Carlos Gustavo Moreira IMPA - Ufba · 2004. 11. 16. · Sequ¨ˆencias Recorrentes Carlos Gustavo...

41
Seq¨ encias Recorrentes Carlos Gustavo Moreira IMPA Seq¨ encias recorrentes s˜ ao seq¨ encias x 0 ,x 1 ,x 2 ,... em que cada termos ´ e determinado por uma dada fun¸ ao dos termos anteriores. Dado um inteiro positivo k, uma seq¨ encia recorrente de ordem k ´ e uma seq¨ encia e que cada termo ´ e determinado como uma fun¸ ao dos k termos anteriores: x n+k = f (x n+k-1 ,x n+k-2 ,...,x n+1 ,x n ), n N. Com essa generalidade, o estudo geral de seq¨ encias recorrentes se confunde em large me- dida com a teoria dos Sistemas Dinˆ amicos, e o comportamento de tais seq¨ encias pode ser bastante ca´ otico e de descri¸ ao muito dif´ ıcil, mesmo qualitativamente. Um caso particular muito importante ocorre quando a fun¸ ao f ´ e linear: existem constantes C 1 ,C 2 ,...,C n com x n+k = C 1 x n+k-1 + C 2 x n+k-2 + ··· + C k x n , n N. Tais seq¨ encias s˜ ao conhecidas como seq¨ encias recorrentes lineares, e generalizam simultanea- mente as progress˜ oes geom´ etricas, aritm´ eticas e os polinˆ omios. Estas seq¨ encias ser˜ ao o objeto principal dessas notas. ao obstante, algumas recorrˆ encias n˜ ao-lineares ser˜ ao consideradas, como a recorrˆ encia x n+1 = x 2 n - 2, que tem grande interesse do ponto de vista de sistemas dinˆ amicos e por suas aplica¸ oes ` a teroria dos n´ umeros. Essas notas s˜ ao inspiradas no excelente livreto ”Seq¨ encias Recorrentes”, de A. Markuchevitch, publicado na cole¸ ao ”Inicia¸ ao na matem´ atica”, da editora MIR, no qual o autor aprendeu bastante sobre o tema no in´ ıcio de sua forma¸ ao matem´ atica. A se¸ ao 4, onde ´ e deduzida a ormula para o termo geral de uma seq¨ encia recorrente linear, ´ e adaptada do artigo ”Equa¸ oes de recorrˆ encia”, de H´ ector Soza Pollman, publicado no n´ umero 9 da revista Eureka! (de fato, o artigo original submetido ` a revista enunciava esta f´ ormula sem demonstra¸ ao, a qual foi inclu´ ıda no artigo pelo autor destas notas, que ´ e um dos editores da Eureka!). 1

Transcript of Carlos Gustavo Moreira IMPA - Ufba · 2004. 11. 16. · Sequ¨ˆencias Recorrentes Carlos Gustavo...

  • Seqüências Recorrentes

    Carlos Gustavo Moreira

    IMPA

    Seqüências recorrentes são seqüências x0, x1, x2, . . . em que cada termos é determinado por

    uma dada função dos termos anteriores. Dado um inteiro positivo k, uma seqüência recorrente

    de ordem k é uma seqüência e que cada termo é determinado como uma função dos k termos

    anteriores:

    xn+k = f(xn+k−1, xn+k−2, . . . , xn+1, xn), ∀ n ∈ N.

    Com essa generalidade, o estudo geral de seqüências recorrentes se confunde em large me-

    dida com a teoria dos Sistemas Dinâmicos, e o comportamento de tais seqüências pode ser

    bastante caótico e de descrição muito dif́ıcil, mesmo qualitativamente. Um caso particular

    muito importante ocorre quando a função f é linear: existem constantes C1, C2, . . . , Cn com

    xn+k = C1xn+k−1 + C2xn+k−2 + · · ·+ Ckxn, ∀ n ∈ N.

    Tais seqüências são conhecidas como seqüências recorrentes lineares, e generalizam simultanea-

    mente as progressões geométricas, aritméticas e os polinômios. Estas seqüências serão o objeto

    principal dessas notas. Não obstante, algumas recorrências não-lineares serão consideradas,

    como a recorrência xn+1 = x2n − 2, que tem grande interesse do ponto de vista de sistemas

    dinâmicos e por suas aplicações à teroria dos números.

    Essas notas são inspiradas no excelente livreto ”Seqüências Recorrentes”, de A. Markuchevitch,

    publicado na coleção ”Iniciação na matemática”, da editora MIR, no qual o autor aprendeu

    bastante sobre o tema no ińıcio de sua formação matemática. A seção 4, onde é deduzida a

    fórmula para o termo geral de uma seqüência recorrente linear, é adaptada do artigo ”Equações

    de recorrência”, de Héctor Soza Pollman, publicado no número 9 da revista Eureka! (de fato, o

    artigo original submetido à revista enunciava esta fórmula sem demonstração, a qual foi inclúıda

    no artigo pelo autor destas notas, que é um dos editores da Eureka!).

    1

  • 1 – Seqüências recorrentes lineares:

    Uma seqüência (xn)n∈N é uma seqüência recorrente linear de ordem k (onde k é um inteiro

    positivo) se existem constantes (digamos reais ou complexas) C1, C2, . . . , Ck tais que

    xn+k =k∑

    j=1

    Cjxn+k−j = C1xn+k−1 + C2xn+k−2 + · · ·+ Ckxn, ∀ n ∈ N.

    Tais seqüências são determinadas pelos seus k primeiros termos x0, x1, . . . , xk−1.

    Os exemplos mais simples (e fundamentais, como veremos a seguir) de seqüências recorrentes

    lineares são as progressões geométricas: se xn = a · qn então xn+1 = qxn, ∀ n ∈ N, donde (xn)

    é uma seqüência recorrente linear de ordem 1.

    Se (xn) é uma progressão aritmética, existe uma constante r tal que xn+1−xn = r, ∀n ∈ N,

    donde xn+2 − xn+1 = xn+1 − xn+1 − xn, ∀ n ∈ N, e logo xn+2 = 2xn+1 − xn, ∀ n ∈ N, ou seja,

    (xn) é uma seqüência recorrente linear de ordem 2.

    Se xn = P (n) onde P é um polinômio de grau k, então (xn) satisfaz a recorrência linear de

    ordem k + 1 dada por

    xn+k+1 =k∑

    j=0

    (−1)j(

    k + 1

    j + 1

    )xn+k−j, ∀ n ∈ N. (*)

    Isso é evidente se k = 0 (isto é, se P é constante), pois nesse caso (*) se reduz a xn+1 = xn,

    ∀ n ∈ N, e o caso geral pode ser provado por indução: se P é um polinômio de grau k ≥ 1

    então A(x) = P (x + 1) − P (x) é um polinômio de grau k − 1, donde yn = xn+1 − xn = Q(n)

    satisfaz a recorrência yn+k =k−1∑j=0

    (−1)j(

    kj+1

    )yn+k−1−j, ∀ n ∈ N, donde

    xn+k+1 − xn+k =k−1∑j=0

    (−1)j(

    k

    j + 1

    )(xn+k−j − xn+k−j−1), ∀ n ∈ N,

    e logo

    xn+k+1 =k∑

    j=0

    (−1)j((

    k

    j + 1

    )+

    (k

    j

    ))xn+k−j =

    k∑j=0

    (−1)j(

    k + 1

    j + 1

    )xn+k−j,∀ n ∈ N.

    2

  • Um outro exemplo é dado por seqüências do tipo xn = (an + b) · qn, onde a, b e q são

    constantes. Temos que xn+1 − qxn = (a(n + 1) + b)qn+1 − q(an + b) · qn = qn+1(a(n + 1) + b−

    (an+b)) = aqn+1 é uma progressão geométrica de razão q, e logo xn+2−qxn+1 = q(xn+1−qxn),

    donde xn+2 = 2qxn+1 − q2xn, ∀ n ∈ N, e portanto (xn) é uma seqüência recorrente linear de

    ordem 2.

    Vamos agora considerar a famosa e popular seqüência de Fibonacci, dada por U0 = 0, U1 = 1

    e Un+2 = Un+1 + Un, ∀ n ∈ N. Seus primeiros termos são U0 = 0, U1 = 1, U2 = 1, U3 = 2,

    U4 = 3, U5 = 5, U6 = 8, U7 = 13, U8 = 21, . . . . Mostraremos na próxima seção como achar

    uma fórmula expĺıcita para seu termo geral Un em função de n, o que será generalizado para

    seqüências recorrentes lineares quaisquer, e veremos algumas de suas propriedades aritméticas.

    Antes porém, concluiremos esta seção com alguns fatos gerais sobre seqüências recorrentes

    lineares, que serão úteis nas seções subsequentes.

    O conjunto das seqüências que satisfazem uma dada recorrência linear

    xn+k =k∑

    j=1

    Cjxn+k−j, ∀ n ∈ N

    é um espaço vetorial , isto é, dadas duas seqüências (yn) e (zn) que satisfazem esta recorrência

    (ou seja, yn+k =k∑

    j=1

    Cjyn+k−j e zn+k =k∑

    j=1

    Cjzn+k−j, ∀ n ∈ N) e uma constante a, a seqüência

    (wn) dada por wn = yn + azn satisfaz a mesma recorrência: wn+k =k∑

    j=1

    Cjwn+k−j, ∀ n ∈ N.

    É bastante usual, dada uma seqüência (xn), estudar a seqüência obtida pela soma de seus

    n primeiros termos sn =∑k≤n

    xk. Se (xn) é uma seqüência recorrente linear, (sn) também é.

    De fato, sn+1 − sn =∑

    k≤n+1xk −

    ∑k≤n

    xk = xn+1, ∀ n ∈ N. Se xn+k =k∑

    j=1

    Cjxn+k−j, temos

    sn+k+1 − sn+k =k∑

    j=1

    Cj(sn+k+1−j − sn+k−j), ∀ n ∈ N donde

    sn+k+1 = (1 + C1)sn+k +k−1∑j=1

    (Cj+1 − Cj)sn+k−j − Cksn =k+1∑i=1

    disn+k+1−i

    , onde d1 = 1 + C1, di = Ci − Ci−1 para 2 ≤ i ≤ k e dk+1 = −Ck, ∀ n ∈ N, e portanto (sn) é

    uma seqüência recorrente linear de ordem k + 1.

    3

  • 2 – A seqüência de Fibonacci:

    A seqüência de Fibonacci é definida por U0 = 0 U1 = 1 e Un+2 = Un+1 + Un, ∀ n ∈ N.

    Queremos achar uma fórmula expĺıcita para Un em função de n. Para isso usaremos uma

    idéia que será bastante útil também no caso geral: procuraremos progressões geométricas que

    satisfazem a mesma recorrência que (Un): se xn = a · qn com a e q não nulos satisfaz xn+2 =

    xn+1 + xn, ∀ n ∈ N, teremos a · qn+2 = a · qn+1 + a · qn = a · qn(q + 1), donde q2 = q + 1. Temos

    assim dois valores posśıveis para q: as duas ráızes da equação q2 − q − 1 = 0, que são 1+√

    52

    e 1−√

    52

    . Assim, seqüências da forma a(

    1+√

    52

    )ne da forma b

    (1−

    √5

    2

    )nsatisfazem a recorrência

    acima, bem como seqüências da forma yn = a(

    1+√

    52

    )n+ b(

    1−√

    52

    )n, pela observação da seção

    anterior.

    Basta agora encontrar valores de a e b tais que y0 = 0 e y1 = 1 para que tenhamos yn = Un

    para todo n (de fato, teŕıamos y0 = U0, y1 = U1 e, por indução se k ≥ 2 e yn = Un para todo

    n < k, temos yk = yk−1 + yk−2 = Uk−1 + Uk−2 = Uk). Para isso, devemos ter:a + b = 0a(1+√52

    )+ b(

    1−√

    52

    )= 1

    e portanto a = 1√5

    e b = − 1√5. Mostramos assim que

    Un =1√5

    ((1 +

    √5

    2

    )n−

    (1−

    √5

    2

    )n), ∀ n ∈ N.

    É curioso que na fórmula do termo geral de uma seqüência de números inteiros definida de

    modo tão simples quanto (Un) apareçam números irracionais.

    Provaremos a seguir uma identidade útil sobre números de Fibonacci:

    Proposição: Um+n = UmUn−1 + Um+1Un, ∀ m, n ∈ N, n ≥ 1.

