Atomos y estructura cristalina carlos chorio

22
REPÚBLICA BOLIVARIANA DE VENEZUELA INSTITUTO UNIVERSITARIO POLITÉCNICO “SANTIAGO MARIÑO” SEDE MARACAIBO Autor: Carlos Chourio C.I: 15.937.316 Carrera 46 tomos y estructura cristalina

Transcript of Atomos y estructura cristalina carlos chorio

REPÚBLICA BOLIVARIANA DE VENEZUELAINSTITUTO UNIVERSITARIO POLITÉCNICO

“SANTIAGO MARIÑO”SEDE MARACAIBO

Autor:Carlos Chourio C.I: 15.937.316Carrera 46

Átomos y estructura cristalina

los filósofos griegos discutieron mucho acerca de la naturaleza de la materia y concluyeron que el mundo era más simple de lo que parecía.

Algunas de sus ideas de mayor relevancia fueron:

El átomo en la antigüedad

En el siglo V a. C., Leucipo sostenía que había un sólo tipo de materia y pensaba que si dividíamos la materia en partes cada vez más pequeñas, obtendríamos un trozo que no se podría cortar más. Demócrito llamó a estos trozos átomos ("sin división").

La filosofía atomista de Leucipo y Demócrito podía resumirse en:

1.- Los átomos son eternos, indivisibles, homogéneos e invisibles.

2.- Los átomos se diferencian en su forma y tamaño.

3.- Las propiedades de la materia varían según el agrupamiento de los átomos.

Leucipo

Demócrito

¿Que es un átomo?

Definición Un átomo: es la unidad constituyente más pequeña de la materia ordinaria que tiene las propiedades de un elemento químico. Cada sólido, líquido, gas y plasma se compone de átomos neutros o ionizados. Los átomos son muy pequeños; los tamaños típicos son alrededor de 100 pm (diez mil millonésima parte de un metro).No obstante, los átomos no tienen límites bien definidos y hay diferentes formas de definir su tamaño que dan valores diferentes pero cercanos.

Etimológicamente El nombre «átomo» proviene del latín atomum, y este del griego ἄτομον 'no cortado, sin porciones, indivisible'; también, se deriva de a-

('no') y tómo- 'trozo cortado, porción, parte'.

Estructura del átomo Todo átomo está constituido por tres partes: una parte

eléctricamente positiva, formada por los protones; otra

eléctricamente negativa, compuesta por electrones, y una tercera

integrada por minúsculas partículas neutras denominadas

neutrones. La carga electrónica del protón y la del electrón son

iguales y contrarias; como los átomos suelen existir en forma

neutra, el número de electrones de un átomo debe ser igual al de

protones. Los electrones ocupan el espacio más externo del

átomo; y los protones se sitúan en el centro, y, con los neutrones,

constituyen el núcleo.

Los electrones y los protones de todos los elementos químicos

son iguales, por lo que éstos se diferencian por el número de

protones, de neutrones y de electrones presente, mi su interior.

Propiedades de los átomos Las unidades básicas de la química son los átomos. Durante las reacciones químicas los átomos se conservan como tales, no se crean ni se destruyen, pero se organizan de manera diferente creando enlaces diferentes entre un átomo y otro.

Los átomos se agrupan formando moléculas y otros tipos de materiales. Cada tipo de molécula es la combinación de un cierto número de átomos enlazados entre ellos de una manera específica.

Según la composición de cada átomo se diferencian los distintos elementos químicos representados en la tabla periódica de los elementos químicos. En esta tabla podemos encontrar el número atómico y el número másico de cada elemento:

Número atómico, se representa con la letra Z, indica la cantidad de protones que presenta un átomo, que es igual a la de electrones. Todos los átomos con un mismo número de protones pertenecen al mismo elemento y tienen las mismas propiedades químicas. Por ejemplo todos los átomos con un protón serán de hidrógeno (Z = 1), todos los átomos con dos protones serán de helio (Z = 2).

