arquivo27_31

43
ANÁLISE DO POTENCIAL EÓLICO E ESTIMATIVA DA GERAÇÃO DE ENERGIA EMPREGANDO O “SOFTWARE” LIVRE ALWIN Adriane Prisco Petry, Dra. Jussara M. Leite Mattuella, MSc Porto Alegre 2007

Transcript of arquivo27_31

Page 1: arquivo27_31

ANÁLISE DO POTENCIAL EÓLICO E ESTIMATIVA DA

GERAÇÃO DE ENERGIA EMPREGANDO O “SOFTWARE”

LIVRE ALWIN

Adriane Prisco Petry, Dra.

Jussara M. Leite Mattuella, MSc

Porto Alegre

2007

Page 2: arquivo27_31

AGRADECIMENTOS

Este documento contou com a revisão técnica da Empresa Intercâmbio Eletro Mecânico - IEM,

empresa que desde 1993 representa (para todo o Brasil) os Dataloggers Ammonit, equipamento

empregado nas medições de vento ora em processamento no Estado. A empresa tem a

responsabilidade técnica de Hans D. Rahn. Este trabalho também contou com a colaboração do

responsável, pela empresa, em treinamento dos softwares eólicos, Álvaro Lima Vieira.

Page 3: arquivo27_31

RESUMO

Este texto apresenta a metodologia de análise do potencial eólico e de estimativa da energia

gerada, empregando como ferramenta de auxílio computacional o programa ALWIN. O texto

contém uma resumida introdução à análise de projetos eólicos, descrevendo a operação do

programa em cada etapa. Dentre os recursos disponíveis no programa está o tratamento de dados

coletados para obtenção dos parâmetros estatísticos relevantes de dados de vento. A partir das

informações estatísticas resultantes da análise do vento em um dado local e da curva

característica de turbinas eólicas, o programa avalia a provável energia elétrica obtida ao

empregar determinado aerogerador. Ao inserir informações sobre o comportamento de diferentes

máquinas é possível avaliar diversas alternativas, até chegar-se à solução técnico-econômica que

é mais indicada para o local. O ALWIN constitui-se em direito autoral do Deutsches

Windenergie-Institut e da Ammonit Gesellschaft für MesstechnikmbH. Tem seu acesso

franqueado a partir do site http://www.ammonit.de/produkte/pu_alw_e.htm.

Este programa vem ao encontro dos objetivos do estudo da energia eolica, ou seja, a implantação

de um sistema eólico para conversão energética em complementação à rede convencional. Cabe

salientar que para a determinação do recurso eólico de um sítio existem modelos mais

sofisticados, entretanto, ate mesmo em caso de se tratar de um maior aproveitamento, o Programa

ALWIN é empregado dado que oferece a possibilidade de uma avaliação preliminar do potencial

de uma área. Neste texto apresentamos esta metodologia de avaliação, juntamente com conceitos

relevantes para compreender a aplicação da metodologia.

Page 4: arquivo27_31

LISTA DE FIGURAS

Figura 1: Janela de Parâmetros do Local (Site) ............................................................................... 9

Figura 2: Janela de Alimentação dos Dados de Vento no Programa Alwin ................................. 10

Figura 3: Distribuição de Freqüência - Histograma ...................................................................... 13

Figura 4: Definição da Curva de Rayleigh .................................................................................... 14

Figura 5: Distribuição de Weibull (MOSS et al., 2001) ................................................................ 17

Figura 6: Estatística da Velocidade do Vento de Metro em Metro, Freqüência dos Dados

Medidos, Freqüência de Rayleigh e Freqüência de Weibull .................................................. 18

Figura 7: Estatística da Direção dos Ventos-Rosa dos Ventos ...................................................... 20

Figura 8: Janela do Sistema Alwin Estatística de Direção dos Ventos - Rosa dos Ventos ........... 20

Figura 9: Caracterização da Camada Limite Atmosférica (TWELE; GASCH, 2002) .................. 22

Figura 10: Fluxo de Vento através de uma Turbina Eólica (HIRATA; ARAÚJO, 2000) ............ 25

Figura 11: Janela do Sistema Alwin Evidenciando as Curvas de Potência das Turbinas de Vento

................................................................................................................................................ 30

Figura 12: Possibilidades de Escolha/Adição de outras Opções de Turbinas Eólicas .................. 31

Figura 13: Curva de Potência do Aerogerador .............................................................................. 33

Figura 14: Inserção dos Dados Relativos „A Turbina E –70 no Programa ................................... 34

Figura 15: Renomeando um Novo Catálogo ................................................................................. 34

Figura 16: Criação de um Novo Catálogo ..................................................................................... 35

Figura 17: Definição da Curva de Potência da Nova Máquina ..................................................... 36

Figura 18: Cálculo da Potencia Média, Energia e o Fator de Capacidade pelos Métodos da Média,

Distribuição de Rayleigh e Distribuição de Weibull .............................................................. 37

Figura 19: Os Valores Numéricos que Respaldam o Gráfico da Figura 18 - Velocidade Média por

Intervalos de 1m/S .................................................................................................................. 39

Figura 20: Curso Diurno da Velocidade do Vento e Duração das Calmarias ............................... 40

Page 5: arquivo27_31

SUMÁRIO

1 INTRODUÇÃO .......................................................................................................................... 6

2 AVALIAÇÃO DO POTENCIAL EÓLICO ............................................................................. 8

2.1 INFORMAÇÃO DOS DADOS DE MEDIÇÕES DE VENTO .............................................. 8

2.2 ANÁLISE ESTATÍSTICA DOS DADOS DE VENTO ....................................................... 11

2.2.1 Cálculo da Velocidade Média ..................................................................................... 11

2.2.2 Construção do Histograma ......................................................................................... 11

2.2.3 Definição das Curvas de Rayleigh e Weibull ............................................................. 13

2.2.4 Determinação da Direção Predominante do Vento-Diagrama Rosa dos Ventos ... 18

2.3 CORREÇÃO DA VELOCIDADE DO VENTO COM A ALTURA .................................... 21

2.3.1 Camada Limite Atmosférica ....................................................................................... 21

3 POTÊNCIA DE UM SISTEMA EÓLICO ............................................................................. 24

3.1 POTÊNCIA .......................................................................................................................... 24

3.2 ENERGIA GERADA ........................................................................................................... 26

3.2.1 Fator de Capacidade-Fc .............................................................................................. 27

3.2.2 Coeficiente de Potência-Cp ......................................................................................... 27

3.3 CURVA DE POTÊNCIA DOS AEROGERARDORES ...................................................... 28

3.3.1 Inserção de Novas Turbinas no ALWIN ................................................................... 32

3.4 ESTIMATIVA DA ENERGIA GERADA ........................................................................... 36

3.5 DETERMINAÇÃO DAS CALMARIAS ............................................................................. 40

REFERÊNCIAS .......................................................................................................................... 42

Page 6: arquivo27_31

1 INTRODUÇÃO

A evolução tecnológica aliada à necessidade de viabilizar fontes de energia renováveis

para produção em larga escala, incentivada pelo desenvolvimento de um programa específico,

tornou cada dia mais importante o estudo e o aproveitamento de potenciais eólicos. Para

viabilizar economicamente e tecnicamente um empreendimento de produção de energia a partir

da energia eólica, é fundamental uma avaliação correta do potencial eólico de uma localidade.

