APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

48
CAPÍTULO II PARTIDA E ACELERAÇÃO 2.1) INTRODUÇÃO A partida de um motor de indução de rotor em gaiola 1 constitui um período transitório na sua operação ao qual estão associados alguns dos mais importantes problemas no acionamento elé- trico. Ao ser ligado diretamente à rede elétrica, a tensão plena aplicada aos terminais do motor faz com que ele absorva um elevado surto inicial de corrente que chega a atingir 4 a 8 vezes o valor da sua corrente nominal. À medida que o motor se acelera, a corrente vai se reduzindo até atingir um valor estável correspondente à carga acionada. Este elevado surto de corrente, cuja duração está associada ao tempo de aceleração do motor, é denominada corrente de partida e ela pode provocar os seguintes problemas: No motor: Um forte aquecimento, num tempo muito curto, da ordem de segundos, (tempo que o mo- tor gasta para se acelerar) devido às elevadas perdas jóulicas. Esta sobrecarga térmica não tem tem- po suficiente para ser dissipada para o meio ambiente de modo que todo o calor gerado é absorvido pelos enrolamentos do estator e do rotor, elevando a temperatura do motor. Essa elevação rápida da temperatura pode causar sérios problemas no rotor tais como dilatação dos anéis de curto-circuito e deformação das barras da gaiola. No estator, a temperatura pode atingir valores superiores ao da classe de isolamento térmico do motor e com isto provocar uma rápida deterioração do isolamento. Esforços eletrodinâmicos entre espiras das bobinas do enrolamento do estator, na parte do enrolamento chamada coroa, constituída pelas cabeças das bobinas. Elas se atraem e se repelem, causando atrito entre elas que resulta em fadiga e abrasão, erodindo o isolamento. Tais esforços são proporcionais ao quadrado da corrente. Na máquina acionada e no sistema de acoplamento: Choques mecânicos nos componentes do sistema de acoplamento, com possibilidade de danos, devido ao conjugado resultante da corrente de partida. Correias múltiplas que fazem parte de um sistema de acoplamento podem deslizar (“patinar”) nas polias sob a ação de um conjugado de valor muito elevado. Uma aceleração muito rápida devido a um alto conjugado de partida pode provocar pro- blemas ao produto. Máquinas têxteis, por exemplo, têm um limite máximo de aceleração, pois uma aceleração alta pode provocar danos aos delicados tecidos e fios. Os elevadores têm também um limite máximo de aceleração, pois, se esta for muito alta, pode acarretar mal estar e desconforto para os usuários. Na rede elétrica e instalações: Atuação indevida de fusíveis ou de relés de proteção contra sobrecarga instantânea se o tempo de aceleração for muito longo. 1 Serão considerados apenas os motores de indução trifásicos. Os motores de rotor bobinado serão estudados em outro capítulo.

Transcript of APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

Page 1: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

CAPÍTULO II

PARTIDA E ACELERAÇÃO 2.1) INTRODUÇÃO A partida de um motor de indução de rotor em gaiola1 constitui um período transitório na sua operação ao qual estão associados alguns dos mais importantes problemas no acionamento elé-trico. Ao ser ligado diretamente à rede elétrica, a tensão plena aplicada aos terminais do motor faz com que ele absorva um elevado surto inicial de corrente que chega a atingir 4 a 8 vezes o valor da sua corrente nominal. À medida que o motor se acelera, a corrente vai se reduzindo até atingir um valor estável correspondente à carga acionada. Este elevado surto de corrente, cuja duração está associada ao tempo de aceleração do motor, é denominada corrente de partida e ela pode provocar os seguintes problemas:

No motor: • Um forte aquecimento, num tempo muito curto, da ordem de segundos, (tempo que o mo-

tor gasta para se acelerar) devido às elevadas perdas jóulicas. Esta sobrecarga térmica não tem tem-po suficiente para ser dissipada para o meio ambiente de modo que todo o calor gerado é absorvido pelos enrolamentos do estator e do rotor, elevando a temperatura do motor. Essa elevação rápida da temperatura pode causar sérios problemas no rotor tais como dilatação dos anéis de curto-circuito e deformação das barras da gaiola. No estator, a temperatura pode atingir valores superiores ao da classe de isolamento térmico do motor e com isto provocar uma rápida deterioração do isolamento.

• Esforços eletrodinâmicos entre espiras das bobinas do enrolamento do estator, na parte do enrolamento chamada coroa, constituída pelas cabeças das bobinas. Elas se atraem e se repelem, causando atrito entre elas que resulta em fadiga e abrasão, erodindo o isolamento. Tais esforços são proporcionais ao quadrado da corrente.

Na máquina acionada e no sistema de acoplamento: • Choques mecânicos nos componentes do sistema de acoplamento, com possibilidade de

danos, devido ao conjugado resultante da corrente de partida. Correias múltiplas que fazem parte de um sistema de acoplamento podem deslizar (“patinar”) nas polias sob a ação de um conjugado de valor muito elevado.

• Uma aceleração muito rápida devido a um alto conjugado de partida pode provocar pro-blemas ao produto. Máquinas têxteis, por exemplo, têm um limite máximo de aceleração, pois uma aceleração alta pode provocar danos aos delicados tecidos e fios. Os elevadores têm também um limite máximo de aceleração, pois, se esta for muito alta, pode acarretar mal estar e desconforto para os usuários.

Na rede elétrica e instalações: • Atuação indevida de fusíveis ou de relés de proteção contra sobrecarga instantânea se o

tempo de aceleração for muito longo. 1 Serão considerados apenas os motores de indução trifásicos. Os motores de rotor bobinado serão estudados em outro capítulo.

Page 2: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

44

• Quedas de tensão que prejudicam a operação de outros aparelhos e equipamentos, princi-palmente aparelhos eletrônicos.

• Cintilação de lâmpadas, em especial as de vapor de mercúrio e vapor de sódio, que são muito sensíveis à variação de tensão.

• Possível desligamento de outros motores pela abertura de seus contatores. Com cerca de 30% de queda de tensão no barramento, pode ocorrer a abertura de contatores.

• Redução momentânea do conjugado máximo disponível de outros motores em operação que pode provocar sua desaceleração e desligamento.

Os problemas descritos acima serão tanto maiores quanto menor for a capacidade do sistema elétrico que alimenta o motor e maior a potência do motor para tensões trifásicas usuais de 220, 380 ou 440 volts. A solução para tais problemas está associada ao conhecimento do tempo que o motor gasta para atingir, a partir do repouso, sua velocidade nominal, tempo de aceleração ou tempo de partida, e à redução da corrente de partida pela redução da tensão aplicada ao motor. Neste capítu-lo, vamos estudar estes assuntos. 2.2) TEMPO DE PARTIDA OU TEMPO DE ACELERAÇÃO A equação [1.36] do capítulo I, reproduzida na equação [2.01] abaixo, pode ter a seguinte leitura: para se dar um acréscimo de velocidade dω ao conjunto constituído pelo motor e pela má-quina acionada, cujo momento de inércia total é J, o motor deve aplicar um conjugado de acelera-ção Ca = C - Cr, durante um tempo dt.

dtdJCCC arω

==− [2.01]

O tempo dt pode ser explicitado conforme mostra a equação [2.02].

dt JdCa

[2.02]

A integração da equação [2.02] entre os limites de velocidade ω1 e ω2, correspondentes aos instantes inicial e final do processo de aceleração, nos dará o tempo para o motor, partindo de ω1, atingir ω2,. Chamando de ta este tempo, podemos escrever:

t Jd

C CJ

dCa

r a=

−= ∫∫ ω ω

ω

ω

ω

ω

1

2

1

2

[2.03]

O momento de inércia total do conjunto, J, é uma grandeza constante, pois depende da mas-sa e das dimensões físicas das partes rotativas do conjunto que não se alteram durante a aceleração. Portanto, calcular o tempo de aceleração através da equação [2.03], se resume, praticamente, em resolver a integral. Porém, não há uma solução exata da integral, pois Ca não é uma função integrá-vel pelos métodos matemáticos convencionais. Assim sendo, para se resolver o problema, é neces-sário lançar mão de métodos aproximativos que forneçam resultados que satisfaçam as aplicações.

O que se deseja quase sempre nos problemas de acionamento é calcular o tempo de acelera-ção do motor desde o repouso (ω1 = 0), até a sua velocidade nominal (ω2 = ω). Vamos estudar dois

Page 3: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

45

métodos muito utilizados na solução deste tipo de problema: o Método da Integração Gráfica e o Método dos Conjugados Médios.

2.2.1) MÉTODO DA INTEGRAÇÃO GRÁFICA

Neste método, a solução da integral da equação [2.03] é feita graficamente, isto é, dispondo-se das curvas características do motor e da máquina acionada obtem-se em um gráfico a curva Ca que é a diferença, ponto a ponto, entre as curvas C e Cr. A partir de pontos marcados sobre a curva Ca traçam-se retângulos cujo lado menor é o segmento entre dois pontos contíguos (marcados sobre o eixo das velocidades), e o lado maior é o valor médio do conjugado de aceleração entre os respec-tivos pontos contíguos.

Fig. 2.01 – Integração gráfica da função Ca

Assim, são obtidos tantos retângulos quantos são os segmentos marcados. O tempo que o

motor vai gastar para se acelerar do repouso à velocidade nominal será o somatório dos tempos gas-tos para ele se acelerar entre dois pontos contíguos, isto é, ter um acréscimo ∆ω de velocidade cor-respondente ao lado menor de cada um dos retângulos. Como nestes intervalos o conjugado de ace-leração que se considera é o conjugado médio, que é um valor constante, a equação [2.03] se trans-forma na equação [2.04].

. ∑=

∆=m

iia tt

1 [2.04]

Nesta equação m é o número de retângulos sobre a curva Ca, e ∆ti o tempo gasto para o mo-

tor se acelerar entre dois pontos contíguos da curva, sendo ∆ti obtido através da equação abaixo:

ami

ii C

Jtω∆

=∆ [2.05]

Cami representa o conjugado de aceleração médio (lado maior do retângulo) entre dois pontos

contíguos e, obviamente, terá um valor diferente para cada um deles. ∆ωi é o incremento de veloci-dade entre dois pontos contíguos da curva Ca.

Page 4: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

46

Este método de cálculo é bastante preciso e sua precisão será tanto maior quanto maior for o número de pontos que se marque sobre a curva do conjugado de aceleração. Os incrementos ∆ωi não precisam ser iguais.

2.2.2) MÉTODO DOS CONJUGADOS MÉDIOS Este método consiste, basicamente, em substituir as características do conjugado motor e do conjugado resistente por características constantes que lhes sejam equivalentes, ou seja, durante o período de aceleração os conjugados desenvolvidos pelo motor e pela máquina acionada serão subs-tituídos pelos seus respectivos conjugados médios conforme visto no capítulo I. Como eles são constantes com a velocidade, o conjugado de aceleração será, por sua vez, constante, pois represen-ta a distância entre duas retas paralelas, conforme mostra a figura 2.02

O Conjugado Motor Médio, Cmm, e o Conjugado Resistente Médio, Crm serão dados pelas equações [1.13] e [1.14] e [1.26] a [1.29], respectivamente, do capítulo I.

Fig. 2.02 – Conjugado de aceleração médio equivalente Após terem sido determinados Cmm e Crm, o Conjugado de Aceleração Médio Equivalente, Cam, será a diferença entre os dois valores, ou seja:

C C Cam mm rm= − [2.06] O tempo de aceleração será calculado como se segue:

t JCa

am=

−ω ω2 1 [2.07]

As letras têm os seguintes significados:

ω1 = velocidade de onde se parte, em geral, do repouso, isto é, ω1 = 0.

ω2 = velocidade aonde se chega, em geral, velocidade nominal, isto é, ω2 = ω, em rad/s. Cam = conjugado de aceleração médio equivalente, em Nm. J = momento de inércia de toda a massa que se movimenta, em kgm2. ta= tempo de aceleração, em segundos.

Page 5: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

47

Uma outra expressão para o cálculo do tempo de aceleração, em outras unidades usuais, é a indicada pela equação [2.08].

t GDn n

Caam

=−2 2

3751 [2.08]

GD2 é o momento de impulsão em kgfm2, n1 e n2 em RPM e Cam em kgfm. Este método dos conjugados médios representa uma ampliação do Método de Integração Gráfica. É um método menos preciso do que o anterior, pois os valores de tempo calculados podem ser maiores em cerca de 15% dos valores obtidos pelo Método de Integração Gráfica. Para fins prá-ticos esta diferença tem pouco significado, pois o processo de aceleração é considerado concluído quando o motor atinge cerca de 95% da sua velocidade final. Isto quer dizer que para muitos moto-res, o processo se inicia no repouso e termina, praticamente, na velocidade correspondente ao con-jugado máximo que ocorre entre 90 a 95% da velocidade síncrona.

Por sua simplicidade é o método mais usado na prática. 2.2.3) TEMPO MÁXIMO DE ACELERAÇÃO: TEMPO DE ROTOR BLOQUEADO

Tempo de rotor bloqueado é o máximo tempo que um motor de indução pode despender durante o período de aceleração para que o rotor ou o isolamento do estator não sejam danificados pela elevação de temperatura provocada pela corrente de partida. Este valor de tempo estabelecido pelo fabricante do motor é obtido em ensaios durante os quais o motor protótipo é mantido com o rotor mecanicamente travado. Nesta condição, se a tensão aplicada ao motor for a sua tensão nomi-nal, a corrente que circula é, praticamente, igual à corrente de partida e o tempo em que o motor permanece ligado é o máximo tempo para que a elevação de temperatura provocada pela corrente não ultrapasse o máximo valor permissível para a classe de isolamento do motor. Este é um dado muito valioso para se fazer a escolha correta de um motor, pois apesar de um motor ser capaz de operar na sua condição nominal, se o tempo de aceleração para atingir a condi-ção nominal for maior do que o tempo de rotor bloqueado, isto significa que o calor produzido du-rante a aceleração pela corrente de partida é maior do que o calor produzido pela corrente de rotor bloqueado. Como conseqüência, o isolamento do motor poderia ser destruído ou ter sua expectativa de vida útil reduzida. Neste caso, ele não deverá ser utilizado. Esta habilidade que o motor tem de acelerar sua carga do repouso até a velocidade nominal, em um tempo suficientemente curto para que ele não seja afetado termicamente pelo calor gerado pela corrente de partida, é chamada de capabilidade de aceleração. Portanto, para se fazer uma es-colha completa e adequada de um motor é necessário que, após ter sido determinada sua potência e número de pólos para a condição de operação em regime contínuo, é preciso verificar se ele possui capabilidade de aceleração, ou seja, o tempo de aceleração calculado conforme as equações [2.04], [2.07] e [2.08] deve ser comparado com o tempo de rotor bloqueado fornecido pelo fabricante do motor. O tempo de rotor bloqueado fornecido pelos catálogos de fabricantes é para partida direta do motor. São usuais valores de 6 a 30 segundos para o tempo de rotor bloqueado de motores trifásicos de potência até 200 CV para tensões de 220, 380 e 440 volts.