    Prova: Sejam ym = Um+n e Zm = UmUn−1 + Um+1Un. Temos que (yn) e (Zm) satisfazem

    a recorrência xn+2 = xn+1 + xn, ∀ n ∈ N. Por outro lado, y0 = Un, y1 = Un+1, Z0 =

    0 · Un−1 + 1 · Un = Un = y0 e Z1 = 1 · Un−1 + 1 · Un = Un+1 = y1, e portanto, como antes,

    Zn = yn, ∀ n ∈ N. �

    4

  • Podemos usar este fato para provar o seguinte interessante fato aritmético sobre a seqüência

    (Un), que pode ser generalizado para as chamadas seqüências de Lucas, as quais são úteis para

    certos testes de primalidade, como veremos mais tarde:

    Teorema: mdc(Um, Un) = Umdc(m,n), ∀ m,n ∈ N.

    Prova: Observemos primeiro que mdc(Un, Un+1) = 1, ∀ n ∈ N. Isso vale para n = 0 pois

    U1 = 1 e, por indução, mdc(Un+1, Un+2) = mdc(Un+1, Un+1 + Un) = mdc(Un+1, Un) = 1.

    Além disso, se m = 0, mdc(Um, Un) = mdc(0, Un) = Un = Umdc(m,n), ∀ n ∈ N, e se m = 1,

    mdc(Um, Un) = mdc(1, Un) = 1 = U1 = Umdc(m,n), ∀ n ∈ N. Vamos então provar o fato acima

    por indução em m. Suponha que a afirmação do enunciado seja válida para todo m < k (onde

    k ≥ 2 é um inteiro dado) e para todo n ∈ N. Queremos provar que ela vale para m = k e

    para todo n ∈ N, isto é, que mdc(Uk, Un) = Umdc(k,n) para todo n ∈ N. Note que, se n < k,

    mdc(Uk, Un) = mdc(Un, Uk) = Umdc(n,k) = Umdc(k,n), por hipótese de indução. Já se n ≥ k,

    Un = U(n−k)+k = Un−kUk−1+Un−k+1Uk, e logo mdc(Uk, Un) = mdc(Uk, Un−kUk−1+Un−k+1Uk) =

    mdc(Uk, Un−kUk−1) = mdc(Uk, Un−k) (pois mdc(Uk, Uk−1) = 1) = Umdc(k,n−k) = Umdc(k,n). �

    Corolário: Se m ≥ 1 e m é um divisor de n então Um divide Un. Além disso, se m ≥ 3 vale a

    rećıproca: se Um divide Un então m divide n.

    3 – A recorrência xn+1 = x2n − 2

    Consideremos as seqüências (xn)n∈N de números reais que satisfazem a recorrência xn+1 =

    x2n − 2, ∀ n ∈ N. Suponha que x0 = α + α−1 para um certo α (real ou complexo). Então

    podemos provar por indução que xn = α2n + α−2

    n, ∀ n ∈ N. De fato, se vale a fórmula para

    xn, teremos

    xn+1 = x2n − 2 = (α2

    n

    + α−2n

    )2 − 2 = α2n+1 + 2 + α−2n+1 − 2 = α2n+1 + α−2n+1 .

    Se |x0| > 2, temos x0 = α + α−1 para α =x0+√

    x20−42

    ∈ R.

    5

  • Se |x0| ≤ 2, vale a mesma fórmula para α, mas nesse caso α é um número complexo de

    mótulo 1, e pode ser escrito como α = eiθ = cos θ + i sen θ. Nesse caso, xn = e2niθ + e−2

    niθ =

    (cos(2nθ) + i sen(2nθ)) + (cos(2nθ)− sen(2nθ)) = 2 cos(2nθ).

    Podemos ver isso de outra forma: se |x0| ≤ 2, escrevemos x = 2 cos θ, com θ ∈ [0, π].

    Podemos mostrar então por indução que xn = 2 cos(2nθ), para todo n ∈ N. De fato, xn+1 =

    x2n−2 = 4 cos2(2nθ)−2 = 2(2 cos2(2nθ)−1) = 2 cos(2n+1θ), pois cos(2x) = 2 cos2 x−1, ∀ x ∈ R.

    Podemos usar esta expressão para obter diversos tipos de comportamento posśıvel para uma

    tal seqüência (xn). Se x0 = 2 cos θ e θ/π é racional e tem representação binária periódica de

    peŕıodo n então (xn) = (2 cos(2nθ)), podemos ter x0 = 2 cos θ onde θ/π tem representação

    binária como

    0, 0100011011000001010011100101110111...

    em que todas as seqüências finitas de zeros e uns aparecem em algum lugar (isso acontece para

    a “maioria” dos valores de θ).

    Nesse caso, a seqüência (xn) é densa em [−2, 2], isto é, qualquer ponto de [−2, 2] pode ser

    apromado por elementos de (xn), com erro arbitrariamente pequeno.

    No caso em que x0 ∈ R, a seqüência (xn) pode ter propriedades aritméticas muito interes-

    santes. Em particular, se x0 = 4 (e logo xn = (2 +√

    3)2n

    + (2−√

    3)2n, ∀ n ∈ N) vale o famoso

    critério de Lucas-Lehmer para testar a primalidade de números de Mersenne: se n ≥ 3 então

    2n − 1 é primo se e somente se 2n − 1 é um divisor de xn−2 (por exemplo, 23 − 1 = 7 é primo e

    é um divisor de x3−1 = x1 = x20 − 2 = 42 − 2 = 14).

    Exerćıcio: Seja x0 ≥ 3 um inteiro ı́mpar.

    i) Prove que se p é um número primo então existe no máximo um valor de n ∈ N tal que p

    divide xn.

    ii) Prove que se p é um fator primo de xn então p > n.

    Sugestão: Considere a seqüência xn(mod p).

    6

  • Esse exerćıcio pode ser generalizado para outras recorrências. Nesse caso particular da

    recorrência xn+1 = x2n−2 é posśıvel mostrar um resltado mais forte: se p é um fator primo

    de xn então p ≥ 2n+2 − 1 (note que quando p = 2q − 1 é primo, com q ≥ 3 e n = q − 2,

    vale a igualdade p = 2n+2 − 1 e p|xn, pelo critério de Lucas-Lehmer enunciado acima).

    4 - Fórmulas gerais para seqüências recorrentes lineares:

    Considere a equação

    akxn+k + ak−1xn+k−1 + · · ·+ a0xn = 0, n ≥ 0 (2)

    em que a0, . . . , ak são constantes, e os valores de xi são conhecidos para i = 0, . . . , k − 1.

    Supondo que a equação (2) admite uma solução do tipo: xn = λn, em que λ é um parâmetro

    inteiro, e substituindo em (2) temos

    akλn+k + ak−1λ

    n+k−1 + · · ·+ a0λn = 0.

    Se λ 6= 0 então obtemos a equação caracteŕıstica associada a equação (2)

    alak + ak−1λ

    k−1 + · · ·+ a0λ0 = 0.

    Vamos mostrar que se esta equação tem as ráızes complexas λ1, . . . , λr com multiplicidades

    α1, α2, . . . , αr ∈ N, respectivamente, então as soluções de (2) são exatamente as seqüências (xn)

    da forma xn = Q1(n)λn1 + Q2(n)λ

    n2 + · · ·+ Qr(n)λnr , onde Q1, . . . , Qr são polinômios com grau

    (Qi) < αi, 1 ≤ i ≤ r (em particular, se λi é uma raiz simples então Qi é constante).

    Seja P (x) = akxk + ak−1x

    k−1 + · · ·+ a0 um polinômio.

    Dizemos que uma seqüência (xn)n∈N satisfaz a propriedade Rec(P (x)) se akxn+k+ak−1xn+k−1+

    · · ·+ a0xn = 0, ∀ n ∈ N. Não é dif́ıcil verificar os seguintes fatos:

    i) Se (Xn) e (Yn) satisfazem Rec(P (x)) e c ∈ C então (Zn) = Xn + cYn satisfaz Rec(P (x)).

    7

  • ii) Se Q(x) = brXr + br−1X

    r−1 + · · · + b0 e (Xn) satisfaz Rec(P (x)) então (Xn) satisfaz

    Rec(P (x)Q(x)) (isso segue der∑

    j=0

    bj(akXn+j+k +ak−1Xn+j+k−1 + · · ·+a0Xn+j) = 0, ∀ n ∈

    N)

    iii) (Xn) satisfaz Rec(P (x)) se e só se (Yn) = (Xn/λn) satisfaz Rec(P (λX)) (substitua Xn+j =

    λn+jYn+j emk∑

    j=0

    ajXn+j = 0).

    iv) Se Sn =n∑

    k=0

    xk então (xn) satisfaz Rec(P (x)) se e só se (Sn) satisfaz Rec((x − 1)P (x))

    (escreva xn+j+1 = Sn+j+1 − Sn+j e substitua emn∑

    j=0

    ajxn+j+1 = 0).

    Por iii), para ver que, para todo polinômio Q(x) de grau menor que m, Xn = Q(n)λn

    satisfaz Rec((x− λ)m), basta ver que (Yn) = (Q(n)) satisfaz Rec((x− 1)m), o que faremos por

    indução. Isso é claro que m = 1, e em geral, se Zn = Yn+1 − Yn = Q(n + 1) − Q(n), como

    Q̃(x) = Q(x+1)−Q(x) tem grau menor que m−1, (Zn) satisfaz Rec((x−1)m−1) (por hipótese

    de indução), e logo, por (iv), Yn) satisfaz Rec((x − 1)m). Essa observação, combinada com

    ii), mostra que se (P (x) = (x − λ1)α1(x − λ2)α2(x − λ2)α2 . . . (x − λr)αr , e grau Qi) < αi para

    1 ≤ i ≤ r então xn =r∑

    i=1

    Qi(n)λni satisfaz Rec(P (x)).

    Para ver que se (xn) satisfaz Rec(P (x)) então xn é da forma acima, usaremos indução

    novamente.

    Supomos λ1 6= 0 e tomamos Yn = Xn/λn1 , Zn = Yn+1 − Yn (com Z0 = Y0).

    Por iii) e iv), Zn satisfaz Rec(P (λ1x)/(x − 1)) e, portanto por hipótese de indução, Zn =

    Q̃1(x) + Q̃2(x)(λ2/λ1)n + · · · + Q̃r(x)(λr/λ1)n, onde grau Q̃i < αi para 2 ≤ i ≤ r e grau

    Q̃1 < α1 − 1.

    Para terminar a prova, vamos mostrar que se existem polinômios P1, P2, . . . , Pk tais que

    Yn+1 − Yn = P1(n) + P2(n)βn2 + · · · + Pk(n)βnk (onde 1, β2, . . . , βk são complexos dististos e

    Pi 6= 0, ∀ i ≥ 2) então Yn = P̃1(n) + P̃2(n)βn2 + · · · + P̃k(n)βnk , onde P̃1, . . . , P̃k são polinômios

    com grau Pi = grau P̃i para i ≥ 2 e grau P̃1 = grau P1 + 1, por indução na soma dos graus dos

    polinômios Pi, onde convencionamos que o grau do polinômio nulo é −1.

    8

  • (no nosso caso temos βi = λi/λ1, e como Xn = λn1Yn o resultado segue imediatamente).

    Para provar essa afirmação observamos inicialmente que, se a soma dos grau de Pi é −1,

    então Yn+1 − Yn = 0, ∀ n, e logo, Yn é constante e, em geral, consideramos 2 casos:

    a) P1(x) = cmxm + cm−1x

    m−1 + · · ·+ c0, cm 6= 0. Nesse caso definimos Ỹn = Yn − cmnm+1

    m+1, e

    temos Ỹn+1 − Ỹn = Q1(n) + P2(n)βn1 + · · ·+ Pk(n)βnk , com grau Q < m. Por hipótese de

    indução, Ỹn (e logo Yn) é da forma desejada.

    b) P2(x) = dsxs + ds−1x

    s−1 + · · · + d0, ds 6= 0. Nesse caso, definimos Ỹn = Yn − dsnsλn2

    λ2−1 , e

    temos Ỹn+1 − Ỹn = P1(n) + Q(n)βn2 + P3(n)βn3 + · · · + Pk(n)βnk , com grau Q < s. Por

    hipótese de indução, Ỹn (e logo Yn) é da forma desejada. �

    Vimos na primeira parte da demonstração acima que (xn) satisfaz Rec(P (x)), onde P (x) =

    (x − λ1)α1(x − λ2)α2 . . . (x − λr)αr sempre que xn = Q1(n)λn1 + Q2(n)λn2 + · · · + Qr(n)λnr ,

    onde Q1, Q2, . . . , Qr são polinômios com grau(Qj) < αj, ∀ j ≤ r. Vamos apresentar um ar-

    gumento alternativo, motivado por conversas do autor com Bruno Fernandes Cerqueira Leite,

    para mostrar que todas as seüências que satisfazem as recorrência são dessa forma.

