AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência...

69
Estabilidade de Sistemas de Potência Ivan Camargo 1 AULA 1 1) INTRODUÇÃO Definição: Um sistema elétrico de potência é dito ESTÁVEL quando todas as máquinas síncronas ligadas ao sistema em uma determinada condição inicial, voltam ao sincronismo após uma dada perturbação. A definição de estabilidade está portanto ligada aos conceitos de condição inicial e perturbação. Não se pode dizer que um determinado sistema é estável. É necessário definir para que tipo de falta, por qual duração e em quais condições iniciais este sistema será estável. O período imediatamente após uma perturbação é chamado período TRANSITÓRIO. A característica deste período é oscilatória. Desta forma, quando as oscilações são amortecidas o sistema é considerado estável, caso contrário, ele será considerado INSTÁVEL. Com esta definição, as oscilações não amortecidas são consideradas instáveis, mesmo sabendo que, matematicamente, uma função puramente senoidal é uma função estável. As perturbações que podem ocorrer em um dado sistema são infinitas. Pode-se dividir estas perturbações em fortes e fracas. O curto circuito em uma determinada linha do sistema é considerado, na maioria das vezes, uma forte perturbação. A perda de uma grande unidade geradora ou de uma linha importante também são consideradas grandes perturbações. Já a variação periódica da carga durante o dia, que afeta também a estabilidade do sistema, é considerada uma pequena perturbação. A divisão das perturbações em fortes e fracas é importante para definir a forma matemática de tratar o problema. Após uma grande perturbação, se o sistema for estável, o novo ponto de operação estará distante do ponto inicial. Desta forma, a não linearidade das equações que regem as máquinas devem ser levadas em consideração. Como não existe solução analítica para um sistema de equações diferenciais não lineares, só é possível resolver o problema através da integração numérica das equações que definem o sistema. Este problema é chamado na literatura de ESTABILIDADE TRANSITÓRIA. Por outro lado, para uma pequena perturbação, o sistema vai oscilar em torno do seu ponto de equilíbrio inicial e, considerando o sistema estável, voltar às condições iniciais ou em algum ponto muito próximo. Desta forma, admitindo-se a linearização das equações em torno deste ponto, passa-se à solução de um sistema de equações diferenciais lineares, ou seja, todas as técnicas ligadas aos sistemas lineares podem ser utilizadas. Este problema linearizado é chamado ESTABILIDADE DINÂMICA. Um dos pontos mais importantes no estudo da estabilidade de um sistema é a definição dos critérios ou das perturbações que o sistema deve suportar. Como foi dito, nenhum sistema é estável para qualquer condição. É fundamental que se defina

Transcript of AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência...

Page 1: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 1

AULA 1

1) INTRODUÇÃO Definição: Um sistema elétrico de potência é dito ESTÁVEL quando todas as máquinas síncronas ligadas ao sistema em uma determinada condição inicial, voltam ao sincronismo após uma dada perturbação. A definição de estabilidade está portanto ligada aos conceitos de condição inicial e perturbação. Não se pode dizer que um determinado sistema é estável. É necessário definir para que tipo de falta, por qual duração e em quais condições iniciais este sistema será estável. O período imediatamente após uma perturbação é chamado período TRANSITÓRIO. A característica deste período é oscilatória. Desta forma, quando as oscilações são amortecidas o sistema é considerado estável, caso contrário, ele será considerado INSTÁVEL. Com esta definição, as oscilações não amortecidas são consideradas instáveis, mesmo sabendo que, matematicamente, uma função puramente senoidal é uma função estável. As perturbações que podem ocorrer em um dado sistema são infinitas. Pode-se dividir estas perturbações em fortes e fracas. O curto circuito em uma determinada linha do sistema é considerado, na maioria das vezes, uma forte perturbação. A perda de uma grande unidade geradora ou de uma linha importante também são consideradas grandes perturbações. Já a variação periódica da carga durante o dia, que afeta também a estabilidade do sistema, é considerada uma pequena perturbação. A divisão das perturbações em fortes e fracas é importante para definir a forma matemática de tratar o problema. Após uma grande perturbação, se o sistema for estável, o novo ponto de operação estará distante do ponto inicial. Desta forma, a não linearidade das equações que regem as máquinas devem ser levadas em consideração. Como não existe solução analítica para um sistema de equações diferenciais não lineares, só é possível resolver o problema através da integração numérica das equações que definem o sistema. Este problema é chamado na literatura de ESTABILIDADE TRANSITÓRIA. Por outro lado, para uma pequena perturbação, o sistema vai oscilar em torno do seu ponto de equilíbrio inicial e, considerando o sistema estável, voltar às condições iniciais ou em algum ponto muito próximo. Desta forma, admitindo-se a linearização das equações em torno deste ponto, passa-se à solução de um sistema de equações diferenciais lineares, ou seja, todas as técnicas ligadas aos sistemas lineares podem ser utilizadas. Este problema linearizado é chamado ESTABILIDADE DINÂMICA. Um dos pontos mais importantes no estudo da estabilidade de um sistema é a definição dos critérios ou das perturbações que o sistema deve suportar. Como foi dito, nenhum sistema é estável para qualquer condição. É fundamental que se defina

Page 2: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 2

em quais condições ele deve ser estável, ou seja, em quais condições iniciais, para que defeito e durante quanto tempo. O estudo da proteção do sistema é também muito importante, uma vez que a proteção define exatamente o tempo de abertura, ou eliminação do defeito. Quanto mais rápida a proteção, maior será o limite de estabilidade transitória do sistema. Finalmente, as condições iniciais, ou pré-defeito, também influenciam a estabilidade do sistema. Um sistema carregado tem uma margem de estabilidade menor que um sistema sem carga. Da mesma forma, uma máquina absorvendo potência reativa também tem uma menor capacidade de suportar perturbações. EXEMPLO 1. Dado o sistema simplificado da figura 1, determinar, em função da tensão do gerador e do motor, a potência transferida na linha de transmissão.

G M

Figura 1

Solução:

Eq. 1 IEg Em

jX=

Tomando a tensão no motor como referência fasorial:

Eq. 2 IEg Em

X=

−/ /

/

δ 0

90

A potência complexa é, por definição, dada pelo produto do fasor de tensão pelo conjugado da corrente. A potência ativa (P), por sua vez, é dada pela parte real da potência complexa.

Eq. 3 ( )P Eg I= Re . *

Então:

Eq. 4 P EgEg Em

jX=

−Re( * )

Page 3: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 3

Eq. 5 PE

X

E E

X

g g m= − − − −Re( / / )

2

90 90 δ

Como

Eq. 6 je jsenθ θ θ= +cos

Então

Eq. 7 PEgEm

X= − −cos( )90 δ

ou

Eq. 8 PEgEm

Xsen= δ

A potência máxima transmitida entre dois pontos é função do módulo da tensão entre as barras e do seno do ângulo de defasagem entre elas. EXEMPLO 2 Dado um sistema composto por um gerador, um transformador e uma linha, ligados a um barramento infinito. Suponha que a tensão neste barramento seja igual a 1 pu. Calcular o ângulo de carga do gerador quando este está submetido aos seguintes carregamentos; a) S = 100 MVA, fp = 0,9 indutivo; b) S = 10 MVA, fp = 0,9 indutivo; e c) S = 100 MVA, fp = 0,9 capacitivo. Dados: Gerador: S = 100 MVA; 13,8 kV, X’d = 0,15 pu; Transformado: S = 100 MVA, 13,8/500 kV, XT = 10%; e Linha: 500kV, XLT =0,5 Ω/km, 200 km. Solução

a) Diagrama Unifilar

Gerador

TrafoLinha de Transm.

Barramento Infinito

Figura 2

b) Transformação para pu em uma base comum: Escolhendo S(base) = 100MVA, tem-se: X’d = 0,15 pu,

Page 4: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 4

XT = 0,10 pu e, para linha de transmissão:

LT

BASE

XZ

=0 5 200, *

onde

BASEBASE

BASE

ZV

S= = =

2 2500100

2500Ω

XLT = 0,04 pu A reatância equivalente é, portanto: X = X’d + XT + XLT = 0,29 pu. c) Cálculo da corrente: Para a primeira condição tem-se: S = 100MVA, fp = 0,9 indutivo, portanto, em pu: S = 1 pu. Como

Eq. 9 IS

V=

*

então: I =−

= −1 0 9

11 2584

/ arccos( , )/ ,

nos outros dois exemplos o procedimento é o mesmo mudando, respectivamente, o valor do módulo e o sinal do ângulo. d) Cálculo da tensão interna da máquina:

Eq. 10 E V jXI= +

Portanto: E = 1156 13 04, / ,

A defasagem entre a tensão no barramento infinito e a tensão interna da máquina é de aproximadamente 13 graus nestas condições. Fazendo as mesmas contas para o item “b” e “c”, tem-se: E = 1013 1 47, / ,

e E = 0 911 16 63, / ,

Observa-se diretamente deste exemplo que a tensão interna da máquina depende em módulo e ângulo do carregamento do sistema. EXEMPLO 3

Page 5: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 5

Supondo que o regulador de tensão da máquina faça com que a tensão nos seus terminais permaneça constante e igual a 1 pu. Calcular a defasagem angular entre a tensão interna e o barramento infinito, para o primeiro carregamento do exemplo anterior. Solução:

a) Diagrama Unifilar:

Gerador

TrafoLinha de Transm.

Barramento Infinito

V=1 / 0ºE=1/tetaº

Figura 3

b) O cálculo da corrente vem diretamente do exemplo anterior: I = −1 2584/ , .

c) A potência será: P = 0,9 pu.

Portanto:

θ = =arcsin.

.,

X P

V E7 23

Page 6: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 6

AULA 2

2) Modelo Matemático Elementar Como a máquina síncrona é um corpo girante, sua posição é determinada pelas equações mecânicas de rotação. Antes de falar da equação de balanço, vai-se fazer uma pequena revisão das equações básicas da mecânica de translação e em seguida de rotação. 1) TRANSLAÇÃO As grandezas físicas podem ser derivadas de três grandezas fundamentais: • comprimento (dado em metro [m]);

• massa (dada em quilograma [kg]); e

• tempo (dado em segundos [s]).

A partir destas grandezas podem se derivar todas as outras das quais vai-se destacar: • velocidade

vdx

dt= [m/s]

• aceleração

ad x

d t=

2

2 [m/s2]

• força

F ma= [kg.m/ s2] ou [N] ou [newton]; • momento

Q mv= [kg.m/s] ou [Ns];

• trabalho

W F dx= ∫ . [kg.m2/ s2] ou [J] ou [joule];

• Potência

PdW

dt= [kg.m2/ s3] ou [W] ou [watt].

Observa-se da definição, que a velocidade é igual à taxa de variação do espaço com o tempo. A aceleração é a taxa de variação da velocidade. A força aplicada em um corpo de massa “m” produz uma aceleração “a”. O momento, ou a quantidade de movimento de um corpo de massa “m” é igual ao seu produto pela velocidade. O trabalho é igual a integral do produto escalar da força pela distância e, finalmente, que a potência é igual a taxa de variação temporal do trabalho. Além destas grandezas fundamentais pode-se ainda derivar expressões que relacionem estas grandezas entre si, por exemplo:

Page 7: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 7

F mdv

dt

dQ

dt= =

a força é igual a variação do momento com o tempo

FdW

dx= ,

é também igual à variação do trabalho com o deslocamento;

PdW

dt

Fdx

dt= = = Fv ,

a potência é igual a força vezes a velocidade; P mav Qa= = ,

ou ao produto da quantidade de movimento pela aceleração. Outro conceito importante no estudo de estabilidade é o da “energia cinética”. A energia cinética, por definição, é igual ao trabalho necessário para tirar um corpo de massa “m” do repouso e colocá-lo a uma velocidade “v”.

W Fdx mdv

dtdx m vdv m vdv Qv

v

= = = = =∫∫∫ ∫01

2

ou W m v=1

22

2) ROTAÇÃO Por definição, ângulo é igual a relação entre o comprimento do arco e o raio da circunferência. Ou seja:

θ =s

r [radianos] ou [rad].

A unidade radiano é adimensional já que é dada pela relação de dois comprimentos, no entanto, é importante manter a unidade para não se perder a sensibilidade física da definição de ângulo. As definições de velocidade angular e aceleração angular decorrem diretamente da definição do ângulo:

ωθ

=d

dt [rad/s]

αω θ

= =d

dt

d

d t

2

2 [rad/s2]

As relações entre deslocamento, velocidade e aceleração angular e suas componentes tangenciais (a uma distância “r” do centro) são dadas por: s r= θ v r= ω a r= α O conjugado é definido como sendo o produto vetorial do raio pela força:

r r rT r F= × .