Número másico, se representa con la letra A, y hace referencia a la suma de protones y neutrones que contiene el elemento. Los isótopos son dos átomos con el mismo número de protones, pero diferente número de neutrones. Los isótopos de un mismo elemento, tienen unas propiedades químicas y físicas muy parecidas entre sí.

Modelos atómicos Un modelo atómico es una representación estructural de un átomo, que trata de

explicar su comportamiento y propiedades. De ninguna manera debe ser

interpretado como un dibujo de un átomo, sino más bien como el diagrama

conceptual de su funcionamiento. A lo largo del tiempo existieron varios modelos

atómicos y algunos más elaborados que otros.

Modelo atómico de Jhon Dalton

Durante el s.XVIII y principios del XIX algunos científicos habían investigado distintos aspectos de las reacciones químicas, obteniendo las llamadas leyes clásicas de la Química.

La imagen del átomo expuesta por Dalton en su teoría atómica, para explicar estas leyes, es la de minúsculas partículas esféricas, indivisibles e inmutables, iguales entre sí en cada elemento químico.

Dalton explicó su teoría formulando una serie de enunciados simples:

1- La materia está formada por partículas muy pequeñas llamadas átomos, que son indivisibles y no se pueden destruir.

2- Los átomos de un mismo elemento son iguales entre sí, tienen el mismo peso e iguales propiedades. Los átomos de

diferentes elementos tienen peso diferente. Comparando el peso de los elementos con los del hidrógeno tomado como la

unidad propuso el concepto de peso atómico relativo.

3- Los átomos permanecen sin división, aun cuando se combinen en las reacciones químicas

4- Los átomos, al combinarse para formar compuestos guardan relaciones simples.

5- Los átomos de elementos diferentes se pueden combinar en proporciones distintas y formar más de un compuesto.

6- Los compuestos químicos se forman al unirse átomos de dos o más elementos.

fue el primer modelo atómico con bases científicas, propuesto entre 1803 y 1807 por John Dalton, aunque el autor lo denominó más propiamente "teoría atómica" o "postulados atómicos".

Modelo atómico de J.J Thomson Demostró que dentro de los átomos hay unas partículas diminutas, con carga eléctrica negativa, a las que se llamó electrones.

De este descubrimiento dedujo que el átomo debía de ser una esfera de materia cargada positivamente, en cuyo interior estaban incrustados los electrones.

Modelo atómico de Thomson

El modelo atómico de Thomson es una teoría sobre la estructura atómica propuesta en 1904

por Joseph John Thomson, quien descubrió el electrón1 en 1897, mucho antes del

descubrimiento del protón y del neutrón. En dicho modelo, el átomo está compuesto por

electrones de carga negativa en un átomo positivo, incrustados en este al igual que las pasas

de un budín. A partir de esta comparación, fue que el supuesto se denominó "Modelo del budín

de pasas".2 3 Postulaba que los electrones se distribuían uniformemente en el interior del átomo

suspendidos en una nube de carga positiva. El átomo se consideraba como una esfera con

carga positiva con electrones repartidos como pequeños gránulos. La herramienta principal con

la que contó Thomson para su modelo atómico fue la electricidad.

Modelo atómico de E. Rutherfor Rutherfor demostró que los átomos no eran macizos, como se creía, sino que están vacíos en su mayor parte y en su centro hay un diminuto núcleo.Dedujo que el átomo debía estar formado por una corteza con los electrones girando alrededor de un núcleo central cargado positivamente.

Modelo atómico de Rutherford

El modelo de Rutherford fue el primer modelo atómico que consideró al átomo formado por dos partes: la "corteza" (luego denominada periferia), constituida por todos sus electrones, girando a gran velocidad alrededor de un "núcleo" muy pequeño; que concentra toda la carga eléctrica positiva y casi toda la masa del átomo.

Rutherford llegó a la conclusión de que la masa del átomo se concentraba en una región pequeña de cargas positivas que impedían el paso de las partículas alfa. Sugirió un nuevo modelo en el cual el átomo poseía un núcleo o centro en el cual se concentra la masa y la carga positiva, y que en la zona extranuclear se encuentran los electrones de carga negativa.