    Cada polinômio Qi(n) tem αi coeficientes (dos monômios cujos graus são 0, 1, 2, ,̇sαi − 1).

    Como o espaço vetorial das seqüências que satisfazem Rec(P (x)) tem dimensão grau(P (x)) =r∑

    i=1

    αi, basta ver que há unicidade na representação de uma seqüência na forma cima. Para

    isso, dvemos mostrar que, se λ1, λ2, . . . , λr são números complexos distintos e Q1, Q2, . . . , Qr

    são polinômis tais que Q1(n)λn1 +Q2(n)λ

    n2 + · · ·+Qr(n)λnr = 0, ∀ n ∈ N, então Qj ≡ 0, ∀ j ≤ r.

    Vamos supor por absurdo que não seja assim. supomos sem perda de generalidade que,

    para certos s e t com 1 ≤ s ≤ t ≤ r, |λ1| = |λi| > |λj|, ∀ i ≤ t, j > t, e grau(Q1) = grau(Qi) >

    grau(Qj), se i ≤ s < j ≤ t. Se os polinômios Qj não são todos nulos, temos Q1 não nulo.

    Seja d o grau de Q1. Se |λj| < |λ1| então limn→∞

    Qj(n)λnj

    nd·λn1= 0, e se |λi| = |λ1| e grau(Q) < d,

    também temos limn→∞

    Q(n)λnindλn1

    = 0. Portanto, se Q1(n)λn1 +Q2(n)λ

    n2 + · · ·+Qr(n)λnr = 0, ∀ n ∈ Ne

    o coeficiente de nd em Qi é ai para i ≤ s, dividindo por ndλn1 e tomando o limite, temos

    limn→∞

    (a1 +

    ∑2≤i≤s

    ai

    (λiλ1

    )n)= 0,

    9

  • donde

    0 = limn→∞

    (1

    n

    n∑k=1

    (a1 +

    ∑2≤i≤s

    ai

    (λiλ1

    )k))

    = limn→∞

    (a1 +

    1

    n

    n∑k=1

    ∑2≤i≤s

    ai

    (λiλ1

    )k)

    = a1 +∑

    2≤i≤s

    ai · limn→∞

    1

    n

    n∑k=1

    (λiλ1

    )k= a1 +

    ∑2≤i≤s

    ai · limn→∞

    (1

    n· (λi/λ1)

    n+1 − (λi/λ1)(λi/λ1)− 1

    )= a1,

    pois, para 2 ≤ i ≤ s, λi/λ1 6= 1 é um complexos de módulo 1, donde∣∣∣∣(λi/λ1)n+1 − (λi/λ1)(λi/λ1)− 1∣∣∣∣ ≤ 2|(λi/λ1)− 1| ,

    e logo

    limn→∞

    1

    n

    ((λi/λ1)

    n+1 − (λi/λ1)(λi/λ1)− 1

    )= 0.

    Entretanto, isso é um absurdo, pois grau(Q1) = d, e logo a1 6= 0.

    Exemplo: xn = sen(nα) satisfaz uma recorrência linear. De fato,

    xn+1 = sen(nα + α) = sen(nα) cos α + cos(nα) sen α ⇒

    xn+2 = sen(nα + 2α) = sen(nα) cos 2α + cos(nα) sen 2α ⇒

    ⇒ xn+2 − sen 2αsen α xn+1 = (cos 2α−sen 2αsen α

    cos α)xn, ou seja,

    xn+2 = 2 cos αXn+1 −Xn. Note que xn não parece ser da forma geral descrita nesta seção,

    mas de fato

    xn =einα − e−inα

    2i=

    1

    2i(eiα)n − 1

    2i(e−iα)n =

    1

    2i(cos α + i sen α)n − 1

    2i(cos α− i sen α)n

    .

    Observação: Se (xn) safisfaz Rec((x−1)P (x)), onde P (x) = anxk +ak−1xk−1 + · · ·+a0, então,

    se definirmos Yn = akxn+k +ak−1xn+k−1 + · · ·+a0xn, teremos Yn+1 = Yn, ∀ n ∈ N, ou seja, Yn é

    10

  • constante. Assim, akxn+k + · · ·+a0xn é um invariante da seqüência xn, o que é uma observação

    útil para muitos problemas envolvendo recorrência.

    Vamos agora ver um problema resolvido em que se usam estimativas assintóticas de seqüências

    recorrentes para provar um resultado de teoria dos números:

    Problema. (Problema 69 da Revista Eureka! no. 14) Sejam a e b inteiros positivos tais

    que an − 1 divide bn − 1 para todo inteiro positivo n.

    Prove que existe x ∈ N tal que b = ak.

    Solução de Zoroastro Azambuja Neto (Rio de Janeiro-RJ):

    Suponha por absurdo que b não seja uma potência de a.

    Então existe k ∈ N tal que ak < b < ak+1. Consideremos a seqüência xn = bn−1

    an−1 ∈ N,

    ∀ n ≥ 1. Como 1an−1 =

    1an

    + 1a2n

    + · · · =∞∑

    j=1

    1ajn

    , temos

    xn =∞∑

    j=1

    bn

    ajn−

    ∞∑j=1

    1

    ajn=

    (b

    a

    )n+

    (b

    a2

    )n+ . . .

    (b

    ak

    )n+

    bn

    akn(an − 1)− 1

    an − 1.

    Note que como bn

    akn(an−1) =(b/ak+1)n

    1−a−n e1

    an−1 tendem a 0 quando n cresce, se definimos

    yn −(

    b

    a

    )n+

    (b

    a2

    )+ · · ·+

    (b

    ak

    )n=

    k∑j=1

    (b

    aj

    )n,

    temos que

    xn − yn =bn

    akn(an − 1)− 1

    an − 1tende a 0 quando n tende a infinito. Por outro lado, como yn é uma soma de k progressões

    geométricas de razões b/aj, 1 ≤ j ≤ k, yn satisfaz a equação de recorrência C0yn+k +C1yn+k−1+

    · · ·+ Ckyn = 0, ∀ n ≥ 0, onde

    C0xk + C1x

    k−1 + · · ·+ Ck−1x + Ck = ak(k+1)/2(

    x− ba

    )(x− b

    a2

    ). . .

    (x− b

    ak

    )Note que todos os Ci são inteiros. Note também que

    C0xn+k + C1xn+k−1 + · · ·+ Ckxn = C0(xn+k − yn+k) + C1(xn+k−1 − yn+k−1) + · · ·+ Ck(xn − yn)

    11

  • tende a 0 quando n tende a infinito, pois xn+j − yn+j tende a 0 para todo j com 0 ≤ j ≤ k (e k

    está fixo). Como os Ci e os xn são todos inteiros, isso mostra que C0xn+k + C1xn+k−1 + · · · +

    Ckxn = 0 para todo n grande.

    Agora, como

    xn = yn +

    (b

    ak+1

    )n+

    bn

    a(k+1)n(an − 1)− 1

    an − 1,

    temos

    C0xn+k + C1xn+k−1 + · · ·+ Ckxn =k∑

    j=0

    Cj

    ((b

    ak+1

    )n+k−j+ zn+k−j

    ),

    onde

    zm =bm

    a(k+1)m(am − 1)− 1

    am − 1.

    Note quek∑

    j=0

    Ck

    (b

    ak+1

    )n+k−j= P

    (b

    ak+1

    )·(

    b

    ak+1

    )n,

    onde

    P (x) = C0xk + C1x

    k−1 + · · ·+ Ck−1x + Ck = ak(k+1)/2(

    x− ba

    )(x− b

    a2

    ). . .

    (x− b

    ak

    ),

    donde P(

    bak+1

    )6= 0. Por outro lado, para todo j com 0 ≤ j ≤ k, zn+k−j

    /(b

    ak+1

    )n= (b/a

    k+1)k−j

    an+k−j−1 −

    1(ak−j−a−n)(b/ak)n , que tende a 0 quando n tende a infinito, donde xn =

    (k∑

    j=0

    Cjxn+k−j

    )/(b

    ak+1

    )ntende a P

    (b

    ak+1

    )6= 0, o que é um absurdo, pois, como vimos antes, wn é igual a 0 para todo n

    grande.

    12

  • Testes de Primalidade e Seqüências Recorrentes

    1 Testes baseados em fatorações de n− 1

    Proposição 3.5: Seja n > 1. Se para cada fator primo q de n − 1 existe um inteiro aq tal

    que an−1q ≡ 1 (mod n) e a(n−1)/qq 6≡ 1 (mod n) então n é primo.

    Dem: Seja qkq a maior potência de q que divide n − 1. A ordem de aq em (Z/(n))∗ é um

    múltiplo de qkq , donde ϕ(n) é um múltiplo de qkq . Como isto vale para todo fator primo q de

    n− 1, ϕ(n) é um múltiplo de n− 1 e n é primo. �

    Proposição 3.6: (Pocklington) Se n− 1 = qkR onde q é primo e existe um inteiro a tal que

    an−1 ≡ 1 (mod n) e mdc(a(n−1)/q − 1, n) = 1 então qualquer fator primo de n é congruo a 1

    módulo qk.

    Dem: Se p é um fator primo de n então an−1 ≡ 1 (mod p) e p não divide a(n−1)/q − 1, donde

    ordp a, a ordem de a módulo p, divide n− 1 mas não divide (n− 1)/q. Assim, qk| ordp a|p− 1,

    donde p ≡ 1 (mod q)k. �

    Corolário 3.7: Se n− 1 = FR, com F > R e para todo fator primo q de F existe a > 1 tal

    que an−1 ≡ 1 (mod n) e mdc(a(n−1)/q − 1, n) = 1 então n é primo.

    Dem: Seja q um fator primo de F e qk a maior potência de q que divide F ; pela proposição

    anterior, todo fator primo de n deve ser côngruo a 1 módulo qk. Como isto vale para qualquer

    fator primo de F , segue que qualquer fator primo de n deve ser côngruo a 1 módulo F . Como

    F >√

    n, isto implica que n é primo. �

    De fato, basta conhecer um conjunto de fatores primos cujo produto seja maior do que

    (n − 1)1/3 para, usando o resultado de Pocklington, tentar demonstrar a primalidade de n (o

    que deixamos como exerćıcio). Os seguintes critérios clássicos são conseqüências diretas das

    proposições acima.

    13

  • Fermat conjecturou que todo número da forma Fn = 22n + 1 fosse primo e verificou a

    conjectura para n ≤ 4. Observe que 2n + 1 (e em geral an + 1 com a ≥ 2) não é primo se

    n não é uma potência de 2: se p é um fator primo ı́mpar de n, podemos escrever an + 1 =

    bp +1 = (b+1)(bp−1− bp−2 + · · ·+ b2− b+1) onde b = an/p. Euler mostraria mais tarde que F5não é primo (temos F5 = 4294967297 = 641 · 6700417) e já se demonstrou que Fn é composto

    para vários outros valores de n; nenhum outro primo da forma Fn = 22n + 1 é conhecido, mas

    se conhecem muitos primos (alguns bastante grandes) da forma a2n

    + 1, que são conhecidos

    como primos de Fermat generalizados. O teste a seguir mostra como testar eficientemente a

    primalidade de Fn.

    Corolário 3.8: (Teste de Pépin) Seja Fn = 22n +1; Fn é primo se e somente se 3

    (Fn−1)/2 ≡ −1

    (mod Fn).

    Dem: Se 3(Fn−1)/2 ≡ −1 (mod Fn) então a primalidade de Fn segue da Proposição 3.5. Por

    outro lado, se Fn é primo então 3(Fn−1)/2 ≡ ( 3

    Fn) = (Fn

    3) = (2

    3) = −1 (mod Fn). �

    Corolário 3.9: (Teorema de Proth; 1878) Seja n = h · 2k + 1 com 2k > h. Então n é primo

    se e somente se existe um inteiro a com a(n−1)/2 ≡ −1 (mod n).