Considerando o conjugado total produzido por forças infinitesimais ao longo de uma massa, tem-se:

r r rT r dF= ×∫ [Nm] ou [J/rad]

Page 8: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 8

Dimensionalmente, conjugado e trabalho têm a mesma unidade já que o módulo dos dois corresponde ao produto de força e distância. No entanto, fisicamente, os dois são completamente diferentes. O primeiro, trabalho, é um escalar (dado pelo produto escalar de dois vetores), portanto é um número. O segundo é um vetor, dado pelo produto vetorial do raio e da força. Para o primeiro, a projeção do deslocamento na direção da força que é importante. No segundo, o mais importante é a sua ação ortogonal. Para derivar uma expressão semelhante à lei de Newton para movimentos rotacionais, parte-se da equação da aceleração para uma partícula “dm”. dF a dm= . se a força for aplicada a uma massa situada a uma distância “r” do centro, vem: dF r dm= α. O conjugado produzido por esta força é dado por: dT r dF r dm= =. .2 α Definindo momento de inércia “J” como:

J r dm= ∫ 2. [kg.m2]

Obtém-se a relação entre conjugado e aceleração para um corpo girante: T J= α Fica clara, portanto, a relação entre as grandezas de um movimento translacional e rotacional. Força e conjugado, massa e momento de inércia e aceleração e aceleração angular. O trabalho executado por um conjugado é dado por:

dW F dx F r d= = ∫∫ . . . θ

W T d= ∫ . θ [J]

ou, derivando dos dois lados:

TdW

d=

θ [J/rad]

Como PdW

dt= e

então: P dt T d. .= θ Portanto: P T= ω Finalmente, a energia cinética de uma massa em rotação é dada por:

W J d= ∫ ω ωω

.0

ou W J=1

22ω

Resumindo:

θ =s

r ângulo, [radiano];

ωθ

=d

dt velocidade angular, [rad/s];

αω

=d

dt aceleração angular, [rad/s2];

T r F= ×r r

conjugado, [Nm] ou [J/rad];

J r dm= ∫2 momento de inércia, [kgm2];

M J= ω constante de inércia, [kgm2/s]; T J= α Lei de Newton para movimento rotacional; e

Page 9: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 9

W J=1

22ω energia cinética, [J].

Page 10: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 10

AULA 3

3) Equação “Swing”

Como o problema de estabilidade analisa o comportamento das máquinas síncronas

do sistema para uma determinada perturbação, a melhor grandeza para se avaliar se o

sistema é ou não estável é a posição angular da máquina.

A relação entre conjugado e posição angular é dada por:

Eq. 11 T Jd

dtJa = =

2

2

θθ&& J/rad

onde θ é o ângulo mecânico (real) do eixo em relação a uma referência fixa, J é o

momento de inércia de todas as massas ligadas ao eixo do gerador, e Ta é o conjugado

acelerante.

Considerando o funcionamento da máquina como gerador, o conjugado acelerante é

positivo quando o conjugado mecânico da turbina é maior que o conjugado elétrico de

frenagem. Então é adotado como convenção a seguinte expressão para o conjugado

acelerante:

Eq. 12 T T Ta m e= −

ou seja, quando o conjugado mecânico é maior que o elétrico a aceleração é positiva,

caso contrário, ocorre uma desaceleração do gerador. Em regime permanente, o

conjugado elétrico é igual ao mecânico e o gerador funciona com aceleração nula e

velocidade constante.

Em vez de se considerar o ângulo mecânico real da máquina, é mais conveniente

considerar a variação do ângulo mecânico em relação a uma referência girando à

velocidade síncrona, ou seja, definindo:

Eq. 13 θ ω θ δ= + +R t m0 rad

vem: & &θ ω δ= +R m rad/s

e: && &&θ δ= m rad/s2

Page 11: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 11

Portanto, pode-se escrever a equação “swing” da mesma forma considerando o ângulo

mecânico em relação a uma referência girando à velocidade síncrona ( ω R ).

Eq. 14 J Tm a&&δ = N.m

Além disto, é também mais conveniente considerar o ângulo elétrico da máquina em

vez do ângulo mecânico:

Eq. 15 me2

pδδ = rad

onde “p” é o número de pólos da máquina. Em termos do ângulo elétrico, a equação

“swing” fica:

Eq. 16 aTp

J2=δ&& N.m

onde o índice do ângulo foi suprimido para simplificar a notação. Ao longo deste texto

a posição do rotor em relação a uma referência girando à velocidade síncrona em

radianos elétricos é denominada simplesmente δ .

Esta mesma equação pode ser reescrita em termos da potência acelerante da máquina.

Multiplicando os dois lados da equação por ω , tem-se:

Eq. 17 aPp

M2=δ&& W

Onde “M”, como foi visto, é a chamada constante de inércia de todas as massas

ligadas ao eixo do gerador.

Existem diversas formas alternativas de se escrever a mesma equação, principalmente

levando em consideração as diferentes formas de se obter o dado da constante de

inércia da máquina. Em algumas máquinas este valor é fornecido como WR2, em

unidades do sistema inglês (slug). A transformação deste valor para unidades do MKS

está claramente detalhada nas referências [1] e [2] e não vai ser rediscutida aqui.

É importante, em um sistema, que todas as máquinas estejam referenciadas a uma

mesma base de potência. Dividindo-se a equação “swing” por uma potência aparente

de base, tem-se:

Page 12: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 12

Eq. 18 au

3B

a

3B

PS

P

pS

M2==δ&& pu

onde todas as grandezas estão em valores reais menos a potência que, agora, está em

pu.

Pode-se também definir a base do torque para colocar a outra equação em valores por

unidade:

Eq. 19 TS

BB3

R

N.m

e a equação em pu fica:

Eq. 20 au

B

a

B3

mR TT

T

Sp

J2==δ

ω&& pu

Colocando esta equação em termos da energia cinética da máquina obtém-se uma

grande simplificação. Lembrando que:

Eq. 21 W J=1

22ω m J

onde o índice “m” na velocidade angular caracteriza esta grandeza como mecânica.

Para se obter a energia cinética da máquina, basta multiplicar e dividir a equação do

torque em pu pela velocidade angular mecânica nominal ( ω mR ):

Eq. 22 au

B3

mR

mR

mR TSp

J2=δ

ω

ω

ω&& pu

como a relação entre a velocidade angular mecânica e elétrica é dada pelo número de

pares de pólos:

Eq. 23 mRR2

pωω = rad elétricos/s

então:

Eq. 24 2 1W

STau

B3 Rωδ&& = pu

Define-se então a relação entre a energia cinética da máquina e a sua potência aparente

nominal como o H da máquina:

Eq. 25 HW

S=

B3

s

Page 13: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 13

Pode-se observar que dimensionalmente, a relação entre energia e potência é segundo,

portanto, o H da máquina corresponde ao tempo necessário para a máquina sair do

repouso e atingir a sua velocidade síncrona quando se aplica em seus terminais a sua

potência aparente nominal.

Esta grandeza é interessante porque ela não varia muito de máquina para máquina.

Para turbo geradores ela está na faixa de 3 a 10 segundos. Para hidro-geradores ela é

da ordem de 2 a 4 segundos. Valores típicos de H podem ser tomados como:

H turbo = 6 s

Hhidro = 3 s

Com esta definição, a equação diferencial que define a posição elétrica do rotor da

máquina em relação a uma referência girante à velocidade síncrona, é dada

simplesmente por:

Eq. 26 2H

Tauω

δR

&& = pu

Esta equação diferencial de segunda ordem pode ser transformada em duas outras de

primeira ordem:

Eq. 27 &δ ω= rad/s

Eq. 28 2H

Tauω

ωR

& = pu

Neste sistema de equações diferenciais, todas as grandezas, com exceção do torque,

estão em valores reais. Esta equação, nesta forma, vai ser utilizada ao longo do curso.

É interessante notar que com esta forma normalizada em função do conjugado

mecânico de base e da energia cinética da máquina, ambos funções da velocidade

angular mecânica, a expressão final fica independente do número de pólos da máquina

(p). É também importante lembrar que H é dado em função da potência aparente de

base da máquina. Para se analisar um sistema é necessário colocar todas as máquinas

em uma base comum de potência, então o valor relativo dos H’s do sistema vão variar

bastante de acordo com a potência nominal das máquinas.

EXEMPLO

Page 14: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 14

Dado um sistema com três máquinas de potência aparente nominal igual a 4000

MVA, 1000 MVA e 100 MVA. Se a energia cinética em pu das máquinas for

respectivamente 3, 4 e 6 segundos, colocar estes H’s em uma base comum. (Sbase =

1000MVA).

Solução:

Usando a base de potência aparente dada vem:

H HS maq

S sistu

base

base

1 1 34000

100012= = =.

( )

( ). s

H u2 41000

10004= =. s

H u3 6100

10000 6= =. , s

É fácil perceber que quanto menor a máquina mais rápida será a sua variação de

velocidade para uma determinada perturbação.

Finalmente, outra forma de se escrever a mesma equação, também muito encontrada

na literatura, leva em consideração que em pu a velocidade angular é sempre próxima

da unidade, ou seja:

ωω

ωu = ≅

R

1 pu

então: P T Tau u au au= ≅ω pu

logo,

2H

Pauω

ωR

& ≅ pu

Page 15: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 15

AULA 4

Conjugado Mecânico O conjugado mecânico de um gerador é, normalmente, fornecido por uma turbina

térmica ou hidráulica. Em ambos os casos ele é função da velocidade.

Quanto melhor for representado o sistema mecânico, melhores serão os resultados em

estudos de Estabilidade. No entanto, não será considerado neste curso detalhes do

funcionamento da turbina. Características como altura, vazão, densidade do fluido e

rendimento não serão analisadas. Vai-se analisar apenas a influência do regulador de

velocidade, ou seja, vai-se, neste item, diferenciar as máquinas com e sem regulador

de velocidade.

a) Sem regulador de velocidade

Neste caso o sistema de injeção de fluido na turbina permanece inalterado havendo

uma mudança na velocidade, ou seja, as válvulas da turbina térmica e os “gates” das

turbinas hidráulicas permanecem inalterados havendo uma variação na carga.

A relação entre conjugado e velocidade é dada pela relação fundamental entre

potência e conjugado:

Eq. 29 TP

m

m

m

N.m

Diferenciando esta equação:

Eq. 30 m

m

m

m

m

m

m dT

dPP

TdT ω

∂ω

∂+= N.m

ou

Eq. 31 dT dPP

dm

m

m

m

m

m= −1

2ω ωω N.m

próximo da velocidade síncrona, tem-se:

Eq. 32 dT dPP

dm m

m

m= −1

ω ωω

R R2

N.m

Page 16: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 16

considerando que a máquina não tenha regulador, ou seja, que a potência mecânica

injetada na turbina permaneça aproximadamente constante:

Eq. 33 dPm = 0 W

Portanto:

Eq. 34 dTP

dm

m= −ω

ωR2

N.m

Colocando esta equação em pu, considerando o torque de base previamente definido:

Eq. 35 dT dmu mu= − ω pu

ou seja, próximo à velocidade nominal, a relação entre o conjugado e a velocidade em

pu é uma reta com declividade igual a -1, conforme a figura abaixo:

T(pu)

1

1 w(pu)

figura 1

Esta curva mostra que no caso da máquina sem regulador uma diminuição na

velocidade da ordem de 1%, provoca um aumento no conjugado mecânico também da

ordem de 1% em pu. A declividade negativa da curva Txω é estável. Se por um

motivo qualquer a velocidade decrescer, o conjugado mecânico cresce, aumentando a

aceleração da máquina e fazendo com que a velocidade volte ao seu valor inicial.

b) Com regulador de velocidade

A característica do regulador de velocidade é a de atuar nas válvulas ou “gates” das

turbinas de forma a acentuar esta característica Tx ω do sistema, ou seja, para uma

queda na velocidade de 1%, o regulador, em vez de aumentar o conjugado mecânico

em apenas 1%, aumenta muito mais de forma a forçar a velocidade a voltar a seu valor

de regime o mais rápido possível.

Page 17: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 17

Para isto é feito um ajuste na declividade da característica Tx ω da máquina. Este

ajuste pode ser feito da forma que o projetista quiser, respeitando os limites da

máquina e mantendo a característica estável do sistema, ou seja, uma declividade

negativa.

Para que uma variação na carga seja absorvida de forma proporcional por todas as

máquinas do sistema, o valor da declividade da curva, chamada “droop characteristic”,

é normalizado. Nos EUA este valor é ajustado em 5% e na Europa o valor usado é de

4%. Esta característica significa que para uma queda de 5% na velocidade haverá um

aumento de 100% no conjugado mecânico.