Se o tempo de aceleração for menor do que o tempo de rotor bloqueado, o motor possui ca-pabilidade de aceleração para realizar o acionamento e estará corretamente escolhido. Se, ao con-trário, o tempo de aceleração for maior do que o tempo de rotor bloqueado, o motor não serve para realizar o acionamento, mesmo que sua potência esteja adequada às exigências da carga na condi-ção de regime contínuo. Neste caso, um outro motor deverá ser escolhido, de potência maior, para o qual o cálculo do tempo de aceleração deverá ser repetido e o resultado novamente comparado com o tempo de rotor bloqueado. Se novamente o tempo de aceleração for maior, o problema terá de ser

Page 6: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

48

reavaliado e talvez deva ser escolhido um motor com número de pólos menor (com alteração do sistema de transmissão), ou escolher um outro tipo de motor, por exemplo, motor de rotor bobinado que pode utilizar reostato de partida e assim diminuir o calor gerado no interior do motor.

A máxima temperatura momentânea provocada pela corrente de partida que o motor pode suportar depende das características do seu projeto para dissipar o calor gerado no rotor e no estator. Uma elevação de temperatura permissível durante a partida do motor é um dado próprio de cada motor e de cada fabricante. Por exemplo, temperaturas da ordem de 200oC para gaiolas de rotor de motor de grande porte, feitas de latão, são consideradas normais durante os períodos de partida. Na maioria dos casos, o tempo máximo de aceleração é limitado pela temperatura do rotor, porém há motores em que a limitação da temperatura na partida é do enrolamento do estator. Os cálculos para determinar o tempo máximo de aceleração partem da premissa de se considerar que todo o calor gerado no rotor e no estator, durante a partida, permanece nas barras e nas bobinas, elevando a temperatura de acordo com o calor específico do material. O cálculo do tempo de aceleração, com o objetivo de determinar a capabilidade de acelera-ção do motor, só faz sentido quando ele parte com a carga acoplada. Neste caso, o tempo de acele-ração pode assumir valores elevados, pois o momento de inércia total aumenta devido ao momento de inércia da carga e o conjugado de aceleração diminui devido à presença do conjugado resistente (ventiladores, sopradores de ar, exaustores, etc são exemplos clássicos deste tipo de carga). Quando o motor parte a vazio e a carga é acoplada ao seu eixo após ele ter atingido a velocidade a vazio, tal como um sistema de embreagem, o problema não existe, pois com a ausência do conjugado resis-tente e apenas a inércia do rotor, o tempo de aceleração é muito curto, bem menor do que o tempo de rotor bloqueado. O calor gerado é dissipado rapidamente para o meio ambiente por meio da ven-tilação. Alguns fabricantes, em lugar de fornecer o tempo máximo de aceleração, fornecem as per-das máximas, em watts ou kW, que o motor permite durante uma partida ou uma frenagem com inversão da seqüência de fases e durante a operação em regime contínuo. 2.2.4) TEMPO DE DESACELERAÇÃO E TEMPO DE FRENAGEM Se um motor está operando, por exemplo, na sua condição nominal e é desligado, ele irá parar após um determinado tempo. Se o motor é desligado, cessa imediatamente a ação do seu con-jugado, mas ele continua a girar acionado pela energia cinética armazenada no momento de inércia total do conjunto. De outro lado, o conjugado resistente continua a atuar, mesmo de forma decres-cente, dependendo do tipo de característica da máquina acionada. Este conjugado resistente é que faz o motor parar. Em muitas aplicações se deseja calcular o tempo que o motor gastaria para parar após o seu desligamento da rede. Para se calcular este tempo de desaceleração são usadas as mesmas expres-sões [2.07] e [2.08], só que com outros significados para as letras, conforme a equação [2.09].

rmd C

Jt 12 ωω −= [2.09]

td é o tempo de desaceleração em s; J o momento de inércia total do conjunto em kgm2; ω2 a

velocidade de onde se parte e ω1 a velocidade aonde se chega, em rad/s; Crm o conjugado resistente médio da máquina acionada, em Nm, cujo valor será dado por uma das equações [1.26] a [1.29] conforme o tipo de máquina acionada. Na maioria dos casos, ω2 = ω e ω1 = 0.

Page 7: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

49

2.2.5) FRENAGEM DOS MOTORES DE INDUÇÃO TRIFÁSICOS Em muitos acionamentos é desejável parar o motor rapidamente ou mesmo inverter sua ro-tação. É o caso comum das pontes rolantes. Nessas situações é necessário que seja aplicado um con-jugado frenante, de natureza mecânica ou elétrica, que se soma ao conjugado resistente para frear o motor. Outra possibilidade é aplicar um conjugado frenante para reduzir a velocidade do motor quando há uma tendência de ele se acelerar e atingir velocidade superior à velocidade síncrona. A frenagem de natureza mecânica é obtida pela aplicação de processos semelhantes aos utilizados nos freios automotivos (lonas ou tambores de freio) que pressionados sobre o eixo do motor por meio de molas ou outro processo mecânico, produzem o conjugado frenante requerido. A energia cinética armazenada no momento de inércia total do conjunto é dissipada sob a forma de calor nas lonas ou tambores de freio. A frenagem de natureza elétrica pode ser realizada por meio de mudanças nas conexões do enrolamento do motor capazes de produzir um conjugado que se opõe ao conjugado mecânico in-terno do motor, ou pela injeção de corrente contínua no enrolamento do estator de modo a criar um campo magnético estacionário. Ela apresenta em relação à frenagem mecânica a vantagem de poder devolver à rede elétrica uma parte da energia cinética armazenada na inércia total do conjunto. Se aplicarmos um freio que desenvolve um conjugado frenante cujo valor médio é igual a Cfm (conjugado de frenagem médio equivalente), o tempo que o motor gasta para parar, tempo de frenagem tf, será dado por:

t JC Cf

rm fm=

−+

ω ω2 1 [2.10]

As letras têm o mesmo significado do que em [2.09].

Dependendo do acionamento, a frenagem elétrica pode ser de duas espécies: a) Quando se deseja parar o motor completamente em um determinado tempo e num ponto

definido (por exemplo, parar uma carga que está sendo içada por um guindaste). b) Quando se deseja apenas manter a velocidade do motor em valores determinados pela segurança do acionamento (por exemplo, o acionamento de uma correia transportadora em uma descida, quando a velocidade do motor deve ser mantida ligeiramente acima da velocidade síncrona para ele atuar como gerador e assim impedir que a correia se acelere devido à gravidade). Os métodos mais utilizados para se aplicar um conjugado de frenagem de natureza elétrica a um motor de indução podem ser classificados como se segue:

Frenagem regenerativa Frenagem dinâmica Plugueamento ou frenagem por contra-corrente

Frenagem regenerativa

A frenagem regenerativa (que se enquadra na espécie indicada na letra b) pode ocorrer quan-

do o motor de indução é acionado por um conjugado mecânico externo de modo a atingir uma velocidade superior à velocidade síncrona, isto é, quando n>ns. Nesta condição, o escorregamento torna-se negativo e o motor passa a ter o desempenho de um gerador de indução, ou seja, em lugar de consumir energia da rede elétrica a que está ligado, ele passa a gerar energia para a rede. O con-jugado mecânico interno que o motor desenvolve nesta condição operacional tem sentido contrário ao da rotação do rotor, atuando como freio, evitando que ele se acelere e atinja velocidades muito elevadas. Por exemplo, quando o guincho de uma ponte rolante está descendo uma carga pesada e a

Page 8: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

50

ação da força da gravidade pode acelerá-la fazendo com que o rotor também tenda a se acelerar além da velocidade síncrona.

Uma situação semelhante é a de uma correia transportadora cujo percurso é descendente. Devido à gravidade, o motor tende a se acelerar e atingir velocidades maiores do que a síncrona. Ele passa a atuar como gerador impedindo que a correia se acelere acima de uma velocidade segura na descida. O conjugado desenvolvido pela ação geradora pode ser aumentado pela introdução de está-gios de resistências no circuito do rotor quando se trata de rotor bobinado.

Um outro exemplo de frenagem regenerativa ocorre com os motores de dupla velocidade, motores tipo Dahlander2, quando se faz o processo de frenagem por etapas. Estando o motor ope-rando normalmente, girando na sua maior velocidade, faz-se a inversão da seqüência de fases que alimenta o motor e ele começa a se desacelerar. Num determinado instante os terminais do enrola-mento são comutados para formar um número maior de pólos, em geral o dobro. Com isto, o campo girante, durante um curto período, gira a uma velocidade menor do que a do rotor passando a ser a operação como a de um gerador.

A frenagem regenerativa pode ocorrer tanto em motores de rotor em gaiola quanto em moto-res de rotor bobinado. Neste último caso, que é o mais comumente usado, o circuito do enrolamento do rotor permite, através de anéis deslizantes, acrescentar resistências em série com o enrolamento, à semelhança de um reostato de partida, para se obter várias características de conjugado motor com maiores valores de conjugado.

Frenagem dinâmica

A frenagem dinâmica é possível ocorrer quando, após o motor ter sido desligado da rede elé-

trica, dois dos terminais do enrolamento do estator são ligados por meio de contatores a uma fonte de corrente contínua, criando-se imediatamente um campo magnético estacionário. Nos condutores do rotor que “cortam” as linhas de força deste campo estacionário atuam forças que desenvolvem um conjugado contrário à rotação do motor. Em outras palavras, o eixo magnético do rotor tende a se alinhar com o eixo magnético do campo estacionário do estator, fixo no espaço, freando desta forma o rotor instantaneamente. Resistências podem ser adicionadas ao circuito do rotor, quando se trata de rotor bobinado, para controlar o surto de corrente induzida pelo campo magnético estacio-nário e o conjugado eletromagnético desenvolvido.

Plugueamento ou frenagem por contra-corrente. O plugueamento ou frenagem por contra-corrente é conseguido quando se inverte a seqüên-

cia de fases da rede trifásica que alimenta o motor. Quando isto ocorre, o campo girante do estator se inverte e se tem uma situação semelhante à frenagem regenerativa. O rotor, acionado pela ener-gia cinética acumulada no momento de inércia total, durante um breve período, torna-se um gera-dor, só que neste caso, girando em sentido contrário ao do campo girante do estator. O conjugado mecânico interno desenvolvido pelo motor atua no sentido contrário ao da rotação e o rotor tende a parar. Ao parar, o motor deve ser desligado da rede, do contrário ele inverterá sua rotação. O escorregamento do motor que na condição normal de operação é dado pela equação [1.02], durante o período transitório entre a troca de fases e a parada do rotor, é dado por:

2 É um tipo de motor que possui duas velocidades obtidas , ou por dois enrolamentos distintos, eletricamente separados, ou por um só enrolamento, com terminais externos que permitem fazer conexões que mudam o número de pólos. O rotor é obrigatoriamente do tipo gaiola de esquilo, capaz de reproduzir o mesmo número de pólos do estator.

Page 9: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

51

( )s

nsnn

nnn

nnn

ss

ss

s

s

s

s −=−+

=+

=−

−−= 2

1' [2.11]

Assim, estando o motor operando na sua condição nominal, no momento exato em que se faz a inversão da seqüência de fases, o escorregamento é quase igual a 2 pois o escorregamento no-minal é, em geral, da ordem de 1 a 2%. Esta região da característica de conjugado do motor, entre os escorregamentos 2 e 1 é chamada região de frenagem e o tempo de operação do motor nesta condição deve ser o menor possível, pois o calor gerado durante este período é da ordem de 3 vezes o gerado durante a partida. Resistores externos podem ser acrescentados em série com o enrolamen-to do rotor para diminuir a corrente de plugueamento e, conseqüentemente, o conjugado correspon-dente. 2.3) EXERCÍCIOS RESOLVIDOS

01) Um compressor centrífugo (característica mecânica parabólica com a velocidade) deverá ser acionado por um motor de indução trifásico rotor em gaiola, categoria N, conforme a NBR-7094. O compressor possui as seguintes características operacionais e construtivas: a) Momento de inércia: 4 kgm2; b) Conjugado de atrito inicial: 9 Nm; c) Conjugado nominal: 90 Nm; d) Velocidade nominal: 1755 RPM Ele será acoplado ao eixo do motor através de um multiplicador de velocidades de relação 1,50 cujo rendimento foi fixado em 89,4%. Pede-se: a) Escolher o motor adequado para o aciona-mento verificando sua capabilidade de aceleração. Usar o catálogo da WEG, para motores de 220 V, 60 Hz, tipo IP55; b) Que conjugado deverá ser aplicado para se fazer uma frenagem mecânica em 2,5 s? Solução a) A potência requerida pelo compressor quando opera na sua condição nominal será dada

por 54,169550

1755909550

=nC

P rnrn kW. A potência mecânica a ser fornecida pelo motor no seu

eixo será igual a: 5,18894,054,16

===t

rnmot

PP

η kW.

Sendo a transmissão feita por um multiplicador de velocidades de relação 1,50, a velocidade

do motor será 11705,1

1755= RPM, isto é, um motor de 6 pólos.

Consultando o catálogo da WEG, escolhemos o motor com os seguintes dados: 18,5 kW; 220 V; 1165 RPM; 60 Hz; 6 pólos; Cn = 150 Nm; Cp = 2,60 p.u.; Cm = 2,80 p.u.; Jm = 0,2696 kgm2; tempo de rotor bloqueado tb= 8 s; Categoria N; Classe B. A capabilidade de aceleração será verificada comparando-se o tempo de aceleração calcula-

do pelo método dos conjugados médios com o tempo de rotor bloqueado. Teremos:

ama C

Jt 12 ωω −= , onde: ω2 = 1165 RPM = 122 rad/s; ω1 = 0

Page 10: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

52

32,95,142696,02,12,1 22

=×+×=⎟⎟⎠

⎞⎜⎜⎝

⎛+×=

mot

mqmqm JJJ

ωω

kgm2

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−+=−=

mot

maq

t

rmmprmmmam

CCCrefCCC

ωω

η45,0)(

( ) ( ) 5,36415043,2..43,280,260,245,045,0 =×==+=+ upCC mp Nm

363

99093

00 =

−+=

−+=

CCCC rn

rm Nm; 4,605,1894,036)( =×=refCrm Nm

Substituindo os valores obtidos na equação do tempo, teremos:

74,34,605,364

12232,9 =−

=at s<8 s, ou seja, o motor possui a necessária capabilidade (R).

b - O tempo de frenagem é dado por:

fmrmf CC

Jt+−

= 12 ωω. Explicitando em relação a Cfm e substituindo os valores teremos:

4,3944,605,2

012232,912 =−−

=−−

= rmf

fm Ct

JCωω

Nm (R)

02) Um motor de indução trifásico, rotor em gaiola, possui os seguintes dados de placa: 9,2 kW; 220 V; 60 Hz; 4 pólos; 1755 RPM; Cn = 50 Nm; Cp = 2,5 pu; Cm = 2,9 pu. Jm = 0,0465 kgm2; Categoria N; Classe B

A curva característica do conjugado motor está indicada na figura 2.03. A máquina que ele

aciona está acoplada diretamente ao seu eixo e o seu momento de inércia vale 2,8 kgm2. Sua carac-terística de conjugado é constante com a velocidade e na condição operacional do problema o con-jugado requerido é 0,80 pu. Pede-se: a) Qual a potência que a máquina solicita do motor? b) Qual o tempo de aceleração para o motor atingir a velocidade de regime? c) Qual o tempo de desaceleração sem usar freios? Solução a) A potência requerida pela máquina é igual à potência fornecida pelo motor pois o aco-

plamento sendo direto, não há perdas, ou seja, 9550

nCP r

= .

