50D30L10 40,6 32,2 154 20000 47,4% 52,6% 1,4 3,2 3,711 Radier25E50D30L12 35,2 29,1 170 25000 47,4% 52,6% 1,8 3,2 4,012 Radier25E100D30L5 33,5 8,6 578 7500 34,8% 65,2% 0,5 3,2 3,013 Radier25E100D30L10 25,3 7,3 674 20000 41,5% 58,5% 1,4 3,2 3,714 Radier25E100D30L12 20,0 6,5 757 25000 41,8% 58,2% 1,8 3,2 4,015 Radier25E50D50L5 41,2 25,9 191 21250 54,5% 45,5% 1,5 3,2 3,816 Radier25E50D50L10 33,6 23,1 215 27500 55,4% 44,6% 2,0 3,2 4,117 Radier25E50D50L12 27,9 20,4 243 33750 54,4% 45,6% 2,4 3,2 4,518 Radier25E100D50L5 31,1 7,2 683 21250 45,5% 54,5% 1,5 3,2 3,819 Radier25E100D50L10 23,1 6,1 808 27500 46,3% 53,8% 2,0 3,2 4,120 Radier25E100D50L12 17,5 5,4 916 33750 46,3% 53,7% 2,4 3,2 4,521 Radier16E50D30L5 51,7 38,2 130 4800 40,3% 59,7% 0,3 3,2 2,822 Radier16E50D30L10 45,9 37,2 133 12800 53,4% 46,6% 0,9 3,2 3,323 Radier16E50D30L12 41,5 35,0 141 16000 56,9% 43,2% 1,1 3,2 3,524 Radier16E100D30L5 35,5 9,2 541 4800 33,2% 66,8% 0,3 3,2 2,825 Radier16E100D30L10 28,1 8,3 596 12800 44,4% 55,6% 0,9 3,2 3,326 Radier16E100D30L12 23,6 7,7 640 16000 47,6% 52,4% 1,1 3,2 3,527 Radier16E50D50L5 43,6 31,3 158 13600 32,6% 67,4% 1,0 3,2 3,328 Radier16E50D50L10 39,2 29,8 166 17600 45,1% 55,0% 1,3 3,2 3,629 Radier16E50D50L12 34,2 27,4 181 21600 49,4% 50,6% 1,5 3,2 3,830 Radier16E100D50L5 32,7 8,0 617 13600 42,8% 57,2% 1,0 3,2 3,331 Radier16E100D50L10 24,4 7,0 704 17600 51,2% 48,8% 1,3 3,2 3,632 Radier16E100D50L12 19,0 6,3 782 21600 52,3% 47,7% 1,5 3,2 3,833 Radier9E50D30L5 54,6 39,7 125 2700 17,6% 82,4% 0,2 3,2 2,734 Radier9E50D30L10 50,1 39,4 125 7200 24,4% 75,6% 0,5 3,2 3,035 Radier9E50D30L12 46,8 38,3 129 9000 26,2% 73,8% 0,6 3,2 3,136 Radier9E100D30L5 37,9 9,5 523 2700 13,9% 86,1% 0,2 3,2 2,737 Radier9E100D30L10 31,9 9,0 549 7200 20,1% 79,9% 0,5 3,2 3,038 Radier9E100D30L12 28,6 8,7 568 9000 22,3% 77,7% 0,6 3,2 3,139 Radier9E50D50L5 50,9 36,1 137 7650 21,9% 78,1% 0,5 3,2 3,040 Radier9E50D50L10 45,5 35,7 139 9900 28,9% 71,1% 0,7 3,2 3,141 Radier9E50D50L12 41,2 33,9 146 12150 30,1% 69,9% 0,9 3,2 3,342 Radier9E100D50L5 35,3 8,5 579 7650 21,2% 78,8% 0,5 3,2 3,043 Radier9E100D50L10 28,1 8,1 611 9900 28,0% 72,0% 0,7 3,2 3,144 Radier9E100D50L12 23,6 7,7 643 12150 30,9% 69,1% 0,9 3,2 3,345 Radier4E50D30L5 58,3 40,2 123 1200 12,3% 87,7% 0,1 3,2 2,646 Radier4E50D30L10 55,7 39,9 124 3200 18,5% 81,5% 0,2 3,2 2,847 Radier4E50D30L12 53,8 39,6 125 4000 21,2% 78,8% 0,3 3,2 2,848 Radier4E100D30L5 41,5 9,9 499 1200 9,9% 90,1% 0,1 3,2 2,649 Radier4E100D30L10 38,3 9,2 536 3200 14,9% 85,2% 0,2 3,2 2,850 Radier4E100D30L12 36,5 9,1 542 4000 17,0% 83,0% 0,3 3,2 2,851 Radier4E50D50L5 56,0 38,2 129 3400 20,7% 79,3% 0,2 3,2 2,852 Radier4E50D50L10 52,3 37,7 131 4400 29,2% 70,8% 0,3 3,2 2,853 Radier4E50D50L12 49,4 37,2 133 5400 33,9% 66,1% 0,4 3,2 2,954 Radier4E100D50L5 39,5 9,1 542 3400 17,5% 82,5% 0,2 3,2 2,855 Radier4E100D50L10 35,9 8,9 559 4400 24,3% 75,7% 0,3 3,2 2,856 Radier4E100D50L12 33,0 8,6 574 5400 27,8% 72,3% 0,4 3,2 2,9

δdif β (1/ ) QruptFator SegurançaQatuante

No Casos δmax

Tabela 5.11 Quadro comparativo de resultados e fatores de segurança.

Page 116: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

97  

Na Figura 5.28, apresentam-se os recalques máximos no centro do radier segundo

sua configuração e comprimento das estacas, onde se adotou um valor admissível de

40 mm. Pode se concluir que para todas as configurações de radier estaqueado com

espessura de 1,0 m os recalques não atingem o valor limite estabelecido.

Figura 5.28 Recalque máximo no centro do radier estaqueado.

Na Figura 5.29, apresentam-se as distorções angulares no radier segundo sua

configuração e comprimento das estacas, onde se adotou um valor admissível de

1/500. Pode se concluir que para todas as configurações de radier estaqueado com

espessura de 1,0 m as distorções angulares atingiram o valor limite estabelecido.

Figura 5.29 Distorção angular no radier estaqueado.

Page 117: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

98  

Na Figura 5.30, apresentam-se o fator de segurança do grupo de estacas (FSP)

segundo sua configuração e comprimento das estacas, onde se adotou um fator de

segurança parcial de 1,0 (fator de segurança do grupo de estacas). Para o caso do

radier com 25 estacas os valores do fator de segurança parcial atingiram o limite

estabelecido, com exceção de aquelas com estacas de diâmetro 0,30 m e

comprimento 5 m. Para o radier com 16 estacas os valores do fator de segurança

parcial atingiram o limite estabelecido, com exceção de aquelas com estacas de

diâmetro 0,30 m e comprimentos de 5 m e 10 m respectivamente. Para todas as

configurações do radier estaqueado com 4 e 9 estacas nota-se que os valores do fator

de segurança parcial estão debaixo do valor limite estabelecido.

Figura 5.30 Fator de segurança parcial do grupo de estacas.

Na Figura 5.31, apresentam-se o fator de segurança global (FSRP) segundo sua

configuração e comprimento das estacas, onde se adotou o fator de segurança global

de 2,0 (fator de segurança do radier estaqueado). Pode se concluir que todas as

configurações do radier estaqueado atingiram o limite estabelecido.

Page 118: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

99  

Figura 5.31 Fator de segurança global do radier estaqueado.

Da Tabela 5.11 as configurações do sistema de fundação em radier estaqueado que

cumprem com os recalques, distorções angulares e fatores de segurança admissíveis

é mostrado na Tabela 5.12.

Tabela 5.12 Configurações de radier estaqueado admissíveis.

Da Tabela 5.12 pode se concluir que a solução mais econômica (em termos de volume

de concreto) e que cumpre com os recalques, distorções angulares e fatores de

segurança admissíveis é a configuração (6) mostrado na Figura 5.2, correspondendo

a uma fundação em Radier estaqueado com 16 estacas (b), com as seguintes

caraterísticas: espessura do radier = 1,0 m, estacas com diâmetro de 0,30 m e

comprimento de 12 m.