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico-neozelandés Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.

Modelo atómico de BohrEspectros atómicos discontinuos originados por la radiación emitida por los átomos excitados de los elementos en estado gaseoso,

Bohr dedujo que el átomo debía estar formado por una corteza con los electrones girando alrededor de un núcleo central cargado positivamente

Modelo atómico de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo clásico del átomo, pero fue el primer modelo atómico en el que se introduce una cuantización a partir de ciertos postulados. Fue propuesto en 1913 por el físico danés Niels Bohr, para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo y por qué los átomos presentaban espectros de emisión característicos (dos problemas que eran ignorados en el modelo previo de Rutherford). Además el modelo de Bohr incorporaba ideas tomadas del efecto fotoeléctrico, explicado por Albert Einstein en 1905.

Después de que Louis-Victor de Broglie propuso la naturaleza ondulatoria de la materia en 1924, la cual fue generalizada por Erwin Schrödinger en 1926, se actualizó nuevamente el modelo del átomo.

En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, que es una extrapolación de la experiencia a nivel macroscópico hacia las diminutas dimensiones del átomo. En vez de esto, Schrödinger describe a los electrones por medio de una función de onda, el cuadrado de la cual representa la probabilidad de presencia en una región delimitada del espacio. Esta zona de probabilidad se conoce como orbital

El modelo Actual

Modelo de Schrödinger

El modelo atómico de Schrödinger no se trata de un modelo relativista, sino cuántico, que está basado en la ecuación que este físico austríaco realizó en 1925.

Bohr había postulado un modelo que funcionaba perfectamente para el átomo de hidrógeno, pero en los espectros que fueron realizados para otros átomos, se veía que los electrones aun siendo del mismo nivel energético, poseían energías algo diferentes, hecho que no respondía el modelo de Bohr, lo que hacía necesaria una urgente corrección de su modelo. Fue Sommerfeld quien modificó el modelo de Bohr, al deducir que en cada nivel energético existían subniveles, lo explicó añadiendo órbitas elípticas y usando la relatividad.

Estructura cristalina

Es la forma sólida de cómo se ordenan y empaquetan los átomos,

moléculas, o iones. Estos son empaquetados de manera ordenada y con

patrones de repetición que se extienden en las tres dimensiones del espacio.

La cristalografía es el estudio científico de los cristales y su formación.

El estado cristalino de la materia es el de mayor orden, es decir, donde las

correlaciones internas son mayores. Esto se refleja en sus propiedades

antrópicas y discontinuas. Suelen aparecer como entidades puras,

homogéneas y con formas geométricas definidas (hábito) cuando están bien

formados. No obstante, su morfología externa no es suficiente para evaluar

la denominada cristalinidad de un materia

La estructura cristalina

La estructura cristalina

• Presenta un arreglo interno ordenado, basado en minúsculos cristales cada uno con una forma geométrica determinad.

• Los cristales se obtienen como consecuencia de la repetición ordenada y constante de las unidades estructurales ( átomos, moléculas, iones)

• Al romperse se obtienen caras y planos bien definidos.

• Presentan puntos de fusión definidos, al calentarlos suficientemente el cambio de fase ocurre de una manera abrupta.

La estructura física de los sólidos es consecuencia de la disposición de los átomos,moléculas o iones en el espacio, así como de las fuerzas de interconexión de laspartículas:

•Estado amorfo : Las partículas componentes del sólido se agrupan al azar.

•Estado cristalino: Los átomos (moléculas oiones) que componen el sólido se disponensegún un orden regular. Las partículas se sitúan ocupando los nudos o puntos singularesde una red espacial geométrica tridimensional.

La estructura cristalina

Los átomos que pertenecen a un sólido cristalino se pueden representar situándolos en una red tridimensional, que se denomina retículo espacial o cristalino. Este retículo espacial se puede definir como una repetición en el espacio de celdas unitarias.