Porém, como o motor não está operando na sua condição nominal, n não pode ser tomado igual a 1755 RPM. O ponto de operação do motor será o ponto N da característica ao qual corres-ponde a velocidade n procurada. Por semelhança de triângulos, teremos:

Page 11: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

53

4,17728,09,2

1800170018001700 =∴=−

−∴∆≈∆ n

nNTnMT RPM = 185,6 rad/s

40508,0 =×=rC Nm. Substituindo os valores na equação da potência, teremos:

42,79550

4,177240=

×=rP kW (R)

C (0/1)

Cm M

Cp A B

Cr R N T

0 900 1700 n RPM

Fig. 2.03 - Característica de conjugado do motor

b) O tempo de aceleração será igual a:am

a CJt 12 ωω −

= , onde:ω1 = 0; ω2 = 185,5 rad/s;

J = 0,0465 + 2,8 = 2,8465 kgm2

( ) ( )C C C C C C p uam mm rm p m rm= − = + − = + − = =0 45 0 45 2 5 2 9 0 8 1 63 81 5, , , , , , . . , Nm

Substituindo os valores, teremos: ta =−

=2 8465185 5 0

81 56 48,

,,

, s (R)

c) t JCd

rm=

−=

−=

ω ω2 1 2 8465185 5 0

4013 2,

,, s (R)

03) Uma bomba centrífuga, cuja característica mecânica está indicada abaixo, deverá ser a-

cionada por um motor de indução trifásico, rotor em gaiola. Ela está acoplada ao eixo do motor a-través de um redutor de velocidades de relação igual a 0,50 e rendimento 0,94. O momento de inér-cia da bomba vale 7,5 kgm2 e sua velocidade nominal é 880 RPM.

3,1514,01087,1 25 ++×= − nnCr (Cr em Nm e n em RPM). Pede-se escolher o motor tipo IP55, categoria N, do catálogo da WEG adequado para fazer o acionamento, dando sua potência, número de pólos e comparando o tempo de aceleração com o tempo de rotor bloqueado. Usar o método dos conjugados médios.

Page 12: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

54

Solução O conjugado nominal requerido pela bomba na sua condição nominal de operação será:

Crn = × × + × + =−187 10 880 0 14 880 15 3 1535 2, , , Nm

Portanto, a potência requerida será: 09,149550

880153=

×=rnP kW

A potência solicitada ao motor nesta condição será: 1594,009,14

===t

rnmot

PP

η kW

Consultando o catálogo da WEG, o seguinte motor poderá escolhido: 15 kW; 220 V; 60Hz; 4 pólos; 1760 RPM; Cn = 80 Nm; Cp =2,2 pu; Cm = 2,7 pu Jm = 0,0722 kgm2; tb = 6 s; Categoria N; Classe B. A verificação quanto a capabilidade de aceleração será feita a partir do cálculo do tempo de

aceleração: am

a CJt 12 ωω −

= , onde: ω1 = 0; ω2 = 1760 RPM = 184,3 rad/s;

J = × + × =1 2 0 0722 7 5 0 5 1 962, , , , , kgm2;

C C Cam mm rm= − , onde ( ) ( ) 4,176..205,27,22,245,045,0 ==+=+= upCCC mpmm Nm

C CC C

p urmrn= +

−= +

−= = × =0

0

31

1 0 13

0 4 0 4 80 32,

, . . , Nm. Teremos:

ta =−−

=1 96184 3 0

176 4 322 5,

,,

, s <6 s. Logo, o motor possui capabilidade de aceleração. (R)

2.4) MÉTODOS E DISPOSITIVOS DE PARTIDA

Os efeitos da corrente de partida assinalados na seção 2.1 podem ser significativamente a-mortecidos quando se reduz a tensão aplicada ao motor durante a partida. Há vários equipamentos disponíveis no mercado, conhecidos pelo nome genérico de Chaves de Partida, que são amplamen-te usados para reduzir a tensão aplicada ao motor durante a partida. A escolha de cada um destes tipos de chave deve ser feita com critérios que levem em conta as restrições impostas pelo sistema elétrico que alimenta o motor, o próprio motor e a carga acionada.

O melhor método para se partir um motor é ligá-lo diretamente à rede, a plena tensão. As chaves de partida só devem ser usadas nos casos em que houver restrições à partida direta do motor. A figura 2.04 mostra o circuito de potência ou circuito principal e o circuito de comando da ligação de um motor, diretamente à rede, por meio de um contator3.

O contator possui um mecanismo de abertura e de fechamento dos contatos no circuito prin-cipal e, em geral, incorpora como componentes relés bi-metálicos para fazer a proteção térmica do motor devido a sobrecargas. Quando a bobina do contator, ligada à tensão do circuito de comando, é energizada os contatos móveis fecham o circuito principal ligando o motor à rede. Os contatores

3 Os símbolos e letras usados são os recomendados pela NBR-5453/1972.

Page 13: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

55

são freqüentemente controlados por fusíveis, botoeiras, chaves fim de curso, relés temporizadores, e outros dispositivos necessários a uma operação segura do motor. No circuito de comando também estão presentes dispositivos de proteção semelhantes aos do circuito principal que interrompem a alimentação da bobina, desligando o motor, além de sinalizadores que indicam se o contator está aberto ou fechado.

Fig. 2.04 – Partida direta de um motor de indução trifásico

As chaves de partida são automáticas, isto é, os circuitos de comando possuem componentes com variadas funções (relés auxiliares, temporizadores, de proteção, microprocessadores, etc) que possibilitam automatizar a operação de ligar o motor com tensão reduzida e fazer, no tempo neces-sário, a comutação para a tensão plena. Por sua vez, os contatores eletromagnéticos possuem com-ponentes eletrônicos que permitem ligações seguras do motor à rede elétrica. A figura 2.04a mostra de forma genérica o circuito principal que pode ser aplicado a qual-quer chave de partida. Vamos adotar a seguinte terminologia nas equações que serão estabelecidas, de acordo com a figura 2.04a.

V: tensão entre fases da rede que está ligada aos terminais de entrada da chave. V’: tensão de saída da chave, isto é, a tensão reduzida aplicada ao motor durante a partida.

KVV

='

: relação entre as tensões de saída e entrada da chave, um número menor do que 1.

Ip: Corrente de partida na rede elétrica quando o motor é ligado diretamente à tensão V. : Corrente de partida na rede elétrica quando o motor é ligado através da chave. I p

'

Ipm: Corrente de partida após a chave que circula no motor durante a partida. Cp: conjugado de partida do motor quando ligado diretamente à tensão V. Cm: conjugado máximo do motor quando ligado diretamente à tensão V. : conjugado de partida do motor quando ligado à tensão VCp

' ’. : conjugado máximo do motor quando ligado à tensão VCm

' ’. Zp = Rp + jXp: impedância de partida do motor (impedância subtransitória)

Page 14: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

56

Sendo a impedância de partida do motor um valor constante4, podemos escrever as seguintes

igualdades:

pmpmp KIVVII ==

'' 2

2'' KC

VVCC ppp =⎟⎟

⎞⎜⎜⎝

⎛= 2

2'' KC

VVCC mmm =⎟⎟

⎞⎜⎜⎝

⎛= [2.12]

São encontrada

• Chave autotr • Chave estrela • Chave com im • Chave estátic 2.4.1) CHAVE AUTO

4 A impedância de partida do circuito equivalente, fazda, a partir de dados do cat

A

BC

Figu

s no

ansf-tripe

a (s

TR

por fendálog

C1

V I I ' p

'

C

Ipm

ra 2.04a – Corre

comércio as se

ormadora ou coângulo dâncias primárioft starter)

ANSFORMAD

ase pode ser obtido-se o escorregameo do fabricante do

V V I '

pp

HAVE

V’ V’

V’ Ipm Ipm

MOTOR Zp = Rp + jXp

ntes e tensões nas chaves de partida

guintes chaves de partida:

mpensadora de partida

as

ORA

a a partir do circuito equivalente, quando são conhecidas as constantes nto igual a 1, ou, dividindo-se a tensão por fase pela corrente de parti-motor.

Page 15: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

57

Esta chave é constituída, basicamente, de um autotransformador que reduz a tensão aplicada ao motor na proporção direta da sua relação de transformação. Em geral, o autotransformador pos-sui 3 derivações que reduzem a tensão primária (tensão da rede) na relação de 80, 65 e 50%. Portan-to, sendo V a tensão da rede que alimenta o motor, K a relação de transformação escolhida, a tensão aplicada ao motor na partida será KVV ='

Se o motor fosse ligado diretamente à rede a corrente de partida seria igual a:

pp Z

VI3

= [2.13]

Quando se usa a chave, a corrente de partida após a chave e que “entra” no motor será:

ppm Z

VI3

'

= [2.14]

A corrente de partida na entrada da chave, de acordo com [2.12], será igual a:

22'

'

33KIK

ZVK

ZVKII p

pppmp ==== [2.15]

Se o enrolamento do motor estiver ligado em estrela, a corrente na rede será igual à corrente na fase. Se o enrolamento estiver ligado em triângulo, a corrente na rede será 3 vezes a corrente na fase. Em qualquer condição podemos afirmar que, quando se usa a chave autotransformadora, a corrente de partida na rede será reduzida de K2 vezes.

Por outro lado, os conjugados de partida e máximo serão reduzidos na mesma proporção, is-to é, K2 vezes, o que constitui um efeito prejudicial para a aceleração do motor, pois aumenta o tem-po de partida do motor provocando maior aquecimento.

A figura 2.05 mostra o circuito de potência ou principal e o circuito de comando da chave com os seus componentes de proteção, ligação, sinalização e controle.

A figura 2.05a mostra as características da corrente de partida e do conjugado em função da velocidade do motor. Na primeira etapa do processo de partida o motor recebe a tensão V’ e se ace-lera até atingir a velocidade ω’. A corrente de partida I , reduzida pelo autotransformador, evolui segundo a curva MN na figura (a) e o conjugado segundo a curva MN da figura (b). Nesse instante é feita a comutação, o motor recebe a tensão plena, e as curvas de corrente de partida e conjugado voltam às respectivas curvas correspondentes à tensão plena até completar a aceleração, quando o motor atinge a velocidade ω. No momento da comutação se observa um pequeno surto da corrente de partida e o correspondente surto no conjugado, que seriam maiores, se a transição fosse em cir-cuito aberto, isto é, se o motor fosse desligado completamente da rede no momento antes de se fazer a comutação.

p'

Page 16: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

58

Fig. 2.05 – Circuito principal e de comando de uma chave autotransformadora Vê-se que o tempo de aceleração será aumentado, pois o conjugado médio motor ficará re-duzido da área AMNP, restando somente a área hachurada. Isto pode trazer problemas para o motor no que se refere à sua elevação de temperatura durante a partida.

(a) (b)

Fig. 2.05a – Característica de corrente de partida e de conjugado de uma chave autotransformadora em função da velocidade do motor

A especificação de uma chave autotransformadora é um problema muito simples para o en-genheiro de aplicação, pois os fabricantes deste tipo de equipamento fornecem modelos padroniza-dos para os quais é necessário sejam fornecidas as seguintes informações:

Page 17: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

59

• potência do motor • número de partidas por hora. • tempo de aceleração • tensão da rede • número de derivações necessárias. • classe de isolamento térmico 2.4.2) CHAVE ESTRELA-TRIÂNGULO Para que uma chave estrela-triângulo possa ser usada na partida de um motor de indução trifásico, ele deve satisfazer a duas condições preliminares: O enrolamento do estator deve ser ligado em triângulo quando ele opera na sua condição normal, ou seja, a tensão aplicada por fase no motor é igual à tensão V entre fases da rede. Os terminais de cada uma das fases do enrolamento do estator devem ser trazidos até a caixa de ligação do motor para permitir conexões entre eles por meio de contatores.

Na partida o enrolamento do estator é ligado em estrela de modo que a tensão por fase apli-

cada é 3 vezes menor do que a tensão da rede, ou seja, 3

' VV = . Enquanto o enrolamento estiver

ligado em estrela, a corrente de partida e o conjugado serão reduzidos. No instante em que o motor atinge a velocidade em que deve ser feita a comutação do enrolamento para a tensão plena, os con-tatores operam, religando o enrolamento em triângulo. Se o motor fosse ligado diretamente à tensão V da rede, a corrente de partida em cada fase

do enrolamento do estator seria igual a:p

pm ZVI = . A corrente de partida na rede seria 3 maior:

ppmp Z

VII 33 == [2.16]

Quando o motor é ligado através da chave a corrente de partida na rede é igual à corrente de partida na fase:

ppp Z

VZVI

3

'' == [2.16a]

Dividindo membro a membro as igualdades [2.16] e [2.16a] teremos:

II

pp' =3 [2.17]

Portanto, quando se usa a chave estrela-triângulo na partida do motor, a corrente de partida

da rede é reduzida a 1/3 da corrente de partida a plena tensão. De seu lado, o conjugado de partida fica também reduzido a 1/3 de seu valor a plena tensão pois ele é proporcional ao quadrado da ten-são aplicada que é 3 menor.

Page 18: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

60

A figura 2.06 mostra o circuito de potência e o circuito de comando da chave com seus componentes de proteção, ligação, sinalização e controle. A chave de partida estrela-triângulo é uma chave de transição em circuito aberto, ou seja, no momento da comutação o motor é desligado da rede, mesmo que seja por um tempo extremamente curto.

Fig. 2.06 – Circuito principal e de comando da chave estrela-triângulo

A figura 2.06a apresenta as características de corrente de partida e de conjugado de uma chave estrela-triângulo.

(1) (2)

Fig. 2.06a – Características de corrente de partida (1) e de conjugado (2) de uma chave estrela-triângulo

Page 19: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

61

Vê-se no exemplo da figura 2.06a (1) que o surto da corrente, no momento da comutação, ultrapassa a corrente de partida reduzida pela chave. Isto se deve ao fato de a chave reduzir o conju-gado de partida para 1/3 de seu valor a plena tensão e de fazer transição em circuito aberto. Se o motor aciona uma carga com conjugado resistente elevado, por exemplo, uma carga de conjugado constante com a velocidade, durante o curto período de tempo em que o motor fica desligado da rede e não há conjugado motor, o conjugado resistente prevalece e reduz a velocidade do motor. Por isto a chave estrela-triângulo não deve ser usada em motores que acionam cargas de característica constante com a velocidade. Elas devem ser usadas em motores que acionam cargas de característi-ca parabólica, cujo conjugado resistente de partida é pequeno, da ordem de 10% do seu conjugado nominal, ou quando podem partir a vazio, sendo a carga acoplada posteriormente. 2.4.3) CHAVES COM IMPEDÂNCIAS PRIMÁRIAS A chave de partida com impedâncias primárias é constituída, basicamente, de uma impedân-cia, por fase, em série com o enrolamento do estator. Ao ser ligado à rede, o motor recebe uma ten-são V’ que é igual à tensão da rede menos a queda de tensão na impedância, isto é:

V V Z Ia p` '= − 3 [2.18]

sendo Za a impedância por fase em série com o enrolamento do estator. Como impedâncias são usa-das resistências ou reatâncias, sendo normal os fabricantes fornecerem conjuntos ajustáveis de mo-do a se poder escolher o valor da tensão V’ que se deseja aplicar ao motor. Em geral, os valores de resistência ou de reatância são ajustados de modo a se ter uma queda de tensão de 20 a 30%. A es-colha entre resistência e reatância está, em geral, associada à potência do motor: para motores pe-quenos e médios é usada resistência; para motores de grande potência é usada a reatância. Todavia, fatores econômicos podem mudar esta orientação.