Neste sentido, o programa ALWIN, representa uma moderna ferramenta para tratamento de

dados e análise de potenciais eólicos, através da simulação do uso de diversas alternativas de

turbinas é possível estimar a energia produzida pelas máquinas avaliadas até chegar-se à solução

técnico-econômica mais adequada para o local. O Deutsches Windenergie-Institut e a Ammonit

Gesellschaft für Messtechnik mbH detém a propriedade do direito autoral e uma versão de acesso

livre pode ser obtida a partir do site http://www.ammonit.de/download/alwin_e.exe (Atualizado

em 01/06). O programa possibilita a avaliação da energia disponível e a estimativa da produção

de energia elétrica, através da correlação do potencial eólico destes locais, obtido a partir das

medições de velocidade do vento, com os dados técnicos de turbinas eólicas, a curva de potência

fornecida pelos fabricantes. Desta interação advém à estimativa da produção de energia passível

de ser obtida no ponto considerado. A metodologia considera as perdas que ocorrem desde a

medição até o funcionamento propriamente dito do aerogerador.

A modelagem adotada pelo programa considera a diferença entre o comportamento de um

anemômetro e o de um aerogerador, decorrente da diferença entre as massas e inércia dos dois

equipamentos. Em virtude das características de cada equipamento, existem disparidades entre os

dados medidos e o que realmente poderá ser aproveitado. Estas distorções são corrigidas pelo

programa ALWIN, mediante uma modelagem matemática (equações) elaboradas por instituições

dedicadas ao estudo da energia eólica. como o DEWI (na Alemanha) ou do RIS (na

Dinamarca), além de outros.

Além disto, deve ser lembrado que, ao se entrar na classe das centenas de Kilowatts e/ou

dos Megawatts, a precisão na medição deve ser na casa de cinco dígitos após a vírgula. Nesta

Page 7: arquivo27_31

7

categoria de projetos, um erro de medição de 3% compromete o estudo de viabilidade técnico-

financeira, podendo, até mesmo, inviabilizar o investimento.

O objetivo deste documento é organizar conhecimentos e apresentar conceitos

relacionados aos projetos de parques eólicos a partir da exploração dos recursos de tratamento de

dados, análise e simulação e sistemas eólicos existentes no programa ALWIN, que possui uma

versão de acesso livre. O programa ALWIN oferece os seguintes recursos:

a) estimação do comprimento da rugosidade1 (Zo);

b) cálculo dos parâmetros de Weibull;

c) potencial eólico em qualquer local fictício através das velocidades médias e

distribuições de Rayleigh ou Weibull;

d) histograma da velocidade dos ventos e Rosa dos Ventos;

e) curso diurno da velocidade do vento e estatística de calmarias (AMMONIT, 2005)

Este documento também aborda conceitos inerentes ao estudo de prospecção eólica,

sendo orientado para ser um texto introdutório, mas que viabilize uma aplicação prática como

instrumento do estudo da tecnologia eólica.

1 Rugosidade do terreno é a influência da superfície deste e dos elementos que nela estão contidos sobre a velocidade do vento. A

rugosidade de uma superfície de uma determinada área é determinada pelo tamanho e distribuição dos elementos que contém

vegetação, áreas construídas e superfície do solo. A rugosidade de um terreno é normalmente parametrizada pela escala de

comprimento chamada de comprimento de rugosidade “zo“, de tal forma que existe uma altura zo não igual a zero que é chamada

comprimento de rugosidade (MATTUELLA, 2005)

Page 8: arquivo27_31

2 AVALIAÇÃO DO POTENCIAL EÓLICO

Para o aproveitamento dos ventos como fonte de energia, uma previsão da velocidade do

vento é de fundamental importância. É necessário avaliar a sua variação ao longo do dia, das

estações do ano e com a altura, pois a caracterização do potencial eólico de um local configura-se

em um dos principais passos em um projeto eólico.

2.1 INFORMAÇÃO DOS DADOS DE MEDIÇÕES DE VENTO

O primeiro passo para desenvolver a análise do potencial eólico através do programa em

tela consiste na alimentação dos dados de velocidade dos ventos, seja por uma entrada manual ou

pela importação de conjuntos de dados medidos dos dataloggers WICOM ou WINDSITER da

AMMONIT.

Na janela contida na Figura 1, alimentada manualmente, são indicados os parâmetros do

site, tais como o nome do local da medição, data de início das mesmas, número de dias medidos,

os quais objetivam a organização dos dados. A altitude do local, altura da Torre de Medição e

temperatura média do período medido são de inserção obrigatória, dado que são considerados

para a composição dos resultados. A maneira de acessar esta Janela, contida na figura 1 é através

da rotina EDIT-SITE PARAMETERS.

Page 9: arquivo27_31

9

Figura 1: Janela de parâmetros do local (Site)

O Programa oferece a possibilidade de alimentação dos dados de vento advinda da leitura

de dois anemômetros localizados em alturas diferentes. Esta sistemática deve-se ao fato de que

uma das informações essenciais para o estudo de prospecção eólica é a definição do perfil de

velocidades da Camada Limite Atmosférica.. Desta forma, para avaliar o perfil da Camada

Limite Atmosférica emprega-se a medição em duas alturas diferentes (dois anemômetros),

determinando dois pontos sobre a curva do perfil.

O banco de dados da velocidade do vento pode alimentar automaticamente o programa,

sendo, para tanto, necessário apenas acessá-los através do Programa ALWIN, na rotina FILE-

OPEN. Quando o banco contiver duas medições, o comprimento de rugosidade será calculado

por dedução entre as medidas procedidas. pode-se verificar na figura 2, o banco de dados das

medições de vento.

Page 10: arquivo27_31

10

Figura 2: Janela de alimentação dos dados de vento no programa ALWIN

O indicativo técnico-ideal de uma medida de vento com dois anemômetros, não restringe

o aproveitamento do programa para situações de existência de um único equipamento. Também

em caso de dispormos apenas da velocidade média, o programa possibilita uma curva aproximada

que denomina-se curva de RAYLEICH. Neste caso, a alimentação do sistema será procedida de

forma manual através da rotina EDIT-WIND SPEED, que abrirá a Janela contida na Figura 2.

Para esta situação, faz-se necessária a informação do comprimento de rugosidade.