Estacas Radier FSP FSR FSRP

13 Radier25E100D30L10 25,3 7,3 674 20000 41,5% 58,5% 1,4 3,2 3,714 Radier25E100D30L12 20,0 6,5 757 25000 41,8% 58,2% 1,8 3,2 4,018 Radier25E100D50L5 31,1 7,2 683 21250 45,5% 54,5% 1,5 3,2 3,819 Radier25E100D50L10 23,1 6,1 808 27500 46,3% 53,8% 2,0 3,2 4,120 Radier25E100D50L12 17,5 5,4 916 33750 46,3% 53,7% 2,4 3,2 4,526 Radier16E100D30L12 23,6 7,7 640 16000 47,6% 52,4% 1,1 3,2 3,531 Radier16E100D50L10 24,4 7,0 704 17600 51,2% 48,8% 1,3 3,2 3,632 Radier16E100D50L12 19,0 6,3 782 21600 52,3% 47,7% 1,5 3,2 3,8

QruptQatuante Fator Segurança

No Casos δmax δdif β (1/ )

Page 119: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

100  

5.5. APLICAÇÕES

Baseados nos dados da Tabela 5.12, foram feitas gráficos que são de aplicação

pratica para o pré-dimensionamento da fundação em radier estaqueado, no depósito

estudado, que são mostrados nas Figuras 5.32 a 5.34.

Os gráficos são aplicáveis para radier com espessura de 1,0 m, diâmetro de estacas

de 0,30 m e 0,50 m, e comprimento de estacas de 10 m e 12 m, para o qual os dados

contidos na Tabela 5.10 em junção com os gráficos serão úteis para o pré-

dimensionamento do radier estaqueado para qualquer condição de carga vertical.

Figura 5.32 Gráfico recalque máximo / recalque admissível x relação S/d.

Page 120: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

101  

Figura 5.33 Gráfico distorção angular admissível / distorção angular atuante x

relação S/d.

Figura 5.34 Gráfico carga atuante / carga do grupo de estacas x relação S/d.

Page 121: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

102  

5.5.1. EXEMPLO PRÁTICO.

A seguir um exemplo prático para a aplicação dos gráficos mostrados nas Figuras

5.32 a 5.34, para o qual precisamos primeiramente conhecer a carga atuante sobre a

fundação, que para o presente exemplo é de 28000 kN (Qatuante), logo dos gráficos

escolhemos a equação da linha a usar (neste caso L/d=20) o qual configura uma

estaca com diâmetro 0,5 m e comprimento 10 m.

Para o exemplo vamos usar relação espaçamento/diâmetro de 3 e fazendo uso das

equações de cada gráfico (neste caso y20) pode se calcular os valores de (x=S/d=3):

Da Figura 5.32, δmax / δadm: y20 = 0,0086x + 0,5509 = 0,58;

Da Figura 5.33, βmax atuante / βadm: y20 = 0,0247x + 0,5444 = 0,62;

Da Figura 5.34, Qrupt grupo / Qatuante: y20 = -0,1911x + 2,5376 = 1,96.

Relembrando que o δadm = 40 mm, βadm = 1/500 e com ditos valores pode-se

calcular o recalque máximo (δmax = 0,58x40=23,07), a distorção angular máxima

atuante [βmax atuante = 1/500x0,62 = 1/809]. A carga de ruptura do grupo de estacas,

Qrupt grupo = 28000x1,96 = 55000. Os valores encontrados são mostrados nas

Tabelas 5.13, 5.14 e 5.15.

Tabela 5.13 Recalque obtido para Qatuante = 28000 kN.

Qatuante (kN)

L (m)

d (m)

L/d S/d Recalque

δmax/δadm δmax (mm) 28000 10 0,5 20 3 0,58 23,07

Tabela 5.14 Distorção angular obtido para Qatuante = 28000 kN.

Qatuante (kN)

L (m)

d (m)

L/d S/d Distorção angular

βmax atuante/βadm βmax atuante (1 / ) 28000 10 0,5 20 3 0,62 809

Tabela 5.15 Carga no grupo de estacas para Qatuante = 28000 kN.

Qatuante (kN)

L (m)

d (m)

L/d S/d Carga

Qatuante/Qrupt grupo Qrupt grupo (kN) 28000 10 0,5 20 3 1,96 55000

Obtido as cargas de ruptura do grupo de estacas “Qrupt grupo” pode se obter a

quantidade de estacas necessárias “n” e as adotadas do projeto “N”, a carga de

ruptura do grupo de estacas do projeto “Qugrupo”, o fator de segurança parcial “FSP”,

Page 122: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

103  

a largura necessária do radier “B” e adotado “Badotado”, a carga de ruptura no radier

“Quradier”, o fator de segurança no radier “FSR” e o fator de segurança global “FSPR”,

como mostrado nas Tabelas 5.16 e 5.17.

Tabela 5.16 Pré-dimensionamento do número de estacas para Qatuante = 28000 kN.

n˚ Estacas  Fator Segurança Admissível Adotado

Qrupt grupo Qup n N Qugrupo FSP

(kN) (kN) und und (kN)

55000 1100 50 49 53900 1,9

O procedimento para gerar a Tabela anterior é a seguinte:

- Obter o número de estacas necessárias “n” que possa suportar a carga “Qrupt

grupo” (obtido na Tabela 5.15), para o qual dividimos este valor entre a capacidade

de carga da estaca isolada (Qup) de diâmetro 0,5 m e comprimento 10 m (neste

caso 1100 kN, como mostrado na Tabela 5.10). Então n=Qrupt grupo/Qup

(n=55000/1100=50)

- Definir o número de estacas a adoptar para o projeto “N”, procurando que dito

valor tenha raiz quadrada exata e seja próximo ao valor de “n” calculado

anteriormente (neste caso 49). Isto para distribuir o número de estacas em uma

seção geométrica quadrada com “√N x √N” estacas.

- Calcular o valor de ruptura no grupo de estacas do projeto “Qugrupo”, multiplicando

“N”, pela capacidade de carga da estaca isolada (Qup) de diâmetro 0,5 m e

comprimento 10 m (neste caso 1100 kN, como mostrado na Tabela 5.10).

Qugrupo=49x1100=53900 kN.

- O fator de segurança parcial do grupo de estacas “FSP” é igual a Qugrupo/Qatuante.

FSP=53900/28000=1,9.

Tabela 5.17 Pré-dimensionamento do radier Isolado e fator de segurança do radier estaqueado para Qatuante = 28000 kN.

Radier Isolado Radier

estaqueado

B Badotado (Q/A)ur Quradier FSR FSPR

(m) (m) (kN/m²) (kN)

9,0 10,0 918,37 91837 3,3 4,2

Page 123: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

104  

A Tabela 5.17 foi gerado como segue:

- Determinar a largura necessária do radier “B”, que permita distribuir as “√N”

estacas dentro desta (neste caso 7 estacas), para o qual se multiplicarão o

diâmetro “d” pela relação de espaçamento “S/d” e o número de intervalos entre

estacas “√N– 1”, ficando a operação como segue: B = d x S/d x (√N– 1). Neste

exemplo B = 0,5x3x(7-1) = 9.

- Para adotar a largura do radier para o projeto “Badotado”, ao valor de “B” é

necessário adicionar um bordo livre em cada lado do radier, neste caso se

incrementou 1,0 m (0,50 m por lado).

- A carga de ruptura do radier “Quradier” foi obtido ao multiplicar a área do radier

(BxB) pelo valor da tensão de ruptura da placa [neste caso 45000/(7x7) = 918,37

kN/m2, que pode ser deduzido da Tabela 5.10].

- O valor da carga última do radier foi de Quradier = 10 m x 10m x 918,37 kN/m2 =

91837 kN.

- O fator de segurança do radier isolado FSR =Quradier/Qatuante foi de 91837

kN/28000kN = 3,3.

- Para o fator de segurança global do sistema (FSPR) seguiu-se as recomendações

de Sanctis & Mandolini (2006) descrita na seção 2.8, FSPR = 0.80x(FSR+ FSP) =

0.8x(3,3+1,9) = 4,2.