Fig. 2.07 – Chave com impedância primária

Devido ao seu modo de operar, a chave com impedâncias primárias é, inerentemente, uma chave com transição em circuito fechado. Vê-se que a corrente que "entra" no motor é a mesma da rede. Isto significa que a redução que se obtém com esta chave, é menor, comparada com as duas chaves vistas anteriormente. A grande vantagem da chave com impedâncias primárias reside no fato de ela proporcionar uma aceleração suave que a faz ideal para dar a partida em motores que acio-

Page 20: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

62

nam cargas delicadas, tais como as que se encontram na indústria têxtil. À medida que o motor se acelera, o surto de corrente vai diminuindo e, conseqüentemente, a queda de tensão na impedância torna-se menor. A tensão reduzida V’ cresce gradualmente nos terminais do motor o que proporcio-na um aumento gradual do conjugado de aceleração. A aceleração se completa curto-circuitando-se a impedância acrescentada através de um contator. A figura 2.07 mostra o esquema de ligação de uma chave utilizando resistências para reduzir a tensão aplicada ao motor. No funcionamento normal as resistências são curto-circuitadas. A figura 2.07a mostra as características de corrente de partida e de conjugado de um motor quando se usa uma chave com impedância primária onde se pode notar que os surtos de corrente e de conjugado são menores comparados com os surtos das outras chaves.

(a) (b) Fig. 2.07a - Característica de corrente de partida (a) e de conjugado (b)

Dimensionamento das impedâncias

O valor de uma resistência a ser acrescentada em série com o enrolamento do estator pode ser facilmente calculado através do diagrama fasorial das impedâncias mostrado na figura 2.08 onde as letras têm o seguinte significado:

Zp 'pZ

Xp 0 Rp Ra

Fig. 2.08 - Diagrama fasorial de impedâncias

Page 21: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

63

ppp jXRZ += = impedância do motor na partida. Ra = resistência de partida a ser acrescentada por fase. = impedância total (motor + resistência adicionada) ´

pZ cos φp = fator de potência do motor na partida O valor de Ra será obtido através da solução do triângulo retângulo de hipotenusa e cate-tos X

'pZ

p e (Ra + Rp).

pppa RXZR −−= 22' [2.19] Os valores de estão relacionados através das igualdades abaixo: '''' ,,,,,,, pppppp CCVVIIZZ

'''

'

p

p

p

pp

CC

VV

II

ZZ

p

=== [2.20]

Se em lugar de resistências usarmos reatâncias, a expressão [2.19] se transforma em:

X Z Ra p p= − −'2 2 X p [2.21]

Para calcularmos os valores de Rp e de Xp é necessário conhecer o fator de potência do mo-tor, cos φp, na partida. Este, entretanto, não é um dado disponível de catálogo. Como Rp, comparado com Xp, é um valor muito pequeno, é comum desprezar seu valor e fazer Xp = Zp. Todavia, se se deseja obter um valor de cosφp, a expressão empírica [2.22], proposta por B.Y. Lipkin em seu livro Electrical Equipment for Industry pode ser utilizada com bons resultados.

( )( )

⎥⎥⎦

⎢⎢⎣

⎡ −+

−=

31

1coscos

ηηφφ p

pnmp

IIs

C [2.22]

Os símbolos e as letras se referem a um determinado motor, todos os valores são dados em

pu, tomando as grandezas nominais do motor como valores base e têm o seguinte significado: cos φp = fator de potência do motor na partida. cos φ = fator de potência do motor a plena carga Cm = conjugado máximo Ip = corrente de partida η = rendimento a plena carga sn = escorregamento nominal 2.4.4) CHAVES ESTÁTICAS (SOFT STARTERS) Os semicondutores de potência existem há mais de 30 anos, mas até relativamente pouco tempo, eram muito caros para serem usados em chaves de partida de motores elétricos, substituindo as chaves eletromagnéticas convencionais. Porém, com a redução dos custos de produção dos semi-

Page 22: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

64

condutores, têm surgido no mercado as chamadas chaves estáticas (soft starters) com preços mais competitivos, ampliando o seu uso nos dias atuais. Além de possibilitar a redução da tensão aplica-da ao motor na partida a valores muito baixos, elas têm incorporado outras funções de controle e proteção do motor, tornando-se extremamente versáteis.

O tiristor ou retificador controlado de silício (SCR - silicon controlled rectifier), que opera em dois estados estáveis, aberto ou fechado, tal como um interruptor comum, é o principal componente da chave estática. O controle da tensão aplicada, mediante o ajuste do ângulo de disparo dos tiristores, permite obter partidas e paradas suaves do motor.

Com o ajuste adequado das variáveis, o conjugado produzido é ajustado à necessidade da carga, garantindo a mínima corrente necessária para a partida. Como os tiristores operam como in-terruptores que permitem fluxo de corrente em um único sentido, nos circuitos de corrente alternada eles são ligados dois a dois, formando a chamada ligação antiparalela (Figura 2.09).

Figura 2.09 – Ligação antiparalela de tiristores

Desta forma, a corrente alternada circula normalmente e, ao mesmo tempo se obtém o con-

trole da tensão aplicada ao motor. As chaves estáticas permitem um ajuste contínuo da tensão entre 0 e 100% da tensão de linha e não têm, como as chaves eletromagnéticas convencionais, o problema do surto de corrente e conjugado quando se passa para a tensão plena. A WEG e a SIEMENS pro-duzem chaves estáticas em modelos avançados, com várias funções.

A utilização de controladores micro-processados para as chaves estáticas é uma tendência geral entre os fabricantes. O uso dos micro-processadores permite ampliar o número de funções de controle da chave, não se limitando a ligar e desligar o motor. Algumas destas funções são, resumidamente, as seguintes: • Função partida suave: o tempo de aceleração do motor pode ser controlado. • Função limitação de corrente: limita a corrente a valores pré-determinados

• Função partida de bombas hidráulicas: reduz o chamado golpe de aríete que ocorre quando há desligamento do motor.

• Função parada suave: permite que o tempo de desaceleração do motor possa ser contro-lado, reduzindo-se gradualmente a tensão do motor ao invés de desligá-lo da rede.

• Função freio: o disparo dos tiristores pode ser feito de forma assimétrica, aplicando ao motor uma tensão desequilibrada que provoca o aparecimento de uma componente de tensão de seqüência negativa que, por sua vez, cria um conjugado de sentido oposto ao da rotação, freando o motor.

Page 23: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

65

O uso das chaves estáticas sempre acarreta algum tipo de problema para a operação dos mo-tores de indução devido aos harmônicos que ela introduz no enrolamento do motor ao realizar as suas funções. Devido à alta freqüência dos harmônicos, as perdas magnéticas são maiores, fazendo com que a elevação de temperatura do motor seja maior do que quando se usam as chaves convencionais. As chaves estáticas são fontes de “poluição” dos sistemas elétricos pois os harmônicos que elas produzem são considerados fatores que diminuem a qualidade da energia

isponível. d 2.5) CONSIDERAÇÕES FINAIS O uso de qualquer uma das chaves descritas anteriormente provoca a redução do conjugado do motor durante o processo de aceleração que pode ser considerado praticamente concluído quan-do o motor atinge a velocidade correspondente ao escorregamento crítico sm. Se a redução for signi-ficativa, como ocorre no caso da chave estrela-triângulo ou da chave autotransformadora na deriva-ção de 50%, há o risco da curva do conjugado motor cortar a curva do conjugado resistente em um ponto bem antes do conjugado máximo e, com isto, abortar o processo de aceleração. Além disso, o conjugado de aceleração diminui o que pode provocar um maior aquecimento do motor durante o período de aceleração. A escolha de um dos tipos de chave depende do tipo de carga que será acionada pelo motor e, obviamente, de fatores econômicos. As chaves estrela-triângulo são as mais baratas e devem ser usadas, preferencialmente, quando o motor aciona cargas de característica mecânica parabólica. As chaves com impedâncias primárias são muito usadas em motores de pequena e média potência, tipi-camente, em motores abaixo de 20 kW. Se o objetivo principal é reduzir o surto de corrente na rede, a chave autotransformadora deve ser a indicada. De todas as chaves, a chave estática é a que oferece a aceleração mais suave e pode incorpo-rar várias funções de proteção e controle do motor. Seu inconveniente, comparada com as demais, é o custo e a geração de harmônicos que, no mínimo, trarão problemas de aquecimento do motor. As chaves de partida só devem ser usadas quando a partida direta do motor não for permitida devido ao surto de corrente ou quando se deseja reduzir o conjugado de aceleração para proporcio-nar uma partida suave. 2.6) EXERCÍCIOS RESOLVIDOS 01) Um motor de indução trifásico, rotor em gaiola, aciona uma máquina diretamente aco-plada ao seu eixo que deverá girar a 1140 RPM na condição nominal de operação. A partida do mo-tor deverá ser efetuada por meio de uma chave autotransformadora usando a derivação de 50%. O conjugado da máquina acionada varia com a seguinte equação:

C n nr = + +− −13 64 10 102 4, 2 (n em RPM e Cr em Nm)

Pede-se: a) Escolher o motor tipo IP55 adequado para fazer o acionamento usando o catálo-go da WEG; b) Calcular a corrente de partida na rede quando se usa a chave. A tensão disponível é 220 V e a freqüência é de 60 Hz. SOLUÇÃO a) Na condição nominal de operação, o conjugado resistente será igual a: Nm 15511401011401064,13 242 =×+×+= −−

rnC

Page 24: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

66

A potência requerida pela máquina será: 5,189550

11401559550

==nC

P rnrn kW

O conjugado do motor na partida, usando a chave autotransformadora, deverá ser maior do que o valor inicial do conjugado resistente Co = 13,64 Nm, isto é, > 13,64 Nm. '

pC

Porém, 56,545,064,13

22

'2' =>∴=∴= p

pppp C

KC

CCKC Nm

O motor a ser escolhido deverá ter um conjugado de partida maior do que 54,56 Nm a plena

tensão. Consultando o catálogo da WEG, encontramos um motor com os seguintes dados de placa: 18,5 kW; 220 V; 6 pólos; 60 Hz; 1165 RPM; In = 60,3 A; Ip= 7,9 p.u; Cn = 150 Nm; Cp = 2,6 p.u. = 390 Nm; Cm = 2,8 p.u; tb = 8 s; Jm = 0,30337 jgm2; Categoria N. O motor escolhido atende às condições do problema, pois Cp = 390 Nm (R) Observação: não foi feita a verificação da capabilidade de aceleração por não ter sido dado

o momento de inércia da máquina. b) A corrente de partida ao se usar a chave será: pu. (R) 975,19,750,0 22' =×== pp IKI

02) Um soprador de ar de um alto forno de uma usina siderúrgica possui os seguintes dados operacionais: a) Conjugado nominal: 290 Nm; b)Velocidade nominal:1760 RPM; c) Conjugado de atrito: 80 Nm; d) Momento de inércia: 16 kgm2

Deseja-se especificar um motor de indução trifásico, rotor em gaiola, tipo IP55, para acionar o soprador, sabendo-se que este será acoplado diretamente ao eixo do motor. O motor deverá ser ligado à rede através de uma chave autotransformadora na derivação de 80%, no momento em que atingir a velocidade de 1700 RPM. Usar o catálogo da WEG. Solução A potência requerida pelo soprador na condição nominal de operação será:

44,539550

1760290=

×=rP kW que é a mesma fornecida pelo motor, pois o acoplamento é direto.

Consultando o catálogo da WEG, o motor escolhido possui os seguintes dados:

55 kW; 440V; 60 Hz; 4 pólos; 1770 RPM; Cn = 30,3 kgfm; Cp = 2,2 p.u.; Cm = 2,7 p.u. Jm = 0,69987 kgm2; Categoria N; tb = 11 s

Page 25: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

67

Para verificarmos se o motor escolhido possui capabilidade de aceleração quando for usada a chave, temos que calcular o tempo de aceleração para ele atingir a velocidade de 1700 RPM., e comparar o resultado obtido com o tempo de rotor bloqueado. Porém não será possível comparar com o tempo de rotor bloqueado dado acima, pois o calor gerado quando se usa a chave é diferente do calor gerado quando o motor parte a plena tensão. Será demonstrado mais adiante que o tempo

de rotor bloqueado deverá ser corrigido pelo fator 563,18,0

122

' =⎟⎠

⎞⎜⎝

⎛=⎟

⎠⎞

⎜⎝⎛VV . Portanto, o tempo de

rotor bloqueado a ser comparado é igual a 1,563x11 = 17,18 s. Teremos: '12'

ama C

Jt ωω −= , sendo:

'at : tempo de aceleração quando se usa a chave..

J: momento de inércia total = 16 + 0,69987 = 16,7 kgm2

ω1 = 0 ω2 = 1700 RPM = 178,024 rad/s

rmmmam CCC −= '' : conjugado de aceleração médio equivalente à tensão reduzida.

( ) 2' 45,0 KCCC mpmm += : conjugado médio motor a tensão reduzida

3orn

ormCCCC −

+= : conjugado resistente médio do soprador de ar, carga parabólica.

( ) 411,18,07,22,245,0 2' =+=mmC pu = 1,411x30,3x9,81 Nm = 419,47 Nm.

1503

8029080 =−

+=rmC Nm

Substituindo os valores obtidos acima na expressão do conjugado de aceleração, teremos:

47,26915047,419 =−=amC Nm

O tempo de aceleração será então: 03,1147,26902,1787,16' ==at s, valor menor do que o tempo

de rotor bloqueado corrigido. Vê-se que se o tempo de rotor bloqueado não fosse corrigido, o motor deveria ser recusado. (R) Em seguida, deve ser verificado se o conjugado de partida do motor com a tensão reduzida é maior do que o conjugado resistente inicial, isto é, Nm. Ora, o conjugado de partida com a

tensão reduzida será , valor muitas vezes maior do que 80 Nm.

29' >pC

52,41881,93,302,28,0 2' =×××=pCPortanto, o motor está correto. (R)

03) O motor escolhido no problema 01 será, agora, ligado à rede através de uma chave com resistências primárias, acionando uma carga de característica mecânica constante com a velocidade acoplada diretamente ao eixo do motor, sendo 3,4 kgm2 o seu momento de inércia. O motor vai ope-rar na sua condição nominal. O fator de potência na partida foi estimado em 38%. Pede-se: a) O valor da resistência adicional, por fase, para reduzir a corrente de partida para 6 pu; b) O conjugado de partida e o conjugado máximo; c) O tempo gasto para se fazer a comutação sabendo-se que ela vai ocorrer na velocidade correspondente ao escorregamento crítico que vale 0,10 pu.