La celda unitaria de la mayoría de las estructuras cristalinas son paralelepípedos o prismas con tres conjuntos de caras paralelas

La estructura cristalina Los cristales, átomos, iones o moléculas se empaquetan y dan lugar a motivos que

se repiten del orden de 1 Ángstrom = 10-8 cm; a esta repetitividad, en tres

dimensiones, la denominamos red cristalina. El conjunto que se repite, por

translación ordenada, genera toda la red (todo el cristal) y la denominamos unidad

elemental o celda unidad.

Estructura cristalina ordenada

En la estructura cristalina (ordenada) de los compuestos inorgánicos, los elementos que

se repiten son átomos o iones enlazados entre sí, de manera que generalmente no se

distinguen unidades aisladas; estos enlaces proporcionan la estabilidad y dureza del

material. En los compuestos orgánicos se distinguen claramente unidades moleculares

aisladas, caracterizadas por uniones atómicas muy débiles, dentro del cristal. Son

materiales más blandos e inestables que los inorgánicos.

Celda unitaria

• El cristal individual es llamado celda unitaria, esta formado por la repetición de ocho átomos.

• El cristal se puede representar mediante puntos en los centros de átomos.

Según el tipo de enlace atómico, los cristales pueden ser de tres tipos:

a) Cristales iónicos: punto de fusión elevado, duros y muy frágiles, conductividadeléctrica baja y presentan cierta elasticidad. Ej: NaCl (sal común)

b) Cristales covalentes: Gran dureza y elevada temperatura de fusión. Suelen sertransparentes quebradizos y malos conductores de la electricidad. No sufrendeformación plástica (es decir, al intentar deformarlos se fracturan). Ej: Diamante

c) Cristales metálicos: Opacos y buenos conductores térmicos y eléctricos. No son tan duros como los anteriores, aunque si maleables y dúctiles. Hierro, estaño, cobre

Según la posición de los átomos en los vértices de la celda unitaria de la red cristalina existen:

a) Redes cúbicas sencillas: Los átomos ocupan sólo los vértices de la celda unidad.

b) Redes cúbicas centradas en el cuerpo (BCC): Los átomos, además de ocupar losvértices, ocupan el centro de la celda. En este caso cristalizan el hierro y el cromo.

c) Redes cúbicas centradas en las caras (FCC): Los átomos, además de ocupar losvértices, ocupan el centro de cada cara de la celda. Cristalizan en este tipo de redesel oro, cobre, aluminio, plata,...

d) Redes hexagonales compactas (HC): La celda unitaria es un prisma hexagonal conátomos en los vértices y cuyas bases tiene un átomo en el centro. En el centro de lacelda hay tres átomos más. En este caso cristalizan metales como cinc, titanio ymagnesio.

Sistemas cristalinos

Diferencia entre vidrios y cristales

En ocasiones la repetitividad se rompe o no es exacta, y esto diferencia los

vidrios y los cristales, los vidrios generalmente se denominan materiales

amorfos (desordenados o poco ordenados).

No obstante, la materia no es totalmente ordenada o desordenada

(cristalina o no cristalina) y nos encontramos una graduación continua del

orden en que está organizada esta materia (grados de cristalinidad), en

donde los extremos serían materiales con estructura atómica

perfectamente ordenada (cristalinos) y completamente desordenada

(amorfos).

Conclusión Se puede concluir que los átomos es la unidad mínima de materia que compone toda

materia que existe y es la estructura que define a todos los elementos. también se

puede decir que las primeras ideas sobre la existencia de los átomos surgieron en la

Antigua Grecia y que a partir de allí surgieron los diferentes modelos que fueron

evolucionando a través del tiempo hasta llegar al modelo de Schrödinger que es el

utilizado actualmente. Sobre la estructura cristalina podemos definirla como la forma

sólida de cómo se ordenan y empaquetan los átomos, moléculas, o iones y

cristalografía es el estudio científico de los cristales y su formación también a través de

la realización de este trabajo se conoció los tipos de cristales según su enlace atómico

y según la posición de los átomos en los vértices de la celda unitaria por ultimo

tenemos la diferencia entre vidrios y cristales.