Matematicamente, a equação da reta é dada por:

Eq. 36 ∆ ∆ωTR

m = −1

N.m

O valor de R, na equação acima está dado em (rad/N.m.s). Colocando em pu na base

da potência aparente da máquina, vem:

Eq. 37 ∆T T Tm m= − 0 N.m

∆ω = −ω ω 0 rad/s

então, multiplicando pela velocidade para se obter uma expressão em termos da

potência, vem:

Eq. 38 P PR

m − = − −0 0

1ω ω ωR ( ) W

Dividindo-se pela potência de base:

Eq. 39 ∆ ∆ωPR S

mu = −1 ω R

B3

pu

Para se obter a declividade em pu é necessário que a velocidade também esteja em pu.

Para isto, divide-se o segundo termo por ω R :

Eq. 40 ∆ ∆ωPR S

mu u= −1 ω R

2

B3

pu

Definindo, então:

Page 18: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 18

Eq. 41 RS R

u = B3

R2

.

ω pu

então: ∆ ∆ωPR

mu

u

u= −1

pu

É este valor (Ru), em pu, que é normalizado na Europa e nos Estados Unidos em 4 e 5

% respectivamente.

A curva característica do conjugado em relação a velocidade, da máquina com

regulador de velocidade fica, então:

Tm

∆ T m

∆ω m

figura 2: com regulador

Esta regulação de velocidade é de regime permanente. Se todas as máquinas tiverem a

mesma regulação, uma variação da carga vai se dividir igualmente entre as máquinas.

Como foi visto, o valor da declividade R em pu, é dado na base da potência aparente

nominal da máquina, desta forma, colocando todos os reguladores na mesma base do

sistema, da mesma forma que foi feito para o H no item anterior, as declividades

relativas vão ser diferentes e a carga vai se distribuir proporcionalmente a potência

nominal de cada máquina.

As constantes de tempo do sistema mecânico são, em geral, de ordem de grandeza

bem superior que as elétricas, desta forma, para uma análise inicial simplificada, é

bastante razoável que se considere que a potência mecânica fornecida à máquina

permaneça constante durante o período transitório.

EXEMPLO 1

Page 19: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 19

Colocar em uma base comum (1000MVA, p.ex.) o “droop” R das três máquinas do

exemplo anterior, supondo que eles sejam iguais a 5%.

Solução

%25,1)(

)(.05,0

B3

B31 ==

maqS

sisSR u

Da mesma forma: R u2 5= % e R u3 50= % .

Como era de se esperar, a divisão de uma variação de carga se dá proporcionalmente à

potência de cada máquina.

Page 20: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 20

5) Conjugado Elétrico

Foi visto anteriormente que:

Eq. 42 2H

T Tm eω

ωR

& = − pu

A análise do conjugado mecânico já foi feita, e, neste item, vai-se fazer uma análise

simplificada do conjugado elétrico.

O conjugado elétrico de uma máquina pode ser dado pela seguinte expressão geral:

Eq. 43 T i L ie

T=1

2[ ] [ ( )][ ]

∂θθ N.m

Onde [i] é o vetor de correntes da máquina e [L(θ)] a sua matriz de indutância, que é

uma função da posição do rotor θ.

Percebe-se, então, que o conjugado é função de todas as correntes que circulam na

máquina. Estas correntes, por sua vez, dependem das condições do sistema no qual a

máquina está ligada. Além disto, visto que o conjugado é função da matriz de

indutância, ele é também função do carregamento magnético da máquina, ou seja, da

sua saturação.

Uma simplificação significativa na expressão do conjugado é obtida utilizando a

transformada de Park. De fato, os enrolamentos do estator podem ser representados

por dois enrolamentos fictícios “d” e “q” em sincronismo com o rotor. Com esta

representação a matriz de indutância da máquina deixa de ser função da posição do

rotor e a expressão para o conjugado elétrico pode ser dada por:

Eq. 44 T i ie = −λ λd q q d N.m

onde λ d d d F F D D= + +L i kM i kM i Wb

e λ q q q Q Q= +L i kM i Wb

Page 21: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 21

são os fluxos concatenados com os enrolamentos “d” e “q”. Uma revisão completa da

teoria de máquinas síncronas e da transformada de Park será vista no decorrer do

curso, por enquanto vai-se fazer uma análise simplificada.

O conjugado elétrico pode ser considerado em diversos níveis de aproximação. Uma

primeira aproximação óbvia é obtida desprezando-se os enrolamentos amortecedores

de eixo direto e em quadratura. Neste caso, o conjugado passa a ser simplesmente uma

função da iteração do fluxo produzido pelo rotor e pelo estator.

O fluxo produzido pelo enrolamento de campo é função da fmm produzida por este

enrolamento, ou seja, pelo número de espiras e pela corrente de circulação iF. Este

fluxo é portanto constante e gira à velocidade síncrona. O fluxo produzido pelo estator

é uma composição dos fluxos produzidos por cada uma das fases. A defasagem das

espiras no entreferro e a defasagem das tensões geradas no tempo produzem o campo

magnético girante da máquina que pode ser visto como uma fmm girando à

velocidade síncrona e de módulo constante.

A iteração entre estes dois fluxos produz um conjugado que é função do ângulo de

defasagem entre eles.

Um diagrama fasorial mostra de forma simplificada esta iteração. Chamando de E a

tensão produzida pela variação do fluxo produzido pelo rotor F nas bobinas do estator.

Chamando de A o fluxo produzido pela reação da armadura, ou seja, pela circulação

de corrente no estator. O fluxo resultante no entreferro será a soma vetorial destes dois

componentes. O fasor de tensão terminal da máquina V será dado pela derivada do

fluxo resultante R, ou seja, V estará fasorialmente estará atrasado em relação a R de

90 graus. A figura abaixo mostra o diagrama fasorial em regime permanente da

máquina.

Page 22: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 22

A

F R E

V

I

Figura 4

Este diagrama representa a máquina síncrona de pólos lisos em regime permanente. O

circuito elétrico equivalente está mostrado na figura abaixo:

I

jX

E V

Figura 5

Este diagrama em regime permanente ajuda a interpretar o que ocorre na máquina na

ocorrência de uma perturbação (um curto circuito por exemplo). A corrente do estator

(I) se altera, no entanto, pode-se supor que o fluxo produzido pelo campo permanece

aproximadamente constante, já que as constantes de tempo do enrolamento de campo

são relativamente grandes. Desta forma, pode-se supor que a tensão produzida por este

fluxo (E) também permanece constante. A reatância efetiva da máquina depende da

corrente nos diversos enrolamentos. Desprezando o efeito dos enrolamentos

amortecedores esta reatância é dada por X’d. Desta forma, com estas simplificações,

pode-se representar a máquina por uma tensão constante atrás da reatância transitória

de eixo direto, conforme a Figura 3.

Page 23: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 23

I

X’d

E V

Figura 6

Supondo que E e V permaneçam constantes, a potência elétrica fornecida pela

máquina se torna função exclusiva do ângulo de defasagem entre elas:

Eq. 45 PVE

Xsen

d

=′

δ W

Este modelo é chamado modelo clássico da máquina. Apesar de muito simplificado

ele é de grande utilidade para se avaliar os principais conceitos do problema de

estabilidade.

EXEMPLO 3

Calcular E e δ de uma máquina operando ligada a um barramento infinito (V = 1pu),

fornecendo uma potência ativa de 0,8 pu com um fator de potência 0,8 indutivo. A

reatância transitória da máquina é de 20%.

Solução:

Tomando V como referência:

V = °1 0/ pu

SP

fp= = 1 pu

S S ar= = °/ cos( , ) / ,0 8 1 36 9 pu

IS

V=

= − °* / ,1 36 9 pu

E E V jX I= = + ′ = °/ , / ,δ d 11314 813 pu

Como durante o período transitório o módulo das tensões V e E permanecem

constantes, a potência elétrica fornecida pela máquina será uma função do seno do

ângulo de defasagem entre elas: P = 5,65 sen δ.

Page 24: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 24

Page 25: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 25

Coeficiente de Sincronização Como foi visto no exemplo anterior, considerando que a máquina opere ligada a um barramento muito forte (uma barra infinita) pode-se supor que durante o período transitório o módulo da tensão interna da máquina E e a do barramento infinito permanecem constantes. Desta forma, a potência é uma função do ângulo de defasagem entre elas:

Eq. 46 PE V

X Xsen=

′ +

.

d

δ W

onde X é a reatância da ligação entre a máquina e o barramento infinito. Considera-se que a máquina esteja fornecendo inicialmente uma determinada potência P0 que corresponde a um determinado ângulo inicial δ0. Havendo uma variação na potência fornecida ∆P haverá também uma variação no ângulo do rotor (∆δ).

Eq. 47 ∆δ ∆δ= − ⇒ = +δ δ δ δ0 0 rad

Eq. 48 ∆ ∆P P P P P P= − ⇒ = +0 0 W

Portanto:

Eq. 49 ( )∆ ∆δP P P sen+ = +0 0max δ W

Desenvolvendo o seno da soma:

Eq. 50 ( )∆ ∆δ ∆δP P P sen sen+ = +0 0 0max cos cosδ δ W

Considerando uma pequena variação do ângulo:

Eq. 51 ∆δ → 0

Então: sen∆δ ∆δ≅ e cos ∆δ ≅ 1 Simplificando a equação 5 vem:

Eq. 52 ∆ ∆δP P= max cos δ 0 W

Definindo coeficiente de sincronização como:

Eq. 53 P PP

s max= ==

cosδ∂

∂δ δ δ

0

0

Então:

Eq. 54 ∆ ∆δP P= s

Da definição de coeficiente de sincronização (Eq. 8), observa-se que para que ele seja positivo é necessário que:

Eq. 55 0 20≤ ≤δ π /

Page 26: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 26

O coeficiente de sincronização positivo corresponde ao funcionamento estável da máquina, ou seja, um aumento na potência mecânica da turbina provoca uma aceleração da máquina que provoca o aumento do ângulo δ. Este aumento provoca o aumento da potência elétrica fornecida que tende a equilibrar a potência mecânica. O limite δ π= / 2 é chamado limite de “estabilidade estática” ou de “regime permanente”.

Freqüência Natural de Oscilação da Máquina Síncrona Dada uma perturbação em um sistema, os rotores das diversas máquinas interligadas vão oscilar em torno de um novo ponto de funcionamento (ou de um novo ângulo δ) até que as oscilações sejam amortecidas. Além da oscilação do rotor com o sistema, haverá uma série de outras oscilações, por exemplo, a oscilação das diversas massas conectadas ao eixo. Cada uma destas oscilações têm uma freqüência natural, ou um modo natural de oscilação. Neste item, vai-se calcular a freqüência natural de oscilação de um rotor (considerado um corpo rígido) em relação ao sistema, representando a máquina pelo seu modelo clássico e que a oscilação seja suficientemente pequena para que se possa linearizá-la em torno de um ponto. Para isto, considera-se uma máquina ligada a um barramento infinito através de uma linha sem perdas (ou seja, através de uma reatância pura “X”). Deseja-se calcular a variação angular ∆δ em função do tempo para uma pequena perturbação. Partindo-se da equação swing, tem-se:

Eq. 56 2H

P Pm eω

δR

&& = − pu

Da definição de pequena oscilação em torno de um ponto (Eq. 2), vem:

Eq. 57 && &&δ δ= ∆ já que: &δ 0 0=

Então, a equação swing pode ser reescrita como:

Eq. 58 2

0

HP P Pm e e

ωδ

R

∆ ∆&& = − − pu

Considerando que antes da perturbação o sistema estivesse em regime permanente, a potência mecânica é igual a potência elétrica inicial, ou seja:

Eq. 59 P Pm e= 0 pu

Então:

Eq. 60 2H

Peω

δR

∆ ∆&& = − pu

Como foi visto (Eq. 9), o coeficiente de sincronização relaciona a variação da potência elétrica com a variação do ângulo, portanto, fazendo esta mudança de variáveis:

Page 27: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 27

Eq. 61 2

0H

Psω

δR

∆ ∆δ&& + = pu

que é uma equação diferencial de segunda ordem linear.

EXEMPLO 1

Resolva a equação 16: Solução:

∆ ∆δ&&δω

= − R P

H

s

2

Definindo: ωω

osc

sP

H

2

2= R , vem:

∆ ∆δ&&δ ω= − osc

2 , esta equação tem várias soluções, uma delas é dada por: ∆δ = Ksen toscω De fato:

∆ & cosδ ω ω= K tosc osc , e

∆ ∆δ&&δ ω ω ω= − = −K sen tosc osc osc

2 2 , cqd. Portanto, desprezando-se os amortecimentos, o ângulo da máquina vai oscilar em torno de um valor inicial δ0 com uma freqüência ωosc. Esta freqüência é chamada Freqüência Natural de Oscilação. A freqüência natural de oscilação depende do ponto inicial de operação da máquina (Ps) e da inércia da máquina. A ordem de grandeza pode ser facilmente avaliada supondo determinadas condições iniciais.