A base de um prognóstico eólico é a medição de ventos pelo período mínimo de 13

meses, tomando-se a média de 10 em 10 minutos (MOLLY,1990). A altura mínima definida

teoricamente para leitura de dados de vento é de 10m. Entretanto, na prática, entendemos ser

mais operacional proceder às medidas mais proximamente da altura prevista para a instalação dos

equipamentos, de modo que a correção da velocidade medida para a altura definitiva não

introduza um erro percentual. O anemômetro mais baixo deve ajustar-se em uma altura mínima

Page 11: arquivo27_31

11

para que o vento não seja influenciado por obstáculos (árvores e casas). A distância entre dois

anemômetros deve ter, pelo menos de 15 a 20m. Em um terreno plano e sem obstáculos, uma

torre de medição com anemômetros calibrados a 10 e 30 m é suficiente. Em áreas mais

complexas, o anemômetro inferior deverá ser colocado em uma posição mais elevada. Neste

caso, na prática adota-se 20 e 40m ou 30 e 50m. Tem-se observado, nas medições empregadas no

Estado pela Secretaria de Energia, Minas e Comunicações e a CEEE, o emprego de 25 e 50 m ou

50m e 70m. Evidentemente, quanto maior for a base dos dados, mais chances a pesquisa tem de

não estar se alicerçando em um ano atípico.

Partindo dos dados de vento informados passamos a análise estatística da amostra.

2.2 ANÁLISE ESTATÍSTICA DOS DADOS DE VENTO

2.2.1 Cálculo da Velocidade Média

O cálculo da velocidade média diária, mensal e anual constitui-se em uma importante

característica para a definição da condição técnica de uma área para aproveitamento de geração

eólica e é definida pela equação 1.

dttvT

V

t

0

1

equação 1

2.2.2 Construção do Histograma

Após a medição e armazenagem formatada dos dados, é efetuado o tratamento estatístico

destes, de forma a proceder-se à análise dos dados para estimativas do comportamento dos

ventos, baseadas no período em que foram realizadas as medições. Do tratamento dos dados

obtemos parâmetros estatísticos como a velocidade média e o desvio padrão, importantes para a

definição do regime de ventos e, em conseqüência, do potencial eólico de um dado local. Para

tanto, presume-se que o banco de dados se repita nos anos vindouros, por esta razão, torna-se

Page 12: arquivo27_31

12

importante a confirmação de que este período-base não se constitui em uma amostra atípica

(CRESESB, 2003). Em caso de uma única medição anual, a representatividade climatológica das

distribuições estatísticas de ventos podem ser obtidas em estações anemométricas de aeroportos,

os quais geralmente possuem séries com mais de 20 anos de abrangência. Esta estratégia foi

empregada na confecção do Atlas Eólico do Rio Grande do Sul (2001).

O histograma representa, graficamente, a freqüência de cada velocidade com base nos

dados amostrais colhidos. É geralmente em forma de barras, as quais representam a ocorrência de

um intervalo de velocidades em células e permite descrever o comportamento dos mesmos,

quanto à sua tendência central, forma e dispersão. A faixa dinâmica (range) dos mesmos é

dividida em um determinado número de células de mesmo "comprimento", de tal forma que a

base significa o intervalo da classe. A "altura" de cada célula é dada pela contagem do número de

dados contidos na faixa, e significa as freqüências ocorridas em cada classe (UNIVERSIDADE

FEDERAL DO RIO GRANDE DO SUL, 2003).

O histograma é uma função discreta e sua aplicação para modelagem do problema é

pouco adequada para simular (ou estimar) a energia disponível e a energia gerada pelos possíveis

equipamentos, é conveniente obter uma função contínua de distribuição das freqüências com que

ocorrem cada faixa de velocidades do vento. As distribuições de freqüências geralmente

empregadas para estudo de ventos são a Função de Rayleigh ou a Função de Weibull

(CUSTÓDIO, 2002), pois como afirmam Twele e Gasch (2002) a leitura de um histograma anual

de um local, livre de obstáculo leva a conclusão que a distribuição de freqüência relativa pode ser

aproximada pelo formato contínuo da função de Rayleigh.

O histograma é construído a partir da base de dados correspondente às distribuições das

freqüências relativas da velocidade do vento durante um tempo “t” mínimo, resultante das

medições colhidas “in loco”. Sua conformação é apresentada na figura 3.

Page 13: arquivo27_31

13

Figura 3: Distribuição de freqüência - Histograma

2.2.3 Definição das Curvas de Rayleigh e Weibull

A função de Rayleigh calculada pelo programa ALWIN, apresentada na figura 4, é obtida

a partir dos dados brutos das medições de vento. No caso de os dados estarem incompletos, o

programa faz uma extrapolação dos resultados, é usado como opção em situações em que não se

tem a série completa, normalmente em estudos preliminares onde não se conhece o

comportamento detalhado do vento, sendo suficiente apenas o conhecimento da velocidade média

para a determinação da distribuição de freqüência (CUSTÓDIO, 2002). O fator que restringe seu

uso é a sua forma geral, que pode captar características regionais somente até determinado limite.

O parâmetro “Vm” representa a velocidade média das medições do período.

A previsão da produção nas especificações técnicas fornecidas pelos fabricantes é

usualmente baseada na distribuição de Rayleigh (CUSTÓDIO, 2002). A forma da curva de

Rayleigh é vista na figura 4.

Page 14: arquivo27_31

14

Figura 4: Definição da curva de Rayleigh

A distribuição de Weibull é uma generalização da distribuição de Rayleigh. Ela contém o

fator forma c e o parâmetro de escala a, permitindo um ajuste de curva mais refinado para

diferentes características de vento e pode ser usada para adaptar a distribuição para condições que

não são suficientemente aproximadas pela distribuição de Rayleigh.

Para as séries completas de dados coletados, a indicação técnica é a análise pelo cálculo

de Weibull. A função Weibull é a distribuição contínua2 que usualmente mais se aproxima à

distribuição discreta representada nos histogramas de velocidade, porque tem maior precisão na

descrição das circunstâncias do vento é a empregada nos trabalhos de avaliação de potenciais

eólicos.

A função de Weibull leva em conta o desvio padrão dos dados coletados, este é um

importante parâmetro estatístico, pois introduz uma informação acerca das incertezas com que

podem ocorrer as velocidades previstas a partir dos dados coletados no período.

A distribuição de Weibull obedece à equação 2:

2 Uma distribuição é contínua quando a variável que está sendo medida é expressa em uma escala contínua, como no caso de uma

característica dimensional.(www.ppgec.ufrgs.br)

Page 15: arquivo27_31

15

cca

V

ea

V

a

cVF

1

)( equação 2

Os parâmetros apresentados no cálculo de Weibull, “a” e “c”, representam:

“c”- parâmetro ou fator de forma da distribuição dos ventos, é adimensional;

“a”-parâmetro ou fator de escala, dado em m/s.

Obs com freqüência são empregados na literatura os símbolos k para ou fator de forma e c

para fator de escala, neste texto adotamos c e a, conforme descrito acima para manter coerência

com a nomenclatura apresentada no programa ALWIN.

Em função do valor do parâmetro “c”, a função Weibull assume características especiais

quando o parâmetro de forma “c”= 1, configura uma distribuição exponencial;

“c” = 2, identifica uma distribuição de Rayleigh

“c” = 3,5, traduz uma distribuição normal, próxima a uma distribuição de Gauss.

O parâmetro “a”, fator de escala, define a escala da distribuição e está diretamente

relacionado com a velocidade média. O parâmetro “c” é denominado de parâmetro de forma,

define a forma da distribuição e está relacionado com o desvio padrão.