Das Tabelas 5.13 a 5.17 notou-se que os gráficos apresentados nas Figuras 5.32 a

5.34 e a Tabela 5.10 foram de ajuda para o pré-dimensionamento da fundação em

radier estaqueado, podendo estimar os valores dos recalques máximos, distorções

angulares e os fatores de segurança parcial e global. Deve-se notar que esta tabela e

estes valores só podem ser usados em um pré-dimensionamento do radier

estaqueado, no depósito estudado, e que o projeto final não dispensará o cálculo

simplificado e detalhado numericamente como recomendado por Poulos (1998).

Page 124: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

105  

5.6. SÍNTESE DO CAPÍTULO

Os resultados obtidos na análise paramétrica e as considerações tomadas nesta

pesquisa são consistentes com o encontrado por: Kalpakci e Ozkan (2012), Khoury

(2011), Sosa (2010), Souza (2010), Lorenzo (2009), Rabiei (2009), Cunha et al (2006),

Cunha e Zhang (2006), Poulos et al (2006), Maharaj e Anshuman (2004), Bacelar

(2003), Bezerra e Cunha (2003), Maharaj (2003), Cunha et al (2001), Poulos (2001),

Cooke (1986), o que valida as ferramentas e os métodos desenvolvidos para a

determinação dos recalques e das distorções angulares da fundação em radier

estaqueado.

O resultado mostra que, com o aumento da espessura do radier, número, diâmetro e

comprimento das estacas os recalques máximos, recalques diferenciais e distorções

angulares são reduzidos, sendo consistente com o encontrado na literatura

internacional.

Assim mesmo, para todas as configurações das estacas com espessura do radier de

1,00 m, as distorções angulares atenderam às admissíveis já definidas no presente

trabalho (1/500). Já para o sistema de fundações em radier estaqueado com

espessura do radier de 0,50 m, nenhuma das configurações atendeu o limite

estabelecido.

A partir da análise paramétrica determinou-se o fator de segurança parcial (carga de

ruptura do grupo de estacas > 1), e o fator de segurança global (carga de ruptura do

radier estaqueado >2).

Neste trabalho, a análise paramétrica da fundação em radier estaqueado faz uma

comparação de várias configurações do sistema de fundação, permitindo escolher

aquela que melhor desempenho apresenta de acordo aos requerimentos do design

(recalques máximos, distorções angulares e fatores de segurança admissíveis).

Foram realizados aplicações práticas baseados nos resultados da análises

paramétrica, de aquelas configurações de radier estaqueado que atenderam os

valores admissíveis e fatores de segurança estabelecidos.

Page 125: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

106  

CAPITULO 6. CONCLUSÕES E SUGESTÕES.

Este capítulo apresenta as conclusões obtidas com a pesquisa e sugestões, para

futuros trabalhos relacionados ao tema estudado.

Este trabalho faz correções do valor de N (do ensaio SPT) devido ao efeito da energia

de cravação e do nível de tensões, para estabelecer correlações para a avaliação do

ângulo de atrito interno do solo. No Brasil a energia de cravação é em média 72%

(Décourt, et. al, 1989).

Foram retroanalisados, por meio de modelagem numérica, provas de cargas

experimentais realizado por SOARES (2011), de um solo arenoso de múltiplas

camadas localizado na cidade de João Pessoal/PB.

As propriedades geotécnicas consideradas são aquelas necessárias do modelo

constitutivo de Mohr-Coulomb, tais como o Peso específico (Ϫ), Módulo de

deformabilidade (E), Coesão (C=0 para areias), Coeficiente de Poisson (ν), Ângulo de

atrito interno (Φ) e Ângulo de dilatância (ψ).

Foram definidas formulações e equações para usar correlações empíricas e

determinar o valor das propriedades geotécnicas do solo: para o peso específico

(Godoy, 1976) e para o ângulo de dilatância (Bolton, 1986). Os valores finais do

módulo de deformabilidade e ângulo de atrito interno foram obtidos por retroanálise

numérica das provas de carga realizado por Soares (2011).

Para a simulação numérica do problema, foi utilizado o programa CESAR-LCPC v4

(Cleo 3D versão 1.07) baseado no Método de Elementos Finitos e o modelo

constitutivo de Mohr-Coulomb. O uso do programa necessitou de um grande tempo

computacional, sendo as maiores dificuldades encontradas na configuração da malha

de elementos finitos, de modo que não fossem gerados elementos distorcidos.

Foi estabelecido o recalque diferencial admissível e o recalque total limite em areias,

que foram: recalque absoluto limite de 40 mm e uma distorção angular limite igual a

1/500.

Determinou-se fator de segurança parcial (carga de ruptura do grupo de estacas > 1),

e o fator de segurança global (carga de ruptura do radier estaqueado >2).

Page 126: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

107  

As conclusões obtidas com as diversas fases desenvolvidas no trabalho são

mostradas a seguir.

6.1. CONCLUSÕES

6.1.1. CONCLUSÕES DA RETROANÁLISES NUMÉRICA

- Ao comparar as curvas carga-recalque obtidas experimentalmente (Soares,

2011) e numericamente pode concluir-se que o modelo constitutivo elástico-

plástico de Mohr-Coulomb, com parâmetros geotécnicos retroanalisados,

representou as provas de carga com aproximação razoável atingindo uma

correspondência adequada entre a prova experimental e a simulação numérica

- Da retroanálise numérica, obtiverem-se os parâmetros geotécnicos finais das

diversas camadas do solo, como o módulo de deformabilidade e o ângulo de

atrito interno.

- Os valores do ângulo de atrito interno retroanalisados foram ajustados

estatisticamente por meio da Distribuição Normal, e estes são mais

conservativos que os valores sugeridos por Terzagui (1943).

- O Módulo de deformabilidade (E=5,58 N72SPT em MPa) encontra-se no intervalo

encontrado na literatura: 3,5 (Décourt, 1995) a 8,0 (Conde de Freitas et al,

2012).

6.1.2. CONCLUSÕES DA ANÁLISE PARAMÉTRICA

Foram estudados diversos tipos de fundações em radier estaqueado, sobre carga

vertical central constante, com diferentes quantidades e arranjos de estacas, para os

quais foram adotados diferentes número de estacas (4, 9, 16 e 25), diâmetros (0,30

m e 0,50 m), comprimentos L (5, 10 e 12 m), e espessuras do radier (0,50 e 1,00 m).

Os resultados obtidos na análise paramétrica e as considerações tomadas nesta

pesquisa são consistentes com a posição dos principais autores consultados

internacionalmente, o que valida as ferramentas e os métodos desenvolvidos para a

determinação dos recalques e das distorções angulares da fundação em radier

estaqueado, podendo-se concluir que:

Page 127: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

108  

- Na distribuição de cargas no radier estaqueado (Tabela 5.6), considerável parcela

da carga aplicada é transferida diretamente ao solo através do radier. Para o caso

do maior comprimento das estacas, menor será a parcela de carga distribuída ao

radier. Na grande maioria dos casos analisados neste trabalho, encontrou-se que

mais de 50% do carregamento total é suportado pelo radier.

- Para todas as configurações das estacas com espessura do radier de 1,00 m, há

distorções angulares dentro do admissível (Tabela 5.7).

- Com o aumento da espessura do radier, número, diâmetro e comprimento das

estacas, os recalques máximos, recalques diferenciais e distorções angulares são

reduzidos, sendo consistente com o encontrado na literatura internacional.

- A análise paramétrica da fundação em radier estaqueado, no depósito estudado,

para o nível de ante projeto, faz uma comparação de várias configurações do

sistema de fundação, permitindo escolher aquelas que melhor desempenho

apresenta de acordo aos requerimentos preliminares do design (recalques

máximos, distorções angulares e fatores de segurança admissíveis).