EXEMPLO 2

Avaliar a ordem de grandeza da freqüência natural de oscilação de uma máquina ligada a um barramento infinito. Solução:

ωω

osc

sP

H

2

2= R

como: P Ps = max cosδ 0 Supondo um ângulo inicial pequeno:

PEV

X Xs

d

≅′ +

Supondo ainda que a potência máxima seja igual a potência nominal (1 pu), com um H=4s, vem:

ω osc

x

x= =

377 1

2 46 86, rad/s

Então: f osc

osc= =ω

π21 Hz

Pode-se observar que para uma máquina maior, P = 2 e H = 10, por exemplo, a freqüência de oscilação permanece aproximadamente a mesma. Considerando o valor inicial do ângulo um pouco maior, observa-se que a freqüência natural não muda.

Page 28: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 28

Generalizando-se, pode-se afirmar que esta freqüência está sempre na faixa de 1 a 4 Hz. Este exemplo confirma que a análise transitória de um sistema elétrico está na ordem de 1 segundo, desta forma, as constantes de tempo muito pequenas como as constantes subtransitórias da máquina e as constantes de tempo mecânica, muito grandes, podem ser desprezadas nesta primeira análise simplificada.

EXEMPLO 3

Escrever as equações diferenciais do problema massa/mola da figura abaixo. Determinar K e B de forma a se ter um amortecimento crítico se uma força (f(t)), aplicada a massa “M” for um degrau unitário.

xM

mola (K)

B

Figura 7

Solução:

Considerando uma força f(t) aplicada no corpo de massa M, vem diretamente:

Eq. 62 f t Md x

dtB

dx

dtKx( ) = + +

2

2

A solução da equação homogênea é dada por: x est= portanto: &x se st= e &&x s e st= 2 Substituindo, obtém-se a equação característica do sistema: ( )Ms Bs K e st2 0+ + = , ou

Eq. 63 0M

Ks

M

Bs 2 =++ , cuja solução é dada por:

sB

M

B

M

K

M1 2

2

2

1

2

4, = − ± −

A solução será puramente oscilatória quando a parte real da raiz for igual a zero, ou seja B=0, e ela será puramente amortecida quando a parte imaginária for igual a zero, ou seja:

B KM≥ 4

EXEMPLO 4

Transformar o problema anterior na forma de equação de estado do tipo: &x Ax Bu= +

Page 29: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 29

Solução: Fazendo uma mudança de variáveis:

x x1 = e xdx

dt2 = vem:

Mx Bx Kx f t& ( )2 2 1+ + = e &x x1 2= Em forma matricial:

&

&

/ /( )

x

x

B M K M x

xf t

2

1

2

11 0

1

0

=

− −

+

É fácil observar que os autovalores da matriz A são iguais às raízes da equação característica do sistema. De fato, da definição de autovalores: 0IAdet =− λ

0

1M

K

M

B

det =−

−−−

λ

λ

Eq. 64 0M

K

M

B2 =+− λλ

Similar a Eq. 18.

Page 30: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 30

Máquina Contra Barramento Infinito (Modelo Clássico)

Um barramento infinito já foi definido. É uma barra do sistema onde o módulo da

tensão e a freqüência não variam. Em um sistema real, não existe nenhum barramento

com estas características. Em geral, a saída de grandes unidades geradoras pode ser

considerada um barramento infinito quando o defeito analisado ocorrer a uma

distância elétrica razoável deste ponto.

Considerando uma máquina representada pelo seu modelo mais simples, ou seja, por

uma fonte de tensão constante atrás de uma reatância. Esta máquina está conectada

através de uma linha a um barramento infinito. A equação “swing” será dada por:

Eq. 65 2 2

2

H d

dtP Pm e

ω

δ

R

= − pu

Deve ser determinada uma expressão para a potência elétrica e mecânica, de

preferência em função de δ para se obter a curva δ(t). A forma mais simples de se

obter estas expressões consiste em fazer as seguintes aproximações:

# A potência mecânica permanece constante durante o período transitório;

# O amortecimento é desprezível;

# A máquina síncrona pode ser representada por uma tensão constante atrás da

reatância transitória;

# O ângulo mecânico do rotor coincide com a fase da tensão interna; e

# A carga pode ser representada por uma impedância constante.

Estas considerações em conjunto formam o chamado modelo clássico para os estudos

de estabilidade.

Como, por definição, não está representado nem o regulador de tensão, nem o

regulador de velocidade, a primeira oscilação determina a estabilidade do sistema. Se

o valor de δ crescer indefinidamente para uma determinada perturbação, o sistema

será instável. Por outro lado, se δ atingir um valor máximo e diminuir, então o sistema

será considerado estável.

Page 31: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 31

Das considerações acima, fica claro que não haverá amortecimento na curva do ângulo

interno da máquina em função do tempo.

Suponha o sistema abaixo dado pela definição do modelo clássico:

Vt V/0

X’d ZL

E/δ Zs

Figura 8

Como, da definição do modelo, as tensões interna da máquina e do barramento

infinito são constantes, é conveniente fazer uma redução das barras do sistema à

barras de tensão constante. Usando a transformação Y-∆, a figura 7-1 pode ser

colocada como:

E/δ V/0I y12

y10 y20

Figura 9

É interessante notar que y20 não interfere no problema de estabilidade porque está conectado ao barramento infinito, ou seja, não importa o seu valor a tensão permanecerá constante.

Para se obter a potência elétrica fornecida pelo gerador basta fazer:

Eq. 66 P E I= Re( . *)

A corrente é dada em função da matriz Y por:

Eq. 67 I

I

Y Y

Y Y

E

V

1

2

11 12

21 22

=

.

Onde os termos Yij são os valores complexos da matriz Ybus. Lembrando da formação

desta matriz tem-se:

Page 32: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 32

Eq. 68 Y y y Y11 10 12 11 11= + = / θ

Y y Y12 12 12 12= − = / θ

Usando a barra em cima das variáveis para caracterizar o número complexo.

Fazendo a substituição da expressão de I1 na fórmula da potência e tomando a parte

real, tem-se:(obs.: Aqui a simplificação P = Re(EI*) = Re(E*I) foi utilizada)

Eq. 69 P E Y EVY= + −211 11 12 12cos cos( )θ θ δ

O primeiro termo corresponde ao produto da tensão interna da máquina ao quadrado

pela parte real da admitância própria da barra:

Eq. 70 G Y Y11 11 11 11= =cos Re[ ]θ

O ângulo θ12 corresponde a fase da admitância de ligação entre a máquina e o

barramento infinito. Se esta admitância for puramente indutiva, o seu valor será igual

a 90 graus. Para simplificar a notação toma-se:

Eq. 71 γ θπ

= −12 2 rad

então, substituindo esta definição em Erro! Fonte de referência não encontrada.) e

lembrando que:

Eq. 72 cos( ( )) ( )π

δ γ δ γ2

− − = −sen

obtém-se:

Eq. 73 P G E EVY sen= + −112

12 ( )δ γ

ou P P P sen= + −C M ( )δ γ

A curva Pxδ, considerando a resistência e a carga conectada à máquina é, então, uma

senóide defasada de γ rad no eixo horizontal e de PC do eixo vertical, como mostra a

figura abaixo:

P

PM+PC

PC

γ δ

Page 33: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 33

Figura 10

Para o caso sem carga local e com resistência desprezível, PC = γ = 0 e a curva Pxδ se

apresenta como foi vista nos itens anteriores.

EXEMPLO 1

Uma máquina é conectada a um barramento infinito através de um transformador e

um circuito duplo de linha de transmissão. Considerando os seguintes dados: V = 1/0;

X’d = 0,2 pu; XT = 0,1 pu; XLT = 0,4 pu e H = 5 s. A máquina opera inicialmente com

tensão terminal igual a 1,05 pu fornecendo uma potência ativa de 0,8 pu. Determinar a

equação “swing” da máquina nestas condições.

Solução:

a) Circuito equivalente

j0,2 j0,1 j0,4

j0,4E/δ 1/0

Figura 11

b) Cálculo da matriz de admitância

yj

j12

1

0 52 0= = −

,, pu

Y y j12 12 2 0= − = , Y j11 2 0= − ,

Então: PC = =γ 0 e P EVY sen Esen= =12 2δ δ

c) Determinação do valor inicial do ângulo:

V = 1 0/ Vt = 105, /θ e P = 0 8, pu

então: θ =+

=arcsen

P XX

VVt

(

( )

) ,T

LT

2 13 21o

d) Determinação da corrente

IV V

X

t=−

= −0 8034 5 29, / , o

e) Determinação da tensão interna E:

Page 34: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 34

E V jX It= + ′ =d 1111 2109, / , o

f) Equação Swing:

P sen sen= =1111 10

0 52 22

, * ,

,,δ δ pu

&& ( ) , ( , , )δω

δ= − = −R

237 7 0 8 2 22

HP P senm rad/s

2

Como já foi observado, mesmo neste exemplo muito simplificado, a equação

diferencial que descreve a posição relativa do rotor é não linear. A sua solução só é

possível por métodos de integração numérica.

EXEMPLO 2

Qual seria a equação swing se houvesse um curto circuito trifásico na saída de uma

das linhas. Considere que a impedância para o neutro seja igual a 0,1 pu, puramente

reativa.

Solução:

a) Circuito Equivalente

j0,2 j0,1 j0,4

E/δ j0,1 1/0

Figura 12

b) Transformação Y∆. Para fazer esta transformação, é mais conveniente trabalhar

com admitância, já que:

Eq. 74 YY Y

Y12

1 2=∑

Neste caso particular tem-se:

Yj

j1

1

0 33 333= = −

,,

Yj

j2

1

0 25 0= = −

,,

e tomando a barra de referência como índice 0:

Page 35: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 35

Yj

j0

1

0110 0= = −

,,

Substituindo em(10) tem-se:

Yj j

j j jj12

3 33 5 0

3 33 5 0 10 00 909=

− −

− − −= −

, * ,

, , ,, pu

As outras admitâncias podem ser calculadas da mesma forma, no entanto, para este

problema particular elas não apresentam interesse já que por definição as tensões no

barramento infinito e na máquina permanecem constantes.

c) Equação Swing

Diretamente da definição:

P sen sen= =111 0 909 1010, * , * ,δ δ pu

então: && , ( , , )δ δ= −37 7 0 8 1010sen rad/s2

EXEMPLO 3

Se a proteção atuar eliminando a linha defeituosa (e o defeito) qual será a nova

equação swing?

Solução:

a) O circuito equivalente sem uma linha pode ser visualizado na figura acima, e o

cálculo da admitância e da potência é direto. Obtém-se então a seguinte equação:

&& , ( , , )δ δ= −37 7 0 8 1587sen

EXEMPLO 4

Calcular o ângulo delta em função do tempo para os três exemplos anteriores

considerando um tempo de abertura da linha de 150 ms. Calcular por tentativa e erro

qual o tempo de abertura crítico. Variar os parâmetros da máquina (H e X’d) para ver a

sua influência no tempo crítico. Analisar o artigo do Concordia baseado nestes

resultados.

Solução:

Tem que elaborar um programa de integração passo a passo. Utilizar as equações

dadas e as condições iniciais obtidas nos exemplos anteriores. Usando o MATLAB

tem-se:

tspan = [0 1.2];

x0 = [1 0.368]';

[t,x] = ode23('swing',tspan,x0);

plot(t,x(:,2));

Page 36: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 36

function xponto = swing(t,x)

% simulação da equação swing - exemplo fouad

xponto = zeros(2,1);

% parâmetros

P1 = 1.587; P2 = 1.010;

tab = 0.15; wr = 377;

H = 5; Pm = 0.8;

% equações

if(t > tab)

xponto(1) = (wr/(2*H))*(Pm - P1*sin(x(2)));

xponto(2) = x(1)-1;

else

xponto(1) = (wr/(2*H))*(Pm - P2*sin(x(2)));

xponto(2) = x(1)-1 ;

end;

0 0.2 0.4 0.6 0.8 1 1.2 1.40.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figura 13

Neste exemplo não há tempo crítico uma vez que o curto circuito é muito amenizado pela impedância. Considerando um curto-circuito franco, tem-se: Pe = 0 durante o curto. Para o tempo de abertura igual a 0,25 segundos o sistema é instável. Para t = 0,24 ele volta a ser estável como ilustra a figura abaixo:

Page 37: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 37

0 0.2 0.4 0.6 0.8 1 1.2 1.4-1

-0.5

0

0.5

1

1.5

2

2.5

Figura 14

O tempo crítico deste exemplo é igual a 240 ms.