Hirata e Araújo (2000) definem duas alternativas para a determinação dos parâmetros de

Weibull:

A alternativa 1, que segue, é a simples e permite estimar o valor do parâmetro da forma

“c”, em função da velocidade média e do desvio padrão.

Um valor aproximado de “c” e “a” pode ser obtido com as equações 3 e 4.

A determinação do Parâmetro de forma “c” pode ser obtida pela equação 3:

086.1

Vc equação 3

Page 16: arquivo27_31

16

Com o valor de “c”, a escala “a” é obtida usando a equação 4:

ac

aV 01.090.01

1

equação 4

A alternativa 2 ao procedimento anterior, pode ser obtida empregando as expressões que

fornecem a velocidade média e o desvio padrão, segundo Hirata e Araújo (2000):

A determinação do parâmetro de forma “c” é obtida pela equação 5, sendo Γ =

distribuição Gama.

A Distribuição Gama (Γ) é uma função matemática, também chamada de função integral

exponencial, sendo muito empregada em estudos de vento, como função do fator de forma “c” da

Função Weibull.

c

cc

V 11

11

21 2

equação 5

Se valores mais precisos são requeridos, pode-se utilizar o método dos mínimos

quadrados, a partir da equação 6.

c

a

V

VFexp

1

1 equação 6

Tomando-se duas vezes o logaritmo de ambos os lados da equação acima, tem-se a

equação 7:

acVcVF

lnln1

1ln

equação 7

que representa a reta da equação 8

y = c x - c ln a equação 8

Page 17: arquivo27_31

17

onde

y = ln {-ln [1-F(V)]} equação 9

x = ln V equação 10

Com os dados devidamente tabulados, pode-se ajustá-los segundo uma reta dos mínimos

quadrados. O coeficiente angular da reta fornece o valor do parâmetro de forma “c” e o valor de

“a” pode ser determinado utilizando o valor de “y” quando x=0.

Na janela contida na figura 5, estão as três representações das medidas de freqüência, o

histograma da velocidade medida, com classes contendo velocidade dos ventos a cada 1 m/s e as

duas curvas das funções continuas de Rayleigh e Weibull. Os retângulos em azul representam os

dados medidos, a linha contínua é a curva de Weibull e a descontínua é a curva de Rayleigh. Os

valores apresentados nos gráficos são coerentes com a altura da torre de medição informada.

Ainda que a apresentação alcance somente até 24 m/s, os cálculos levam em conta os

valores até 30 m/s da velocidade do vento medida, o programa automaticamente ajusta a escala

do gráfico.

Figura 5: Distribuição de Weibull (MOSS, 2001)

Page 18: arquivo27_31

18

A coerência das funções estatísticas empregadas pelo programa são acompanhadas da

tabela correspondente à estatística dos dados originais formada em intervalos de 1 m/s, sendo que

a cada intervalo é indexado a freqüência dos dados medidos pelo método da média, a freqüência

por Raylegh e por Weibull, obedecendo os moldes vistos na figura 6.

Figura 6: Estatística da velocidade do vento de metro em metro, freqüência dos dados

medidos, freqüência de Rayleigh e freqüência de Weibull

2.2.4 Determinação da Direção Predominante do Vento-Diagrama Rosa dos

Ventos

A determinação da direção predominante do vento é importante para a definição da

direção de posicionamento das máquinas, no caso de geração eólica. Para o caso de uma usina

com vários aerogeradores, o estudo da distribuição dos mesmos constitui fator essencial em um

projeto, tendo em vista que a localização dos mesmos devera ser tal que seja minimizado o

comprometimento da captação energética individual.

Page 19: arquivo27_31

19

A determinação da direção predominante no Programa ALWIN é dada pelo diagrama

Rosa dos Ventos que é elaborado com "pétalas" radiais de modo a evidenciar as freqüências e às

vezes a velocidade dos ventos que sopram sobre os 8 ou os 12 pontos cardeais, colaterais e sub-

colaterais. O comprimento de cada "pétala" mostra a ocorrência de ventos registrada em dado

período de tempo, e as gradações sobre as pétalas mostram a freqüência da velocidade dos

ventos. É uma importante ferramenta na determinação da direção predominante do vento, sendo

esta obviamente a de indicação para o aproveitamento de geração eólica. O programa ALWIN faz

uma distribuição estatística da velocidade do vento, setorizada, em um intervalo de tempo,

classificando o vento em 12 setores com 30° de abertura cada, iniciando com 0° ao norte.

Cada valor obtido através da Windvane3 (ou biruta) de vento é alocado ao respectivo

setor, possibilitando também a obtenção da direção da velocidade média do vento e a freqüência

da ocorrência. Em velocidades de vento inferiores a 0,5 m/s o dado direcional da Wind Vane não

é válido e, portanto não é levado em consideração.

A figura 7 contém dois gráficos: o da esquerda representa a estatística da distribuição de

freqüência da direção do vento e o da direita, as médias e máximas da velocidade do vento. No

gráfico da direita, os retângulos em rosa representam as velocidades do vento máximas e o azul,

as médias. Neste exemplo, pode-se assumir que a direção do vento mais favorável para

prospecção eólica seja a direção entre 75° e 95°.

3 Vane:palheta indicadora da direção do vento.

Page 20: arquivo27_31

20

Figura 7: Estatística da direção dos ventos-rosa dos ventos

A conformação das funções apresentadas pelo programa são acompanhadas da tabela

correspondente à estatística dos dados originais formada em intervalos 10°, sendo que a cada

intervalo é indexado a freqüência dos dados medidos, a média e a máxima do intervalo,

obedecendo os moldes vistos na figura 8.

Figura 8: Janela do sistema ALWIN estatística de direção dos ventos - rosa dos ventos

Page 21: arquivo27_31

21

Analisando as figuras 8, podemos avaliar que o percentual de freqüência máxima do

vento ocorreu no setor Oeste com 25,3% e 21,4% das ocorrências de vento.

2.3 CORREÇÃO DA VELOCIDADE DO VENTO COM A ALTURA

Conforme o exposto, um dos fatores que mais determina a variação da velocidade do

vento em um dado local é a altura, tendo em vista a existência de um perfil de velocidades não

uniforme na chamada Camada Limite Atmosférica.

2.3.1 Camada Limite Atmosférica

A variação da velocidade do vento com a altura é uma conseqüência da ação da

viscosidade a qual dá origem ao desenvolvimento da Camada Limite Atmosférica- C.L.A (ou

Camada Limite Terrestre) (HIRATA; ARAUJO, 2000). C.L.A é exatamente o perfil da

velocidade do vento obtida entre o vento perturbado pela rugosidade do terreno e pelo fluxo de

calor na atmosfera e o vento geostrófico, não perturbado, conforme pode ser observado na figura

9 (HIRATA; ARAUJO, 2000). Dentro da C.L.A através de dispersões, a energia é transferida de

um fluxo de alta energia do vento geostrófico para as camadas inferiores, onde o escoamento do

ar próximo a superfície é altamente turbulento, conforme observado na figura 9, sendo a

velocidade diretamente sobre a terra, igual a zero.