    Dem: Se n é primo, podemos tomar a qualquer com ( an) = −1; ou seja, metade dos inteiros

    entre 1 e n− 1 serve como a. A rećıproca segue da Proposição 3.7 com F = 2k. �

    Corolário 3.10: Se n = h · qk + 1 com q primo e qk > h. Então n é primo se e somente se

    existe um inteiro a com an−1 ≡ 1 (mod n) e mdc(a(n−1)/q − 1, n) = 1.

    Dem: Se n é primo, podemos tomar a qualquer que não seja da forma xq módulo n; ou seja,

    uma proporção de (q− 1)/q dentre inteiros entre 1 e n− 1 serve como a. A rećıproca segue da

    Proposição 3.7 com F = qk. �

    Uma expressiva maioria entre os 100 maiores primos conhecidos estão nas condições do

    teorema de Proth (ver tabelas). Isto se deve ao fato de primos desta forma serem freqüentes

    (mais freqüentes do que, por exemplo, primos de Mersenne) e que sua primalidade é facilmente

    demonstrada usando este resultado.

    14

  • 2 Primos de Mersenne

    Um número de Mersenne é um número da forma Mp = 2p − 1. Quando esse número é primo,

    dizemos que é um primo de Mersenne. Atualmente, os 4 maiores primos conhecidos são primos

    de Mersenne, e têm mais de dois milhões de d́ıgitos: 224036583 − 1, 220996011 − 1, 213466917 − 1 e

    26972593 − 1. Isto se deve principalmente à existência de um algoritmo especialmente eficiente

    para testar a primalidade de números de Mersenne: o critério de Lucas-Lehmer, que discutire-

    mos mais adiante. Vejamos primeiramente que 2p − 1 só tem chance de ser primo quando p é

    primo.

    Proposição 3.11: Se 2n − 1 é primo então n é primo.

    Dem: Se n = ab com a, b ≥ 2 então 1 < 2a−1 < 2n−1 e 2n−1 = 2ab−1 = (2a)b−1 ≡ 1b−1 = 0

    (mod 2a − 1) e 2n − 1 é composto. �

    Por outro lado, não se sabe demonstrar nem que existam infinitos primos de Mersenne nem

    que existem infinitos primos p para os quais Mp é composto. Conjectura-se, entretanto, que

    existam infinitos primos p para os quais Mp é primo e que, se pn é o n-ésimo primo deste tipo,

    temos

    0 < A <log pn

    n< B < +∞

    para constantes A e B. Existem algumas conjecturas mais precisas quanto ao valor de

    limn→∞

    n√

    pn;

    Eberhart conjectura que este limite exista e seja igual a 3/2; Wagstaff por outro lado conjectura

    que o limite seja

    2e−γ ≈ 1, 4757613971

    onde γ é a já mencionada constante de Euler-Mascheroni.

    Primos de Mersenne são interessantes também por causa de números perfeitos. Dado n ∈ N∗,

    definimos

    σ(n) =∑d|n

    d,

    15

  • a soma dos divisores (positivos) de n. Pelo teorema fundamental da aritmética demonstramos

    facilmente que se

    n = pe11 pe22 · · · pemm ,

    com p1 < p2 < · · · < pm então

    σ(n) = (1 + p1 + · · ·+ pe11 ) · · · (1 + pm + · · ·+ pemm )

    =pe1+11 − 1p1 − 1

    · · · pem+1m − 1pm − 1

    .

    Em particular, se (a, b) = 1 então σ(ab) = σ(a)σ(b). Um inteiro positivo n é dito perfeito se

    σ(n) = 2n; os primeiros números perfeitos são 6, 28 e 496. Nosso próximo resultado caracteriza

    os números perfeitos pares.

    Proposição 3.12: Se Mp é um primo de Mersenne então 2p−1Mp é perfeito. Além disso, todo

    número perfeito par é da 2p−1Mp para algum primo p, sendo Mp um primo de Mersenne.

    Dem: Se Mp é primo então

    σ(2p−1Mp) = (2p − 1)(Mp + 1) = 2 · 2p−1Mp.

    Por outro lado seja n = 2kb, com k > 0 e b ı́mpar, um número perfeito par. Temos σ(n) = 2n =

    σ(2k)σ(b) donde 2k+1b = (2k+1 − 1)σ(b), Assim, como (2k+1 − 1)|2k+1b e (2k+1 − 1, 2k+1) = 1,

    temos (2k+1−1)|b. Por outro lado, se b não é igual a 2k+1−1, podemos escrever b = (2k+1−1)c,

    com c > 1, donde σ(b) ≥ b+c+1, e logo (2k+1−1)σ(b) ≥ (2k+1−1)(b+c+1) = 2k+1b+2k+1−1 >

    2k+1b, absurdo. Assim b = 2k+1 − 1 e 2k+1b = (2k+1 − 1)(b + 1), donde σ(b) = b + 1 e logo b é

    primo. Pela proposição 3.9, p = k + 1 é primo, b = Mp e n = 2p−1Mp. �

    Por outro lado, um dos problemas em aberto mais antigos da matemática é o da existência

    de números perfeitos ı́mpares. Sabe-se apenas que um número perfeito ı́mpar, se existir, deve

    ser muito grande (mais de 300 algarismos) e satisfazer simultaneamente várias condições com-

    plicadas.

    Conjectura 3.13: Não existe nenhum número perfeito ı́mpar.

    Nosso próximo resultado é o critério de Lucas-Lehmer, a base dos algoritmos que testam

    para grandes valores de p se 2p − 1 é ou não primo:

    16

  • Teorema 3.14: Seja S a seqüência definida por S0 = 4, Sk+1 = S2k − 2 para todo natural k.

    Seja n > 2; Mn = 2n − 1 é primo se e somente se Sn−2 é múltiplo de Mn.

    Dem: Observemos inicialmente que

    Sn = (2 +√

    3)2n

    + (2−√

    3)2n

    para todo natural n. A demonstração por indução é simples: claramente S0 = 4 = (2+√

    3)20+

    (2−√

    3)20

    e

    Sk+1 = S2k − 2

    = ((2 +√

    3)2k

    + (2−√

    3)2k

    )2 − 2

    = ((2 +√

    3)2k

    )2 + 2 · (2 +√

    3)2k · (2−

    √3)2

    k

    + ((2−√

    3)2k

    )2 − 2

    = (2 +√

    3)2k+1

    + (2−√

    3)2k+1

    .

    Suponha por absurdo que Mn|(2 +√

    3)2n−2

    + (2 −√

    3)2n−2

    e que Mn seja composto, com

    um fator primo q com q2 < Mn. Teremos (2 +√

    3)2n−2

    + (2−√

    3)2n−2 ≡ 0 (mod q) donde, no

    grupo multiplicativo G = (Z/(q)[√

    3])∗, temos (2 +√

    3)2n−2

    = −(2−√

    3)2n−2

    . Como 2−√

    3 =

    (2 +√

    3)−1, esta equação pode ser reescrita como (2 +√

    3)2n−1

    = −1 (ainda em G), o que

    significa que a ordem de 2 +√

    3 em G é exatamente 2n. Isto é um absurdo, pois o número de

    elementos de G é no máximo q2 − 1 < 2n. Fica portanto demonstrado que se Sn−2 é múltiplo

    de Mn então Mn é primo.

    Suponha agora Mn primo, n > 2. Lembramos que n é um primo ı́mpar. Por reciprocidade

    quadrática temos ( 3Mn

    ) = −(Mn3

    ) = −1, pois 3 ≡ Mn ≡ −1 (mod 4) e Mn ≡ 1 (mod 3). Assim,

    3 não é um quadrado em Z/(Mp) e K = Z/(Mp)[√

    3] é um corpo de ordem M2n. Queremos provar

    que (2 +√

    3)2n−2

    + (2 −√

    3)2n−2 ≡ 0 (mod M)p, ou seja, que é igual a 0 em K. Isto equivale

    a demonstrarmos que temos (2 +√

    3)2n−2

    = −(2 −√

    3)2n−2

    em K, o que pode ser reescrito

    como (2 +√

    3)2n−1

    = −1; devemos portanto provar que a ordem de 2 +√

    3 é exatamente 2n.

    Note que 2n = Mn + 1 donde (2 +√

    3)2n

    = (2 +√

    3)Mn(2 +√

    3) = (2Mn +√

    3Mn

    )(2 +√

    3) =

    (2 + 3Mn−1

    2

    √3)(2 +

    √3) = (2 + ( 3

    Mn)√

    3)(2−√

    3) = (2−√

    3)(2 +√

    3) = 1; assim é claro que a

    ordem de 2 +√

    3 é um divisor de 2n.

    17

  • Como K∗ tem M2n − 1 = 2n+1(2n−1 − 1) elementos, devemos provar que 2 +√

    3 não é uma

    quarta potência em K. Note que (2 +√

    3)2n

    = 1 demonstra que 2 +√

    3 é um quadrado, o

    que aliás pode ser visto mais diretamente: 2 +√

    3 = (1 +√

    3)2/2 e 2 = 2n+1 = 2(n+1)2

    é uma

    quarta potência em K. Resta-nos assim demonstrar que ±(1 +√

    3) não são quadrados em K.

    Suponha por absurdo que �(1 +√

    3) = (a + b√

    3)2, com � = ±1; temos �(1−√

    3) = (a− b√

    3)2

    e, multiplicando, −2 = (a2 − 3b2)2, o que significa que −2 é um quadrado módulo Mn (pois a

    e b são inteiros). Isto, entretanto, é claramente falso: ( −2Mn

    ) = ( −1Mn

    )( 2Mn

    ) = −1 · 1 = −1, pois

    Mn ≡ 3 (mod 4) e já vimos que 2 é um quadrado módulo Mp. Isto conclui a demonstração.

    Mesmo quando Mp não é primo, podemos garantir que seus fatores primos serão de certas

    formas especiais. Isto é muito útil quando procuramos primos de Mersenne pois podemos

    eliminar alguns expoentes encontrando fatores primos de Mp. Isto também pode ser útil para

    conjecturarmos quanto à “probabilidade” de Mp ser primo, ou, mais precisamente, quanto à

    distribuição dos primos de Mersenne.

    Proposição 3.15: Sejam p > 2 e q primos com q um divisor de Mp. Então q ≡ 1 (mod p) e

    q ≡ ±1 (mod 8).

    Dem: Se q divide Mp então 2p ≡ 1 (mod q), o que significa que a ordem de 2 módulo q é

    p (pois p é primo). Isto significa que p é um divisor de q − 1, ou seja, que q ≡ 1 (mod p).

    Por outro lado, 2 ≡ 2p+1 = (2(p+1)/2)2 (mod q), donde (2q) = 1, o que significa que q ≡ ±1

    (mod 8). �

    Os vários valores de p para os quais a primalidade de Mp foi testada sugerem que para a

    ampla maioria dos valores de p, Mp não é primo. Isto é apenas uma conjectura: não se sabe

    demonstrar sequer que existem infinitos primos p para os quais Mp seja composto. Vamos agora

    ver uma proposição que serve para garantir que para certos valores especiais de p, alguns muito

    grandes, Mp não é primo.

    Proposição 3.16: Seja p primo, p ≡ 3 (mod 4). Então 2p+ 1 é primo se e somente se 2p+ 1

    divide Mp.

    18

  • Dem: Se q é primo então Mp = 2p − 1 = 2(q−1)/2 − 1 ≡ (2

    q)− 1 (mod q). Mas p ≡ 3 (mod 4)

    significa que q ≡ 7 (mod 8), donde (2q) = 1. Assim, Mp ≡ 0 (mod q), o que demonstra uma

    das implicações da proposição.

    Por outro lado, se 2p+1 não é primo tem fatores primos r com r 6≡ 1 (mod p) (pois r < p).

    Se 2p+1 dividisse Mp, r seria um fator primo de Mp, contrariando a proposição anterior. �

    Os primos p para os quais 2p+1 é primo são chamados de primos de Sophie Germain. Alguns

    primos de Sophie Germain bastante grandes são conhecidos, como p0 = 18458709 · 232611 − 1;

    assim, pela proposição anterior, Mp0 é composto. Sabe-se também que se πSG(x) denota o

    número de primos de Sophie Germain menores do que x então existe C tal que para todo x

    πSG(x) < Cx

    (log x)2.