Page 38: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 38

Critério das Áreas Iguais A estabilidade de uma máquina contra um barramento infinito ou de duas máquinas oscilando uma contra a outra pode ser avaliada de forma simplificada pelo chamado método das áreas iguais. A representação do sistema é feita pelo modelo clássico. Partindo-se da equação swing pode-se mostrar que a área sobre a curva P(δ) é proporcional à velocidade relativa da máquina. Portanto, a partir de:

Eq. 75 2H

P P Pm e aω

δR

&& = − = pu

Multiplicando-se os dois lados por 2d

dt

δ, ou duas vezes a velocidade angular tem-se:

Eq. 76 22

22

2

d

dt

d

dt HP

d

dta

δ δ ω δ= R rad2/s3

Colocando em termos da velocidade e lembrando a definição de derivada de uma função ao quadrado tem-se:

Eq. 77 2 2ωω

ωω δd

dt

d

dt HP

d

dta= = R rad2/s3

ou ainda:

Eq. 78 dH

P daωω

δ2 = R rad2/s2

Integrando e tirando a raiz quadrada:

Eq. 79 ∫=max

o

dPH

a

δδ

ωω rad/s

Se a condição para garantir a estabilidade do sistema é que a velocidade relativa (em relação à referência girante previamente definida) seja igual a zero, então:

Eq. 80 P da δδ

δ

0

0max

∫ = rad/s

Esta integral pode ser interpretada como a área da potência acelerante em função do ângulo delta. Esta área corresponde a diferença entre a potência mecânica e elétrica quando ambas são traçadas em função do ângulo delta. No caso do modelo clássico, com a potência mecânica constante e a potência elétrica função do seno do ângulo de carga esta área é facilmente visualizada na figura abaixo:

Page 39: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 39

P

Pm

δ0 δ

Figura 15

No caso dos três exemplos analisados na aula anterior, é fácil observar as áreas de aceleração e desaceleração da máquina. É interessante notar que, neste exemplo, mesmo que não haja abertura da linha ou a eliminação do defeito, o sistema continua estável. Considerando um curto trifásico mais severo, por exemplo, sem nenhuma impedância de defeito, a potência elétrica entregue ao sistema durante o curto se anula, neste caso, se não houver a atuação da proteção, o sistema perderá a estabilidade. Neste novo exemplo, as curva que caracterizam o problema são as senóides pré-defeito e pós defeito, já que durante o defeito a potência elétrica é constante (igual a zero). A figura abaixo mostra esta situação caracterizando as áreas de aceleração e desaceleração:

P Pmax

Pmax2 A2

Pm

A1

δ0 δc δm δ

Figura 16

Observa-se desta figura que para que o sistema seja estável é necessário que a área de desaceleração seja maior que a área de aceleração ( A A2 1≥ ). No limite, quando as duas áreas são iguais, a velocidade se anula exatamente no momento em que a aceleração iria mudar de sinal. Este ponto é chamado o limite de estabilidade transitória. Pode-se determinar o ângulo crítico de abertura igualando-se as áreas A1 e A2. Explicitando o valor de δc, obtém-se:

Eq. 81 δ δ δ δ δc

m

m mr r

P

Pr r=

−− + −−cos [ ( ) cos cos ]

max

1

2 10 2 1 0

1 pu

Onde: Pmax = Potência máxima pré-defeito; Pmax1 = Potência máxima durante o defeito;

Page 40: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 40

Pmax2 = Potência máxima após o defeito; r1 = Pmax1/Pmax; r2 = Pmax2/Pmax;

δ 01= −sen

P

P

m( )max

; e

δπ

m

msenP

P= >−1

2 2( )

max

EXEMPLO 1

Calcular o ângulo crítico de abertura dos exemplos anteriores considerando a potência elétrica transmitida durante o curto igual a zero. Solução:

Dos exemplos anteriores tem-se:

Pm = 0,8 pu; Pmax = 2,222 pu; Pmax1 = 0; e Pmax2 = 1,5787 pu.

Portanto:

r1 = 0; e r2 = 0,7104.Então:

δ0 = 21,09; e δm = 149,55. Colocando na expressão do ângulo crítico tem-se:

δc=74,08 graus.

É interessante notar que a obtenção do ângulo crítico não implica no conhecimento do tempo crítico de abertura. Para se ter este tempo é necessário integrar as equações diferenciais do ângulo em função do tempo e obter o valor do tempo que corresponde ao ângulo crítico. Este ângulo crítico foi calculado no exemplo anterior e corresponde (da Figura 7) a aproximadamente 1,3 rad, ou 75 graus. O tempo crítico de abertura é uma informação essencial no estudo da estabilidade de um sistema uma vez que determina a rapidez necessária para o seu sistema de proteção. As áreas A1 e A2 podem também ser interpretadas como a variação da energia cinética do rotor da máquina. De fato, da definição de trabalho no movimento rotacional, vem:

Eq. 82 W Td= ∫ δδ

δ

0

J

Colocando esta equação em pu e considerando que a velocidade não é muito diferente da síncrona, pode-se substituir o conjugado desta expressão pela potência acelerante e a energia cinética acumulada quando a potência acelerante é positiva tem que ser pelo menos igual a energia cinética de desaceleração, ou seja as áreas 1 e 2 da figura acima. É também interessante notar que transitoriamente o ângulo δ pode assumir valores maiores que 90 graus. # Método das áreas iguais aplicado a duas máquinas finitas. Para se analisar duas máquinas oscilando entre si é necessário equivalentar as duas máquinas considerando esta máquina equivalente oscilando contra um barramento infinito. Para isto é necessário uma constante de inércia equivalente, uma potência mecânica equivalente e uma potência elétrica equivalente. Tomando as equações swings de duas máquinas, tem-se:

Page 41: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 41

Eq. 83 && ( )δω

11

1 12= −R

HP Pm e

&& ( )δω

22

2 22= −R

HP Pm e

fazendo: δ δ δ= −1 2 rad então:

Eq. 84 &&δω ω

= −R R

2 211

22

HP

HPa a rad/s2

Multiplicando os dois lados por 2 1 2

1 2

H H

H Hω R ( )+ vem:

Eq. 85 2 1 2

1 2

2 1 1 1 2 2

1 2

H H

H H

H P P H P P

H H

m e m e

ωδ

R ( )&& ( ) ( )

+=

− − −

+

Rearranjando a equação e chamando:

Eq. 86 HH H

H Heq =

+1 2

1 2

s

Eq. 87 PH P H P

H Hmeq

m m=−

+2 1 1 2

1 2

pu

Eq. 88 PH P H P

H Heeq

e e=−

+2 1 1 2

1 2

pu

vem:

Eq. 89 2H

P Peq

meq eeqω

δR

&& = − pu

Observa-se que a inércia equivalente corresponde a uma composição das inércias das máquinas em paralelo, portanto, corresponde a um valor menor que a inércia de qualquer uma das máquinas. É claro também que, considerando uma máquina com inércia infinita, esta equação volta a sua formulação inicial. É possível equivalentar um conjunto de máquinas contra um barramento infinito. Neste caso, em vez da inércia equivalente ser igual ao paralelo das inércias, ele equivale à soma das inércias, ou seja, à sua disposição em série. O modelo clássico, apesar de todas suas simplificações, é de grande interesse para a compreensão do fenômeno de estabilidade entre máquinas. No próximo item vai-se estender este conceito do modelo clássico a um sistema multimáquina.

Page 42: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 42

AULA 9

Modelo Clássico para um Sistema Multimáquinas As hipótese básicas continuam as mesmas do modelo da máquina contra barramento infinito: # Potência mecânica considerada constante; # Amortecimento desprezível; # Máquina representada pelo modelo da tensão constante atrás da reatância transitória (X'd); # O ângulo de carga (δ) coincide com a posição do rotor; e # As cargas são representadas por impedância constante. Este modelo é limitado ao estudo da primeira oscilação (first swing) já que todos amortecimentos elétricos e mecânicos são desprezados. Uma forma aproximada de considerar este amortecimento seria a inclusão de um termo de amortecimento (D) na equação swing, ou seja, um termo proporcional à velocidade:

Eq. 90 em2

2

R

PPdt

dD

dt

dH2−=+

δδ

ω

Este coeficiente representa os amortecimentos elétricos e mecânicos do sistema. Um valor razoável, sugerido por Crary, é de 1 a 3 pu. A representação da carga por impedância constante simplifica bastante as equações do sistema: torna o sistema passivo (ou seja, representado por uma matriz YBUS que pode ser reduzida às barras internas das máquinas). Esta representação é aproximada já que o comportamento da carga com a tensão depende, evidentemente, das características da carga. As três formas usuais de representação da carga são: potência constante, corrente constante, e impedância constante. A Figura 1, abaixo, descreve a variação da potência consumida pela carga em função da variação da tensão:

P(pu) Zcte Icte

Pcte

1pu V(pu)

Figura 17: Característica da carga

Page 43: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 43

Em estudos de fluxo de carga, a carga é representada pela potência constante. Em estudos de estabilidade, usando programas bem elaborados, as cargas podem ser representadas por uma composição dos três modelos. Evidentemente a representação detalhada das cargas deve se restringir às maiores cargas do sistema. A representação correta das cargas é muito importante para um estudo de estabilidade. No modelo clássico, multimáquinas, as cargas são inicialmente representadas pela sua potência quando é rodado um fluxo de carga. Em seguida, com o valor das tensões nos barramentos de carga e da sua potência o valor da impedância (ou admitância) equivalente é obtido e a matriz de admitância é alterada de forma a incorporar estes valores. Finalmente esta mesma matriz é reduzida às barras internas dos geradores transformando o sistema passivo em uma matriz simples de conexão entre as barras de geração. As tensões internas dos geradores também é calculada a partir dos resultados do fluxo de carga. Um esquema equivalente do sistema de potência com “n” geradores pode ser visto na Figura 2 abaixo:

X'd1

E1 L1

X'd2

E2 SISTEMA L2

… X'dm Ln

Em

Figura 18: Representação Simplificada do Sistema

As equações que descrevem o sistema passivo e linear podem ser colocadas em sua forma matricial:

Eq. 91 [ ]EYI BUS=

Onde [YBUS] é a matriz de admitância de barra do sistema reduzido às barras de geração. I é o vetor dos fasores das correntes injetadas nas “n” barras, e E o vetor dos fasores das tensões internas. A potência elétrica fornecida a cada instante pelas fontes (com “i” variando de 1 a “n”) é dada por:

Eq. 92 *).Re( iii IEP =

Substituindo o valor da corrente complexa conjugada da expressão acima tem-se:

Page 44: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 44

Eq. 93 ∑≠=

+−+=n

ij

jiijijjiiiii YEEGEP)(1

2 )cos( δδθ (i = 1, n)

onde:

Eq. 94 iiiiiiii jBGYY +== 11/θ

Eq. 95 ijijjijij jBGYY +== 1/θ

Ou ainda:

Eq. 96 ∑≠=

−+−+=n

ij

jiijjiijjiiiii GBEEGEP)(1

2 )]cos()sen([ δδδδ

A potência mecânica é calculada a partir da potência elétrica no instante inicial e mantida constante.

Eq. 97 ∑≠=

−+−+=n

ij

jiijjiijjiiiimi GBEEGEP)(1

00000020 )]cos()sen([ δδδδ

A equação swing a ser resolvida, dividida em duas equações de primeira ordem será dada por:

Eq. 98

Rii

eimiiii

R

i PPDH

ωωδ

ωωω

−=

−=+

&

&2

Estas equações têm que ser resolvidas, em função do tempo, considerando que a matriz [YBUS] sofre alterações devido a defeitos, aberturas de linhas, perdas de cargas, ou qualquer outro problema que venha a ocorrer no sistema elétrico. A resolução, passo a passo de um problema de estabilidade é bastante interessante uma vez que esclarece as dificuldades de cada passagem. Por outro lado mostra que a elaboração de um programa que execute estas passagens não é complicado. Evidentemente, pode-se sofisticar bastante um programa de estabilidade no entanto este modelo simples mostra os conceitos principais. Na bibliografia existem diversos problemas resolvidos. No livro do Stagg [4] tem a resolução de um problema de cinco barras, no do Stevenson [10] aparece a resolução de um problema semelhante de três barras. Vai-se detalhar, a seguir o problema de 9 barras do Anderson & Fouad [1].

Page 45: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 45

EXEMPLO 1 Analisar a estabilidade transitória do sistema da figura abaixo considerando que ocorra um curto-circuito na barra 7 e que a proteção atue eliminando o defeito em 150 ms.