Page 22: arquivo27_31

22

Figura 9: Caracterização da camada limite atmosférica (TWELE; GASCH, 2002)

A altura da camada limite depende de vários fatores, principalmente das propriedades do

fluido, da maneira como as partículas de ar se movimentam, da distribuição espacial da

rugosidade da superfície, da estratificação da temperatura do ar e da orografia do terreno

(HIRATA; ARAUJO, 2000), variando entre dezenas a centenas de metros (TWELE; GASCH,

2002). A C.L.A pode variar em torno do nível de 1000 metros de altura acima do solo

(PETTERSSEN 19514 apud CUSTÓDIO, 2002), dependendo do terreno e das condições

atmosféricas.

Desta forma, a correção da velocidade do vento considerando estes pressupostos, da altura

medida, para a altura desejada de instalação do equipamento, pode ser feita de duas maneiras:

pela Lei Logarítmica, a exemplo de como foi procedido no Atlas Eólico do Rio Grande do Sul

(2001), ou pela Lei Potencial, empregada no Programa ALWIN.

Podemos resumir as características das leis Logarítmica e Potencial (LOREDO-SOUZA,

2006) como: Lei Logarítmica possui bom ajuste na camada próxima ao solo e ajuste pobre na

parte superior da Camada Limite Atmosférica, enquanto a Lei Potencial possui ajuste pobre na

camada próxima ao solo e bom ajuste na parte da Camada Limite Superior.

4 PETERSSEN, S. Introducción a la Meteorologá. 2.ed. Buenos Aires: Espasa-Calpe, 1951.

Page 23: arquivo27_31

23

A definição da camada limite no ponto de medição pode ser procedida com o emprego do

programa ALWIN. Sendo este dotado de um algoritmo que possibilita a interpretação da leitura

de dois anemômetros situados na mesma torre em alturas diferentes, através destas é possível a

construção do perfil da camada limite existente no ponto pela dedução do valor da rugosidade do

entorno, configurada na restrição da velocidade do vento medida.

De acordo com a Lei Logarítmica, a influência da altura na determinação do potencial

eólico é determinada através pelas equações 11 e 12

zo

z

k

UzV ln.*

equação 11

Onde:

v(z) = Velocidade na altura z

z = Altura desejada

z0 = comprimento de rugosidade

k = Constante de von Kárman, sendo, aproximadamente igual a 0,4

U* =Velocidade de Fricção

De acordo com a Lei Potencial, tem-se a equação 12:

equação 12

Onde:

v(zr) = velocidade, na altura de referência zr

v(z) = velocidade, na altura z

zr = altura de referência

z = altura desejada

p = parâmetro diretamente associado à rugosidade da superfície.

Page 24: arquivo27_31

3 POTÊNCIA DE UM SISTEMA EÓLICO

3.1 POTÊNCIA

A potência, ou seja, a capacidade de um sistema eólico para a produção de energia é

definida como trabalho realizado (ou energia gerada) por unidade de tempo (equação 13):

tEPd / equação 13

Onde:

t –intervalo de tempo em que o vento passa através de uma superfície de área A,

orientada perpendicularmente à direção.

Sendo a massa de ar expressa por m = [A (V. t)], o produto da velocidade “V” pelo

intervalo de tempo “ t” resulta em um comprimento L = V. t, que corresponde à distância

percorrida por uma partícula de ar. O produto deste comprimento pela área “A” representa o

volume de um cilindro da mesma área e de comprimento “L”, que atravessa a superfície, no

mesmo intervalo de tempo.

Considerando o exposto, a potência disponível toma a forma da equação 14:

3..2

1VAPd equação 14

Uma turbina eólica extrai energia cinética do ar que passa através da área interceptada

pelas pás rotativas. Conforme se verifica no esquema da figura 10, os rotores das turbinas eólicas

reduzem a velocidade do vento v1, sem perturbações, frontal ao rotor para uma velocidade de

corrente de ar, v2, atrás do rotor. A diferença das velocidades do vento é uma medida para a

energia cinética extraída, que faz girar o rotor e, no lado oposto do eixo, o gerador elétrico.

Embora combinada com a eficiência do modelo, a área varrida pelo rotor circular ( r2) é

um fator crucial na determinação da energia entregue pela turbina eólica. A energia cinética bruta

Page 25: arquivo27_31

25

por unidade de tempo, potência do vento passando por uma área “A”, perpendicular ao seu vetor

velocidade instantânea “V”, e teoricamente extraída por uma turbina, pode ser descrita pela

equação 15.

Figura 10: fluxo de vento através de uma turbina eólica (HIRATA; ARAÚJO, 2000)

1

3 2 V A c P p

equação 15

Onde:

P = potência do vento (W);

ρ = massa específica do ar (kg/m3) ou densidade do ar, que varia com a latitude e as

condições atmosféricas, ρ ~1,2 kg/m3.

cp = coeficiente de potência ou de performance, que tem relação com a energia

cinética de saída, dependendo do modelo e da relação entre a velocidade do rotor e a

velocidade do vento (LABORATÓRIO DE FONTES ALTERNATIVAS DE

ENERGIA, 2003). É a eficiência total de uma máquina para uma dada velocidade de

vento WindPro 2.3 Users Guide em 2004

η = eficiência eletro mecânica;

A = área da seção transversal do rotor (m2);

V1 = velocidade não perturbada frontal ao rotor (m/s)

Esta fórmula oferecerá o resultado da a potência em kW, de onde podemos obter a

produção de energia integrando ao longo de uma hora em kWh.

Page 26: arquivo27_31

26

Analisando-se a equação acima se constata que a potência varia linearmente com a massa

específica do ar “ρ” , com a área da seção transversal e cresce com o cubo da velocidade.

Entretanto, um rotor eólico de área “A” capta apenas uma parcela desta potência e a converte em

potência mecânica que é disponibilizada através de seu eixo. Esta potência entregue pelo rotor é

expressa na forma da equação 16.

60

2 oo NTPo equação 16

Onde:

To é o torque do rotor;

No é o número de rotações por minuto

O rotor disponibiliza a potência “Po”, que é absorvida pela caixa de transmissão ou por

um gerador (no caso de não possuir caixa de transmissão). A potência absorvida pela transmissão

é igual a “Po”.

Custódio (2002) ressalta que a proporcionalidade direta da potência com a massa

específica leva a que, em diferentes altitudes e temperaturas, tenhamos diferentes potências de

vento para a mesma velocidade.

3.2 ENERGIA GERADA

O cálculo da energia gerada por uma máquina segue o modelo abaixo:

E=P x FC x Cf x t equação 17

Onde:

E-Energia Gerada;

P-Potência da Máquina;

t – Período de tempo

Page 27: arquivo27_31

27

Fc-Fator de Capacidade

Cf-Coeficiente de Eficiência da Instalação 5

Este cálculo também é desenvolvido pelo programa em tela que, para tanto, identifica o

fator de capacidade da máquina adotada para as condições postas, e, em função disto, a energia

produzida.