    Acredita-se que πSG(x) seja assintótico a cx/(log x)2 para algum c > 0 mas não se sabe demon-

    strar sequer que existem infinitos primos de Sophie Germain.

    3 Testes baseados em fatorações de n + 1

    Suponha dados inteiros n > 1, P e Q tais que D = P 2 − 4Q não é um quadrado módulo n.

    Seja

    α =P +

    √D

    2,

    raiz da equação X2 − PX + Q = 0. É fácil provar por indução que

    αm =Vm + Um

    √d

    2

    para todo natural m onde Um e Vm são definidos recursivamente por

    U0 = 0, U1 = 1, Um+2 = PUm+1 −QUm,

    V0 = 2, V1 = P, Vm+2 = PVm+1 −QVm.

    Se

    α =P −

    √D

    2

    19

  • é a segunda raiz da equação X2 − PX + Q = 0, podemos também escrever

    Um =αm − αm√

    D, Vm = α

    m + αm,

    como se demonstra facilmente por indução. Segue destas fórmulas que

    Un+1 =PUn + Vn

    2, Vn+1 =

    DUn + PVn2

    e

    U2m = UmVm, V2m = V2m − 2Qm.

    Estas fórmulas nos permitem calcular Um e Vm módulo n em C log m operações (para alguma

    constante positiva C): escrevemos m =∑

    0≤i

  • Analogamente, se n é primo, temos αn = α em K. Assim, ainda em K, αn+1 = αn+1 = αα.

    Segue da fórmula para Um que Un+1 ≡ 0 (mod n). Proclamamos este resultado como uma

    proposição:

    Proposição 3.18: Se n é primo ı́mpar, (Dn) = −1 e as seqüências Um e Vm são definidas pelas

    recorrências

    U0 = 0, U1 = 1, Um+2 = PUm+1 −QUm,

    V0 = 2, V1 = P, Vm+2 = PVm+1 −QVm.

    então Un+1 ≡ 0 (mod n).

    Dem: Acima. �

    Esta proposição nos dá mais um algoritmo para testar a primalidade de n.

    Proposição 3.19: Se n 6= 2 é primo, n - Q, n - D e D é quadrado módulo n então Un−1 ≡ 0

    (mod n).

    Dem: No anel K = Z/(n)[√

    D], 2 é invert́ıvel, assim como D e√

    D. Em K temos, portanto,

    αn =P n + D

    n−12

    √D

    2n=

    P +√

    D

    2= α

    donde αn−1 = 1 em K (pois α é invert́ıvel em K: de fato, αβ = Q, que é invert́ıvel em K). Do

    mesmo modo, βn−1 = 1 em K e portanto temos, em K,

    Un−1 =1√D

    (αn−1 − βn−1) = 0,

    ou seja, Un−1 ≡ 0 (mod n). �

    Em suma, se n 6= 2 é primo, n - Q, n - D então Un−(Dn

    ) é múltiplo de n, o que se deve ao

    fato de αm ser igual a βm se m = n− (Dn) no anel K = Z/(n)[

    √D]. Observemos agora que se

    αm = βm em K então existe um inteiro r tal que

    αm = βn + nr√

    D

    pois αm−βm√

    D∈ Z. Vamos usar este fato para mostrar por indução o seguinte resultado.

    21

  • Proposição 3.20: Se n 6= 2 é primo, n - Q e n - D então, para todo natural k ≥ 1, Um·nk−1

    é múltiplo de nk, onde m = n− (Dn).

    Dem: Vamos supor, por hipótese de indução, que αm·nk−1

    = βm·nk−1

    + nkrk√

    D, rk ∈ Z.

    Elevando os dois lados da equação à n-ésima potência temos

    αm·nk

    = (βm·nk−1

    + nkrk√

    D)n = βm·nk

    + nk+1rk+1√

    D

    onde rk+1 pertence a Z[√

    D] por um lado, e por outro nk+1rk+1 = Um·nk é um inteiro, o que

    implica que rk+1 ∈ Q ∩ Z[√

    D], e portanto é inteiro, o que conclui a prova da afirmação, que

    equivale ao enunciado. �

    Proposição 3.21: Sejam r ≥ 1 com mdc(r, Q) = 1, e (Uk) uma seqüência de Lucas (com

    U0 = 0, U1 = 1 e Uk+2 = PUk+1 − QUk). Se Ar = {k ∈ N∗ | Uk é múltiplo de r} é não vazio

    então existe a ∈ N∗ tal que r | Uk se e somente se a | k. Tal a será denotado por ordr U .

    Dem: Observemos inicialmente que para todo m, n ∈ N, n 6= 0 temos Um+n = UmUn+1 −

    QUm−1Un . De fato, considerando m fixo e n variável, os dois lados da igualdade satisfazem a

    mesma recorrência de segunda ordem Xk+2 = PXk+1 − QXk , ∀k ∈ N, e temos, para n = 0,

    Um+0 = Um ·U1−QUm−1 ·U0 (pois U1 = 1 e U0 = 0), e, para m = 1, Um+1 = Um ·U2−QUm−1 ·U1(pois U2 = P , U1 = 1 e Um+1 = PUm −QUn−1), o que implica a igualdade para todo n ∈ N.

    Como conseqüência, se r | U` e r | Un então r | Um+n . Por outro lado, se r | U` e r | Us ,

    com ` < s então, como (fazendo m = `, n = s − `) Us = U`Us−`+1 − QU`−1Us−` temos que r

    divide QU`−1Us−` , mas mdc(Q, r) = 1 e mdc(U`−1, U`) divide Q`−1 (o que pode ser facilmente

    provado por indução a partir de U`+1 = PU` − QU`−1), donde mdc(r, U`−1) também é igual a

    1, logo r | Us−` . Assim, m,n ∈ Ar ⇒ m + n ∈ Ar , e `, s ∈ Ar , ` < s ⇒ s − ` ∈ Ar , o que

    implica que Ar é da forma descrita, com a = min Ar (de fato, se existe k ∈ Ar que não seja

    múltiplo de a, existiriam b e c naturais com k = ab + c, 0 < c < a, mas k ∈ Ar e, como a ∈ Ar, ab ∈ Ar , logo c = k − ab pertenceria a Ar , contradizendo a definição de a. �

    Teorema 3.22: Seja n > 1 um inteiro ı́mpar. Se existe um inteiro d primo com n tal que

    para todo fator primo r de n + 1 existem P (r), Q(r) e m(r) inteiros com mdc(m(r), n) = 1

    22

  • e D(r) = (P (r))2 − 4Q(r) ≡ d(m(r))2 (mod n) tais que a seqüência de Lucas associada (U (r)k )

    satisfaz U(r)n+1 ≡ 0 (mod n) e U

    (r)n+1

    r

    6≡ 0 (mod n) então n é primo.

    Dem: Seja n + 1 = rα11 rα22 . . . r

    αkk a fatoração prima de n + 1. As hipóteses implicam que r

    αii

    divide ordn U(ri) para i = 1, 2, . . . , k. Por outro lado, se n = `β11 `

    β22 . . . `

    βss é a fatoração prima

    de n, segue da Proposição 3.20 que ord`βjj

    U (ri) divide `βj−1j (`j − ( d`j )) (A hipótese `j - Q

    (ri)

    é satisfeita. De fato, como mdc(n, d) = 1, `j não divide D(ri), e, se `j dividisse Q

    (ri), `j não

    dividiria P (ri), e teŕıamos U(ri)k ≡ (P (ri))k−1 (mod `j) para todo k ≥ 1, e `j não dividiria U

    (ri)k

    para nenhum k ≥ 1, contradizendo o fato de n dividir U (ri)n+1). Assim, se M = mmc{`βj−1j (`j −

    ( d`j

    )), 1 ≤ j ≤ d} temos que `βjj divide U(ri)M , para 1 ≤ j ≤ d, 1 ≤ i ≤ k. Isso implica que

    n = `β11 . . . `βss divide U

    (ri)M para 1 ≤ i ≤ k, e portanto r

    αii | ordn U (ri)|M para 1 ≤ i ≤ k, donde

    n + 1 divide M . Temos agora duas possibilidades:

    (i) s = 1. Nesse caso temos que n + 1 divide M = `β11 (`1 − ( d`1 )) o que é absurdo se (d`1

    ) = 1,

    pois teŕıamos M < `β11 = n, e se (d`1

    ) = −1 temos que `β11 +1 divide `β1−11 (`1 +1), o que implica

    β1 = 1, ou seja, n é primo.

    (ii) s ≥ 2. Nesse caso

    M = mmc{`βj−1j (`j − (d/`j))}

    = 2 ·mmc{`βj−1j (`j − (d/`j))/2, 1 ≤ j ≤ s}

    ≤ 2s∏

    j=1

    (`βj−1j (`j − (d/`j))/2)

    ≤ 2ns∏

    j=1

    `j + 1

    2`j,

    que é sempre menor que n (pois 2 · 46· 610

    < 1) e portanto é um absurdo que n+1 divida M . �

    A seguinte proposição, devida a Morrison, é análoga ao resultado de Pocklington:

    Proposição 3.23: Seja N > 1 um inteiro ı́mpar e N + 1 = FR. Se existe um inteiro d primo

    com N tal que para todo fator primo r de F existe uma seqüência de Lucas U(r)n associada a

    inteiros P (r), Q(r) e um inteiro m(r) primo com N e D(r) = (P (r))2− 4Q(r) ≡ d(m(r))2 (mod N)

    tal que N | U (r)N+1 e mdc(U(r)N+1

    r

    , N) = 1 então cada fator primo ` de N satisfaz ` ≡ (d`) (mod F ).

    23

  • Dem: Se F = rα11 rα22 . . . r

    αkk é a fatoração prima de F então ordN U

    (ri) | N +1 para 1 ≤ i ≤ k.

    Se ` é um fator primo de N , também temos ord` U(ri) | N + 1. Como mdc(N, U (ri)N+1

    ri

    ) = 1 segue

    que ` - U (ri)N+1ri

    , donde ord` U(ri) - M+1

    ri, e portanto rαii divide ord` U

    (ri) para 1 ≤ i ≤ k. Por

    outro lado, ord` U(ri) divide ` − (d

    `), donde rαii divide ` − (d` ) para 1 ≤ i ≤ k ⇒ F divide

    `− (d`) =⇒ ` ≡ (d

    `) (mod F ). �

    Corolário 3.24: Nas condições da proposição, se F > R então N é primo.

    Dem: Qualquer fator primo de N deve ser congruente a 1 ou a −1 módulo F , mas, se N

    é composto, deve ter um fator primo menor ou igual à sua raiz quadrada, que deve, pois, ser

    igual a F − 1. Como F >√

    N + 1, F 2 − 1 > N , logo NF−1 < F + 1, donde o outro fator primo

    de N também deve ser igual a F − 1, e teŕıamos N = (F − 1)2 ⇒ N + 1 = F 2 − 2F + 2, que

    só seria múltiplo de F se F fosse igual a 2, e F − 1 igual a 1, absurdo. �

    Proposição 3.25: Seja n > 1 um inteiro ı́mpar. Se para todo fator primo r de n + 1 existem

    P (r), Q(r) inteiros com mdc(D(r), n) = 1 onde D(r) = (P (r))2 − 4Q(r) tais que a seqüência de

    Lucas associada (U(r)k ) satisfaz U

    (r)n+1 ≡ 0 (mod n) e mdc(U

    (r)n+1

    r

    , n) = 1 então n é primo.

    Dem: Seja ` um fator primo de n. Para cada fator primo r de n + 1 temos que U(r)n+1 ≡ 0

    (mod `) e U(r)n+1

    r

    6≡ 0 (mod `). Assim, se rαr é a maior potência de r que divide n + 1, então rαr

    divide ` − (D(r)`

    ), como acima. Em particular, rαr divide `2 − 1 = (` − 1)(` + 1), donde n + 1

    divide `2 − 1. Assim, `2 − 1 ≥ n + 1 donde ` >√

    n, o que implica na primalidade de n pois n

    não tem nenhum fator primo menor ou igual à sua raiz quadrada. �

    Vamos agora dar outra prova do critério de Lucas-Lehmer usando os resultados anteriores.