- Como resultado do exemplo de aplicação da análise paramétrica notou-se que os

gráficos apresentados nas Figuras 5.32 a 5.34 e a Tabela 5.10 foram de ajuda

para o pré-dimensionamento de uma fundação em radier estaqueado (ante

projeto), podendo estimar os valores dos recalques máximos, distorções

angulares e os fatores de segurança parcial e global. Deve-se notar que esta

tabela e estes valores só podem ser usados em um pré-dimensionamento do

radier estaqueado, no depósito estudado, e que o projeto final não dispensará o

cálculo simplificado e detalhado numericamente como recomendado por Poulos

(1998).

6.2. SUGESTÕES PARA TRABALHOS FUTUROS

Como tema de pesquisa para trabalhos futuros, recomenda-se que os seguintes

tópicos sejam considerados na análise do comportamento de radier estaqueados:

a) Avaliar o comportamento do radier estaqueado com carregamento dinâmico e/ou

combinação de carga vertical, carga horizontal e momento, que são mais usuais na

engenharia de fundações;

Page 128: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

109  

b) Retroanalisar as provas de carga com parâmetros geotécnicos obtidos em ensaios

de Laboratório e ensaios “in situ” (Cone, Piezocone, Pressiométrico, Dilatométrico,

etc.).

Outro aspecto a ser explorado em trabalhos futuros é a racionalização do arranjo das

estacas, de modo que os recalques diferenciais possam ser reduzidos com o menor

número de estacas possíveis.

Page 129: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

110  

REFERÊNCIAS BIBLIOGRÁFICAS

AHNER, C., & SOUKHOV, D. (1997). Aspectos de Confiabilidade do Desenho de Fundações Combinadas em Radier Estaqueado (CPRF) (Em Inglês). Article. 2nd Int. PhD Symposium in Civil Engineering Budapest. 18 Pag.

ASSOCIAÇÃO BRASILEIRA DE NORMAS, T. ABNT ANBR 1880: Projeto e Execução de Estruturas de Aço em Edifícios (Métodos dos Estados Limites). Procedimento. (1986). Rio de Janeiro. 108 Pag. CDU 624.94.016.7.

ASSOCIAÇÃO BRASILEIRA DE NORMAS, T. ABNT NBR 6484/1997: Solo - Sondagens de Simples Reconhecimento com SPT - Método de Ensaio. (1997). Rio de Janeiro: NBR 6484. 17 Pag.

ASSOCIAÇÃO BRASILEIRA DE NORMAS, T. ABNT NBR 6118: Projeto de Estruturas de Concreto - Procedimento. (2004). Rio de Janeiro – RJ. 225 Pag.ICS 91.080.40.

BACELAR, C. J. R. (2003). Análises de Recalque em Radier Estaqueados. Pontifícia Universidade Católica do Rio de Janeiro. Tese. 193 Pag.

BEZERRA, J. E; CUNHA, R. P; SALES, M. M. (2005). Conceitos de Otimização Para o Projeto de Sistemas de Fundação em Radier Estaqueado (Em Inglês). Article. Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering. Millpress Rotterdam Netherlands. Volume 4. 4 Pag. 1947–1950.

BITTENCOURT, Douglas Albuquerque Magalhães; SALES, M. M. (2009). Explorando as Vantagens do Uso de Estacas com Diferentes Comprimentos em Fundações Estaqueadas. Artigo. COBRAMSEG 2010: Engenharia Geotécnica Para o Desenvolvimento, Inovação e Sustentabilidade. 5 Pag. 87–91.

BOLTON, M. D. (1986). A Tensão e Dilatância de Areias (Em Inglês). Cambridge University Engineering Department. Geotechnique 36, No.1. 14 Pag. 65-78

BOWLES, Joseph E. RE. S. E. (1997). Análises e Desenho de Fundações (Em Inglês). The McGraw-Hill Companies, Ed. Fifth Edit. 1241 Pag. Peoria, Illinois: A Division of The McGraw-Hill Companies.

BROWN, P. T.; WIESNER, T. J. (1975). O Comportamento de Sapatas Estaqueadas Sobre Cargas Uniformes (Em Inglês). Retrieved January 31, 2013, from http://books.google.com.br/books/about/The_Behaviour_of_Uniformly_Loaded_Piled.html?id=KF_wMwAACAAJ&redir_esc=y

BURLAND J. B., BROMS, B. B., DE MELLO, V. F. B. (1977). Comportamento de Fundações e Estruturas (Em Inglês). Rapports Sur i’ Etat des Connaissances. 52 Pag. 495-545.

Page 130: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

111  

BURNIER, A. A. L. (2006). Análises Numéricas de Provas de Carga em Sapatas Utilizando o Método dos Elementos Finitos. Universidade Federal de Viçosa - Minas Gerais. Dissertação. 136 Pag.

CHAUDHARY, M. T. A. (2007). MEF modelagem de um radier estaqueado cumprido para o controle do recalque em rocha mole. (Em Inglês). Article. Engineering Structures, Volume 29, Pages 2901–2907. 7p.

CHOW, H. S. W. (2007). Análises de Fundações em Radier Estaqueados com Estacas de Diferentes Comprimentos e Diâmetros (Em Inglês). The University Of Sidney. Thesis. 358 Pag.

CLANCY, P., & RANDOLPH, M. F. (1993). Procedimento de Análises Aproximado de Fundações em Radier Estaqueado (Em Inglês). Article. International Journal for Numerical and Analytical Methods in Geomechanics, Volume 17(12), 21 Pag. 849–869.

COMODROMOS, E. M., ANAGNOSTOPOULOS, C. T., and GEORGIADIS, M. K. Avaliação numérica da resposta do grupo de estacas baseado em teste de carga axial. (Em Inglês). Article. Computers and Geotechnics, Volume 30. 11 Pag. 505-515

CONDE DE FREITAS, A; PACHECO, M. P.; DANZIGER, B. R. (2012). Uma Estimativa do Módulo de Young em Areias por Resultados de Golpes N60 (Em Inglês). Article. Geotechnical and Geophysical Site Characterization 4. 6 Pag. eBook ISBN: 978-1-4665-8418-1. Retrieved from http://www.crcnetbase.com/doi/abs/10.1201/b13251-130

CONSTANCIO, L. A. (2010). Capacidade de Carga de um Modelo de Fundação Superficial em Solo Arenoso Fofo com Reforço de Geotêxtil. Universidade Estadual de Campinas. Dissertação. 202 Pag.

CONTE, G; MANDOLINI, A.; RANDOLPH, M. F. (2003). Modelagem Centrífuga para Pesquisar o Desempenho de Radier Estaqueados (Em Inglês). Article. Deep Foundations on Bored and Auger Piles, Van Impe (ed.) © 2003 Millpress, Rotterdam. 8 Pag.

CUI, Chun-Yi; LUAN, Mao-Tian; LI, M.-G. (2010). Um Estudo do Efeito Tempo no Sistema de Radier Estaqueado Usando Métodos Computacionais (Em Inglês). Article. ASCE 2010 GeoShanghai 2010 International Conference. 10 Pag. 42-51.

CUNHA, R. P., POULOS, H. G., & SMALL, J. C. (2001). Investigação de Desenhos Alternativos para Um Caso Histórico de Radier Estaqueado (Em Inglês). Article. Journal of Geotechnical and Geoenvironmental Engineering, 127(8). 10 Pag. 635–641.

CUNHA, Renato P, BEZERRA, J. E., SMALLl, J. C., & ZHANG, H. H. (2002). Análises Paramétricas de Radier Estaqueados Fundada Sobre Uma Argila Tropical de Brasil (Em Inglês). Article. IX International Conference of Piling and Deep Foundation, 2002, Volume 1. 8 Pag. 249-256.

Page 131: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

112  

CUNHA, Renato P, SMALL, J. C., & POULOS, H. G. (2000). Análises de Radier Estaqueado: Caso Histórico em Gothemburg Suécia (Em Inglês). Article. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 8, August 2001, 28 Pag. 635-641

CUNHA, R. P.; SILVA, C. M; de CARVALHO, C. (2004). Análise Numérica de Radier Estaqueado Assente em Argila Porosa e Ardósia da Cidade de Taguatinga-DF. Article. V Seminário de Engenharia de Fundações Especiais e Geotecnia, 2004, São Paulo. 10 Pag.