Page 26: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

68

Solução a) A resistência a ser inserida será obtida pela seguinte equação: pppa RXZR −−= 22' sendo:

ppp

ppp

ZX

ZR

φ

φ

sen

cos

=

=

A impedância Zp, em pu, é o inverso da corrente de partida, ou seja, 126,09,7

11===

pp I

Z

Da equação [2.20] podemos tirar: 166,069,7126,0'

' ===p

ppp I

IZZ pu

..1165,0925,0126,0

..0478,038,0126,0

upX

upR

p

p

=×=

=×=

Substituindo os valores, teremos: 0704,00478,01165,0166,0 22 =−−=aR pu (R) Para obter o valor de Ra em ohms, é necessário calcular a impedância nominal do motor que

será tomada como a impedância base, isto é, 106,23,603

2203

===n

nb IVZZ ohms.

ohms (R) 148,0106,20704,0 =×=aR b) Da equação [2.21] podemos tirar:

45,19,7

66,222'

' =⎟⎠

⎞⎜⎝

⎛=⎟

⎟⎠

⎞⎜⎜⎝

⎛=

p

ppp I

ICC pu ; 61,1

9,768,2

22'' =⎟

⎞⎜⎝

⎛=⎟

⎟⎠

⎞⎜⎜⎝

⎛=

p

pmm I

ICC pu

c) O tempo para a comutação será igual a: '12'

ama C

Jt ωω −= , onde:

703,34,330337,0 =+=+= maqmot JJJ kgm2 ω1 = 0; ω2 = velocidade correspondente ao escorregamento de 0,10 pu, isto é: RPM = 113,09 rad/s = ω( )n2 1200 1 0 10 1080= − =, 2

rmmmam CCC −= '' ; ( ) 2' 45,0 KCCC mpmm += = ( )0 45 1 45 1 61 1 377, , , ,+ = pu = 206,55 Nm Crm = conjugado nominal do motor pois a máquina está acoplada diretamente e sua caracte-rística mecânica é constante = 150 Nm.

Substituindo os valores obtidos, teremos: 4,715055,206

09,113703,3' =−

=at s (R)

04) Um motor de indução trifásico, rotor em gaiola, possui os seguintes dados de placa:

Page 27: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

69

37 kW; 440 V; 60 Hz; 4 pólos; 1770 RPM; Cn = 198 Nm; Cp = Cm = 2,4 pu; Jmot = 0,3405 kgm2; tb = 12 s; Categoria H Ele opera na sua condição nominal acionando uma carga que está acoplada ao seu eixo atra-

vés de um redutor de velocidade cuja relação é 0,333 e rendimento 88,27%. O momento de inércia da carga é 9 kgm2 e o seu conjugado resistente varia com a seguinte equação:

C nr = +60 0 787, (n em RPM e Cr em Nm)

O motor será ligado à rede por uma chave estrela-triângulo e a comutação para a tensão ple-na se dará no instante em que o motor atinge 1713 RPM correspondente ao conjugado máximo. Pede-se: a) O tempo de ajuste do relé de tempo para comandar a comutação; b) Estando o motor operando normalmente, qual o tempo de frenagem quando se aplica um conjugado frenante mecâni-co igual ao conjugado nominal da carga? Solução a) Na condição nominal de operação do motor, a velocidade do eixo da carga será 590 RPM e o conjugado requerido igual a: Cr = 60 + 0,787x590 = 524,33 Nm.

O valor médio do conjugado resistente será: 16,2922

33,52460=

+=rmC Nm, cujo valor

referido ao eixo do motor será igual a: ( ) 31,1103333,08827,0

16,292=×=refCrm Nm.

O conjugado médio motor, com a chave ligada, será igual a:

( ) ( ) 56,14219872,072,0

34,24,245,0

345,0

3' =×==

+=

+== pu

CCCC mpmm

mm Nm

O momento de inércia total referido ao eixo do motor será:

4086,13193405,02,1

2

=⎟⎠⎞

⎜⎝⎛×+×=J kgm2

Tendo obtido todos os dados para calcular o tempo de aceleração teremos:

8,731,11056,142

38,1794086,1'12' =

−=

−=

ama C

Jt ωω s (R)

b) O tempo de frenagem será igual a: 84,019831,110

35,1854086,112 =+

=+−

=fmrm

f CCJt ωω s (R)

2.7) AQUECIMENTO DO MOTOR DE INDUÇÃO DURANTE A PARTIDA

Page 28: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

70

2.7.1) PRELIMINARES Quando o motor de indução é ligado diretamente à rede as perdas jóulicas no estator e no rotor produzidas pela corrente de partida provocam um forte aquecimento do motor, durante um tempo relativamente curto (tempo de aceleração). As perdas rotacionais a vazio têm influência des-prezível no aquecimento do motor durante a partida. Se o motor parte com a carga acoplada, (o e-xemplo clássico são os ventiladores ou sopradores de ar), o conjugado resistente aumenta o tempo de aceleração agravando o problema do aquecimento.

Esta sobrecarga térmica não tem tempo suficiente para ser dissipada no meio ambiente sen-do então absorvida pelos enrolamentos do rotor e do estator, provocando uma elevação da tempera-tura localizada naquelas partes do motor. Esta condição pode ser mais crítica para o rotor do que para o estator, em especial para o rotor em gaiola. Isto porque no rotor, a elevação de temperatura causa sérios problemas devidos à dilatação dos anéis de curto-circuito que unem as barras do rotor. Os anéis tendem a se dilatar, mas as barras, que são rigidamente fixadas dentro das ranhuras do ro-tor, não acompanham a dilatação dos anéis. Como conseqüência, aparece uma tensão mecânica na junção das barras com os anéis, na parte externa que se estende fora das ranhuras, ao mesmo tempo em que o calor reduz a resistência mecânica dos anéis. Esta tensão pode deformar as barras e provo-car fadigas a cada vez que o motor for ligado. Isto é particularmente verdadeiro para os motores que trabalham em regimes intermitentes que são ligados e desligados várias vezes durante seu ciclo operacional.

Por sua vez, no enrolamento do estator, a elevação da temperatura em tempo tão curto pode provocar uma rápida deterioração do isolamento, reduzindo a expectativa de sua vida útil. Além deste problema de natureza térmica, vale mencionar também que a elevada corrente de partida pode provocar, especialmente nos grandes motores, na parte do enrolamento chamado coroa, constituída pelas cabeças das bobinas, esforços eletrodinâmicos entre as espiras, que se atraem ou se repelem, causando um movimento de atrito entre elas que resulta em fadiga e abrasão. Da mesma forma co-mo foi citado anteriormente para o rotor, este problema é agravado para os motores que operam em regimes de trabalho intermitente em que são submetidos a partidas, frenagens e reversões freqüen-tes, como ocorre nos regimes de trabalho S4 e S5.

Desta forma, a operação do motor de indução pode ficar limitada pelo aquecimento do rotor ou do estator durante a partida. Enquanto o rotor em gaiola pode suportar temperaturas significati-vamente mais altas do que as do enrolamento do estator, entretanto, ele pode atingir sua temperatura máxima permissível durante a partida, antes de o mesmo acontecer com o enrolamento do estator. Nesta condição, a limitação térmica do motor é imposta pelo rotor. Se, ao contrário, é a temperatu-ra do enrolamento do estator que atinge, durante a partida, seu máximo valor permissível, antes da do rotor, dizemos que a limitação térmica do motor é imposta pelo estator. Estes valores de tempe-ratura que o rotor e o enrolamento do estator atingem são superiores aos valores máximos para a classe de isolamento térmico do motor que são estabelecidos para sua condição de operação em regime contínuo.

Tão logo o motor atinge a velocidade de regime, a fonte de calor se reduz drasticamente (a corrente de partida se reduz à corrente nominal ou a outro valor menor). Paralelamente, a ventilação do motor, agora funcionando plenamente, ajuda a dissipar o calor residual e, em conseqüência, as temperaturas do rotor e do enrolamento do estator caem. Tais considerações são especialmente váli-das quando se trata de partida de cargas de grande inércia que requerem um tempo maior para se acelerar. Após ter completado a aceleração e atingido seu estado de regime permanente, em geral, na sua condição nominal, o motor inicia um processo de aquecimento gradual, até atingir uma deter-

Page 29: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

71

minada temperatura. Ao longo desse processo se estabelece um gradiente de temperatura do interior do motor (enrolamento do estator) para a parte externa (carcaça) havendo, portanto, dissipação de calor para o meio ambiente. O processo se completa a partir do momento em que se estabelece o chamado equilíbrio térmico, isto é, todo calor gerado pelas perdas do motor é dissipado para o meio ambiente. A temperatura do motor atinge o seu valor máximo possível para aquela condição de car-ga e se estabiliza.

2.7.2) CALOR GERADO NO ROTOR DURANTE A PARTIDA A equação [1.08] é a expressão do conjugado mecânico interno desenvolvido pelo motor, a partir do circuito equivalente de Thévénin, conforme visto no capítulo I, reproduzida em [2.23]:

sIrmC

smi ω

2221= [2.23]

Por outro lado, a equação [1.35] estabelece que:

dtdJCC rω

+= [2.24]

Supondo a situação particular em que o motor está desacoplado da máquina acionada, ou seja, o motor está girando a vazio, podemos fazer na equação [2.24] Cr = 0. Portanto, o conjugado mecânico interno que o motor desenvolve será todo ele utilizado na aceleração da massa m cujo momento de inércia é igual a J. Esta massa m é constituída pela massa do rotor e por alguma outra que possa estar acoplada ao seu eixo, por exemplo, a massa de um volante de inércia. A equação [2.24] se transforma em:

dtdJC ω

= [2.25]

Igualando as equações [2.23] e [2.25] podemos escrever5 :

sIrm

dtdJ

sωω 2

221= [2.26]

Porém, sendo:

s

ssω

ωω −= [2.27]

resulta:

dtds

dtd

sωω−= [2.28]

Substituindo a expressão [2.28] na equação [2.26], teremos:

5 Como já visto, vmi PCC ∆+= . Sendo as perdas rotacionais a vazio vP∆ desprezíveis, resulta . CCmi =

Page 30: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

72

dtdsJ

sIrm

ss

ωω

−=2221 [2.29]

Rearranjando a equação [2.29] e tomando a integral de ambos os membros podemos escre-ver:

∫ ∫−=2

1

2

1

22221

t

t

s

s s sdsJdtIrm ω [2.30]

Chamando de Er, o resultado da integração do primeiro membro, podemos escrever:

( 22

21

2

2ss

JE s

r −=ω ) [2.31]

A equação [2.31] representa a perda de energia6 que ocorre na resistência ôhmica do rotor (nas três fases, quando se tratar de um rotor bobinado, ou em todas as barras e anéis de curto circui-to, se for rotor em gaiola), quando ele acelera uma massa rotativa cujo momento de inércia é J, a partir de uma velocidade correspondente ao escorregamento s1 até a velocidade correspondente ao escorregamento s2. Em outras palavras, para que o rotor consiga acelerar a massa rotativa de mo-mento de inércia J entre as duas velocidades, ele precisa despender uma determinada quantidade de energia sob a forma de calor que será calculada conforme [2.31]. O tempo não aparece nesta equa-ção, o que significa dizer que a energia perdida no rotor devido á aceleração é a mesma, indepen-dente do tempo requerido para acelerar. Esta hipótese só é possível porque todo o conjugado resis-tente foi desprezado. Se, por exemplo, o atrito e a ventilação fossem considerados, a perda de ener-gia no rotor seria maior e o sistema não seria mais conservativo. Porém, esta perda adicional é usu-almente pequena comparada com a energia dissipada para acelerar a massa rotativa e pode ser des-prezada. No caso de um motor de rotor bobinado que usa reostato de partida, a maior parte da perda durante a partida se dará na resistência do reostato. Nos regimes intermitentes em que há grande número de partidas, usa-se a equação [2.31] para se calcular as perdas durante a aceleração, admi-tindo-se que ela se dá instantaneamente. Se na equação [2.31] fizermos s1 = 1 e s2 = 0, isto é, o motor parte do repouso e acelera até

atingir, praticamente, a velocidade síncrona ωs, a perda no rotor será igual a 2

2s

rJ

= , ou seja, a

energia perdida no rotor, durante a aceleração de zero até atingir a velocidade a vazio, é igual, nu-mericamente, à energia acumulada na sua massa rotativa.. A fig. 2.09 mostra, graficamente, a relação entre a energia perdida no rotor e a energia arma-zenada na massa rotativa para qualquer velocidade até a velocidade síncrona. Somente quando o motor vai do repouso até a velocidade síncrona ωs é que a perda no rotor é igual à energia armaze-nada. Para qualquer valor menor do que a velocidade síncrona a perda no rotor será sempre maior do que a energia armazenada. Se, por exemplo, a carga fosse acelerada somente até atingir ωx, a energia armazenada na massa rotativa seria proporcional à área 0ωxA0 enquanto a perda no rotor seria proporcional à área 0ABC0. Obviamente, a energia total despendida para acelerar o rotor de 0 a ωx seria proporcional à soma das duas áreas, isto é, a área 0ωxBC0.

6 Ao longo do texto usaremos as expressões “perda de energia”, "energia perdida", “energia dissipada”, “energia trans-formada em calor”, “calor gerado”, todas com o mesmo significado.

Page 31: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

73

ωs M

Energia armazenada na massa rotativa ωx A B Energia perdida no rotor 0 C

Figura 2.09 - Relação entre perda de energia no rotor e energia armazenada durante a aceleração

Por exemplo, tomando ωx igual a 50% de ωs, ou seja, fazendo s1 = 0 e 21

2 =s na equação

[2.32], a área 0ωxA0 seria igual a 8

2sJω

e a área 0ABC0 seria igual a 2

83

sJω . Isto mostra que ace-

lerando a massa rotativa até 50% da velocidade síncrona, a perda no rotor será 3 vezes maior do que a energia cinética armazenada.

A expressão a que chegamos na equação [2.31] nos permite calcular a energia que foi trans-formada em calor no rotor não apenas durante a partida e aceleração, mas em qualquer condição em que a velocidade do motor está variando, por exemplo, durante as operações de frenagem com plu-gueamento e inversão de rotação. Para isto, basta atribuir os valores adequados aos escorregamentos s1 e s2.

Se o motor funciona a vazio e for feito um plugueamento, (frenagem do motor com inversão

de seqüência de fases), ou seja, s1 = 2 e s2 = 1, a energia perdida será igual a 2

32sJω

, isto é, 3 vezes a

energia perdida durante a partida e aceleração. Se o motor inverter a rotação após o plugueamento,

teremos s1 = 2 e s2 = 0 e a energia transformada em calor no rotor será igual a 2

42sJω

, isto é, 4 vezes

a energia perdida durante uma partida e aceleração. A energia dissipada no rotor pode ser reduzida fazendo a aceleração em mais de uma etapa.

Isto pode ser facilmente obtido por meio do motor de indução de rotor em gaiola, com duas veloci-dades, conhecido como motor tipo Dahlander. Na primeira etapa, o motor é ligado à rede com o enrolamento de maior número de pólos e se acelera até atingir, praticamente, a velocidade síncrona. Neste instante, os contatores instalados para fazer a mudança das conexões atuam, desligando o primeiro enrolamento e ligando o enrolamento de menor número de pólos à rede: o motor se acelera até atingir a velocidade final. A energia perdida se reduz à metade da que foi dissipada na partida em uma só etapa. A figura 2.10 mostra, graficamente, esta redução.