Figura 3: Exemplo de estudo de estabilidade Transitória com 9 barras

O primeiro passo é a obtenção dos dados do sistema. Os dados de linha e de transformadores estão mostrados na Tabela 1. Os dados de linha são normalmente dados em função do comprimento da linha, em Ω/km para resistência e reatância e em nF/km para capacitância. O transformador é representado pela sua reatância de dispersão e é dado em pu na base da sua potência nominal. Como ambos ligam duas barras, eles são chamados de elementos de ligação e um identificador tipo = 1 ou tipo = 2, define em termos de programação o que é a ligação.

Tabela 1: Dados de ligação de para tipo resistencia reatancia

1=LT (ohm/km) (ohm/km) cap(nF/km) comp.(km)

2=TR (pu) (pu) Snom(MVA)

7 8 1 0.0749 0.6348 6.220 60.0

8 9 1 0.0630 0.5332 5.240 100.0

7 5 1 0.0677 0.3407 3.068 250.0

5 4 1 0.0529 0.4496 4.412 100.0

4 6 1 0.0600 0.3200 2.640 150.0

6 9 1 0.0688 0.2998 2.992 300.0

1 4 2 0.0000 0.0576 100. 0

2 7 2 0.0000 0.0625 100. 0

3 9 2 0.0000 0.0586 100. 0

Da mesma forma, são necessários os dados de barra. Tabela 2: Dados de barra

Page 46: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 46

Numero Nome Tipo Tensao P.At.ger P.At.car P.Reat.car

(kV) (pu) (pu) (pu)

1 gera1 3 16.500 0.000 0.000 0.000

2 gera2 2 18.000 1.630 0.000 0.000

3 gera3 2 13.800 0.850 0.000 0.000

4 alfa 1 230.000 0.000 0.000 0.000

5 beta 1 230.000 0.000 -1.250 -0.500

6 gama 1 230.000 0.000 -0.900 -0.300

7 delta 1 230.000 0.000 0.000 0.000

8 eta 1 230.000 0.000 -1.000 -0.350

9 lambda 1 230.000 0.000 0.000 0.000 Estes dados são suficientes para o cálculo do fluxo de carga. Observe que é necessário que um dos geradores seja deixado sem uma definição da potência gerada para que atenda as perdas do sistema. Mesmo não fazendo parte do escopo deste curso, descreve-se abaixo, passo a passo o que deve ser feito em programa de fluxo de carga. Leitura dos dados; Transformação dos parâmetros para valores em pu em uma base comum; Formação da matriz [YBUS]; Cálculo iterativo das tensões pelo método de Newton-Raphson; Cálculo do fluxo de potência nas linhas. Os resultados deste exemplo estão mostrados na tabela 3 abaixo.

Tabela 3: Resultados do Fluxo de carga Numero Nome Tipo Tensao Geracao Carga

Modulo Angulo Ativo Reativo Ativo Reativo

(pu) (graus) (pu) (pu) (pu) (pu)

1 gera1 3 1.040 0.00 0.716 0.271 0.000 0.000

2 gera2 2 1.025 9.29 1.630 0.067 0.000 0.000

3 gera3 2 1.025 4.68 0.850 -0.109 0.000 0.000

4 alfa 1 1.026 -2.22 0.000 0.000 0.000 0.000

5 beta 1 0.996 -3.98 0.000 0.000 1.250 0.500

6 gama 1 1.013 -3.67 0.000 0.000 0.900 0.300

7 delta 1 1.026 3.73 0.000 0.000 0.000 0.000

8 eta 1 1.016 0.74 0.000 0.000 1.000 0.350

9 lambda 1 1.032 1.98 0.000 0.000 0.000 0.000 Com os resultados do fluxo de carga é possível iniciar os cálculos preliminares para o programa de estabilidade. Para isto são necessários os dados dos geradores. No modelo clássico, as únicas informações necessárias são: a reatância subtransitória, a constante de inércia e a potência nominal. Neste exemplo tem-se:

Tabela 4: Dados dos geradores

Page 47: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 47

gerador x'd H S

(%) (s) (MVA)

1 6.08 23.64 100.00

2 11.98 6.40 100.00

3 18.13 3.01 100.00 a) Cálculo da tensão interna dos geradores. Usando a tensão terminal como referência fasorial, o cálculo da corrente na barra “i” é dado por:

Eq. 99 i

ii

i

i

iV

jQP

V

SI

−=

= *

A tensão interna do gerador é, então, dada por:

Eq. 100 idiiiii IjXVEE ''/ +== δ

Substituindo a expressão da corrente obtém-se:

Eq. 101 i

idi

i

idi

iiiV

PXj

V

QXVE

')

'('/ ++=δ

O ângulo de fase difere do ângulo real da diferença entre a referência e o ângulo da tensão no barramento “i”. Se iii VV α/= , então:

Eq. 102 iii αδδ += '

O valor de tensão interna permanece constante durante todo o processo. O valor inicial do ângulo da tensão interna também já foi calculado (Eq. 13). A potência mecânica, que também permanece constante, é dada diretamente do resultado do fluxo de carga. b) Transformação das cargas em impedância constante Para o problema de fluxo de carga as cargas são representadas por seu valor ativo e reativo. Como foi visto, para o problema de estabilidade (no modelo clássico) elas devem ser representadas por impedância constante. A transformação é simples e é dada por:

Eq. 103 *).*.(*. LLLLLLLL YVVIVjQPS ==+=

Onde o índice “L” se refere à carga e

Page 48: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 48

Eq. 104 LLL jBGY −=*

Substituindo os valores e lembrando que o produto de dois fasores conjugados é igual ao quadrado do módulo, tem-se:

Eq. 105 22

L

L

L

L

LV

Qj

V

PY −=

c) Transformação da Matriz [YBUS] A matriz [YBUS] foi calculada previamente para o problema de fluxo de carga. A sua regra de formação é dada por:

Eq. 106 ∑= iii yY

Eq. 107 ijij yY −=

Onde yi são todas as admitâncias que chegam no nó “i”, e yij é a admitância entre as barras “i” e “j”. É necessário transformá-la para o problema de estabilidade. Inicialmente, as admitâncias (Eq. 16) das cargas são acrescentadas. Em seguida, as barras internas dos geradores são criadas através da inclusão da reatância subtransitória (X’d). É claro que todos os valores têm que estar em pu, na base do sistema, e transformados em admitâncias. d) Redução da Matriz [YBUS] As únicas barras de interesse no modelo clássico são as barras internas dos geradores. Então, é feita uma redução da matriz [YBUS] inicial considerando apenas aquelas barras onde a injeção de corrente é diferente de zero. Suponha um sistema com “n” barras e com apenas “m” geradores. A matriz [YBUS] inicial é de ordem nxn. Como todas as correntes nas barras que não são geradores é nula, a equação de corrente pode ser escrita como:

Eq. 108 ]][[][ VYI BUS=

Eq. 109

=

V

E

YY

YY

0

I m

43

21m

Onde [Yi] para i = 1,4 são submatrizes. Resolvendo o sistema matricial, tem-se:

Page 49: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 49

Eq. 110 VYEY0

VYEYI

4m3

2m1m

+=

+=

Logo:

Eq. 111 m3

1

421m EYYYYI −−=

Portanto:

Eq. 112 YYYY]Y[ 3

1

421RED

−−=

Neste exemplo, a matriz [YRED] é de ordem três. Deve ser construída uma matriz reduzida para cada configuração da rede, ou seja, antes do defeito, durante o defeito e depois do defeito. Deve ser informado ao programa qual o defeito e quando ele ocorre. Neste exemplo, tem-se: DADOS DO TRANSITORIO

- defeito trifásico na barra ........................ 7

- eliminação do defeito através das abertura da lt .. 7 a 5

- tempo de duração do regime ........ 50.00 ms

- tempo de duração do defeito ....... 150.00 ms

- tempo de simulação pós defeito .... 2000.00 ms

As matrizes [YRED] nas três situações estão mostradas abaixo. YBUS - PRE DEFEITO (REAL)

0.8469 0.2872 0.2092

0.2872 0.4199 0.2131

0.2092 0.2131 0.2769

YBUS - PRE DEFEITO (IMAG)

-2.9906 1.5134 1.2275

1.5134 -2.7240 1.0876

1.2275 1.0876 -2.3695

YBUS - DEFEITO (REAL)

0.6581 0.0000 0.0698

0.0000 0.0000 0.0000

0.0698 0.0000 0.1740

YBUS - DEFEITO (IMAG)

-3.8189 0.0000 0.6324

0.0000 -5.4855 0.0000

0.6324 0.0000 -2.7970

YBUS - POS DEFEITO (REAL)

1.1404 0.1287 0.1819

0.1287 0.3744 0.1920

0.1819 0.1920 0.2690

Page 50: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 50

YBUS - POS DEFEITO (IMAG)

-2.3009 0.7081 1.0664

0.7081 -2.0159 1.2056

1.0664 1.2056 -2.3532

Finalmente, a obtenção do resultado final, ou seja, a variação dos ângulos internos das diversas máquinas em função do tempo, é feita através da integração passo a passo das equações do movimento. Neste caso, seis equações diferenciais de primeira ordem. O resultado é mostrado na figura abaixo.

0 500 1000 1500 2000 2500-20

0

20

40

60

80

100

120

140

Figura 19: Resultado ângulo interno (graus) em função do tempo (ms)

Uma listagem do programa em pascal é mostrada no Anexo 1. A simplicidade do modelo clássico faz com que ele seja de grande utilidade didática, no entanto, na prática, ele é muito pouco utilizado. Alguns problemas fazem com que os resultados não representem a realidade. Entre eles pode-se citar: Geradores representados por tensão constante. Os reguladores modernos são rápidos e tentam manter a tensão nos terminais da máquina constante. Este efeito, normalmente, não pode ser desprezado. Desprezar o amortecimento. O efeito do amortecimento do conjugado durante o período transitório é importante e, também, não deve ser desprezado. Potência mecânica constante. A atuação do regulador de velocidade é desprezada no modelo clássico, no entanto, a sua atuação é predominante, principalmente após a primeira oscilação. Representação da carga. A representação da carga por impedância constante considera que a potência (ativa e reativa) varia com o quadrado da tensão. Na verdade ela pode variar muito menos, podendo inclusive permanecer constante. Outro efeito

Page 51: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 51

que é desprezado nesta simplificação é o da freqüência que, normalmente, não é desprezível na maioria das cargas. Apesar destas considerações, o modelo clássico é muito importante para a compreensão dos conceitos básicos relacionados a um problema de estabilidade.

Page 52: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 52

Resposta a pequenas perturbações Uma pequena perturbação é por definição, uma alteração no sistema (temporária ou permanente) tal que as oscilações em torno do ponto de operação podem ser linearizadas. Como a relação Pxδ é uma senóide, é considerada uma pequena perturbação aquela que mantenha a proporcionalidade entre a potência elétrica e o ângulo. Estas perturbações são da ordem de 1% da potência instalada do sistema. Dois tipos de problemas podem ser abordados pela técnica da linearização: a resposta a uma pequena perturbação e a distribuição de uma variação da carga. Para pequenas perturbações, as variáveis de estado do sistema vão oscilar em torno de um ponto de operação x0. As equações diferenciais linearizadas podem ser colocadas na forma:

Eq. 113 u]B[x)]x(A[x 0 += &&

Onde o negrito é utilizado para realçar que na equação x é um vetor. Se a perturbação for suficientemente pequena, a matriz A é uma matriz constante, que depende do ponto inicial de operação do sistema. Para se analisar a resposta “livre” deste sistema, basta calcular os autovalores desta matriz. Voltando à análise da máquina contra barramento infinito, considerando agora a potência elétrica em função da carga local e dependente também da resistência da ligação entre a máquina e o barramento infinito tem-se:

Eq. 114 P P P sene c M= + −( )δ γ

Considerando uma pequena alteração no ponto de funcionamento (índice 0), pode se reescrever o ângulo elétrico e a potência como:

Eq. 115 δ δ δ= +0 ∆

Eq. 116 P P Pe e0 e= + ∆

Considerando que a variação do ângulo é pequena, vem:

Eq. 117 cosδ ∆ ≅ 1

Eq. 118 senδ δ∆ ∆≅

A equação diferencial do movimento pode então ser colocada da seguinte forma:

Page 53: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 53

Eq. 119 2

0

HP

ωδ δ γ δ

RM

&& cos( )∆ ∆= − −

Redefinindo a potência sincronizante, levando agora em consideração a parte resistiva da ligação, tem-se:

Eq. 120 P Ps M= −cos( )δ γ0

E a equação diferencial linearizada fica então:

Eq. 121 2

0H

δ δR

s&&

∆ ∆+ =

A solução desta equação é direta:

Eq. 122 δ ∆ = ke st

Substituindo na equação 9 obtém-se a equação característica do sistema:

Eq. 123 2

02Hs P

ω Rs+ =

Cujas raízes são dadas por:

Eq. 124 s jP

H= ± s Rω

2

Acrescentando-se o amortecimento na equação, a equação característica fica:

Eq. 125 2

02Hs

Ds P

ω ωR Rs+ + =

Cujas raízes são dadas pela solução desta equação do segundo grau:

Eq. 126 sD

H

D

H

P

H= − ± −

2 2 222( ) /s Rω

Como D é normalmente muito menor que ωR, a freqüência de oscilação quase não varia com a introdução do amortecimento, no entanto a forma de onda da resposta passa a ser uma exponencial amortecida.