CUNHA, R. P; CORDEIRO, A. F. SALES, M. M. SMALL, J. C. (2007). Análises Paramétricas de Grupos de Estacas com Estacas Defeituosas: Observação do Comportamento Numérica e Remediação. (Em Inglês). Article. 10th Australia New Zealand Conference on Geomechanics (2007), Australia: Carillon Conference Management for the Australian Geomechanics Society. 6 Pag.

CUNHA, Renato P.; BEZERRA, J. E. (2002). Desenho de Parâmetros por Retroanálise de Radier Estaqueado Fundada Sobre Argila Tropical do Brasil. (Em Inglês). Article. 6th Intern. Symp. on Environmental Geotechnology and Global Sustainable Development, 2002, Seoul. Volume 2. 10 Pag. 667-676.

CUNHA, Renato P.; BEZERRA, J. E. (2003). Estudo de Alguns Parâmetros Determinantes do Comportamento de Fundações em Radier Estaqueado. Article. I Simpósio de Geotecnica do Centro Oeste, 2003, Cuiabá. Vol 1. 10 Pag.

CUNHA, Renato P; BEZERRA, John E.; ZHANG, H. H. (2006). Influência da Rigidez Relativa Estaca/Solo (KPS) em Grupo de Estacas Convencionais e tipo “Radier Estaqueado” Carregados Vertical ou Horizontalmente. Article. XIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica - Cobramseg, 2006, Curitiba, 2006. Volumem 2. 6 Pag. 793-798.

CUNHA, Renato P; SMALL, John C; POULOS, H. G. (2000). Análise Paramétrica de Radier Estaqueado: Caso Histórico em Uppsala, Suécia (Em Inglês). Article. SEFE-IV – Seminário de Engenharia de Fundações Especiais e Geotecnia, São Paulo, vol. 2, 11 Pag. 380-390.

CUNHA, Renato P; ZHANG, H. H. (2006). Comportamento de Sistemas de Fundação em Radier Estaqueados Sobre um Conjunto de Cargas Combinadas. (Em Inglês). (1997). Article. Proceedings-DFI/EFFC 10th International Conference on Piling and Deep Foundations, 2006, Amsterdam, The Netherlands. 10 Pag.

DUARTE, L. N. (2006). Análise de Prova de Carga Instrumentada em Uma Sapata Rígida. Universidade Federal de Viçosa - Minas Gerais. Dissertação. 134 Pag.

DÉCOURT, L, et. al. (1998). Investigações Geotécnicas. In V. Editores (Ed.), Fundações: Teoria e Prática (2a Edição, pp. 119–162). São Paulo: Editora PINI. Retrieved from http://construcao-engenharia-arquitetura.lojapini.com.br/pini/vitrines/produtos/Produto566.asp

Page 132: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

113  

EL-MOSSALLAMY, Y; FRANKE, E. (1997). Modelação Numérica de Radier Estaqueados para Simular o Comportamento de Fundações em Radier Estaqueados. (Em Inglês). Retrieved from http:// www.opengrey.eu/item/display/10068/201074

ESCOBAR, G. D., & POTES, E. E. (2002). Geomecánica (Em Espanhol). Universidad Nacional de Colombia Sede Manizales. eBook. 178 Pag. Retrieved from http:// godues.worclpress. com/2012/07/13/geomecanlca-mecanlca-de-los-s uelos/

FRANÇA, P. T. (2006). Estudo do Comportamento de Tuneis. Análise Numérica Tridimensional Com Modelos Elástico-Plásticos. Universidade de São Paulo. Dissertação. 206 Pag.

GANDHI, S. R. e D. K. M. (2003). Análise de Fundação em Radier Estaqueado (Em Inglês). 97 Pag. 1.11.1–1.11.7. Bombay, India: Proceedings of the 6th International Conference on Piling and Deep Foundations. Retrieved from http://www.docstoc.com/docs/74869542/ANALYSIS-OF-PILED-RAFT-FOUNDATION#

GANDHI, S. R.; MAHARAJ, D. K. (1995). Comportamento de Radier Estaqueado Sobre Carga Uniforme. (Em Inglês). Article. Indian Geotechnical Conference (ICG-95). Bangalore. Volume 1. 4 Pag.

GARCIA, F.; LIZCANO, A.; REUL, O. (2006). Modelagem Numérica de Caso Histórico de Um Radier Estaqueado com Um Modelo Visco-Hipoplástico. (Em Inglês). Article. Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment – Triantafyllidis (ed) © 2006 Taylor & Francis Group, London. 7 Pag.

GIRETTI, D. (2009). Modelagem de Fundações de Radier Estaqueados em Areias (Em Inglês). Università degli Studi di Ferrara. Thesis. 225 Pag.

GRILO, T. J. (2011). Estudo de Modelos Constitutivos Anisotrópicos para Chapas Metálicas. Universidade de Arveiro. Dissertação. 153 Pag.

HARTMANN, F., & JAHN, P. (2001). Análises de Elementos de Contorno de Fundações em Radier Sobre Estacas. (Em Inglês). Article. Kluwer Academic Publishers. Netherlands. Meccanica 2001, Volume 36, Issue 4, 16 Pag. 351-366

HASSEN, G., & BUHAN, P. (2011). Desenho de Fundações em Radier Estaqueados por Meio de Modelo Multiface e Resultados da Interação Solo-Estaca. (Em Inglês). Article. Computational Geomechanics (COMGEO II). 27-29 April 2011, Cavtat-Dubrovnik, Croatia. 10 Pag. 704–713.

HOBACK, A. S., and RUJIPAKORN, M. (2004). Previsão de capacidade de carga de grandes estacas perfuradas em solo não homogêneo usando Método dos Elementos Finitos 3D. (Em Inglês). Article. Electronic Journal Geotechnical Engineering, 0464. 11 Pag.

Page 133: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

114  

HOOPER, J. A. (1974). Observações Sobre o Comportamento de Uma Fundação em Radier Estaqueado em Argila de Londres. (Em Inglês). Article. Proc. Instn Ciu. Engrs, Part 2, 1974, 57, Sept. 6 Pag. 547–552.

HUMBERT, P., & DUBOUCHET, A. (2005). CESAR-LCPC: Um Pacote de Programa de Computação de Engenharia Civil Dedicado aos Utilizadores. (Em Inglês). Manual. Laboratoire Central des Ponts et Chaussées, France. 32 Pag.

IBAÑEZ, J. P. (2003). Modelagem Constitutiva para Solos com Ênfase em Solos Não Saturados. Pontifícia Universidade Católica do Rio de Janeiro. Dissertação. 241 Pag.

INSTITUTO, G. de M. (2010). Introdução às Distribuições Normais. Pontifícia Universidade Católica de Goiás. Retrieved December 8, 2012, from http://www.igm.mat.br/aplicativos/index.php?option=com_content&view=article&id=340:intro&catid=61:distnormal

ITECH. (2003). CLEO3D Manual de Referência Versão 4.0.4. (Em Inglês). Laboratoire Central des Ponts et Chaussées France. 252 Pag.

JANDA, T., PINTO, R., KUKLIK, P., & MIRANDA, G. (2008). Análise Tridimensional de Elementos Finitos e Retroanálise de Grupos de Estacas Convencionais CFA e Radier Estaqueado Fundada em Solo Tropical. (Em Inglês). Article. Soils and Rocks. 16 Pag.

KALPAKCI, Volkan; OZKAN, Y. (2012). Uma Abordagem Simplificada para Estimação de Recalques de Radier Estaqueados. (Em Inglês). Article. Acta Geotechnica Slovenica, 2012/1. 9 Pag. 77–85.

KHOURY, M. C.; ALZAMORA, A. J.; CIANCIA, A. J. (2011). Fundações em Radier Estaqueados para Edifícios Altos em Brooklyn. (Em Inglês). Geo-Frontiers 2011 © ASCE 2011, 2. 10 Pag. 3818–3827.

LEBEAU, J.-S. (2008). FE-Análises de Fundações de Estacas e Radier Estaqueados. (Em Inglês). Tutorial. Knowledge Base Plaxis 3D. 101 Pag.