Na primeira etapa, o motor se acelera até atingir a velocidade 2

sω. A energia dissipada no

rotor corresponde à área 0AB0. Neste instante, as conexões externas são feitas pelos contatores, mudando o número de pólos, e o motor se acelera até atingir a velocidade ωs. A energia dissipada no rotor corresponde à área BCDB. Houve, portanto, uma redução de energia correspondente à área ABCEA, metade da área ODEO. A energia armazenada no rotor não se altera, independente de o motor ter se acelerado em uma ou duas etapas e corresponde à área 0ωsD0. A energia total consu-

gual soma das áreas 0ωsD0, 0AB0 e BCDB. mida ao longo de todo o processo será i à ωs D

Page 32: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

74

2

sω B C

0 A E

Fig. 2.10 - Redução de energia perdida durante aceleração em duas etapas

Em várias situações pode ser conveniente expressar o momento de inércia do motor em ou-tras unidades que não kgm2. Para os motores de indução ou síncronos, o momento de inércia J do rotor pode ser fornecido através da grandeza conhecida como Constante de Inércia ou Constante de Energia Cinética representada pela letra H e definida como a relação entre a energia armazenada na

massa rotativa do rotor à velocidade síncrona, 2

2sJω

em watt.s e a potência aparente nominal do

motor em kVA, isto é:

( )n

s

kVAJ

H2

10. 32 −

[2.32]

Como se pode observar, H terá a dimensão de tempo, segundo, sendo por isto chamada tam-bém de Constante de Tempo Inercial. Ela nos informa o grau de inércia da massa rotativa do rotor, da mesma forma que a constante de tempo de um circuito R-L nos informa do seu grau de indutivi-dade. Para motores de indução, valores típicos de H são 1 e 0,5 segundos.

2.7.3) CALOR GERADO NO ESTATOR DURANTE A PARTIDA

O próximo passo é calcular a energia perdida no estator, correspondente a uma dada perda de energia no rotor. Partindo, novamente, do modelo de circuito equivalente segundo Thévénin, fig. 1.04, vemos que a corrente I2 percorre RTh e R2,. Os pontos A e B na figura 1.04 dividem o circuito equivalente em duas partes distintas: o estator, à esquerda de A e B e o rotor, à direita. Portanto, o calor dissipado no estator é o calor dissipado na resistência RTh. Assim sendo, o calor dissipado no

enrolamento do estator será igual ao calor dissipado no rotor multiplicado pela relação2R

RTh , con-

forme indica a equação [2.33]:

rTh

e ERRE

2

= [2.33]

Somando as perdas geradas no rotor e no estator obteremos a perda total no motor quando ele opera a vazio, conforme a expressão [2.34]:

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

2

22

21

2

12 R

Rss

JE Ths

[2.34]

2.7.4) CALOR GERADO DURANTE A PARTIDA COM A CARGA ACOPLADA

Page 33: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

75

Quando o motor parte com a carga acoplada (o exemplo clássico são os ventiladores, exaus-tores e assemelhados), a energia perdida no rotor será maior do que quando ele parte a vazio, pois à inércia do rotor é somada a inércia da carga. Além disto, a presença do conjugado resistente aumen-ta o tempo de aceleração o que significa dizer maior aquecimento e maior perda de calor. A partir do modelo de circuito equivalente da fig. 1.04, podemos escrever:

sRImPem

2221= [2.35]

ou

2221 RImsPem = [2.36]

Em termos do conjugado mecânico interno e da velocidade do campo magnético girante, a potência eletromagnética Pem transferida ao rotor pode ser reescrita como se segue:

misem CP ω= [2.37]

Substituindo [2.37] em [2.36], e já tendo feito anteriormente Cmi = C, teremos:

2221 RImCs s =ω [2.38]

Considerando um intervalo de tempo dt durante a partida, a energia dissipada no rotor será então:

sCdtdtRIm sω=2221 [2.39]

A equação [2.02] nos permite substituir dt como se segue:

dt Jd

C Cr=

−ω

[2.40]

ou

rs CC

dsCJdtRIm−

=ωω2

221 [2.41]

Substituindo a variável ω por s,, podemos escrever:

sdsJCC

CdtRIm sr

22

221 ω

−= [2.42]

Integrando a equação [2.42] entre os limites correspondentes às variáveis dos dois membros, teremos:

∫∫ −−= 2

1

2

1

22

221

s

s sr

t

tsdsJ

CCCdtRIm ω [2.43]

Page 34: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

76

O primeiro membro da equação [2.43] representa, como já sabemos, a energia Er dissipada no rotor durante a partida, ao longo do intervalo de tempo compreendido entre t1 e t2, só que agora com a presença do conjugado resistente Cr. Da mesma forma como visto para o motor funcionando a vazio, o segundo membro da equação representa a energia acumulada pelo rotor para acelerar a massa rotativa de momento de inércia total J que inclui o momento de inércia da carga referido ao eixo do motor, entre as velocidades correspondentes aos escorregamentos s1 e s2. Vê-se que a equação [2.43] é a mesma equação [2.31] só que multiplicada pela função

CC Cr−

. Esta é uma função da variável s que não possui uma solução exata em termos matemáticos.

Assim, para resolver a integral, temos de partir para métodos aproximativos. O mais usado deles é

substituir a funçãoC

C Cr− pelos valores médios equivalentes aos conjugados do motor C e da carga

acionada Cr. São valores constantes e, portanto, podem ser trazidos para fora do sinal de integração. Isto sendo feito podemos escrever a equação [2.43] da seguinte forma:

∫−−= 2

1

2s

s srmmm

mmr sdsJ

CCC

E ω [2.44]

Cmm é o conjugado motor médio e Crm o conjugado resistente médio. A expressão final de Er será então:

( 22

21

2

2ssJ

CCCE s

rmmm

mmr −

−=

ω ) [2.45]

A equação [2.45] é a equação [2.31] multiplicada por C

C Cmm

mm rm− que será sempre um núme-

ro maior do que a unidade.

A energia dissipada no estator será igual à do rotor multiplicada pela relação 2R

RTh . Assim,

podemos escrever a expressão final da energia dissipada no motor de indução, durante a partida, com a carga acoplada, conforme a equação [2.46].

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+−

−=

2

22

21

2

12 R

RssJCC

CE Ths

rmmm

mmm

ω [2.46]

A expressão rmmm

mm

CCC

−, escrita sob a forma

mm

rm

CC

−1

1 , nos permite fazer a seguinte análise

dos resultados da equação [2.46]: quanto maior o valor de Cmm em relação a Crm menor será o efei-to do conjugado resistente no aquecimento do motor durante a partida. Este é o caso, por exemplo, dos pequenos motores, que possuem, em pu, elevados conjugados de partida e máximo, comparados

com os motores de grande potência. Isto faz com que a relaçãomm

rm

CC destes motores tenda para um

Page 35: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

77

valor muito pequeno e possa ser desprezada sem cometer grandes erros, ou seja, podemos conside-rar Crm igual a zero e admitir que o aquecimento destes motores se dá instantaneamente.

Já os motores de grande potência têm valores menores de conjugado de partida e máximo, em pu, comparativamente com os motores de pequeno porte, e, portanto, não podem ter a rela-

çãomm

rm

CC desprezada. Tais motores se aquecem mais do que os de pequeno porte durante a partida.

De outro lado, as chaves de partida reduzem significativamente o Cmm o que aumenta o calor gerado durante a aceleração. À primeira vista isto pode parecer paradoxal porque elas reduzem a corrente que circula pelo motor e, portanto, reduzem as perdas jóulicas. Porém, este aparente para-doxo pode ser entendido a partir do seguinte ponto de vista: reduzindo-se o Conjugado Médio Mo-tor, o conjugado de aceleração se reduz e, em conseqüência, aumenta-se o tempo de aceleração. Mesmo sendo reduzida a corrente de partida pela chave, a sua permanência no enrolamento do esta-tor, durante um tempo de aceleração maior, provoca maiores efeitos de aquecimento para o motor do que se ele fosse ligado diretamente à rede. Em outras palavras, quando o motor parte com a car-ga acoplada, a redução da corrente de partida é compensada, no que se refere aos efeitos térmicos, por um tempo de aceleração maior.

Portanto, ao ser usada, a chave de partida reduz a corrente de partida na rede, como é o seu objetivo, mas a redução do conjugado de aceleração produz maior aquecimento devido ao maior tempo de aceleração.

Para que o motor mantenha a sua capabilidade de aceleração conforme definida na seção 2.3, quando for usada uma chave de partida, o calor gerado nas duas condições deve ser o mesmo. Supondo que uma chave de partida reduza a tensão do motor para V’e o conjugado médio motor seja reduzido para , a partir da equação [2.46], podemos escrever: '

mmC

'

'

am

mm

am

mm

CC

CC

= [2.47]

Sendo, como já demonstrado, rmmmam CCC −= e rmmmam CCC −= '' . Porém, os conjugados médios são proporcionais aos quadrados das tensões aplicadas ao mo-tor. Os conjugados de aceleração são inversamente proporcionais aos tempos de aceleração, ou seja, aos tempos de rotor bloqueado. Podemos estabelecer, portanto, a seguinte proporção:

2

''

''

''2'

⎟⎠⎞

⎜⎝⎛=∴====⎟⎟

⎞⎜⎜⎝

⎛VVtt

tt

tt

CC

CC

VV

bbb

b

a

a

am

am

mm

mm [2.48]

Assim, ao se usar uma chave de partida o tempo de aceleração será, obviamente, maior do que o tempo de aceleração com partida direta, isto é, > t'

at a. Para que o motor mantenha a mesma capabilidade de aceleração conforme definido em na seção 2.2.3, quando se usa uma chave de par-tida, o tempo de aceleração deve ser menor do que o tempo de rotor bloqueado , dado pela e-quação [2.48].

'at

'bt

2.7.5) ELEVAÇÃO INSTANTÂNEA DA TEMPERATURA NA PARTIDA

Page 36: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

78

Conforme dito anteriormente, o calor gerado no motor durante a partida eleva, em um tempo muito curto, a temperatura do rotor e do estator a valores que podem danificar o rotor por deforma-ção das barras, de um lado, e do outro, destruir ou reduzir, drasticamente, a vida útil do isolamento das bobinas do estator. Para calcular esta elevação de temperatura é necessário conhecer os tipos de materiais usados na gaiola do rotor e no enrolamento do estator, seu calor específico e o seu peso, no rotor (as barras e os anéis) e no enrolamento do estator. Para facilitar os cálculos, admite-se que a energia perdida durante a partida e aceleração é toda ela consumida para elevar a temperatura do metal e nenhuma parte dela é perdida para o meio ambiente por condução ou irradiação. A partir da definição de capacidade calorífica de um corpo7 podemos definir a capacidade calorífica do material usado no rotor ou no estator como se segue:

CE

=Θ [2.49]

onde: C = Capacidade calorífica do material usado na gaiola do rotor ou no enrolamento do es-

tator, em cal/oC. E = quantidade de calor gerado durante a partida e aceleração no rotor ou no enrolamento

do estator, com ou sem o conjugado resistente incluído, em cal. Θ = elevação de temperatura do rotor ou do enrolamento do estator, acima da temperatura

inicial (temperatura ambiente se o motor estiver a esta temperatura), em oC. O calor específico da substância que constitui o corpo de massa m sendo definido como a relação entre sua capacidade calorífica e a sua massa, podemos escrever:

CCme = [2.50]

onde Ce será obtido em calg C0 .

A tabela 2.01 fornece o calor específico dos materiais mais comumente usados no rotor e no enrolamento do estator dos motores de indução.

Portanto, tendo sido calculada a quantidade de calor gerada durante a partida, a elevação ins-tantânea será calculada a partir da equação [2.49], usando a equação [2.51], como se segue:

Θ =× ×EG Ce4180 [2.51]

TABELA 2.01

Material

Calor específicoCe

Cobre 0,094 Alumínio 0,220

7 Denomina-se capacidade calorífica de um corpo de massa m à relação entre o calor absorvido ou cedido e a corres-pondente variação da temperatura.

Page 37: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

79

Latão 0,092 Bronze 0,093

A equação [2.51] poderá ser aplicada ao rotor ou ao estator e as letras têm os seguintes signi-

ficados: Θ = elevação instantânea da temperatura do rotor ou do enrolamento do estator, acima da

temperatura inicial (temperatura ambiente se o motor estiver a essa temperatura), em oC. E = energia perdida no rotor ou no enrolamento do estator, com ou sem o conjugado resis-

tente, em watt.s G = massa do material do rotor ou do estator, em kg.

Ce = calor específico do material do rotor ou do estator em calg C0

Dos elementos que compõem a equação [2.51], o mais problemático de ser obtido pelo en-genheiro que vai selecionar o motor é a massa G do material que constitui um dado de projeto do motor, raramente disponível em catálogos.

A elevação instantânea da temperatura no enrolamento do estator pode atingir valores bem acima dos valores limites, de acordo com a sua classe de isolamento térmico, quando ele opera em regime contínuo. A tabela 2.02 mostra as classes de materiais isolantes usados na fabricação de má-quinas elétricas com suas respectivas temperaturas limites, de acordo com a NBR-7094

TABELA 2.02 CLASSES DE ISOLAMENTO TÉRMICO

CLASSE A 1050 CCLASSE E 1200 CCLASSE B 1300 CCLASSE F 1550 CCLASSE H 1800 C

. Estas são as máximas temperaturas permissíveis quando o motor opera em condições de

regime contínuo, quando a elevação da temperatura se faz de maneira lenta e atinge um valor está-vel correspondente a um determinado valor da carga acionada. Porém, durante uma partida em que podem ocorrer elevações instantâneas da temperatura os limites são ampliados até os valores indi-cados na tabela 2.03.8 Esta tabela representa a temperatura de atuação de relés microprocessados que são incorporados em muitos motores para prover uma proteção térmica total e não apenas a devida a sobrecorrente.

TABELA 2.03

Classe de isolamento A E B F HTemperatura oC 200 215 225 250 275

Tão logo o motor atinja sua velocidade de regime, a corrente de partida se reduz, reduzindo

drasticamente, a fonte de calor. Quando o motor parte com a carga acoplada, o que significa maior inércia e a presença de conjugado resistente, a energia a ser dissipada será, obviamente, maior do 8 Ver publicação número 34-11, 1978 da IEC: proteção térmica incorporada às máquinas elétricas girantes.