Eq. 127 δω

∆ = ≅− ±

e e est

D

Ht j

P

Hts

4 2.R

Observa-se diretamente que se a potência sincronizante ou o amortecimento for negativo a resposta no tempo crescerá indefinidamente, portanto o sistema será instável. A representação da máquina pelo modelo clássico simplifica demais o problema. É possível considerar o efeito da variação do ângulo na tensão interna da máquina sem complicar muito o modelo. O modelo que considera a variação da tensão interna com o ângulo é conhecido como modelo de Heffron-Phillips. Além disto, com este modelo simplificado e linearizado é possível considerar a influência do sistema de excitação. Nesta introdução, não serão desenvolvidas as equações deste modelo. Ao final do curso, depois de recordar as formas de representação da máquina síncrona estas equações serão detalhadamente deduzidas. Sem então nenhuma demonstração, pode-

Page 54: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 54

se dizer que a potência elétrica, o ângulo interno, a tensão interna e a tensão de campo estão relacionadas pelas seguintes expressões:

Eq. 128 P K K Ee∆ ∆ ∆= + ′1 2δ

Eq. 129 ′ =+ ′

−+ ′

EK

K T sv

K K

K T s∆ ∆ ∆

3

3 0

3 4

31 1dF

d0

δ

Onde: ′E∆ é a variação da tensão interna da máquina;

vF∆ é a variação da tensão de campo, relacionada ao controle da tensão. As constantes K1, K2, K3 e K4 vão ser deduzidas ao longo do curso e são dadas por:

Eq. 130 KP

E1 0=

′ =

e∆

∆∆δ

é a própria definição de coeficiente de sincronização;

Eq. 131 KP

E2

0

=′

=

e∆

∆∆δ

relaciona a variação da potência elétrica com a variação do fluxo concatenado com o eixo direto;

Eq. 132 K Et3 0= ′→∞ =

lim ∆∆δ

é dado pelo valor final da tensão interna da máquina para um degrau de tensão aplicado no campo considerando que não haja variação no ângulo interno da máquina. Esta constante está diretamente relacionada à impedância do sistema e independe das condições iniciais; e

Eq. 133 KK

Et v43

0

1= − ′→∞ =

lim ∆∆F

é dado pelo valor final da tensão interna para um degrau unitário de variação do ângulo interno. Todas estas constantes, com exceção do K3, dependem das condições iniciais do sistema.

Estas equações diferenciais, em conjunto com as equações que definem o movimento, podem ser representadas pelo seguinte diagrama de blocos:

Page 55: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 55

Figura 20: Diagrama do Modelo linearizado

Introduzindo a Eq. 17 na Eq. 16, tem-se:

Eq. 134 ∆∆∆ δ F

0d3

23

30d

432

1e vs'TK1

KK)

sKT1

KKKK(P

++

′+−=

Desprezando inicialmente o efeito do controle de tensão do campo vF∆ = 0:

Eq. 135 P KK K K

T K se

d∆ ∆= −

+ ′( )1

2 3 4

0 31δ

Ou seja, uma relação mais precisa entre a potência elétrica e o ângulo que leva em consideração a variação da tensão interna com o ângulo. Colocando esta equação na definição do movimento linearizado vem:

Eq. 136 2

102

12 3 4

3 0

Hs K

K K K

sK Tω R d

+ −+ ′

=( )

Rearranjando esta equação, obtém-se uma equação do terceiro grau em s:

Eq. 137 sK T

sK

Hs

HK TK K K K3

3 0

2 1

3 01 2 3 4

1

2 20+

′+ +

′− =

d

R R

d

ω ω( )

Pelo critério de Routh, este sistema será estável se:

Eq. 138 K K K K1 2 3 4 0− > ; e

Eq. 139 K K K2 3 4 0>

O cálculo das constantes K1 a K4 mostra que a condição da Eq. 26 é sempre atendida. No entanto, percebe-se que com esta melhor representação do sistema quando o coeficiente de sincronização (K1) fica pequeno, aumenta as probabilidades do sistema perder o sincronismo. EXEMPLO 1 Simular o diagrama de blocos da Figura 1 aplicando um degrau unitário na potência mecânica e calculando a variação do ângulo interno. Considere os seguintes dados: K1 = 1,07

Page 56: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 56

K2 = 1,2558 K3 = 0,3 K4 = 1,7124 T’d0 = 6 s Estes valores serão calculados, com detalhes, no decorrer deste curso. O resultado é mostrado na Figura

0 100 200 300 400 500 600 700 800 900 10000

0.5

1

1.5

2

2.5

Figura 21: Ângulo interno em função do tempo

Considere um valor reduzido de K1 = 0,5.

0 100 200 300 400 500 600 700 800 900 10000

1

2

3

4

5

6

7

8

Figura 22: Resultado com K1 = 0,5

(OBS.: Este exemplo foi simulado no Matlab - arquivo model4.m) Pode-se ainda melhorar a representação considerando a variação das potências elétrica e mecânica com a velocidade. Considerando o amortecimento “D” e um regulador de velocidade ideal, tem-se:

Eq. 140 PD

eR

∆ ∆=

ωω

Page 57: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 57

Eq. 141 PR

mR

∆ ∆= −

1

ωω

com estas equações a equação característica fica:

Eq. 142 2 1 1

102

12 3 4

3 0

Hs D

Rs K

K K K

K T sω ωR R d

+ + + −+ ′

=( ) ( )

As raízes deste sistema determinam a estabilidade do sistema. Note que no diagrama da Figura 1, apenas o amortecimento D é considerado. EXEMPLO 2 Repetir o exemplo anterior considerando D = 3 pu. O resultado é mostrado na Figura 4.

0 100 200 300 400 500 600 700 800 900 10000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figura 23: Considerando D = 3 pu

Como era de se esperar, observa-se um aumento do amortecimento.

Page 58: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 58

Modo de Oscilação de um Sistema Multimáquina Para um sistema multimáquina a potência elétrica de saída de cada uma das máquinas é dada por:

Eq. 143 P E G B sen G E Ei ii ij ij ij ij i j

jj i

n

ei = + +=≠

∑2

1

( cos )δ δ

onde:

jiij δδδ −=

Ei é a tensão atrás da reatância transitória Yij = Gij + jBij é o termo “ij” da matriz [YBUS]. Usando a formulação incremental, tem-se:

Eq. 144 ∆δδδ ij0ijij +=

Eq. 145 0ijij0ijij

0ijij0ijij

sencoscos

cossensen

δδδδ

δδδδ

−=

+=

Então, substituindo a Eq. 3 na Eq. 1:

Eq. 146 ∆∆ δδδ ij

n

ij1j

0ijij0ijijjiei )cosGsenB(EEP ∑≠=

+=

Pode-se generalizar o conceito de potência sincronizante entre as barras “i” e “j” para um sistema multimáquina como:

Eq. 147 )cosGsenB(EEP

P 0ijij0ijijji

ij

ij

sij δδδ

+=∂

∂=

Então:

Eq. 148 ∆∆ δ ij

n

ij1j

sijei PP ∑≠=

=

Esta definição de potência sincronizante relaciona a variação da potência elétrica entre as barras “i” e “j” quando há uma variação no ângulo δij com todos os outros mantidos constantes. É interessante observar que esta definição está relacionada com a proximidade elétrica entre as barras “i” e “j”. As “n” equações de movimento linearizadas ficam:

Eq. 149 0PH2 n

ij1j

ijsjii

R

i =+∑≠=

∆∆ δδω

&& para i = 1, 2, ... n

Page 59: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 59

Para uniformizar as variáveis é interessante subtrair a última (n-ésima) equação da equação de ordem “i”. Desta forma todos os ângulos passam a ser ângulos relativos. Fazendo esta operação e lembrando que:

Eq. 150 ∆∆∆ δδδ jninij −=

Então, após alguma manipulação nas equações, obtém-se:

Eq. 151 01n

1j

jnijij =+∑−

=

∆∆ δαδ&&

Os valores de αij dependem das inércias das máquinas e das potências sincronizantes. A determinação dos valores de αij para um caso geral de “n” barras é razoavelmente complicado. Para exemplificar este processo, considera-se um sistema de três barras. EXEMPLO 1 Calcular as expressões de αij para um sistema de 3 geradores. Desenvolvendo a Eq. 7 para um sistema de ordem 3, tem-se:

Eq. 152

0PPH2

0PPH2

0PPH2

3232s3131s3

R

3

2323s2121s2

R

2

1313s1212s1

R

1

=++

=++

=++

∆∆∆

∆∆∆

∆∆∆

δδδω

δδδω

δδδω

&&

&&

&&

Fazendo a subtração da primeira pela terceira, vem:

Eq. 153

0)PH2

PH2

(PH2

PH2

0)PH2

PH2

(PH2

PH2

2332s

3

R

23s

2

R

1331s

3

R

1221s

2

R

32

1331s

3

R

13s

1

R

2332s

3

R

1212s

1

R

31

=+++−−

=++++−

∆∆∆∆∆

∆∆∆∆∆

δωω

δω

δω

δδ

δωω

δω

δω

δδ

&&&&

&&&&

Como

Eq. 154 0312312 =++ ∆∆∆ δδδ

É possível eliminar uma variável das duas equações 11. Fazendo a eliminação obtém-se:

Eq. 155

0PH2

PH2

PH2

PH2

PH2

0PH2

PH2

PH2

PH2

PH2

2321s

2

R

31s

3

R

2332s

3

R

23s

2

R

21s

2

R

23

2312s

1

R

32s

3

R

1331s

3

R

13s

1

R

12s

1

R

13

=−++++

=−++++

∆∆∆

∆∆∆

δωω

δωωω

δ

δωω

δωωω

δ

&&

&&

ou

Eq. 156 0

0

2322132123

2312131113

=++

=++

∆∆∆

∆∆∆

δαδαδ

δαδαδ

&&

&&

Page 60: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 60

Onde a identificação dos αij é evidente. Considerando as equações que definem as velocidades angulares:

Eq. 157 ∆∆

∆∆

ωδ

ωδ

2323

1313

=

=

&

&

Obtém-se um sistema linear de quarta ordem, colocando-o na sua forma matricial:

Eq. 158

−−

−−=

ω

ω

δ

δ

αα

αα

ω

ω

δ

δ

23

13

23

13

2221

1211

23

13

23

13

.

00

00

1000

0100

&

&

&

&

Esta matriz é chamada “matriz característica” do sistema. Os autovalores desta matriz definem a estabilidade dinâmica do sistema.

Eq. 159 [ ] [ ][ ]x.MCx =&

Relembrando a definição dos autovalores, vem:

Eq. 160 0]U.[]MCdet[ =− λ

Neste caso, corresponde a uma equação do quarto grau em λ. Este problema específico de 4 grau tem solução analítica, uma vez que é possível mostrar que:

Eq. 161 ]A[]U[det]U.[]MCdet[ 2 −=− λλ

Ou seja, que esta equação tem pares conjugados de raízes. Desenvolvendo a Eq. 19:

Eq. 162 00

0det

2221

1211

2

2

=

+

αα

αα

λ

λ

Cujas raízes são dadas por:

Eq. 163 )(4)()(2

121122211

2

22112211

2 ααααααααλ −−+±+−=

EXEMPLO 2 Considere o sistema de 9 barras resolvido e avalie as freqüências naturais de oscilação deste sistema. Usando a definição da Eq. 5, e os valores da [YBUS] reduzida calculada no exemplo anterior, obtém-se: Ps12 = 1,6015 Ps23 = 1,1544 Ps31 = 1,2936 Tomando os valores dados de H, tem-se: α11 = 104,096 α12 = 59,524 α21 = 68,241 α22 = 119,065 Substituindo nas equações: λ1 = ±j6,885

Page 61: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 61

λ2 = ±j13,257 As freqüências naturais de oscilação são, portanto: f1 =1,096 Hz f2 = 2,110 Hz é interessante notar que mesmo traçando δ(t) para uma pequena perturbação, nenhuma destas duas freqüências vai aparecer claramente já que a resposta é uma composição (ou soma) das diversas freqüências naturais do sistema. Neste ponto é interessante voltar um pouco à teoria dos autovalores e autovetores para entender esta freqüência natural de oscilação. De fato, como é sabido, a matriz que diagonaliza a “matriz característica” [MC] do sistema, é a matriz dos seus autovetores [E]. Portanto voltando à Eq. 17:

Eq. 164 [ ] [ ][ ]x.MCx =&

Existe [E], constante, tal que:

Eq. 165 [ ] [ ][ ]yEx =

Eq. 166 [ ] [ ][ ]yEx && =

Substituindo em 22:

Eq. 167 [ ] [ ] [ ][ ][ ] [ ][ ]yDy.EMCEy1

==−

&

Onde esta matriz [D] é diagonal e os seus termos correspondem aos autovalores de [MC]. Desenvolvendo a Eq. 25, tem-se para o caso de ordem 4:

Eq. 168

444

333

222

111

yy

yy

yy

yy

λ

λ

λ

λ

=

=

=

=

&

&

&

&

A solução destas quatro equações é evidente:

Eq. 169 t

iiieC)t(y

λ=

Cada resposta y(t) tem uma única freqüência de oscilação e oscila apenas nesta freqüência. A grandeza original, “x(t)” vai oscilar em uma composição de todas as freqüências naturais uma vez que, por definição:

Eq. 170 [ ] [ ][ ]yEx =

Analisando a Eq. 27, é fácil concluir que se a parte real de λ for igual a zero, o sistema será puramente oscilante. Se a parte real for positiva ele será INSTÁVEL e se a parte real for negativa o sistema será ESTÁVEL. A análise dos autovalores da “matriz característica” do sistema determina a estabilidade deste sistema.