LEHRER, A; BAR, S. (2012). Fundação em Radier Estaqueado para a W-Torre de Tel Aviv. (Em Inglês). Article. A. Blank A. Lehrer Consulting Eng. Ltd. Soil Mechanics and Foundation Eng. 15 Pag.

LIANG, F.-Y., & CHEN, L.-Z. (2004). Uma Abordagem Modificada Variacional Para Análises de Radier Estaqueados. (Em Inglês). Article. Mechanics Research Communications, 31(5). 10 Pag. 593–604.

LIANG, F.-Y., CHEN, L.-Z., & SHI, X.-G. (2003). Análises Numérica de Radier Estaqueado Composto com Amortecedor Sobre Carga Vertical. (Em Inglês). Article. Computers and Geotechnics, 30(6). 11 Pag. 443–453.

LIMA, B. S. (2007). Otimização de Radier Estaqueados. Universidade de Brasilia. Dissertação. 132 Pag.

Page 134: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

115  

LORENZO, I. F. (2009). Evaluação do Comportamento Carga – Recalque de Radier Estaqueados Usando o Método de Elementos Finitos. (Em Espanhol). Tesis. Instituto Superior Politécnico “José Antonio Echeverría” - La Habana, Cuba.

LUTZ, B. (1993). Fundação em Radier Estaqueado para Um Edifício Alto Sobre Argila de Frankfurt. (Em Inglês). 7th Young Geotechnical Engineers (23 Pag.)

MANDOLINI, A. (2003). Projeto de Fundações em Radier Estaqueado: Prática e Desenvolvimento (Em Inglês). Article. Deep Foundations on Bored and Auger Piles, Van Impe (ed.) © 2003 Millpress, Rotterdam. 22 Pag.

MANDOLINI, A.; VIGGIANI, C. (1997). Recalque de Fundações em Estacas (Em Inglês). Géotechnique, 47(4). 26 Pag. 791–816.

MENDONÇA, H; MAZZILLI, de Xavier (2005). Sobre a Modelagem de Problemas da Engenharia Geotécnica pelo Método dos Elementos Finitos. Universidade de São Paulo. Dissertação. 174 Pag.

MENDONÇA, A.V.; DE PAIVA, J. B. (2000). Um Método dos Elementos de Contorno para Análise Estática de Fundações em Radier Estaqueado. (Em Inglês). Article. Engineering Analysis with Boundary Elements, 24(3), 11 Pag.237–247.

MENDONÇA, A.V.; DE PAIVA, J. B., & Paiva, J. B. (2003). Uma Análise Elástico-Estático FEM/BEM de Cargas Verticais em Fundações em Radier e Radier Estaqueados. (Em Inglês). Article. Engineering Analysis with Boundary Elements, 27(9). 15 Pag. 919–933.

MESTAT, P. (1994). Validação do Pacote do Programa Cesar-LCPC em Casos de Comportamento Mecânico Não-Linear (Em Inglês). Retrieved from http://trid.trb.org/view.aspx?id=550076

MINÁ, A. J. S. (2005). Estudo de Estacas de Madeira para Fundações de Pontes de Madeira. UNIVERSIDADE DE SÃO PAULO. Tese. 177 Pag.

MIRANDA, G. J. D. A. (2006). Estudo do Comportamento de Fundações Escavadas em Solos Tropicais. Universidade de Brasilia. Tese. 370 Pag.

MOTA, N. M. B. (2003). Ensaios Avançados de Campo na Argila Porosa Não Saturada de Brasília: Interpretação e Aplicação em Projetos de Fundação. Universidade de Brasilia. Tese. 364 Pag.

MOYES, Paran; POULOS, Harry G.; SMALL, John C.; BADELOW, F. (2005). Processo de Design em Radier Estaqueado para um Edifício Alto na Costa de Ouro, Austrália (Em Inglês). Article. Proceedings of the 6th International Conference on Tall Buildings, Hong Kong. 9 Pag.

NAKAI, S., Kato, H., Ishida, R., and, H. M., and Nagata, M. (2004). Mecanismo do comportamento da carga de fundações em radier estaqueado durante terremoto. (Em Inglês). Article. Proceedings Third UJNR Workshop on Soil-Structure Interaction, Menlo Park, California, USA. March 29-30. 18 pag.

Page 135: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

116  

NIANDOU, H., & BREYSSE, D. (2006). Análise de Confiabilidade de Cálculos em Radier Estaqueados Para Solos com Variabilidade Horizontal (Em Inglês). Article. Computers and Geotechnics, 34(2). 10 Pag. 71–80.

POULOS, H G, SMALL, J. C., & CHOW, H. (2011). Fundações em Radier Estaqueados para Edifícios Altos. (Em Inglês). Article. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 42(2). 7 Pag. 78–84.

POULOS, H. G. (2001). Fundações em Radier Estaqueados: Desenho e Aplicações. (Em Inglês). Article. Géotechnique, 51(2), 19 Pag. 95–113.

POULOS, H. G. (1998). O Radier Estaqueado – Uma maior economia do sistema de fundação. (Em Inglês). Article. XV COBRAMSEG, November, Brasilia.

POULOS, H. G.; DAVIS, E. H. (1980). Fundações em Estacas, Análises e Desenho. (Em Inglês). Book. Series in Geotechnical Engineering. The University of Sidney. Pag. 410.

RABIEI, M. (2009). Estudo Paramétrico para Fundações em Radier Estaqueados. (Em Inglês). Article. Electronic Journal of Geotechnical Engineering. Volume 14, Bund A. 11 Pag.

RABIEI, M. (2010). Efeito da Configuração da Estaca e Tipo de Carga Sobre o Desempenho das Fundações em Radier Estaqueado (Em Inglês). Shangai - China. ASCE 2010 GeoShanghai 2010 International Conference Geotechnical Special Publication NO 205. 8 Pag.

REINALDO, R. L. (2010). Design Geotécnico de Radier Estaqueados Sob a Ação de Cargas Verticais. Aplicação da Teoria de Seguridade. (Em Espanhol). Universidad Politécnica de Madrid. Tesis. 123 Pag.

REUL, O, & RANDOLPH, M. F. (2002). Estudo da Influência do Refinamento da Malha de Elementos Finitos Sobre o Comportamento de Carga do Radier Estaqueado. (Em Inglês). Article. 8th International Symposium NUMOG VIII, Rome, Italy, 10-12 April 2002. 6 Pag. 259-264.

REUL, Oliver. (2000). Medições In Situ e Estudos Numéricos Sobre o Comportamento da Fundação Combinada em Radier Estaqueado (Em Alemão). Technischen Universität Darmstadt. Dissertation. 331 Pag.

REUL, Oliver. (2002). Estudo da Influência do Processo de Consolidação no Cálculo do Comportamento de Carga do Radier Estaqueado (Em Inglês). Article. 5th European Conference Numerical Methods in Geotechnical Engineering, Mestad (ed.). París. 6 Pag. 383-388.

REUL, Oliver. (2004a). Influências Sobre o Desempenho de Estacas Observados por Meio de Medições de Campo em Fundações de Radier Estaqueado Combinados. (Em Inglês). Article. Field Measurements in Geomechanics: Proceedings of the 6th International Symposium, Oslo, Norway. Pag. 5. 293-296.

Page 136: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

117  

REUL, Oliver. (2004b). Estudo Numérico do Comportamento de Cargas de Radier Estaqueados. (Em Inglês). Article. International Journal of Geomechanics, Vol. 4, No. 2. 10 Pag. 59-68

REUL, Oliver; RANDOLPH, M. F. (2004). Desenhos de Estratégias Para Radier Estaqueados Sobre Carga Vertical Não-Uniforme. (Em Inglês). Article. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 1. 13 Pag. 1-13.

RICHTER, T., LUTZ, B., & EL-MOSSALLAMY, Y. (2010). Aplicação Inovadora da Fundação em Radier Estaqueado Para Otimizar o Desenho de Fundações de Arranha-céus e Pontes. (Em Inglês). Article. 10th International Conference On Piling And Deep Foundations. 10 Pag.

RUSSO, G. (1998). Análises Numérica de Radier Estaqueado (Em Inglês). Article. International Journal for Numerical and Analytical Methods in Geomechanics, 22. 17 Pag. 477–493.