Page 38: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

80

que quando ele parte desacoplado. Se esta energia elevar a temperatura do motor a valores iguais aos da tabela 2.03 os relés microprocessados irão atuar desligando o motor. Se de um lado estas temperaturas máximas permissíveis são bem maiores do que as da sua classe de isolamento, por outro lado elas são da mesma ordem de grandeza da temperatura de cozimento do verniz ou resina isolante usados na fabricação das bobinas. 2.8) EXERCÍCIOS RESOLVIDOS 01) Um motor de indução trifásico, rotor em gaiola, deverá acionar um soprador de ar que está acoplado ao seu eixo através de um redutor de velocidades de relação 0,50 e rendimento 96%. O motor será ligado à rede diretamente. Os dados do motor e do soprador de ar são os seguintes: Motor: 7,5 kW; 440 V; 4 pólos; 60 Hz; 1750 RPM; Cn = 41 Nm; Jm = 0,1029 kgm2 ; Classe B. Peso do material usado na fabricação da gaiola de alumínio: 1,52 kg Peso do cobre usado no enrolamento do estator: 8,62 kg. A relação entre a resistência RTh do estator e r2 do rotor é igual a 1,93. Conjugado médio motor: 2,385 p.u. = 97,6 Nm. Soprador de ar: Momento de inércia: Js = 40,53 kgm2

Conjugado nominal: 77,5 Nm Conjugado médio resistente: Crm = 31 Nm

Pede-se: a) Calcular a energia perdida no rotor e no estator, durante a partida, estando o mo-tor desacoplado do soprador; b) Idem, com o motor acoplado a sua carga; c) As temperaturas atin-gidas pelo rotor e pelo estator durante a partida, nos dois itens anteriores, sabendo-se que a tempera-tura do ambiente é 25oC. Solução

a) A energia perdida no rotor será obtida a partir da equação [2.32], ( )22

21

2

2ss

JE S

r −=ω

,

onde, fazendo J = 0,1029 kgm2; ωs = 188,5 rad/s; s1 = 1; s2 = 0; resulta Er = 1828 joules. (R) A energia dissipada no enrolamento do estator será obtida multiplicando o resultado anterior por 1,93, conforme a equação [2.34], ou seja, Ee = 1,93x1828 = 3528 watt.s (R)

b) Estando a carga acoplada ao motor, a energia dissipada no rotor será obtida pela equação

[2.45], ( )22

21

2

2ss

JCC

CE s

rmmm

mmr −

−=

ω.

Teremos, agora, os seguintes valores:

Cmm = 97,6 Nm; 1621

96,031)( =×==

m

mq

r

rmrm

CrefC

ωω

η Nm

Page 39: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

81

J = 0,1029x1,2 + 2

2153,40 ⎟

⎠⎞

⎜⎝⎛× = 10,25 kgm2

( ) ( ) 218000012

5,18825,10166,97

6,97 22

≅−×

×−

=rE joules (R )

A energia dissipada no estator será igual ao valor anterior multiplicado por 1,93, isto é: Ee = 1,93x218000 ≈ 421000 watt.s ou joules (R)

c) A elevação da temperatura do rotor será obtida através da equação [2.51]

Θ =× ×EG Ce4180

. Teremos os seguintes valores:

15622,052,14180

218000=

××=Θr

o C. A temperatura instantânea atingida pelo rotor será igual a:

156 + 25 = 181o C. (R )

A elevação de temperatura no estator será igual a 182064,062,84180

421000=

××=Θe

o C. A tem-

peratura instantânea atingida pelo estator será igual a 182 + 25 = 207o C (R ) De acordo com a tabela 2.03, estes valores estariam dentro do limite para a classe B.

02) Um motor de indução trifásico tipo Dahlander possui os seguintes dados: 6 kW; 220 V; 60 Hz; 4 pólos; Cn = 31,4 Nm; 9,2 kW; 220 V; 60 hz; 2 pólos; Cn = 24,5 Nm;

O momento de inércia do rotor é Jm = 0,053 kgm2 e a relação 6,12

=r

RTh . Pede-se: a) Deter-

minar a perda de energia no motor quando a partida é feita em uma só etapa com o motor a vazio; b) Idem, em duas etapas; c) A energia cedida durante o processo de partida em duas etapas; d) Quando se faz um plugueamento em uma só etapa; e) Quando se faz um plugueamento em duas etapas. Solução

a) A energia perdida no motor é a soma das energias perdidas no rotor e no estator, ou seja:

( )( ) 97936,11012

377053,0 222

=+−×

=mE w.s (R )

Page 40: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

82

b) Em duas etapas a energia perdida será igual a:

( )( ) ( )( ) =+−×

++−×

= 6,1105,02

377053,06,11012

5,188053,0 222

222

mE 4896 W.s (R)

Como se percebe, a energia perdida em duas etapas é a metade da energia perdida em uma só etapa. c) A energia cedida será a soma da energia perdida com a energia armazenada na massa gi-rante do rotor, ou seja: Ec = + =4896 9793 14689 W.s ou joules(R) d) Quando se faz um plugueamento, s1 = 2 e s2 = 1. Portanto, a energia perdida será:

Ep = 3x9793 = 29379 W.s ou joules (R)

e) O plugueamento em duas etapas se inicia, obviamente, com o motor girando à maior ve-locidade e, ao atingir a velocidade igual à metade, faz-se a comutação para o enrolamento de maior número de pólos. Assim sendo, teremos para os escorregamentos os seguintes valores:

1a etapa: s1

3600 36003600

2=− −

−= ; s2

3600 18003600

1 5=− −

−= ,

2a etapa: s1

1800 18001800

2=− −

−= ; s2 1= (rotor parado)

A energia dissipada será:

( )( ) ( )( )Ep =×

− + +×

− + =0 053 377

22 1 5 1 1 6

0 053 188 52

2 1 1 1 6 244822

2 22

2 2,, ,

, ,, W.s (R)

que representa uma economia de energia de apenas 12448229379

16 67− = , %

03) Um motor deverá ser escolhido para acionar uma máquina cujo ciclo operacional deverá ser o seguinte: a) Partida com a máquina acoplada, porém sem realizar trabalho; b) Operação em regime durante 20 segundos consumindo 3,7 kW; c) Parada do motor por plugueamento, máquina sem realizar trabalho; d) Tempo de repouso, 15 segundos; e) Reinício do ciclo que se repete ao lon-go do dia.. O motor disponível é de 3,7 kW, 6 pólos, 60 Hz, categoria D, cujo momento de inércia vale 0,0637 kgm2. A carga deverá ser acoplada diretamente ao eixo do motor e seu momento de inércia vale 0,059 kgm2. O motor possui os seguintes dados de projeto:

Relação 63,02

=r

RTh

Perda total em regime (condição nominal): 700 watts

Perdas permitidas para uma elevação da temperatura de 50 oC 300 watts parado 820 watts em regime

Verificar se o motor disponível é adequado para o acionamento.

Page 41: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

83

OBSERVAÇÃO Este regime de trabalho é chamado de Regime Intermitente Periódico S5. Solução A perda de energia no motor (rotor + estator) durante uma aceleração será igual a:

( ) ( )( )E m =+

− + =0 0637 0 059 125 66

21 0 1 0 63 1579

22 2, , ,

, watt.s

Perda durante o funcionamento em regime:Emr = × =700 20 14000 watt.s

Perda durante o plugueamento:Emp = × =3 1579 4737 watt.s

Perda total durante o ciclo: Emt = + + =1579 14000 4737 20316 watt.s

Portanto, a cada ciclo são gerados 20316 watts de calor que devem ser dissipados para o

meio ambiente, no mesmo período, caso contrário, ao longo do dia, a temperatura do motor iria se elevando e poderia ultrapassar o valor limite da sua classe de isolamento. Assim, o motor deve ser capaz de dissipar para o meio ambiente, durante um ciclo operacional, o mínimo de 20316 watt.s. Segundo os dados do fabricante, para que seja mantida a elevação de temperatura de 50 oC, o motor deve ser capaz de dissipar uma perda de 820 watt.s em regime e 300 watt.s parado. Em termos de calor, teremos:

Calor que o motor é capaz de dissipar em regime: 820x20 = 16400 watt.s Idem, quando parado: 300x15 = 4500 watt.s Total: 20900 watt.s

Podemos concluir que o motor terá condições de realizar o acionamento sem prejuízo do seu

isolamento térmico pois tem capacidade de dissipar mais calor do que o que está sendo gerado.(R)

Como conclusão, podemos verificar que o motor deverá partir 3600

20 15103

+≅ vezes por hora

ao longo do dia. 2.9) EXERCÍCIOS PROPOSTOS 01) Um motor de indução trifásico de 37 kW, rotor em gaiola, possui uma curva característi-ca que se aproxima da indicada na figura 2.11 podendo ser considerado como de categoria N. O momento de inércia total do motor e da carga é igual a 20 kgm2. C(Nm)

542

Page 42: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

84

271

0 900 1700 1800 RPM

Fig. 2.11 – Característica do motor de 37 kW

Pede-se: a) Qual a velocidade do motor, em RPM, quando ele opera na sua condição nominal? b) Qual o conjugado nominal, em Nm? c) O motor acionava uma carga de conjugado resistente constante com a velocidade, no valor de 410 Nm, quando o contator que o ligava ao barramento abriu. Enquanto o motor se desacelerava, o contator foi religado por meio de um relé temporizado. Quanto tempo o contator pode permanecer aberto para que, ao ser religado, o motor seja capaz de reacelerar e retornar à condição anterior ao desligamento? d) Calcular o tempo de aceleração para o motor atingir sua velocidade nominal, a partir do repouso, acionando uma carga de característica constante com a velocidade cujo conjugado resistente é igual ao nominal do motor.

02) Um motor de indução trifásico, rotor em gaiola, 3,7 kW, 440 V, 60 Hz, 6 pólos, 1150 RPM, categoria N, Jm = 0,0324 kgm2, possui uma curva característica que será traçada a partir dos dados da tabela abaixo. Ele opera na sua condição nominal acionando uma carga de conjugado re-sistente constante com a velocidade, acoplada diretamente ao seu eixo cujo momento de inércia vale 2,3 kgm2. Pede-se calcular o tempo de aceleração para o motor atingir a velocidade nominal quando for ligado diretamente à rede.

Velocidade (RPM)

ConjugadoNm

Velocidade(RPM)

ConjugadoNm

0 62,36 1000 80,00 200 65,75 1050 80,80 400 69,82 1100 55,04 600 73,38 1150 30,72 800 76,80 1200 0 900 79,80

03) Especificar um motor de indução trifásico, rotor em gaiola, carcaça IP55, categoria N, para acionar um soprador de ar (característica parabólica crescente) cujo momento de inércia vale 8 kgm2. O conjugado nominal do soprador é 75 Nm à velocidade de 1760 RPM e seu conjugado de atrito é 10% do nominal. O motor deverá ser especificado pelo Catálogo Geral de Motores Elétricos da WEG para as seguintes condições: a) Quando o soprador estiver acoplado diretamente ao eixo do motor; b) Quando o soprador estiver acoplado através de um redutor de velocidades de relação igual a 0,5 e rendimento 0,95.

04) A tabela abaixo fornece alguns pontos da característica de conjugado de um motor de indução trifásico, rotor em gaiola, categoria H, ligado a plena tensão:

Conjugado (pu) 2,80 2,90 3,00 3,25 3,50 1,00 0,00 Velocidade (pu) 0,00 0,20 0,45 0,80 0,93 0,97 1,00

Page 43: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

85

O conjugado nominal e a velocidade síncrona foram tomados como base. O motor aciona uma máquina acoplada diretamente ao seu eixo cujo conjugado é constante com a velocidade. O momento de inércia total do conjunto possui um valor tal que o tempo de aceleração para atingir a velocidade nominal do motor, com um conjugado de aceleração constante igual a 1,3 pu, é igual a 1,5 segundos. Durante a operação na condição nominal, houve uma queda de tensão súbita de 50% motivada por um curto-circuito em local próximo do motor. A tensão permaneceu neste valor du-rante 4 segundos, sendo em seguida restaurada ao seu valor nominal após o curto-circuito ter sido eliminado. Durante este período o contator que liga o motor ao barramento permaneceu fechado. Pergunta-se: a) O motor vai parar? Se não, que velocidade ele vai atingir antes de a tensão retornar? b) O motor vai conseguir se reacelerar e atingir sua velocidade nominal? Se sim, em que tempo isto se dará?

05) Um motor de indução trifásico, rotor em gaiola, 1865 kW, 4160 V, 2 pólos, 60 Hz, cate-goria N, aciona uma bomba de alimentação de uma caldeira de vapor, acoplada diretamente ao seu eixo. A tabela abaixo apresenta alguns pontos da característica de conjugado do motor à tensão no-minal, da característica do conjugado da bomba (característica parabólica) e a velocidade do motor, todos os valores em pu, sendo o conjugado nominal e a velocidade síncrona do motor tomados co-mo base

Velocidade 0 0,10 0,30 0,50 0,70 0,90 0,92 0,98 Conj. motor 0,750 0,720 0,752 0,921 1,250 1,852 2,420 1,00 Conj. bomba 0,100 0,192 0,375 0,559 0,743 0,926 0,945 1,00

O motor parte com a válvula do lado de descarga da bomba aberta, mas operando contra

uma válvula de retenção que se abre no momento em que a pressão da descarga da bomba se iguala à pressão do sistema (altura manométrica total), o que ocorre quando o motor atinge a velocidade de 0,92 pu. À velocidade de 0,98 pu o motor desenvolve o seu conjugado nominal. A inércia do con-junto é tal que a massa girante armazena 5400 kWs de energia cinética à velocidade síncrona. Pede-se: a) Determinar o tempo necessário para a válvula de retenção abrir após a partida do motor; b) Havendo um desligamento do motor, no momento em que ele está operando na sua condição nomi-nal, qual o tempo que ele gasta para parar; c) Se for usada uma chave de partida que reduza a tensão aplicada ao motor a 65% da nominal, qual o tempo necessário para a válvula de retenção abrir, su-pondo que a comutação da chave se dará na velocidade de 0,92 pu? d) Estando o motor operando na sua condição nominal, qual o valor mínimo teórico de tensão que poderia ser aplicada para que ele continuasse a manter a bomba operando?

06) Um motor de indução trifásico, rotor em gaiola, ligado em estrela, possui os seguintes

dados de placa: 184 kW; 2300V; 60 Hz; 4 pólos; 1779 RPM; Cn = 987 Nm; Cp = 0,90 pu; Cm= 2,0 pu;

Jm = 3,5 kgm2 ; In = 61 A; Ip = 6,0 pu; tb= 14 s; Categoria H As constantes de seu circuito equivalente foram determinadas em ensaio de fábrica e têm os seguintes valores, em ohms/fase:

R1 = 0,562; R2 = 0,275; X1 = 2,577; X2 = 2,018; Xm = 59,8

Page 44: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

86

As perdas rotacionais a vazio valem 4,6 kW. Pede-se: a) Calcular os conjugados nominal, de partida e máximo usando a fórmula de conjugado obtida a partir do modelo de circuito de Thé-vénin e comparar os resultados obtidos com os do fabricante; b) Supondo que o motor aciona uma máquina acoplada diretamente ao seu eixo, cujo conjugado resistente varia parabolicamente com a velocidade de acordo com a seguinte equação: (C2921,010,0 nCr += r e n em pu, sendo a base para n a velocidade síncrona) e cujo momento de inércia é igual a 60 kgm2, calcular o tempo de acelera-ção para o motor atingir a sua condição nominal de operação; c) Qual o valor do conjugado de plu-gueamento, em Nm, no momento em que se faz a inversão da seqüência de fases? d) Qual o tempo de frenagem quando se faz um plugueamento? (tomar o valor médio de conjugado de frenagem entre o conjugado obtido em no item c e o conjugado de partida).