    Dem: A seqüência de Lucas associada a P = 2, Q = −2, é dada pela fórmula Uk =1

    2√

    3((1 +

    √3)k − (1−

    √3)k). Temos (1 +

    √3)k = Vk

    2+ Uk

    √3, onde Vk = (1 +

    √3)k + (1−

    √3)k.

    Além disso, U2k = UkVk para todo k ∈ N.

    Para r ≥ 1 temos

    V2r = (1 +√

    3)2r

    + (1−√

    3)2r

    = (4 + 2√

    3)2r−1

    + (4− 2√

    3)2r−1

    = 22r−1

    ((2 +√

    3)2r−1

    + (2−√

    3)2r−1

    ) = 22r−1

    Sr−1

    24

  • (onde S0 = 4, Sm+1 = S2m − 2, ∀m ∈ N). Se n > 2 e Mn = 2n − 1 divide Sn−2 então

    Mn divide V2n−1 , logo também divide UMn+1 = U2n = U2n−1V2n−1 , e, como UMn+12

    = U2n−1 , e

    V 2k − 12U2k = 4(−2)k, segue que V 22n−1 − 12U22n−1 = 22n−1+2, e, se Mn dividisse UMn+1

    2

    , dividiria

    também 22n−1+2, absurdo. Assim, pelo Teorema 3.22, Mn é primo.

    Por outro lado, se Mn é primo, como D = 12, (12Mn

    ) = ( 3Mn

    ) = −(Mn3

    ) = 1, logo Mn divide

    UMn+1 = U2n , e, como

    V 22n−1 = V2n + 2(−2)2n−1

    = V2n + 2 · 2Mn+1

    2

    = V2n + 4 · 2Mn−1

    2 = V2n + 4(2

    Mn) ≡ V2n + 4 (mod Mn),

    pois 2 ≡ 2n+1 ≡ (2n+12 )2 (mod Mn) (já sabemos que n deve ser um primo ı́mpar). Temos

    V2n = (1+√

    3)2n+(1−

    √3)2

    n= (1+

    √3)Mn+1 +(1−

    √3)Mn+1, que é igual a (1−

    √3)(1+

    √3)+

    (1 +√

    3)(1 −√

    3) = −4 em K = Z/(Mn)[√

    3] (pois ( 3Mn

    ) = −1) donde V 22n−1 = V2n + 4 ≡ 0

    (mod Mn) e portanto Mn | V2n−1 = 22n−2

    Sn−2. Assim, Mn divide Sn−2, o que conclui nossa

    nova demonstração do critério de Lucas-Lehmer. �

    Se N é um primo ı́mpar e d não é quadrado módulo N , então K = Z/(N)[√

    d] é um corpo

    finito com N2 elementos e portanto existem inteiros a e b tais que x = a + b√

    d é uma raiz

    primitiva de K. Sejam x = a − b√

    d e, para m ∈ N, Um = (xm − xm)/2b√

    d. Temos U0 = 0,

    U1 = 1 e Um+2 = 2aUm+1 − (a2 − db2)Um para todo m ∈ N. Temos ainda b 6= 0 em K, senão

    x pertenceria a Z/(M) ⊂ K e ordK x dividiria N − 1. Assim, b e√

    d são invert́ıveis em K

    e, se P = 2a, Q = a2 − db2 então D = P 2 − 4Q = 4db2 satisfaz (DN

    ) = −1. Pela proposição

    3.18, Un+1 ≡ 0 (mod N). Por outro lado, se m é menor que N + 1, caso N divida Um teŕıamos

    xm = xm em K, donde teŕıamos em K, (x/x)m = 1. Pela proposição 3.17, x = xN , logo

    x(N−1)m = 1, absurdo, pois ordK x = N2 − 1 = (N − 1)(N + 1) > (N − 1)m. Isto fornece

    rećıprocas para os resultados desta seção.

    25

  • Apêndice: Elementos de Teoria dos Números

    Veremos inicialmente os tópicos básicos de teoria dos números, como divisibilidade, con-

    gruências e aritmética módulo n.

    4 Divisão euclidiana e o teorema fundamental da

    aritmética

    A divisão euclidiana, ou divisão com resto, é uma das quatro operações que toda criança aprende

    na escola. Sua formulação precisa é: dados a ∈ Z, b ∈ Z∗ existem q, r ∈ Z com 0 ≤ r < |b| e

    a = bq + r. Tais q e r estão unicamente determinados e são chamados o quociente e resto da

    divisão de a por b. Se b > 0 podemos definir q = ba/bc e se b < 0, q = da/be; em qualquer caso,

    r = a− bq. O resto r é às vezes denotado por a mod b; definimos a mod 0 = a. Lembramos que

    bxc denota o único inteiro k tal que k ≤ x < k +1 e dxe o único inteiro k tal que k−1 < x ≤ k.

    Dados dois inteiros a e b (em geral com b 6= 0) dizemos que b divide a, ou que a é um

    múltiplo de b, e escrevemos b|a, se existir q ∈ Z com a = qb. Se a 6= 0, também dizemos que b

    é um divisor de a. Assim, b|a se e somente se a mod b = 0.

    Proposição 1.1: Dados a, b ∈ Z existe um único d ∈ N tal que d|a, d|b e, para todo c ∈ N,

    se c|a e c|b então c|d. Além disso existem x, y ∈ Z com d = ax + by.

    Esse natural d é chamado o máximo divisor comum, ou mdc, entre a e b. Escrevemos

    d = mdc(a, b) ou (se não houver possibilidade de confusão) d = (a, b).

    Dem: O caso a = b = 0 é trivial (temos d = 0). Nos outros casos, seja I(a, b) = {ax+by; x, y ∈

    Z} e seja d = ax0 + by0 o menor elemento positivo de I(a, b). Como d ∈ N∗, existem q, r ∈ Z

    com a = dq + r e 0 ≤ r < d. Temos r = a− dq = a(1− qx0) + b(−qy0) ∈ I(a, b); como r < d e

    d é o menor elemento positivo de I(a, b), r = 0 e d|a. Analogamente, d|b. Suponha agora que

    c|a e c|b; temos c|ax + by para quaisquer valores de x e y donde, em particular, c|d. �

    26

  • O algoritmo de Euclides para calcular o mdc baseia-se nas seguintes observações simples.

    Se a = bq + r, 0 ≤ r < b, temos (com a notação da demonstração acima) I(a, b) = I(b, r),

    donde (a, b) = (b, r). Definindo a0 = a, a1 = b e an = an+1qn+2 + an+2, 0 ≤ an+2 < an+1 (ou

    seja, an+2 é o resto da divisão de an por an+1) temos (a, b) = (a0, a1) = (a1, a2) = (a2, a3) =

    · · · = (an, an+1) para qualquer valor de n. Seja N o menor natural para o qual aN+1 = 0: temos

    (a, b) = (aN , 0) = aN .

    Lema 1.2: Se (a, b) = 1 e a|bc então a|c.

    Dem: Como (a, b) = 1, existem x, y ∈ Z com ax + by = 1, logo a|c = acx + bcy. �

    Quando (a, b) = 1 dizemos que a e b são primos entre si. Um natural p > 1 é chamado

    primo se os únicos divisores positivos de p são 1 e p. Um natural n > 1 é chamado composto

    se admite outros divisores além de 1 e n.

    Claramente, se p é primo e p - a temos (p, a) = 1. Usando o lema anterior e indução temos

    o seguinte resultado:

    Corolário 1.3: Sejam p um número primo e sejam a1, . . . am ∈ Z. Se p|a1 · · · am então p|aipara algum i, 1 ≤ i ≤ n.

    Estamos agora prontos para enunciar e provar o teorema que diz que todo inteiro admite

    fatoração única como produto de primos.

    Teorema 1.4: (Teorema fundamental da aritmética) Seja n ≥ 2 um número natural. Podemos

    escrever n de uma única forma como um produto

    n = p1 · · · pm

    onde m ≥ 1 é um natural e p1 ≤ . . . ≤ pm são primos.

    Dem: Mostramos a existencia da fatoração por indução. Se n é primo não há o que provar

    (escrevemos m = 1, p1 = n). Se n é composto podemos escrever n = ab, a, b ∈ N, 1 < a < n,

    1 < b < n. Por hipótese de indução, a e b se decompõem como produto de primos. Juntando

    as fatorações de a e b (e reordenando os fatores) obtemos uma fatoração de n.

    27

  • Vamos agora mostrar a unicidade, também por indução. Suponha que

    n = p1 · · · pm = q1 · · · qm′ ,

    com p1 ≤ . . . ≤ pm, q1 ≤ . . . ≤ qm′ . Como p1|q1 · · · qm′ temos p1|qi para algum valor de i, donde,

    como qi é primo, p1 = qi e p1 ≥ q1. Analogamente temos q1 ≤ p1, donde p1 = q1. Mas por

    hipótese de indução

    n/p1 = p2 · · · pm = q2 · · · qm′

    admite uma única fatoração, donde m = m′ e pi = qi para todo i. �

    Outra forma de escrever a fatoração é

    n = pe11 · · · pemm ,

    com p1 < · · · < pm, ei > 0. Ainda outra formulação é escrever

    n = 2e23e35e5 · · · pep · · ·

    onde o produto é tomado sobre todos os primos mas apenas um número finito de expoentes é

    maior do que zero.

    Segue deste teorema o outro algoritmo comum para calcular o mdc de dois números: fa-

    toramos os dois números e tomamos os fatores comuns com os menores expoentes. Este al-

    goritmo é bem menos eficiente do que o de Euclides para inteiros grandes (que em geral não

    sabemos fatorar) mas é instrutivo saber que os dois algoritmos dão o mesmo resultado.

    Corolário 1.5: Se (a, n) = (b, n) = 1 então (ab, n) = 1.

    Dem: Evidente a partir do algoritmo descrito acima. �

    Teorema 1.6: (Euclides) Existem infinitos números primos.

    Dem: Suponha por absurdo que p1, p2, ..., pm fossem todos os primos. O número N =

    p1·p2 · · · pm+1 > 1 não seria diviśıvel por nenhum primo, o que contradiz o teorema fundamental

    da aritmética. �

    28

  • Observe que não provamos que p1 · p2 · · · pm + 1 é primo para algum conjunto finito de

    primos (por exemplo, os m primeiros primos). Aliás, 2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509,

    2 · 3 · 5 · 7− 1 = 209 = 11 · 19, 4!+1 = 25 = 52 e 8!− 1 = 40319 = 23 · 1753 não são primos. Não

    existe nenhuma fórmula simples conhecida que gere sempre números primos. Veja a seção 3.1.

    5 Congruências

    Sejam a, b, n ∈ Z. Dizemos que a é congruente a b módulo n, e escrevemos a ≡ b (mod n), se

    n|b− a. Como a congruência módulo 0 é a igualdade e quaisquer inteiros são côngruos módulo

    1, em geral estamos interessados em n > 1.

    Proposição 1.7: Para quaisquer a, a′, b, b′, c, n ∈ Z temos:

    (a)

    1. a ≡ a (mod n);

    2. se a ≡ b (mod n) então b ≡ a (mod n);

    3. se a ≡ b (mod n) e b ≡ c (mod n) então a ≡ c (mod n);

    4. se a ≡ a′ (mod n) e b ≡ b′ (mod n) então a + b ≡ a′ + b′ (mod n);

    5. se a ≡ a′ (mod n) então −a ≡ −a′ (mod n);

    6. se a ≡ a′ (mod n) e b ≡ b′ (mod n) então a · b ≡ a′ · b′ (mod n).

    Dem: Para o item (a) basta observar que n|a − a = 0. Em (b), se n|b − a então n|a − b =

    −(b−a). Em (c), se n|b−a e n|c−b então n|c−a = (c−b)+(b−a). Em (d), se n|a′−a e n|b′−b

    então n|(a′+b′)−(a+b) = (a′−a)+(b′−b). Em (e), se n|a′−a então n|(−a′)−(−a) = −(a′−a).

    Em (f), se n|a′ − a e n|b′ − b então n|a′b′ − ab = a′(b′ − b) + b(a′ − a). �

    29

  • Os itens (a), (b) e (c) da proposição acima dizem, nesta ordem, que a relação ≡ (mod n)

    (‘ser côngruo módulo n”) é uma relação reflexiva, simétrica e transitiva. Relações satis-

    fazendo estas três propriedades são chamadas relações de equivalência. Dada uma relação de

    equivalência ∼ sobre um conjunto X e um elemento x ∈ X definimos a classe de equivalência

    x de x como

    x = {y ∈ X|y ∼ x};

    observe que x ∼ y se e somente se x = y. As classes de equivalência formam uma partição de

    X, i.e., uma coleção de subconjuntos não vazios e disjuntos de X cuja união é X. O conjunto

    {x|x ∈ X} das classes de equivalência é chamado o quociente de X pela relação de equivalência

    ∼ e é denotado por X/ ∼.