SALES, M. M., SMALL, J. C., & POULOS, H. G. (2009). Radier Estaqueados Compensados em Solos Argilosos: Comportamento, Medições e Predições. (Em Inglês). Canadian Geotechnical Journal, 47(3). 19 Pag. 327–345.

SALES, M.M.; CUNHA, R. P.; POULOS, H. G.; SMALL, J. C. (2005). Abordagem Simplificada Para Estimação da Curva Carga-Recalque de Radier Estaqueados. (Em Inglês). Article. Soils and Rocks, Latin-American Geotech., 28(1). 11 Pag. 73-83.

SALES, Maurício M; CUNHA, Renato P.; FARIAS, Márcio M.; SMALL, John C; POULOS, H. G. (2000). Comparações de Alguns Programas Clássicos nas Análises de Problemas em Radier Estaqueados (Em Inglês). Article. Geotech. Year 2000, Devels. in Geotech. Eng., AIT, Bangkok, 1. 10 Pag. 317-326.

SALES, Maurício; CUNHA, Renato P.; de CARVALHO, José Camapum; SILVA, C. M. (2002). Previsões de Comportamento de um Radier Estaqueado no Distrito Federal. Article. XII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, São Paulo. 12 Pag. 1459-1471.

SANCTIS, L. De, & MANDOLINI, A. (2006). Capacidade de Carga de Radier Estaqueados Sobre Solos de Argila Mole. (Em Inglês). Article. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 12. 11 Pag. 1600-1610.

SCHNAID, F. (2000). Ensaios de Campo - e Suas Aplicações à Engenharia: de Fundações. Book. (189 Pag). Oficina de Textos. Retrieved from http://books.google.com/books?id=XQCYAAAACAAJ&pgis=1

SHARMA, V. J., VASANVALA, S. A., & SOLANKI, C. H. (2012). Efeito do Amortecedor Sobre Uma Fundação em Radier Estaqueado Composta em Solo Multicamada Sobre Forças Sísmicas. (Em Inglês). Article. International Journal of Scientific Engineering and Technology, 322(1). 9 Pag. 314–322.

Page 137: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

118  

SHARMA, V. J.; VASANVALA, S. A.; SOLANKI, C. H. (2011). Efeito do Amortecedor sobre Radier Estaqueado Composto. (Em Inglês). Article. Journal of Engineering Research and Studies. 4 Pag.1–4.

SMALL, J. C., & LIU, H. L. S. (2008). Comportamento Tempo-Recalque de Fundações em Radier Estaqueado Usando Elementos Finitos. (Em Inglês). Article. Computers and Geotechnics. Vol. 35. 9 Pag. Sydney.

SMITH, I M; WANG, A. (1998). Análises de Radier Estaqueado. (Em Inglês). Article. Int. J. Numer. Anal. Meth. Geomech., 22. 14 Pag. 777–790.

SOARES, W. C. (2002). Estacas de Compactação para Melhoria de Solo. UNIVERSIDADE DE SÃO PAULO. Dissertação. 151 Pag.

SOARES, W. C. (2011). Radier Estaqueado com Estacas Hollow Auger em Solo Arenoso. UNIVERSIDADE FEDERAL DE PERNAMBUCO. Tese. 340 Pag.

SOSA, S. F. (2010). Análise do Comportamento de Radier Estaqueados pelo Método dos Elementos Finitos em 3D. (Em Espanhol). Instituto Superior Politécnico “Jose A. Echeverría”. Tesis. 134 Pag.

SOUZA, R. D. S. (2010). Análise dos Fatores de Interação entre Estacas em Radier Estaqueado: Comparação entre Duas Ferramentas Numéricas. Universidade Federal de Goiás. Dissertação. 170 Pag.

SU, Qian; CHENG, Ma-yao; WANG, Bin; BAI, H. (2011). Cálculo do Recalque da Fundação em Radier Estaqueado na Seção de Solo Mole de Ferrovia de Alta Velocidade. (Em Inglês). Article. ICCTP 2011 © ASCE 2011. 9 Pag. 3213–3221.

SU, Qian; CHENG, Ma-yao; WANG, Bin; BAI, H. (2011). Efeito do Compartilhamento de Carga e Tempo da Fundação em Radier Estaqueado Sob Aterro Alto. (Em Inglês). Article. ICTE 2011 © ASCE 2011. 7 Pag. 1396–1402.

TAN, Y.C.; CHOW, C.M.; GUE, S. S. (2004). Uma Abordagem de Design Para Radier Estaqueados com Estacas Curtas de Fricção Para um Edifício Baixo em Argila Muito Mole. (Em Inglês). Article. 15th SEAGC, Bangkok, Thailand. 6 Pag. 1–6.

THOMÉ, L. H. F. (2009). Modelos Analítico e Numérico para Simulação de Ensaios de Arrancamento de Geotêxtis. Universidade do Estado do Rio de Janeiro. Dissertação. 135 Pag.

TONUS, B. P. de A. (2009). Avaliação dos Métodos de Equilíbrio Limite Aplicados a Uma Encosta Coluvionar e Residual da Serra do Mar Paranaense. Universidade Federal do Paraná. Dissertação. 147 Pag.

VAN IMPE, W. F. (2001). Métodos de Análises de Fundações em Radier Estaqueado (Em Inglês). Report Prepared on Behalf of Technical Committee TC18 on Piled Foundations. International Society of Soil Mechanics and Geotechnical Engineering. 46 Pag.

Page 138: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

119  

VELLOSO, D. de A., & LOPES, F. de R. (2004). Fundações, Volume 1. (Oficina de Textos, Ed.) (2a ed., 2255 Pag). Rio de Janeiro. Retrieved from http://www.planeta.coppe.ufrj.br/artigo.php?artigo=384

WANG, Changdan; ZHOU, Shunhua; WANG, Binglong; WANG, X. (2010). Teste em Modelo Centrifuga na Solução e Controle da Fundação em Radier Estaqueado em Ferrovia de Alta Velocidade. (Em Inglês). Article. ICCTP 2010: Integrated Transportation Systems Green•Intelligent•Reliable © 2010 ASCE. 12 Pag. 2942–2953.

WONG, S. C., and POULOS, H. G. (2005). Fatores de interação aproximados estaca-estaca entre dos estacas diferentes. (Em Inglês). Article. Computers and Geotechnics, Vol. 32. 6 Pag. 613-618.

WOOD, D. M. (2004). Modelagem Geotécnica. (Em Inglês). (Versão 2, 496 Pag).

YAMASHITA, Kiyoshi; HAMADA, Junji; SOGA, Y. (2010). Compartilhando Recalque e Carga de Radier Estaqueado de Torre Residencial de 162 m de Alto. (Em Inglês). Article. GeoShanghai 2010 International Conference, Shanghai, China. 8 Pag.

ZHAO, Ming-hua; ZHANG, Ling; YANG, M. (2006). Cálculo de Recalques de Longo-Curto de Fundações em Radier Estaqueados Compostos. (Em Inglês). Article. Journal of Central South University of Technology. Volume 13, Issue 6. 6 Pag. 749-754

Page 139: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

120  

ANEXO A – PROVAS DE CARGA SEGUNDO SOARES (2011)

Tabela A1. Leitura da Prova de Carga do Radier Isolado

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

120 2,08 3,10 2,38 1,39 2,24 240 4,03 5,58 2,78 2,32 3,68 360 5,89 5,88 3,44 3,87 4,77 480 8,31 7,44 4,52 5,56 6,46 600 9,54 8,45 5,41 6,69 7,52 720 10,52 9,29 6,25 7,63 8,42 840 11,74 10,48 7,53 8,95 9,68 960 13,25 11,98 9,29 10,73 11,31

1.080 14,64 13,40 11,07 11,51 12,66 1.200 17,21 16,17 15,05 16,25 16,17

Tabela A2. Leitura da Prova de Carga do Radier Uma Estaca

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

120 2,52 1,50 -1,54 0,29 0,69 240 6,91 4,35 -0,81 2,09 3,14 360 9,70 6,72 0,40 4,10 5,23 480 11,32 8,47 2,03 5,58 6,85 600 12,47 10,03 3,63 6,81 8,24 720 13,40 11,40 4,17 7,85 9,21 840 14,45 12,99 6,81 8,95 10,80 960 15,40 14,41 8,32 10,02 12,04