3.2.1 Fator de Capacidade-Fc

O Fator de Capacidade-FC é o índice que expressa a qualidade de um projeto em termos

de potencial eólico. O FC varia na razão direta do potencial eólico. Ele expressa também a

eficiência da turbina eólica empregada. Para um mesmo projeto o FC pode ser diferente

dependendo do modelo e da tecnologia de turbina empregada. Outro aspecto que está embutido

no FC é a configuração do Parque Eólico (lay-out ou arranjo de máquinas). Quanto menor as

perdas por interferência aerodinâmica entre as máquinas, maior a eficiência do Parque Eólico e

maior será o coeficiente em tela. As perdas na transmissão elétrica ficam também refletidas neste

índice, ou seja, quanto menor as perdas elétricas, maior o FC.

O FC reflete as horas equivalentes de plena potência. Por exemplo, se um Parque Eólico

de 10 MW tem um FC de 30 % isto significa que ele tem (8760 horas / ano x 0,30 = 2628 h

equivalentes), ou seja, a produção seria a mesma se o parque eólico trabalhasse 2628 h durante o

ano na potência nominal de 10 MW (YASBECK, 2004).

3.2.2 Coeficiente de Potência-Cp

O coeficiente de potência, ou Cp, é diretamente proporcional à potência nominal da

turbina e inversamente proporcional ao cubo da velocidade do vento, à densidade do ar a à área

do aerogerador. Reflete o rendimento da turbina eólica, ou seja, a relação entre a potência

aproveitada pelo rotor da turbina e a potência em termos de energia cinética existente no vento.

5 Em entrevista com Jens Peter MOLLY, durante estágio no DEWI INSTITUT, em janeiro de 2004, foi discutida a real eficiência

de fazendas eólicas, tendo sido informada que as perdas na geração de energia são na ordem de: 3% para indisponibilidade técnica

(97%) e 5% devido “sombras do vento” atrás dos turbinas eólicas (95%). Ainda, segundo a mesma fonte, as perdas totais variam

de 5% a 10%.

Page 28: arquivo27_31

28

Reflete, sobretudo o rendimento aerodinâmico das pás. Toda medição de curva de potência de

uma turbina é acompanhada da medição do valor do Cp.

A potência gerada por uma turbina eólica já considera o Cp, que é característico de cada

máquina (dependendo do desenho aerodinâmico das pás e do rendimento mecânico e elétrico do

trem de transmissão).

Em condições ideais, o valor máximo teórico de cp é 16/27 = 0,593, ou, em outras

palavras, 59,3% da energia contida no escoamento de ar pode ser extraída por uma turbina eólica

(MOLLY,1990). Sob condições reais, o coeficiente de potência não alcança mais que cp= 0,5,

porque ele inclui todas as perdas, devido à rugosidade do terreno e devido à aerodinâmica do

aerogerador. No caso em que cp alcança seu máximo valor teórico, a velocidade do vento v2, à

jusante do rotor, é apenas 1/3 da velocidade v1, a montante do mesmo (MOLLY, 1998)

Segundo (MOLLY, 1990) o coeficiente de potência também é definido pela fórmula 18:

noPxH

EnergiaCP equação 18

Onde:

C.P.- Coeficiente de Potencia ou Fator de Capacidade;

Energia-quantidade de energia passível de ser obtida;

H-período de horas considerado;

Pno-Potência Nominal da Turbina considerada

3.3 CURVA DE POTÊNCIA DOS AEROGERARDORES

Denominamos curva de potência de uma turbina eólica ao gráfico que indica o valor

potencia gerada por uma determinada turbina, em diferentes velocidades de vento, constante na

figura 11. A curva de potência, é geralmente fornecida pelos fabricantes e certificada

oficialmente por um Instituto capacitado.

Page 29: arquivo27_31

29

As curvas de potência são obtidas através de medições de campo, onde um anemômetro e

colocado em uma torre próxima a turbina (não na própria turbina ou muito próxima dela, pois o

rotor da turbina altera as condições de vento e os dados fornecidos não corresponderiam aos

dados medidos em um local onde a turbina ainda não foi instalada).

Quando a velocidade do vento não estiver variando rapidamente, pode-se usar as

medições da velocidade de vento do anemômetro e medir a potencia gerada pela turbina

simultaneamente, traçando estes dois valores juntos em um gráfico, como o demonstrado na

figura 11 (DANISH WIND INDUSTRY ASSOCIATION, 2005), obtemos a Curva de Potencia

da maquina.

No gráfico da Curva de Potência do programa ALWIN, que indica o valor desta (em

Kilowatts ou até Megawatts), a potência é mostrada no eixo vertical (usualmente, em todos os

gráficos de Curva de Potência) e a velocidade de vento no eixo horizontal, conforme figura 11.

De acordo (ver equação) com World Energy Council (2005)6, as curvas de potência das

turbinas eólicas dependem de:

a) Condições atmosféricas: velocidade do vento, temperatura, umidade e pressão;

b) Projeto do sistema, potência nominal, diâmetro do rotor e altura do “hub” (Eixo do

aerogerador);

c) Condições do local, turbulência.

Entretanto, é preciso assumir que existem incertezas nas medições das curvas de potência.

De acordo com a figura 11, com a máquina Demonstrativa de 450 kW, a curva de

produção de energia apresenta seu pico de produção de energia aos 16,5 m/s.

6 World Energy Council (WEC) é o mais destacada organização multi-energia global no mundo atualmente. O WEC possui

membros em 90 países, incluindo a maioria dos grandes produtores e consumidores de energia.

Page 30: arquivo27_31

30

Figura 11: Janela do sistema ALWIN evidenciando as curvas de potência das turbinas de

vento

O catálogo de turbinas associado ao programa contém, geralmente maquinas de

demonstração, as chamadas DEMO, conforme pode ser visto na janela contida na figura 12, o

WEC Catalog (WEC = Wind Energy Converter = Aerogerador). Os valores observados nesta

figura advém da curva de potência da máquina, a qual geralmente é informada pelo fabricante do

aerogerador. No caso desta figura, à velocidade de 3,5 m/s, o aerogerador escolhido pela seleção,

fornece zero kW, à 3,5 m/s; fornece 0,68 kW à 4 m/s, etc...

Page 31: arquivo27_31

31

Figura 12: Possibilidades de escolha/adição de outras opções de turbinas eólicas

Os dados correspondentes à inserção de novas máquinas são fornecidos ao sistema pelo

usuário através da entrada dos dados da curva de potência destas, informação do sistema de

controle e altura da torre (do aerogerador) das mesmas no campo de entrada dos dados. Para tanto

o usuário acessa “New catalog” no campo “WEC name” e insere o nome da máquina cujos dados

serão fornecidos ao sistema, efetuando, em seguida o salvamento dos mesmos. Devem ser

também informados a altura da máquina e o tipo de controle do equipamento.

Dado que as forças de sustentação aerodinâmica aumentam com a segunda potência da

velocidade do vento e a energia extraída da turbina com a terceira potência desta, se fazem

necessários mecanismos de controle da velocidade do fluxo de ar nos aerogeradores. Em

situações de ventos extremos poderia haver um sobrecarregamento elétrico e mecânico no

sistema de transmissão, caso não houvesse a previsão de um controle de potência do rotor .