    Aplicando esta construção geral ao nosso caso, definimos o quociente Z/(≡ (mod n)),

    chamado por simplicidade de notação de Z/(n), Z/nZ ou às vezes Zn. Dado a ∈ Z, a definição

    de a como um subconjunto de Z raramente será importante: o importante é sabermos que

    a = a′ se e somente se a ≡ a′ (mod n). Se n > 0, a divisão euclidiana diz que todo inteiro a

    é côngruo a um único inteiro a′ com 0 ≤ a′ < n; podemos reescrever este fato na nosso nova

    linguagem como

    Z/(n) = {0, 1, . . . , n− 1}.

    Quando não houver possibilidade de confusão omitiremos as barras e chamaremos os elementos

    de Z/(n) simplesmente de 0, 1, . . . , n− 1.

    Os itens (d), (e) e (f) da proposição dizem que as operações de soma, diferença e produto

    são compat́ıveis com a relação de congruência. É esta propriedade que torna congruências tão

    úteis, nos possibilitando fazer contas módulo n. Podemos por exemplo escrever

    196883 = 1 · 105 + 9 · 104 + 6 · 103 + 8 · 102 + 8 · 101 + 3 · 100

    ≡ 1 · 15 + 9 · 14 + 6 · 13 + 8 · 12 + 8 · 11 + 3 · 10

    = 1 + 9 + 6 + 8 + 8 + 3

    = 35

    ≡ 8 (mod 9),

    30

  • já que 10 ≡ 1 (mod 9) (mostrando assim porque funciona o conhecido critério de divisibilidade

    por 9). Uma formulação mais abstrata da mesma idéia é dizer que as operações + e · passam

    ao quociente, i.e., que podemos definir

    + : Z/(n)× Z/(n) → Z/(n), · : Z/(n)× Z/(n) → Z/(n)

    por a + b = a + b e a · b = a · b. A dúvida à primeira vista seria se a escolha de a e b não

    afeta a resposta: afinal existem infinitos inteiros a′ e b′ com a = a′ e b = b′. Os itens (d)

    e (f) da proposição são exatamente o que precisamos: eles nos dizem que nestas condições

    a + b = a′ + b′ e a · b = a′ · b′.

    Proposição 1.8: Sejam a, n ∈ Z, n > 0. Então existe b ∈ Z com ab ≡ 1 (mod n) se e

    somente se (a, n) = 1.

    Dem: Se ab ≡ 1 (mod n) temos nk = 1 − ab para algum k, donde (a, n)|ab + nk = 1 e

    (a, n) = 1. Se (a, n) = 1 temos ax + ny = 1 para certos inteiros x e y, donde ax ≡ 1 (mod n).

    Dizemos portanto que a é invert́ıvel módulo n quando (a, n) = 1 e chamamos b com ab ≡ 1

    (mod n) de inverso de a módulo n. O inverso é sempre único módulo n: se ab ≡ ab′ ≡ 1

    (mod n) temos b ≡ ab2 ≡ abb′ ≡ b′ (mod n).

    Corolário 1.9: Se (a, n) = 1 e ab ≡ ab′ (mod n) então b ≡ b′ (mod n).

    Dem: Basta escrever b ≡ abc ≡ ab′c ≡ b′ (mod n) onde c é o inverso de a módulo n. �

    Definimos (Z/(n))∗ ⊂ Z/(n) por

    (Z/(n))∗ = {a; (a, n) = 1}.

    Observe que o produto de elementos de (Z/(n))∗ é sempre um elemento de (Z/(n))∗ (corolário

    1.5).

    Teorema 1.10: (Teorema Chinês dos restos) Se (m,n) = 1 então

    f : Z/(mn) → Z/(m)× Z/(n)

    a 7→ (a, a)

    31

  • é uma bijeção. Além disso, a imagem por f de (Z/(mn))∗ é (Z/(m))∗ × (Z/(n))∗.

    Note que cada a na definição de f é tomado em relação a um módulo diferente. A função

    está bem definida pois a mod mn determina a mod m e a mod n.

    Dem: Como Z/(mn) e Z/(m)× Z/(n) têm mn elementos cada, para provar que f é bijetiva

    basta verificar que f é injetiva. E, de fato, se a ≡ a′ (mod m) e a ≡ a′ (mod n) então

    m|(a − a′) e n|(a − a′), donde mn|(a − a′) e a ≡ a′ (mod mn). A imagem de (Z/(mn))∗ é

    (Z/(m))∗ × (Z/(n))∗ pois (a, mn) = 1 se e somente se (a, m) = (a, n) = 1. �

    Dados inteiros m1, m2, . . . ,mr, dizemos que estes inteiros são primos entre si se (mi, mj) = 1

    para quaiquer i 6= j.

    Corolário 1.11: Se m1, m2, . . . ,mr são inteiros primos entre si. Então

    f : Z/(m1m2 · · ·mr) → Z/(m1)× Z/(m2) · · ·Z/(mr)

    a 7→ (a, a, . . . , a)

    é uma bijeção.

    Dem: Basta aplicar o teorema anterior r vezes. �

    A aplicação mais comum deste teorema é para garantir que existe a com a ≡ ai (mod mi)

    onde ai são inteiros dados quaisquer.

    6 A função de Euler e o pequeno teorema de Fermat

    Definimos ϕ(n) = |(Z/(n))∗| (onde |X| denota o número de elementos de X). A função ϕ é

    conhecida como a função de Euler. Temos ϕ(1) = ϕ(2) = 1, e, para n > 2, 1 < ϕ(n) < n. Se

    p é primo, ϕ(p) = p− 1; mais geralmente ϕ(pk) = pk − pk−1 pois (a, pk) = 1 se e somente se a

    não é múltiplo de p e há pk−1 múltiplos de p no intervalo 0 ≤ a < pk.

    Dizemos que os n números inteiros a1, a2, . . . , an formam um sistema completo de reśıduos

    (ou s.c.r.) módulo n se {a1, a2, . . . an} = Z/(n), isto é, se os ai representam todas as classes de

    32

  • congruência módulo n. Por exemplo, 0, 1, 2, . . .n− 1 formam um s.c.r. módulo n. Equivalen-

    temente, podemos dizer que a1, a2, . . . , an formam um s.c.r. módulo n se e somente se ai ≡ aj(mod n) implicar i = j. Os ϕ(n) números inteiros b1, b2, . . . , bϕ(n) formam um sistema completo

    de invert́ıveis (s.c.i.) módulo n se

    {b1, b2, . . . bϕ(n)} = (Z/(n))∗,

    isto é, se os bi representam todas as classes de congruências invert́ıveis módulo n. Também

    equivalentemente, b1, b2, . . . , bϕ(n) formam um s.c.i. módulo n se e somente se (bi, n) = 1 para

    todo i e ai ≡ aj (mod n) implicar i = j.

    Proposição 1.12: Sejam q, r, n ∈ Z, n > 0, q invert́ıvel módulo n, a1, a2, . . . , an um s.c.r.

    módulo n e b1, b2, . . . , bϕ(n) um s.c.i. módulo n. Então qa1 + r, qa2 + r, . . . , qan + r formam um

    s.c.r. módulo n e qb1, qb2, ...qbϕ(n) formam um s.c.i. módulo n.

    Dem: Se qai + r ≡ qaj + r (mod n) então n|q(ai − aj) e ai ≡ aj (mod n), donde i = j; com

    isto provamos que qa1 + r, qa2 + r, . . . , qan + r formam um s.c.r..

    Como (q, n) = (bi, n) = 1, temos (qbi, n) = 1. Por outro lado, se qbi ≡ qbj (mod n) temos

    bi ≡ bj (mod n) (como no parágrafo anterior) e i = j. Isto conclui a demonstração. �

    Teorema 1.13: (Euler) Sejam a, n ∈ Z, n > 0, tais que (a, n) = 1. Então aϕ(n) ≡ 1 (mod n).

    Dem: Seja

    b1, b2, . . . .bϕ(n)

    um s.c.i. módulo n. Pela proposição anterior,

    ab1, ab2, . . . abϕ(n)

    também formam um s.c.i. módulo n. Assim,

    b1 · b2 · · · bϕ(n) ≡ ab1 · ab2 · · · abϕ(n) (mod n)

    pois módulo n os dois lados têm os mesmos fatores a menos de permutação. Mas isto pode ser

    reescrito como

    aϕ(n)(b1 · b2 · · · bϕ(n)) ≡ 1 · (b1 · b2 · · · bϕ(n)) (mod n)

    e pelo corolário 1.9 isto implica aϕ(n) ≡ 1 (mod n). �

    33

  • Corolário 1.14: (Pequeno Teorema de Fermat) Se p é primo então, para todo inteiro a,

    ap ≡ a (mod p).

    Dem: Se p|a, então ap ≡ a ≡ 0 (mod p). Caso contrário, ϕ(p) = p − 1, ap−1 ≡ 1 (mod p) e

    novamente ap ≡ a (mod p). �

    Outra demonstração do pequeno teorema de Fermat é por indução em a usando o binômio

    de Newton e algumas propriedades de números binomiais. Se 0 < i < p temos(p

    i

    )=

    p!

    i!(p− i)!≡ 0 (mod p)

    pois há um fator p no numerador que não pode ser cancelado com nada que apareça no de-

    nominador. Os casos a = 0 e a = 1 do teorema são triviais. Supondo válido o teorema para a,

    temos

    (a + 1)p = ap +

    (p

    1

    )ap−1 + · · ·+

    (p

    p− 1

    )a + 1

    ≡ ap + 1

    ≡ a + 1 (mod p)

    e a indução está completa.

    Corolário 1.15: Se (m,n) = 1 então ϕ(mn) = ϕ(m)ϕ(n).

    Dem: Construimos uma bijeção entre (Z/(mn))∗ e (Z/(m))∗ × (Z/(n))∗, o que garante que

    estes conjuntos têm o mesmo número de elementos. �

    Corolário 1.16: Se

    n = pe11 pe22 · · · pemm

    com p1 < p2 < . . . < pm e ei > 0 para todo i então

    ϕ(n) = (pe11 − pe1−11 )(pe22 − pe2−12 ) · · · (pemm − pem−1m )

    = n

    (1− 1

    p1

    )(1− 1

    p2

    )· · ·(

    1− 1pm

    ).

    Dem: Isto segue da fórmula que já vimos para ϕ(pe) e do corolário anterior. �

    34

  • Em particular, se n > 2 então ϕ(n) é par.

    Mais adiante estudaremos equações do segundo grau em Z/(p); vejamos desde já um pequeno

    resultado deste tipo que garante que os únicos a que são seus próprios inversos módulo p são 1

    e −1.

    Lema 1.17: Se p é primo então as únicas soluções de x2 = 1 em Z/(p) são 1 e −1. Em

    particular,se x ∈ (Z/(p))∗ − {1,−1} então x−1 6= x em Z/(p).

    Dem: Podemos reescrever a equação como (x− 1)(x+1) = 0, o que torna o resultado trivial.

    Teorema 1.18: (Wilson) Seja n > 4. Então (n−1)! ≡ −1 (mod n) se n é primo e (n−1)! ≡ 0

    (mod n) se n é composto.

    Dem: Se n é composto mas não é o quadrado de um primo podemos escrever n = ab com

    1 < a < b < n: neste caso tanto a quanto b aparecem em (n − 1)! e (n − 1)! ≡ 0 (mod n).

    Se n = p2, p > 2, então p e 2p aparecem em (n − 1)! e novamente (n − 1)! ≡ 0 (mod n); isto

    demonstra que para todo n composto, n > 4, temos (n− 1)! ≡ 0 (mod n).

    Se n é primo podemos escrever (n−1)! ≡ −(2 ·3 · · ·n−2) (mod n); mas pelo lema anterior

    podemos juntar os inversos aos pares no produto do lado direito, donde (n−1)! ≡ −1 (mod n).