1.080 16,49 15,98 10,10 11,27 13,46 1.200 17,97 18,55 12,97 13,35 15,71

Page 140: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

121  

Tabela A3. Leitura da Prova de Carga do Radier Duas Estacas

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

240 0,20 0,35 1,48 1,35 0,85 460 1,43 1,85 7,49 6,98 4,44 717 3,71 3,77 11,80 11,58 7,72 956 6,28 6,10 15,55 15,55 10,87

1.196 9,39 8,98 19,41 19,63 14,35 1.435 13,03 12,57 23,46 23,88 18,24 1.674 17,08 16,62 27,22 26,85 21,94 1.913 22,86 22,91 31,37 31,18 27,08 2.152 29,23 29,78 36,65 36,00 32,92 2.392 39,56 40,94 45,80 44,48 42,70

Tabela A4. Leitura da Prova de Carga do Radier Quatro Estacas

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

322 5,15 1,26 0,64 4,18 2,81 644 8,99 3,56 3,21 9,00 6,19 966 12,10 5,13 5,98 12,62 8,96

1.288 15,98 7,91 9,98 17,63 12,88 1.610 21,13 10,75 12,53 21,42 16,46 1.932 27,45 14,21 15,77 28,42 21,46 2.254 32,89 17,90 20,45 34,48 26,43 2.576 39,24 22,84 26,94 41,70 32,68 2.898 44,12 30,68 31,12 46,97 38,22 3.220 53,85 39,11 42,58 60,67 49,05

Page 141: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

122  

Tabela A5. Leitura da Prova de Carga do Grupo Uma Estaca

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

84 0,34 0,14 0,48 0,45 0,35 140 2,75 2,02 2,13 3,22 2,53 220 6,49 5,36 6,21 7,26 6,33 270 9,33 8,14 9,27 10,33 9,27 310 12,81 11,50 12,82 13,84 12,74 350 19,17 17,75 19,34 20,24 19,13 390 25,46 23,97 25,72 26,56 25,43 440 38,71 37,19 39,31 39,98 38,80 490 51,91 50,41 51,79 53,44 51,89 520 65,76 64,18 65,95 67,54 65,86 560 84,14 81,78 84,04 86,36 84,08

Tabela A6. Leitura da Prova de Carga do Grupo Duas Estacas

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

138 1,74 0,45 0,76 1,00 0,99 278 2,86 2,10 2,50 2,34 2,45 414 5,07 4,62 5,13 4,79 4,90 552 7,78 7,60 8,43 7,86 7,92 690 11,33 11,67 12,65 11,68 11,83 828 15,70 16,20 17,92 16,88 16,68 966 20,98 21,45 24,68 23,58 22,67

1.104 29,38 30,00 34,47 33,24 31,77 1.214 43,81 45,32 50,98 49,27 47,35

Page 142: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

123  

Tabela A7. Leitura da Prova de Carga do Grupo Quatro Estacas

Carga (kN)

Leitura Extensômetros (mm) Recalque médio no

Ext. 1 Ext. 2 Ext. 3 Ext. 4 topo (mm) 0 0,00 0,00 0,00 0,00 0,00

240 0,19 1,43 3,37 2,75 1,94 480 1,30 4,29 9,64 6,67 5,48 720 2,64 6,36 10,92 8,25 7,04 960 5,41 8,45 11,91 9,88 8,91

1.200 10,24 12,37 14,29 13,18 12,52 1.440 14,71 16,01 16,50 16,21 15,86 1.680 22,11 21,95 20,04 21,16 21,32 1.920 29,49 27,67 22,86 25,52 26,39 2.160 43,07 38,79 29,28 34,41 36,39 2.400 61,53 63,38 61,38 55,47 60,44

Page 143: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

124  

ANEXO B – AJUSTE ESTATISTICO POR DISTRIBUIÇÃO NORMAL

Tabela B1. Camada 1 Tabela B2. Camada 2

Grupos Frequência Dist Norm Grupos Frequência Dist Norm 42 0 0,0000 36 0 0,0000 41 0 0,0000 35 0 0,0000 40 0 0,0000 34 0 0,0000 39 0 0,0000 33 0 0,0000 38 0 0,0000 32 0 0,0000 37 0 0,0000 31 0 0,0000 36 0 0,0000 30 0 0,0000 35 0 0,0015 29 0 0,0003 34 1 0,0575 28 1 0,0423 33 3 0,3848 27 3 0,4921 32 1 0,4565 26 1 0,4350 31 0 0,0960 25 0 0,0292 30 0 0,0036 24 0 0,0001 29 0 0,0000 23 0 0,0000 28 0 0,0000 22 0 0,0000 27 0 0,0000 21 0 0,0000 26 0 0,0000 20 0 0,0000 25 0 0,0000 19 0 0,0000 24 0 0,0000 18 0 0,0000 23 0 0,0000 17 0 0,0000 22 0 0,0000 16 0 0,0000

Média 32,4 Média 26,5Desvio Padrão 0,76 Desvio Padrão 0,62

Page 144: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

125  

Tabela B3. Camada 3 Tabela B4. Camada 4

Grupos Frequência Dist Norm Grupos Frequência Dist Norm 41 0 0,0000 33 0 0,0000 40 0 0,0000 32 0 0,0000 39 0 0,0000 31 0 0,0000 38 0 0,0000 30 0 0,0000 37 0 0,0000 29 0 0,0000 36 0 0,0000 28 0 0,0000 35 0 0,0000 27 0 0,0000 34 0 0,0063 26 0 0,0091 33 1 0,1400 25 1 0,3425 32 3 0,5119 24 3 0,5984 31 1 0,3101 23 1 0,0485 30 0 0,0311 22 0 0,0002 29 0 0,0005 21 0 0,0000 28 0 0,0000 20 0 0,0000 27 0 0,0000 19 0 0,0000 26 0 0,0000 18 0 0,0000 25 0 0,0000 17 0 0,0000 24 0 0,0000 16 0 0,0000 23 0 0,0000 15 0 0,0000 22 0 0,0000 14 0 0,0000 21 0 0,0000 13 0 0,0000

Média 31,8 Média 24,3Desvio Padrão 0,75 Desvio Padrão 0,57

Page 145: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

126  

ANEXO C – MODELAGEM DE PROVAS DE CARGA

Figura C1. Planta típica da malha de elementos finitos

Figura C2. Grupo/Radier Uma estaca Figura C3. Grupo/Radier Duas estacas

Figura C4. Grupo/Radier Quatro estacas Figura C5. Bloco Isolado

Page 146: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

127  

Figura C6. Perfil típico Grupo estacas Figura C7. Perfil típico Radier com estacas

Page 147: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

128  

a) Recalque b) Deformado

Figura C8. Gráfico do recalque, Grupo Uma Estaca

a) Recalque b) Deformado

Figura C9. Gráfico do recalque, Grupo Duas Estacas

Page 148: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

129  

a) Recalque b) Deformado

Figura C10. Gráfico do recalque, Grupo Quatro Estacas

a) Recalque b) Deformado

Figura C11. Gráfico do recalque, Radier com Uma Estaca.

Page 149: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

130  

a) Recalque b) Deformado

Figura C12. Gráfico do recalque, Radier com Duas Estacas.

a) Recalque b) Deformado

Figura C13. Gráfico do recalque, Radier com Quatro Estacas.

Page 150: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

131  

a) Recalque b) Deformado

Figura C14. Gráfico do recalque, Bloco Isolado.

Page 151: ANÁLISES NUMÉRICAS DE PROVAS DE CARGA EM ......banco de dados organizado por Wilson Cartaxo Soares (2011), de fundações em grupo de estacas e radier estaqueados, executados em

   

132  

ANEXO D – MODELAGEM DA ANÁLISE PARAMÉTRICA

a) Recalque b) Deformado

Figura D1. Gráfico do recalque típico nas análises paramétricas

a) Planta topo das estacas b) Perspectiva

Figura D2. Definição de pontos e líneas para saída gráfica de dados