Page 62: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 62

Máquina Síncrona com Regulador de Tensão A forma mais simples de se representar um regulador de tensão é através de uma função de transferência com um ganho Ke e uma constante de tempo Te, ou seja:

Eq. 171 vK

sTVF

e

e

t∆ ∆= −+1

O diagrama de blocos equivalente será:

Figura 24: Diagrama de blocos do regulador de tensão

Uma variação na tensão terminal cria uma variação na tensão de excitação dada pela Eq. 1. Considera-se que não haverá alteração na tensão de referência, portanto:

Eq. 172 0VREF =∆

O modelo linear simplificado pode levar em consideração o efeito do regulador de tensão. As equações deste modelo são dadas por:

Eq. 173 ∆∆∆ δ 'EKKP 21e +=

Eq. 174 ∆∆∆ δ0d3

43

F

0d3

3

'TsK1

KKv

'TsK1

K'E

+−

+=

Eq. 175 ∆∆∆ δ 'EKKV 65t +=

A dedução destas equações e a definição das constantes Ks serão vistas adiante. Neste item vai-se analisar apenas o efeito do regulador de tensão. Usando a Eq. 1:

Eq. 176 )'EKK(sT1

Kv 65

e

e

F ∆∆∆ δ ++

−=

Substituindo 6 em 4:

Eq. 177 ∆∆∆∆ δδ0d3

43

65

e

e

0d3

3

'TsK1

KK)'EKK(

sT1

K

'TsK1

K'E

+−+

+−

+=

Page 63: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 63

Finalmente, substituindo 7 em 3 e eliminando-se E’∆, obtém-se uma equação relacionando Pe∆ e δ∆. A equação característica do sistema será de ordem 4, do tipo:

Eq. 178 0ssss 01

2

2

3

3

4 =++++ αααα

E a estabilidade do sistema será analisada pelas raízes desta equação. EXEMPLO 1 Usando os mesmos valores de K1 a K4 do exemplo anterior calcular a variação da tensão terminal e do ângulo interno em função de um degrau unitário na tensão de campo. K1 = 1,07 K2 = 1,2558 K3 = 0,3 K4 = 1,7124 T’d0 = 6 s Sendo dado ainda: K5 = -0,0477 K6 = 0,4970 Te = 20 ms, e Ke = 10 Usando-se o Simulink do Matlab (model5) tem-se o resultado mostrado na Figura2.

0 100 200 300 400 500 600 700 800 900 1000-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figura 25: Variação da tensão de campo, da tensão terminal e do ângulo interno

Pode-se observar que o aumento da tensão terminal provoca uma redução no ângulo interno da máquina, como era de se esperar. EXEMPLO 2 Repetir o exemplo anterior aumentando o ganho do regulador de tensão, Ke = 100.

Page 64: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 64

0 100 200 300 400 500 600 700 800 900 1000-6

-5

-4

-3

-2

-1

0

1

2

Figura 26: vF, Vt e δ, aumentando o ganho do regulador de tensão

Observa-se um comportamento bem mais oscilatório e, se for aumentado ainda mais este ganho, o sistema se tornará instável.

Máquina síncrona com Regulador de Velocidade Da mesma forma que uma variação na tensão terminal produz uma variação na tensão de excitação, uma variação na velocidade altera a potência mecânica fornecida à turbina. O diagrama de blocos que define esta função é dado por:

Figura 27: Diagrama de blocos do regulador de velocidade

A equação será:

Page 65: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 65

Eq. 179 ∆∆ ωg

g

msT1

KP

+−=

O sinal negativo, evidentemente, se refere ao fato que a um aumento na velocidade o controle deve responder com uma redução na potência mecânica. Voltando à Eq. 13 da aula 6:

Eq. 180 ∆∆∆δω

em

R

PPH2

−=&&

A variação da potência elétrica em função do ângulo interno já foi vista em diversos exemplos. Na sua forma mais simples ela é dada pelo coeficiente de sincronização (Ps).

Eq. 181 ∆∆ δse PP =

Substituindo 9 e 11 em 10 e colocando a equação no domínio “s”, tem-se:

Eq. 182 0PssT1

Ks

H2s

g

g2

R

=++

A Eq. 12 é de terceira ordem já que foi acrescentada uma equação diferencial ao sistema. O grau de sofisticação da representação pode aumentar bastante. Por exemplo, considerando o regulador de tensão, visto no item anterior, o sistema fica de ordem 5. A representação por diagrama de blocos é muito simples e a simulação pode ser feita diretamente através de uma ferramenta matemática como o Simulink. Este trabalho é deixado como exercício.

Page 66: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 66

Distribuição de uma Variação da Potência Neste item vai-se analisar como a variação da potência ativa em uma determinada barra se distribui pelos diversos geradores do sistema. Supondo um sistema com “n” máquinas, onde em uma barra “k” uma pequena carga PL∆ é ligada em t = 0. Este sistema pode ser representado pela figura abaixo:

E1

Sistema Vk

En

... PL∆

Figura 28

A equação da potência fornecida por cada nó é dada por:

Eq. 183 P E E B seni i j ij ij

jj i

n

==≠

∑ δ1

Onde, nesta expressão, as condutâncias do sistema foram desprezadas. Todos os termos foram previamente definidos. Como a carga será colocada no barramento “k” pode-se reescrever a mesma equação destacando para fora do somatório o termo em k:

Eq. 184 P E E B sen E V B seni i j ij ij

jj i k

n

i k ik ik= +=≠

∑ δ δ1,

e a potência na barra “k” é dada por:

Eq. 185 ∑≠=

=n

kj1j

kjkjjkk senBEVP δ

A obtenção destas expressões para potência ativa saindo de cada barra pressupõe que as máquinas estejam representadas pelo modelo clássico (tensão interna constante) e que a matriz de admitância do sistema tenha sido reduzida às suas barras geradoras (com a incorporação da reatância transitória) e a barra de carga “k”. Com a linearização destas equações, considerando a definição geral de potência sincronizante, tem-se:

Eq. 186 ∆∆∆ δδ iksik

n

k,ij1j

ijsiji PPP += ∑≠=

Page 67: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 67

Eq. 187 ∑≠=

=n

kj1j

kjskjk PP ∆∆ δ

O que se pretende neste item é determinar como a carga PL∆ se distribui entre os geradores, ou seja uma expressão de Pi∆ para i = 1,n, em função da carga. Nesta análise vai-se considerar dois instantes de tempos distintos. Inicialmente vai-se determinar a distribuição da carga imediatamente após a perturbação, em seguida determinar-se-á a mesma distribuição considerando que todas as máquinas desaceleram em conjunto a uma mesma taxa. a) t = 0+ No instante imediatamente após a perturbação os ângulos dos geradores não sofreram ainda nenhuma alteração. O único ângulo que varia instantaneamente é o ângulo da tensão da carga, desta forma:

Eq. 188

∆∆∆∆

∆∆∆∆

δδδδ

δδδδ

δ

kjkkj

kkiik

ij 0

=−=

−=−=

=

Substituindo na Eq. 4 tem-se:

Eq. 189

P P

P P

i sik k

k skj kj=1

n

∆ ∆

∆ ∆

( )

( )

0

0

+

+

= −

=∑

δ

δ

Portanto, como não podia deixar de ser, a carga será suprida pelo somatório das variações nos diversos geradores:

Eq. 190 P Pk ii=1

n

∆ ∆( ) ( )0 0+ += −∑

Isolando a variação do ângulo da expressão Eq. 7 tem-se:

Eq. 191

∑=

+ −=n

1i

ski

Lk

P

P)0( ∆

∆δ

Onde a variação da carga é igual a variação da potência entregue pela barra “k” com o sinal negativo. Então, substituindo mais uma vez em Eq. 7 tem-se a expressão da variação da potência entregue pelo gerador “i”:

Eq. 192 )0(P

P

P)0(P Ln

1i

ski

sik

i

+

=

+

∑= ∆∆ para i = 1, n.

Observa-se que a potência da carga se distribui proporcionalmente aos coeficientes de sincronização, independentemente do tamanho do gerador. Quanto mais próximo, eletricamente, um gerador estiver da carga, maior será a sua contribuição no instante imediatamente após a entrada da carga no sistema. b) t = t1

Page 68: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 68

Havendo um aumento da potência elétrica entregue ao sistema por cada um dos geradores, enquanto os reguladores de velocidade não atuarem, vai haver uma desaceleração das máquinas. O valor da desaceleração (obtido diretamente da equação do movimento linearizada) é dado por:

Eq. 193 ∆∆ωω

i

i

i

R

PH2

11−=&

ou,

Eq. 194 ∆∆ωω

Ln

1i

sik

sik

i

i

R

P

P

P

H2

11

∑=

−=& para i = 1, n

Observa-se que a desaceleração é proporcional a distância elétrica da nova carga e inversamente proporcional à inércia da máquina. Considerando que os reguladores de velocidade ainda não começaram a atuar, pode-se determinar uma nova distribuição da carga considerando que o sistema tenda a desacelerar em conjunto para uma velocidade média. Definindo esta velocidade média como a média ponderada das velocidades em função da inércia de cada máquina, ou seja:

Eq. 195 ∑∑

=i

ii

H

Hωω

Para se obter a desaceleração média do sistema, soma-se a equação (13-12) para todos os valores de n.

Eq. 196 )0(PPH21

Lk

n

1i

ii

R

+

=

−==∑ ∆∆∆ωω

&

Multiplicando-se e dividindo-se esta expressão pelo somatório das inércias do sistema tem-se:

Eq. 197 )0(PH

HH2L

i

ii

R

i +−=∑∑∑

∆ω

ω

&

ou

Eq. 198 ∑

−=i

L

R H2

P1 ∆ωω

&

que corresponde à desaceleração média de todo sistema. Como, por hipótese, todo o sistema vai tender a desacelerar na mesma taxa, igualando as Eq. 11 e 16, tem-se:

Eq. 199 ∆∆ L

i

i

i PH

HP

∑=

Observa-se então que a carga se distribui proporcionalmente aos valores das inércias das máquinas. É interessante notar que a forma de distribuição da carga logo após a perturbação e algum tempo depois é completamente diferente. Isto pode provocar grandes oscilações em “tie-lines”.

EXEMPLO 1

Page 69: AULA 1 - GSEP - Grupo de Sistemas Elétricos de Potência · Estabilidade de Sistemas de Potência Ivan Camargo 3 ... Estabilidade de Sistemas de Potência Ivan Camargo 6 AULA 2 2)

Estabilidade de Sistemas de Potência

Ivan Camargo 69

Considere o sistema interligado da figura abaixo:

10Ps1 =Ps2 100MW

10MW

H1 = 10H2

Figura 29

Considerando que o gerador 1 é dez vezes maior que o gerador dois, e que a distância elétrica da barra de carga para o gerador 1 é dez vezes superior que para o gerador 2, analisar o fluxo de potência na ligação considerando que em t = 0 uma carga de 10 MW foi ligada no barramento de carga. Solução

O fluxo inicial na ligação é de 100 MW. Após a conexão da carga, 90% da mesma tem que ser alimentada pelo gerador 2, então a interligação passa a transmitir apenas 91 MW. Após alguns segundos, a carga passa a ser suprida preferencialmente pela maior máquina então volta 99 MW a circular na interligação.