07) Um motor de indução trifásico, 440 V, 60 Hz, 4 pólos, 1750 RPM ligado em estrela, possui os seguintes valores por fase para as constantes de seu circuito equivalente:

R1 = 0,13 Ω; R2 = 0,32 Ω; X1 = 0,60 Ω; X2 = 1,48 Ω; Xm = 20 Ω

O motor está operando a plena carga com um escorregamento de 2% sendo 300 W as perdas

rotacionais a vazio. Usando o modelo do circuito equivalente de Thévénin calcular o conjugado inicial de plugueamento em Nm e em pu do conjugado nominal.

08) Um motor de indução trifásico, rotor em gaiola, quando ligado diretamente à rede absor-

ve uma corrente de partida igual a 7 pu e seu escorregamento nominal é 4%. Pede-se: a) Que deri-vação de um autotransformador deveria ser usada para reduzir a corrente de partida a 2,96 pu? b) Qual o valor do conjugado de partida na condição do item a)?

09) Um motor de indução trifásico, rotor em gaiola e estator em estrela, possui os seguintes

dados de placa: 185 kW; 2300 V; 58 A; 60 Hz; 8 pólos; 890 RPM; Cn = 1985 Nm; Cp = 1,4 pu; Cm = 2,2 pu; Ip = 5,5 pu; Jm = 16 kgm2; tb = 25 s; Categoria N Ele será ligado a um barramento de 2400 V, através de uma chave de reatância primária, pa-

ra operar na condição nominal, acionando uma carga de conjugado constante com a velocidade a-coplada diretamente ao seu eixo. Desprezando-se a sua resistência de partida pede-se: a) A indutân-cia necessária, em µF, para reduzir a corrente de partida para 3,0 pu; b) Os conjugados de partida e máximo, em pu, com a chave ligada; c) Verificar se a chave conseguirá dar partida e acelerar o mo-tor. 10) Um motor de indução trifásico, rotor em gaiola, deverá acionar uma máquina que possui os seguintes dados operacionais: Conjugado nominal: 480 Nm Velocidade nominal: 1780 RPM Característica mecânica: parabólica crescente com a velocidade. Conjugado de atrito: 10% do conjugado nominal. Tipo de acoplamento: direto Momento de inércia: 55 kgm2

Page 45: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

87

Pede-se: a) Escolher o motor (verificando a sua capabilidade de aceleração), tipo alto rendi-mento plus, categoria N, utilizando o Catálogo Geral de Motores Elétricos da WEG; b) O motor deverá ser ligado a um barramento de 440 V através de uma chave de partida com resistências pri-márias. Qual a tensão que a chave deverá aplicar ao motor para que seu conjugado de partida seja reduzido para 1,5 pu? c) Qual a corrente de partida no barramento correspondente à condição da letra b)? d) Qual o valor da resistência da chave, em ohms por fase? Supor que o fator de potência do motor, na partida, é igual a 30%; e) Durante a aceleração, a tensão aplicada ao motor aumenta gradualmente, atingindo 110% do valor calculado em b) no momento em que a velocidade atinge a 1710 RPM correspondente ao conjugado máximo. A comutação da chave para a tensão plena vai se fazer nesse instante. Qual deve ser o ajuste do relé de tempo para comandar a operação? f) Calcular os ângulos de fase entre as grandezas V, V’ '

pI , Ip, etc, ou seja, fazer o diagrama fasorial do motor no momento da partida..

11) Uma calandra (máquina usada para conformar chapas de aço para fabricação de tanques

cilíndricos) possui os seguintes dados operacionais:

Conjugado nominal: 1100 Nm Velocidade nominal do eixo principal: 600 RPM Característica mecânica: linear crescente Conjugado de atrito: 10% do conjugado nominal Momento de inércia: 125 kgm2

Ela será acoplada ao motor elétrico acionador através de um redutor de velocidades cujo

rendimento é desconhecido. O motor a ser escolhido deverá operar exatamente na sua condição no-minal. Pede-se: a) Escolher um motor trifásico de indução, rotor em gaiola, tipo IP55, 60 Hz, 220 V, dando sua potência e número de pólos, usando o Catálogo Geral de Motores Elétricos da WEG; b) Determinar o rendimento do acoplamento; c) Verificar se o motor escolhido em a) possui capabili-dade de aceleração para realizar o acionamento; d) Calcular o tempo que o motor gasta para parar quando se aplica um conjugado frenante de valor médio igual ao conjugado nominal do motor; e) Desenhar as características do conjugado do motor, do conjugado frenante e da máquina acionada identificando os valores dos conjugados.

12) Escolher no Catálogo Geral de Motores Elétricos da WEG um motor trifásico tipo Da-

hlander, IP55, 4 e 8 pólos, 60 Hz, potência de 30 kW na menor velocidade, 220 V, rotor em gaiola e determinar para ele o seguinte: a) Qual a energia dissipada, em Wh, no motor (estator + rotor), du-rante uma partida (em duas etapas), com o motor a vazio? b) Qual a energia armazenada no rotor depois de completada a aceleração em duas etapas? c) Qual a energia fornecida pela rede elétrica que alimenta o motor, em Wh, depois de completada a operação do item anterior? d) Qual a energia elétrica dissipada no motor (estator + rotor), em Wh, durante um plugueamento em duas etapas? e) Qual a energia dissipada, em Wh, no motor (estator + rotor), durante um plugueamento em duas etapas, sendo que a comutação para o enrolamento de maior número de pólos se dará à velocidade de 0,20 pu da velocidade síncrona inicial? OBSERVAÇÃO: Supor que o motor escolhido tenha a relação RTh/R2 igual a 1,6.

13) O motor do problema 12 será acoplado diretamente ao eixo de uma carga de característi-

ca parabólica cujos dados são os seguintes:

Conjugado nominal: 235 Nm

Page 46: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

88

Conjugado de atrito: 10% do nominal Velocidade nominal: 1770 RPM Momento de inércia: 8 kgm2

Pede-se: a) Qual a energia dissipada no motor (estator + rotor) durante uma partida em duas

etapas com a carga acoplada? b) Qual a energia fornecida pela rede elétrica que alimenta o motor durante a partida? c) Qual a energia dissipada no motor (estator + rotor) durante um plugueamento em duas etapas?

14) O motor do problema 09, cuja relação 60,12

=RRTh , opera na sua condição nominal acio-

nando uma carga de característica parabólica, através de um multiplicador de velocidade de relação 1,50 e rendimento 90%. O conjugado nominal da carga é igual a 1191 Nm e o conjugado de atrito é 10% deste valor. O momento de inércia da carga vale 50 kgm2. Pede-se: a) Qual a energia dissipada pelo motor numa partida, em Wh? b) Idem, num plugueamento? c) Idem, numa reversão? d) Qual a energia acumulada em toda massa girante (rotor+carga) após a reversão?

15) Uma máquina possui uma característica mecânica de conjugado conforme indicada na equação abaixo:

C C x nr o= + −17 64 10 5 2, (Cr e Co em Nm e n em RPM.) Os seus dados operacionais para a condição nominal de operação são os seguintes: Co = 4,9 Nm n = 500 RPM

J = 80 kgm2

Pede-se: a) Escolher no Catálogo Geral de Motores Elétricos da WEG um motor trifásico tipo

IP55, um motor trifásico de 2, 4, 6 ou 8 pólos para fazer o acionamento da máquina através de um redutor de velocidades cujo rendimento é igual a 89,09%. (Verificar a sua capabilidade de acelera-ção); b) Determinar a impedância de partida Zp, em pu e em ohms. Determinar também os valores de Rp e Xp usando a fórmula segundo Lipkyn, equação [2.22], para calcular o fator de potência na partida; c) Ligar o motor escolhido à rede através de uma chave com reatância primária de valor igual a 1,4 pu que fará a comutação para a tensão plena na velocidade correspondente ao escorre-gamento de 8%, admitindo-se que a tensão reduzida não se altera até o instante da comutação. Cal-cular o ajuste do relé de tempo para comandar a comutação.

16) Uma máquina, cuja característica mecânica de conjugado está indicada abaixo, deverá ser acionada por um motor de indução trifásico, 440 V, 60 Hz, 4 pólos, tipo de alto rendimento plus, conforme o Catálogo Geral de Motores Elétricos da WEG. Ela está acoplada diretamente ao eixo do motor e a velocidade de seu eixo principal na condição nominal de operação é 1760 RPM. O seu momento de inércia vale 1,85 kgm2.

C n nr = + × + ×− −8 180 10 9 1 105 2 3, , (n em RPM e Cr em Nm.)

O motor deverá ser ligado à rede elétrica através de uma chave autotransformadora. Pede-se:

a) Escolher o motor adequado usando o catálogo da WEG; b) Qual a corrente de partida que “entra” no motor e qual a que circula na rede? c) Qual o tempo de ajuste do relé de tempo para comandar a

Page 47: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

89

comutação da chave que se dará com um escorregamento de 5%? d) Desenhar o circuito de potência e de controle da chave, com transição em circuito fechado, descrevendo a seqüência de operações.

17) Uma máquina possui uma característica mecânica hiperbólica conforme a equação abai-

xo:

nCr

4108,2013 ×+= (Cr em Nm e n em RPM)

A sua rotação nominal é 3800 RPM, sendo J = 3 kgm2 o seu momento de inércia. Pede-se:

a) Usando o Catálogo Geral de Motores Elétricos da WEG, escolher um motor de indução trifásico, tipo IP55 para ser ligado diretamente a uma rede de 220 V, 60 Hz, 6 pólos. O motor parte a vazio e a máquina é acoplada ao motor após ele atingir sua velocidade a vazio, quando então ele opera na sua condição nominal. Dar a potência em kW e o conjugado nominal do motor em Nm, bem como o rendimento do sistema de transmissão de correia entre o eixo do motor e o eixo da máquina; b) Se o motor fosse desligado da rede e a carga continuasse acoplada, quanto tempo ele demoraria a pa-rar? Considerar que ao atingir 2% da velocidade nominal durante a desaceleração, o conjunto é con-siderado parado.

18) Um motor de indução trifásico, rotor em gaiola, quando ligado diretamente à tensão nominal absorve da rede uma corrente de partida igual a 5,80 pu. O seu escorregamento nominal é igual a 4%. Pede-se: a) Qual a derivação de um autotransformador deverá ser usada na partida de modo a limitar a corrente na rede elétrica em 2,45 pu? b) Qual o conjugado de partida, em pu, esta-ria sendo aplicado ao motor? c) Se em lugar de um autotransformador fosse usada uma chave com reatâncias primárias para partir o motor, com a mesma limitação de corrente, qual o valor da rea-tância, em pu, deveria ser acrescentada, sabendo-se que a resistência de partida do motor pode ser desprezada? d) Estando o motor funcionando na sua condição nominal, qual seria o surto inicial de corrente, em pu quando fosse feito um plugueamento, sabendo-se que o conjugado de plugueamen-to é igual a 1,8 pu? 19) Uma máquina com característica mecânica parabólica possui a seguinte equação, sendo 500 RPM a sua velocidade nominal:

24108,15 nCr−×+= (C em Nm e n em RPM)

Ela será acionada por um motor trifásico de 4 pólos, 60 Hz, tipo, Alto rendimento plus, cate-

goria H, através de um redutor de velocidade cujo rendimento deverá ser 87,3%. Pede-se: a) Esco-lher o motor usando o Catálogo Geral de Motores Elétricos da WEG; b) Quando o motor foi ligado a plena tensão, a máquina atingiu sua velocidade nominal em 8 segundos. Determinar o momento de inércia da máquina; c) Qual o tempo de frenagem quando se fosse aplicado um freio mecânico de atrito igual a 1 pu do conjugado nominal do motor.

20) Escrever a seqüência de operações das chaves de partida autotransformadora, estrela-

triângulo e com impedâncias primárias de acordo com os diagramas dos circuitos principal e de comando das respectivas figuras mostradas nas seções 2.4.1 a 2.4.3.

21) O motor de categoria D, de acordo com a NBR-7094, é um motor cuja resistência rotóri-

ca é maior do que a de um correspondente de categoria N de mesma potência, mesmo número de

Page 48: APOSTILA - Acionamentos Elétricos - Cap. 2 - Partida e aceleração

90

pólos e mesmo enrolamento do estator. Ele é chamado de “motor de alto escorregamento”. Durante o processo de partida e aceleração, qual dos dois tipos de motor mais se aquece e porque? E durante a operação normal, em regime contínuo? Porque?

2.9.1) RESPOSTAS AOS PROBLEMAS

01) a) 1763 RPM; b) 200 Nm; c) 2,11 s; d) 22,26 s 02) 8,33 s; 03) a) O motor de 15 kW não serve porque o seu tempo de aceleração é 11 s, maior do que o

tempo de rotor bloqueado de 9 s. Escolhido o motor de potência imediatamente superior, de 18,5 kW, cujo tb = 8 s, o tempo de aceleração calculado é igual a 8 s. Portanto ele serve, no limite. b) Com o acoplamento, o motor de 15 kW, 2 pólos escolhido apresenta um tempo de aceleração de 9,34 s, praticamente igual ao seu tb igual a 9 s. Portanto ele serve, no limite.

04) a) O motor não vai parar; em 4 segundos a sua velocidade será 0,391 pu; b) O motor vai a-celerar e atingir sua velocidade nominal em 0,63 s.

05) a) 6,32 s; b) 13,6 s; c) 17,6 s; 0,625 pu = 2600 volts 06) a) Cp = 341 Nm = 0,346 pu; Cm = 2534 Nm = 2,565 pu; b) 13 s; c) 173 Nm; d) 18,14 s 07) Cplg = 36,064 Nm = 0,633 pu. 08) a) 65%; b) 0,828 pu 09) a) Xa = 3,797 ohms⇒ L = 0,010 µF; b) ; c) A chave não con-

seguirá dar a partida pois o conjugado do motor fica reduzido para 0,482 pu, valor menor do que o conjugado resistente inicial.

puCpuC mp 653,0;417,0 '' ==

10) a) 90 kW; 60 Hz; 440 V; In = 146 A; Ip = 6.7 pu; Cn = 482, 65 Nm; Cp =2,1 pu; Cm= 2,5 pu; tb = 23 s; Jm = 1,686 kgm2; b) 372 V ou 0,845 pu; c) 5,662 pu; d) Ra = 0,157 ohms; e) 16,8 s

11) a) 75 kW; 6 pólos; 60 Hz; 1185 RPM; Cn = 61,6 kgfm; Cp = 2,1 pu; Cm = 2,3 pu; Jm = 3,102 kgm2; tb = 37 s. (OBS: poderia ser escolhido um outro motor de 8, 4 ou 2 pólos, sempre de 75 kW); b) 92,14%; c) tempo de aceleração: 5,13 s menor do que o tempo de rotor bloqueado; d) tf = 4,74 s

12) a) 6,082 Wh; b) 4,678 Wh; c) 6,082+4,678 = 10,76 Wh; d) 33,918 Wh; e) 34,059 Wh 13) a) 71,188 Wh; b) 71,188 + 4,678 = 75,866 Wh; c) 239,823 Wh 14) a) 5,952 Wh; b) 10,784 Wh; c) 10,784+5,952=10,784 Wh; d) 1,724 Wh

Éderson Bustamante – fevereiro de 2005

ΩΩΩΩΩΩΩΩΩΩ