Existem dois diferentes princípios de controle aerodinâmico para limitar a extração de

potência à potência nominal do aerogerador. São chamados de controle estol (stall) e controle de

passo (pitch) (CRESESB, 2003)

Page 32: arquivo27_31

32

Aerogeradores com controle tipo “Stall”: são máquinas em que a velocidade do rotor do

aerogerador é controlada pela eficiência do aerofólio das pás do mesmo.

Aerogeradores com controle tipo “Pitch”: são máquinas em que a velocidade do rotor do

aerogerador é controlada mediante giro das pás (No seu eixo longitudinal), este giro sendo

ativado mediante sensor anemométrico (E sistema eletrônico de controle de “Pitch”) instalado em

cima da nacelle do aerogerador.

3.3.1 Inserção de Novas Turbinas no ALWIN

Além das turbinas de demonstração (WKA 1, WKA 2 e WKA 3), e dos catálogos de

turbinas disponíveis no site da Ammonit (2006), existe a possibilidade de inclusão de novas

curvas de novos aerogeradores no software, mediante informações normalmente conseguidas nos

sites dos fabricantes de aerogeradores. Na figura 13, as informações recebidas do fabricante

relativamente à Curva de Potência da Máquina.

Abaixo seguem os passos práticos:

Page 33: arquivo27_31

33

Figura 13: Curva de potência do aerogerador

1º: Tenha à mão os dados para inserir a curva de potência da turbina.

A Velocidade deve ser em m/s, e a potência em Kilowatts, que são as escalas padrões do

software.

No exemplo a seguir, visto na figura 14, foi escolhida a turbina Enercon E-70;

Page 34: arquivo27_31

34

Figura 14: Inserção dos dados relativos „a turbina E –70 no programa

2º: Escolha um dos catálogos disponíveis no software, ou crie um, renomeando-o pelo

Windows o nome do catálogo original (Tente manter o catálogo original, pois pode ser útil para

você no futuro), na pasta do ALWIN (Utilize, por exemplo, o Windows Explorer para isso),

conforme figura 15.

Figura 15: Renomeando um novo catálogo

Page 35: arquivo27_31

35

3º: Clique em “Edit”, numa das turbinas, e renomeie-a (No campo “WEC name”) para o

nome do aerogerador que você escolheu.

Insira também a altura da nacele da turbina (No campo “Hub height”), assim como o tipo

de controle aerodinâmico do aerogerador (As opções de controle devem abrir conforme o

catálogo escolhido. No exemplo exposto, a única opção disponível é o sistema “Pitch”. Confira

em outros catálogos as outras opções e utilize a que melhor adequar ao seu caso), figura 16.

Figura 16: Criação de um novo catálogo

4º: No campo “Power curve”, modifique os valores de potência para os novos dados do

novo aerogerador, tentando não mudar a tabulação do programa (Tabulação = espaços entre os

dados).

Após a inserção dos dados, clique em “Save” e a nova turbina será acrescentada à

listagem desse catálogo;

5º: Ao clicar em “OK”, a curva do novo aerogerador aparecerá no ALWIN.

Page 36: arquivo27_31

36

Figura 17: Definição da curva de potência da nova máquina

3.4 ESTIMATIVA DA ENERGIA GERADA

A partir do cálculo dos parâmetros de Rayleigh ou da distribuição de Weibull, o programa

tem condições de proceder a compatibilização dos dados da velocidade do vento com a curva de

potência de vários aerogeradores. Desta forma, é possível conseguir um prognóstico da energia

gerada, considerando altura da torre desejada e densidade do ar local, permitindo desenvolver

uma analise comparativa do desempenho de diversas máquinas. O conhecimento da velocidade

média do vento é fundamental para a estimativa da energia gerada. Primeiro porque os

aerogeradores começam a gerar energia eletrica numa determinada velocidade de vento de

partida (cut-in) e param de gerar equando a velocidade ultrapassa determinado valor (cut-out)

estabelecido por questões de segurança, prevenindo a fadiga do material das torres e pás por

vibraçoes excessivas.

Uma vez que as medições eólicas, em sua maioria são efetuadas numa altura inferior à do

eixo do gerador eólico, torna-se necessária uma previsão da velocidade para a altura de instalação

da máquina. Conforme apresentado anteriormente. para fazer esta previsão considera-se,

principalmente, a rugosidade do entorno do local de medição, alem da presença de obstáculos e

da orografia do local. Deste modo, os dados medidos em uma altura são recalculados para a

altura do aerogerador empregando a equação adequada para o perfil de velocidades da camada

Page 37: arquivo27_31

37

limite atmosférica. Após este cálculo a média das freqüências das Classes de velocidade do vento

será multiplicada pelos valores correspondentes de potências do conversor de energia eólica e

então somada. O resultado é a potência média de saída da estação geradora, a qual quando

multiplicada pela quantidade de horas do ano, nos dará a energia anual de saída, em MWh

(usualmente).

A energia, o desempenho médio de energia e o fator de capacidade são calculados, neste

programa, de acordo com os padrões do International Energy Agency - IEA e International

Energy Comition-IEC7.

O cálculo da produção de energia é obtido pela tela a seguir contida na figura 18. Este

cálculo é feito de acordo com os padrões IEA IEC acima descritos. Leva em consideração o tipo

de controle da turbina e os efeitos das variações da densidade do ar no cálculo da produção de

energia pelo uso de dados referentes à altitude e temperatura dos locais e as alturas das torres das

turbinas.

Figura 18: Cálculo da potencia média, energia e o fator de capacidade pelos métodos da

média, distribuição de Rayleigh e distribuição de Weibull

7 IEA: “International Energy Agency” = Agência de Energia Internacial e IEC: “International Energy Comition” = Comissão de

Energia Internacional

Page 38: arquivo27_31

38

Analisando-se a figura 19 podemos concluir que, neste caso, a potência média do

aerogerador é de 146,4 kW, sendo que 450 kW a potência pico, o qual está gerando efetivamente

108,9MWh. O fator de potência 28,1, significa que apenas 28,1 % da potência do aerogerador

está sendo efetivamente aproveitada.

Os indicadores observados na janela da figura passam a ser didaticamente identificados:

Potência Média: (Average Power) significa: a potência media do aerogerador, de acordo

com os dados medidos (média das velocidades de vento x curva de potência).

Medida de energia: (Energy (meas.)) = Energia (da medição). Representa a geração da

turbina de acordo com os dados de velocidade medidos. Caso os dados coletados sejam

representativos (ou seja, um longo período de medição), servirão para que esta informação gerada

pelo Alwin (previsão de geração) seja a mais próxima da realidade (lembrando que este software

serve para análise de viabilidade na implantação de um aerogerador no local medido).

Fator de capacidade (Capacity Factor) significa o % de aproveitamento do aerogerador

(basicamente falando, seria a potência média / potência pico). Considerando-se o caso acima da

figura W, em que foi escolhido um aerogerador de 500kw, o cálculo a partir das medições nos dá

o indicador de 28,8% como representativo da média da potência do conversor ao longo do tempo

que realmente está sendo aproveitada. O cálculo a partir da distribuição de Rayleigh sinaliza o

mesmo indicador para 28,1% e o cálculo a partir de Weibull consolida o percentual em 28,1%, a

qual é considerada a que mais se aproxima da realidade.