    7 Ordens e ráızes primitivas

    Dados n, a ∈ Z com n > 0 e (a, n) = 1, definimos a ordem de a módulo n, denotada por ordn a,

    como sendo o menor inteiro positivo t com at ≡ 1 (mod n). Analogamente, se K for um corpo

    finito e a ∈ K, a 6= 0, definimos a ordem de a em K, denotada por ordK a, como sendo o menor

    inteiro positivo t com at = 1 ∈ K; temos ordp a = ordZ/(p) a.

    Claramente ae ≡ ae′ (mod n) se e somente se e ≡ e′ (mod ordn a); pelo teorema de Euler,

    ordn a|ϕ(n).

    35

  • Dizemos que a é uma raiz primitiva módulo n se ordn a = ϕ(n). Analogamente, dizemos

    que a é uma raiz primitiva em K se ordK a = q − 1, onde q = |K| é o número de elementos

    de K. Por exemplo, 2 é raiz primitiva módulo 5 mas 2 não é raiz primitiva módulo 7 (23 ≡ 1

    (mod 7)). Também é fácil verificar que não existe raiz primitiva módulo 8 pois se x é ı́mpar

    então x2 ≡ 1 (mod 8). Podemos também dizer que a é raiz primitiva se a função

    Z/(ϕ(n)) → (Z/(n))∗

    r 7→ ar

    ou

    Z/(q − 1) → K∗

    r 7→ ar

    é injetora. Como o domı́nio e contradomı́nio são conjuntos finitos com o mesmo número de

    elementos, a função é injetora se e somente se ela é sobrejetora. Podemos assim dizer que a é

    uma raiz primitiva módulo n se e somente se para todo b ∈ (Z/(n))∗ (ou para todo b ∈ K∗)

    existe r com ar = b.

    Um corolário desta caracterização de ráızes primitivas é que se a é raiz primitiva módulo n

    e m|n então a é raiz primitiva módulo m. O objetivo da próxima seção é caracterizar os valores

    de n para os quais existe uma raiz primitiva módulo n. Nesta seção mostraremos que todo

    corpo finito admite raiz primitiva; em particular existe raiz primitiva módulo p para qualquer

    primo p.

    Precisamos primeiro de uma versão do pequeno teorema de Fermat para corpos finitos:

    Teorema 2.9: Se K é um corpo finito e q = |K| então aq − a = 0 para todo a ∈ K.

    Dem: Se a = 0 o teorema vale; vamos supor a partir de agora a 6= 0. Sejam b1, . . . bq−1 os

    elementos não nulos de K. Os elementos ab1, . . . abq−1 são todos não nulos e distintos, logo são

    os próprios b1, . . . bq−1, apenas permutados. Assim

    b1 · b2 · · · bq−1 = (ab1)(ab2) · · · (abq−1)

    = aq−1(b1 · b2 · · · bq−1)

    36

  • e aq−1 = 1. �

    Segue deste teorema que ordK a|q − 1, analogamente ao que já sabiamos para Z/(n). A

    partir do que vimos sobre polinômios temos também que

    xq − x = x(x− b1) · · · (x− bq−1)

    em K[x].

    Teorema 2.10: Se K é um corpo finito então existe raiz primitiva em K.

    Dem: Seja d um divisor de q − 1: definimos N(d) como o número de elementos de K∗ de

    ordem d. Claramente∑

    d|q−1 N(d) = q − 1.

    Se N(d) > 0, seja ad um elemento de K com ordK ad = d: os elementos 1, ad, a2d, . . . a

    d−1d são

    ráızes do polinômio xd − 1 = 0. Como este polinômio tem no máximo d ráızes, estas são todas

    as ráızes. Assim, os elementos de K de ordem d são precisamente ard, r ∈ (Z/(d))∗. Assim os

    únicos valores posśıveis para N(d) são 0 e ϕ(d). Mas como∑

    d|q−1 N(d) =∑

    d|q−1 ϕ(d) = q− 1,

    temos N(d) = ϕ(d) para todo d|q− 1. Em particular N(q− 1) > 0 e existem ráızes primitivas.

    Apesar de existirem ráızes primitivas módulo p para todo primo p não existe uma fórmula

    simples para obter uma raiz primitiva. Por outro lado, conjectura-se que todo inteiro que não

    é um quadrado é raiz primitiva para infinitos valores de p (conjectura de Artin).

    Corolário 2.11: Dados x ∈ K∗ e um inteiro positivo k existe y ∈ K∗ com yk = x se e

    somente se x(q−1)/ mdc(k,q−1) = 1, onde q = |K|.

    Dem: Se x = yk então x(q−1)/ mdc(k,q−1) = (yq−1)k/ mdc(k,q−1) = 1 pois yq−1 = 1. Suponha

    agora que x(q−1)/ mdc(k,q−1) = 1. Sejam a uma raiz primitiva de K e r ∈ Z com x = ar.

    Temos (ar)(q−1)/ mdc(k,q−1) = 1 donde mdc(k, q − 1) | r e portanto existem inteiros u, v com

    ku + (q − 1)v = r. Assim x = ar = aku+(q−1)v = (au)k · (aq−1)v = yk onde y = au. �

    37

  • 8 A lei da reciprocidade quadrática

    A lei de Gauss de reciprocidade quadrática afirma que se p e q são primos há uma relação direta

    entre p ser quadrado módulo q e q ser quadrado módulo p. Este teorema fornece um rápido

    algoritmo para determinar se a é quadrado módulo p onde a é um inteiro e p um número primo.

    Definição 2.16: Seja p um primo e a um inteiro. Definimos o śımbolo de Lagrange (ap) por

    (a

    p

    )=

    0 se p divide a

    −1 se a não é quadrado módulo p

    1 se p - a e a é quadrado módulo p.

    Proposição 2.17: Seja p um primo ı́mpar e a ∈ Z tal que p - a. Então(

    ap

    )≡ a p−12 (mod p).

    Dem: Sabemos que se p - a então ap−1 ≡ 1 (mod p), ou seja, Xp−1 − 1 tem como ráızes

    1, 2, . . . , p − 1 em Z/(p). Por outro lado, Xp−1 − 1 = (X p−12 − 1)(X p−12 + 1). Se existe b ∈ Z

    tal que a ≡ b2 (mod p) então a−12 ≡ bp−1 ≡ 1 (mod p); ou seja,(

    ap

    )= 1 ≡ a p−12 (mod p).

    Como X2 ≡ Y 2 (mod p) ⇔ X ≡ ±Y (mod p), há pelo menos p−12

    quadrados em (Z/(p))∗,

    logo os quadrados são exatamente as ráızes de Xp−12 −1 em Z/(p), donde os não quadrados são

    exatamente as ráızes de Xp−12 + 1, ou seja, se ( b

    p) = −1 então b p−12 ≡ −1 (mod p). �

    Corolário 2.18: Se p é primo ı́mpar então (−1p

    ) = (−1) p−12 .

    Vamos agora reinterpretar a Proposição 1. Seja a ∈ (Z/(p))∗. Para cada j = 1, 2, . . . , p−12

    escrevemos a · j como εjmj com εj ∈ {−1, 1} e mj ∈ {1, 2, . . . , p−12 }. Se mi 6= mj temos

    a · i = a · j ou a · i = −a · j; a primeira possibilidade implica i = j e a segunda é imposśıvel.

    38

  • Assim, se i 6= j temos mi 6= mj donde {m1, m2, . . . ,m p−12} = {1, 2, . . . , p−1

    2}. Assim(

    a

    p

    )≡ a

    p−12

    =(a · 1)(a · 2) · · · (a · p−1

    2)

    1 · 2 · · · p−12

    ≡ε1ε2 · · · ε p−1

    2m1 ·m2 . . . m p−1

    2

    1 · 2 · · · p−12

    = ε1ε2 · · · ε p−12

    (mod p) (1)

    donde (ap) = ε1ε2 . . . ε p−1

    2, pois ambos pertencem a {−1, 1}. Assim, (a

    p) = (−1)m onde m é o

    número de elementos j de {1, 2, . . . , p−12} tais que εj = −1. Como primeira conseqüência deste

    fato temos o seguinte resultado.

    Proposição 2.19: Se p é um primo ı́mpar então

    (2

    p) = (−1)

    p2−18 =

    1, se p ≡ ±1 (mod 8),−1, se p ≡ ±3 (mod 8).Dem: Se p ≡ 1 (mod 4), digamos p = 4k + 1, temos p−1

    2= 2k. Como 1 ≤ 2j ≤ p−1

    2para

    j ≤ k e p−12

    < 2j ≤ p− 1 para k + 1 ≤ j ≤ 2k, temos

    (a

    p) = (−1)k =

    1, se p ≡ 1 (mod 8),−1, se p ≡ 5 (mod 8).Se p ≡ 3 (mod 4), digamos p = 4k + 3, temos p−1

    2= 2k + 1. Para 1 ≤ j ≤ k temos

    1 ≤ 2j ≤ p−12

    e para k + 1 ≤ j ≤ 2k + 1 temos p−12

    < 2j ≤ p− 1, donde

    (a

    p) = (−1)k+1 =

    −1, se p ≡ 3 (mod 8),1, se p ≡ 7 (mod 8).�

    39

  • Teorema 2.20: (Lei de reciprocidade quadrática) Sejam p e q primos ı́mpares. Então (pq) =

    (−1)(p−1)(q−1)/4( qp).

    Dem: Na notação acima, com a = q, para cada j ∈ P , onde

    P = {1, 2, . . . , (p− 1)/2},

    temos que εj = −1 se e só se existe y ∈ Z tal que −(p − 1)/2 ≤ qj − py < 0. Tal y deve

    pertencer a Q, onde

    Q = {1, 2, . . . , (q − 1)/2}.

    Assim, temos que ( qp) = (−1)m onde m = |X| e

    X = {(x, y) ∈ P ×Q | −(p− 1)/2 ≤ qx− py < 0} ;

    note que qx− py nunca assume o valor 0. Analogamente, (pq) = (−1)n, onde n = |Y | e

    Y = {(x, y) ∈ P ×Q | 0 < qx− py ≤ (q − 1)/2} .

    Dáı segue que (pq)( q

    p) = (−1)k onde k = m + n = |Z| onde

    Z = {(x, y) ∈ P ×Q | −(p− 1)/2 ≤ qx− py ≤ (q − 1)/2}

    pois qx− py nunca assume o valor 0. Temos k = |C| − |A| − |B| onde C = P ×Q,

    A = {(x, y) ∈ C | qx− py < −(p− 1)/2},

    B = {(x, y) ∈ C | qx− py > (q − 1)/2}.

    Como |C| = (p − 1)(q − 1)/4, basta mostrar que |A| = |B|. Mas f : C → C definida por

    f(x, y) = (((p + 1)/2)− x, ((q + 1)/2)− y) define uma bijeção entre A e B. �

    9 Extensões quadráticas de corpos finitos

    Sejam p primo e d um inteiro que não seja quadrado perfeito. O anel (Z/(p))[√

    d] é o conjunto

    {a + b√

    d, a, b ∈ Z/(p)}

    40

  • onde

    (a + b√

    d) + (ã + b̃√

    d) = (a + ã) + (b + b̃)√

    d

    (a + b√

    d)(ã + b̃√

    d) = (aã + dbb̃) + (ab̃ + ãb)√

    d.

    Por definição,

    a + b√

    d = ã + b̃√

    d ⇔ a = ã, b = b̃.

    Como grupo aditivo, (Z/(p))[√

    d] = Z/(p)×Z/(p). Vamos investigar a estrutura multiplicativa

    de (Z/(p))[√

    d]. Observemos inicialmente que, se d é um quadrado módulo p então (Z/(p))[√

    d]

    não pode ser um corpo, pois se a2 = d em Z/(p) então (a +√

    d)(a−√

    d) = 0 em (Z/(p))[√

    d].

    A próxima proposição é uma rećıproca deste fato:

    Proposição 2.21: Se (dp) = −1 então (Z/(p))[

    √d] é um corpo.

    Dem: De fato, se (a, b) 6= (0, 0), (a + b√

    d)−1 = (a− b√

    d)/(a2 − db2). Temos que a2 − db2 ∈

    (Z/(p))∗, pois d não é quadrado mod p, logo, se b 6= 0, a2 − db2 = 0, que equivale a d = (a/b)2

    seria uma contradição e, se b = 0, a2 − db2 = a2 6= 0 pois (a, b) 6= (0, 0) ⇒ a 6= 0 ⇒ a2 6= 0.

    41