“t”: equivale à área do intervalo de velocidade de vento usado, do gráfico da

velocidade de vento x % de ocorrências (1º gráfico do Alwin).

“T”: equivale à área total dos dados do gráfico da velocidade de vento x % de

ocorrências (1º gráfico do Alwin).

Basicamente seria o 1º gráfico do Alwin (velocidade) combinado com o 3º gráfico do

Alwin (curva de potência do aerogerador). O resultado disto é o último gráfico do Alwin

(Geração Prevista).

Page 39: arquivo27_31

39

Os valores numéricos de cada uma das três classes de distribuição, ou seja, o cálculo a

partir da média, a partir da distribuição de Rayleigh e a partir da distribuição de Weibull são

oferecidos em tabela conjunta ao gráfico constante da figura 18, e obedece os moldes vistos na

figura 19.

As curvas de potência geradas e registradas no gráfico no programa ALWIN são

complementadas por uma tabela de velocidade de vento versus dados de geração de eletricidade,

nos moldes da figura 19. O cálculo da energia gerada e efetuada assumindo os dados do

conversor escolhido.

Figura 19: Os valores numéricos que respaldam o gráfico da figura 18 - Velocidade

média por intervalos de 1m/s

Page 40: arquivo27_31

40

3.5 DETERMINAÇÃO DAS CALMARIAS

Considerando que a energia eólica é uma fonte variável, não controlável, a investigação

de períodos de calmarias e a freqüência de duração, embora não representando problema para a

máquina, constituem-se em dados importantes na composição das variáveis no estudo de um

projeto eólico, dado que oferecem períodos inaceitáveis de produção de energia que poderão

inviabilizar o empreendimento. As variações rápidas de potencia associadas a calmarias e

turbulências do vento associam-se também como importantes informações de um estudo eólico.

A figura 20 oferece o diagrama contendo a estatística das calmarias durante o período

medido.

Figura 20: Curso diurno da velocidade do vento e duração das Calmarias

O gráfico da esquerda mostra a velocidade do vento em um dia típico (“Diurnal Pattern”

= Padrão Diário), com a média do dia (na cor azul) e desvio padrão (na cor salmão), ao longo das

24 horas. O da direita mostra uma análise das calmarias (Calm Analysis). Considera duas

Page 41: arquivo27_31

41

freqüências de ocorrências: até 3 m/s (Na cor azul) e até 5 m/s (Na cor salmão) com o tempo de

duração das ocorrências dos mesmos, em minutos.

Convém salientar que as ocorrências de calmaria até 3m/s estão inclusas nas ocorrências

até 5m/s.

Quanto maiores forem as ocorrências de calmarias, pior considerado será esse local para

propósitos de geração eólica, mesmo que a média de velocidade de vento seja boa. Caso a média

de velocidade fosse considerada dentro do ideal, essa análise de calmarias indicaria uma

ocorrência forte de ventos tipo “rajada”, algo comum de ocorrer acima das encostas de

despenhadeiros (Para melhor exemplificar: acima dos paredões do Itaimbezinho, ou nas paredes

de pedra de Torres. Nem sempre o local mais alto é o melhor para aerogeradores).

Por conseqüência, quanto menor forem os períodos de calmaria, melhor será o local.

Page 42: arquivo27_31

REFERÊNCIAS

AMMONIT GESELLSCHAFT FÜR MESSTECHNIKMBH (AMMONIT). Disponível em:

<http: //www.ammonit.de/produkte/pu_alw_e.htm>. Acesso em: 02 nov. 2005.

AMMONIT GESELLSCHAFT FÜR MESSTECHNIKMBH (AMMONIT). Disponível em:

<http://www.ammonit.de/download/wec_cats.exe>. Acesso em: 03 abr. 2006

ATLAS ÉOLICO DO RIO GRANDE DO SUL. Disponível em: <http://

www.semc.rs.gov.br/atlas/vmax.htm >. Acesso em: 05 out. 2001.

CENTRO DE REFERÊNCIA PARA ENERGIA SOLAR E EÓLICA (CRESESB). Disponível

em: <http://www.cresesb.cepel.br/tutorial/eolica/apstenergiaeolica.htm>. Acesso em: 09 abr.

2003.

CUSTÓDIO, Ronaldo dos Santos. Parâmetros de Projeto de Fazendas Eólicas e Aplicação

Específica no Rio Grande do Sul. 2002. Dissertação (Mestrado em Engenharia Elétrica) –

Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2002.

DANISH WIND INDUSTRY ASSOCIATION. Dinamarca, 2005. Disponível em:

<http://www.windpower.org/>.Acesso em: 09 abr. 2005.

HIRATA, Miguel; ARAUJO, Maria Regina O.P. de. Introdução ao Aproveitamento de

Energia Eolica. Rio de Janeiro: UFRJ, 2000.

LABORATÓRIO DE FONTES ALTERNATIVAS DE ENERGIA. Disponível em:

<http://www.solar.coppe.ufrj.br>. Acesso em: 07 jun. 2003.

LOREDO-SOUZA, Acir Mércio. Aerodinâmica das Construções. [mar. 2006]. Entrevistadora:

Jussara Mattuella. Porto Alegre: [s.n.], 2006.

MATTUELLA, Jussara M. Leite. Fontes Energéticas Sustentáveis: um estudo sobre a

viabilidade do aproveitamento da energia eólica em três localidades no RS, 2005. Dissertação

(Mestrado em Engenharia) – Programa de Pós-Graduação em Engenharia Civil, Universidade

Federal do Rio Grande do Sul, Porto Alegre, 2005.

MOLLY, Jeans Peter. Windenergie in Theorie und Praxis. Deutchland:Verlage f. Müller,

1990.

MOLLY, Jeans Peter. MEASNET: Networkof European measuring institutes. DEWI Magazin,

n.12¸ p. 75-79. 1998.

Page 43: arquivo27_31

43

MOSS, Hamilton. Panorama das Fontes Renováveis no Brasil. In: CONGRESSO BRASIL –

ALEMANHA, 1., 2001, Fortaleza. Anais... Fortaleza: [s.n.], 2001. Disponível em:

<http://www.cresesb.cepel.br/Publicacoes/informe6.htm>. Acesso em: 05 mai. 2003.

TWELE, J.; R. GASCH, R. Wind Power Plants: Fundamentals, Design, Construction and

Operation. Germany: Solarpraxis 2002.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (UFRGS). Engenharia de

Produção. Porto Alegre: UFRGS, 2003. Disponível em: <http://www.ppgep.ufrgs.br>. Acesso

em: 12 mai. 2003.

WORLD ENERGY COUNCIL. Londres, 2005. Disponível em:

<http://www.worldenergy.org/wec-geis/default.asp>. Acesso em: 05 mai. 2005.

YASBECK, Paulo Gustavo. Projetos de Energia Eólica. [10 nov. 2004]. Entrevistadora: Jussara

Mattuella. [S.l.:s.n.], 2004. Entrevista concedida pelo Gerente Delegado de Projetos de Geração

de Energia Eólica Innovent Ltda.