Centro demassa

10
Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move como se toda a massa do sistema estivesse concentrada nesse ponto e como se todas as forças externas estivessem aplicadas nesse ponto. Podemos pensar no centro de massa de um corpo qualquer como sendo um ponto que se comporta como se simplesmente toda a massa do corpo estivesse concentrada nele. Consideramos que é este ponto que possui a aceleração resultante, ou então, que apresenta momento igual ao momento total do sistema, seja ele um corpo simples, como um dado, ou complexo, como uma galáxia. A posição do centro de massa do corpo em relação a O é dada pelo vetor R definido pela relação: Reescrevendo esta equação teremos: Quando as partículas estão dispostas de tal forma que sua distribuição seja em três dimensões, a posição do centro de massa deve ser especificada por três coordenadas. Assim temos: Exemplo: 1) Três partículas de massas m1 = 1,2 Kg , m2 = 2,5 Kg e m3 = 3,4 Kg formam um triângulo equilátero de lado a = 140 cm. Onde fica o centro de massa desse sistema? Resolução: Para facilitar os cálculos escolhemos os eixos x e y de tal forma que uma das partículas esteja na origem e um dos lados do triângulo esteja em um dos eixos. Assim temos: Partículas Massas ( KG ) X (cm ) Y (cm ) 1 1,2 0 0 2 2,5 140 0 3 3,4 70 120

Transcript of Centro demassa

Page 1: Centro demassa

Curso: Engenharia

Disciplina: complementos de Física

Professor: Douglas

Assunto: Centro de Massa

Centro de Massa

O centro de massa de um sistema de partículas é o ponto que se move como se toda a massa do

sistema estivesse concentrada nesse ponto e como se todas as forças externas estivessem aplicadas nesse

ponto.

Podemos pensar no centro de massa de um corpo qualquer como sendo um ponto que se comporta

como se simplesmente toda a massa do corpo estivesse concentrada nele. Consideramos que é este ponto

que possui a aceleração resultante, ou então, que apresenta momento igual ao momento total do sistema,

seja ele um corpo simples, como um dado, ou complexo, como uma galáxia.

A posição do centro de massa do corpo em relação a O é dada pelo vetor R definido pela

relação:

Reescrevendo esta equação teremos:

Quando as partículas estão dispostas de tal forma que sua distribuição seja em três dimensões, a

posição do centro de massa deve ser especificada por três coordenadas. Assim temos:

Exemplo:

1) Três partículas de massas m1 = 1,2 Kg , m2 = 2,5 Kg e m3 = 3,4 Kg formam um triângulo

equilátero de lado a = 140 cm. Onde fica o centro de massa desse sistema?

Resolução:

Para facilitar os cálculos escolhemos os eixos x e y de tal forma que uma das partículas esteja na origem e

um dos lados do triângulo esteja em um dos eixos. Assim temos:

Partículas Massas ( KG ) X (cm ) Y (cm )

1 1,2 0 0

2 2,5 140 0

3 3,4 70 120

Page 2: Centro demassa

Agora calculamos o centro de massa em relação ao eixo x e depois em relação ao eixo y.

A segunda Lei de Newton para um Sistema de Partículas

Agora que já sabemos determinar a posição do centro de massa de um sistema de partículas,

vamos discutir a relação entre as forças externas e o centro de massa.

Embora o centro de massa seja apenas um ponto, ele se move como uma partícula cuja a massa é

igual a massa total do sistema ; podemos atribuir-lhe uma posição, uma velocidade e uma aceleração,

assim temos:

Esta equação é a segunda lei de Newton para o movimento do centro de massa de um sistema de

partículas. Contudo, as três grandezas que aparecem devem ser usadas com algum critério:

1 - é a força resultante de todas as forças externas que agem sobre o sistema, as forças

internas devem ser desconsideradas;

2- M é a massa total do sistema. Supomos que nenhuma massa entra ou sai do sistema durante o

movimento, de modo que M permanece constante. Nesse caso dizemos que o sistema é fechado.

3 - é a aceleração do centro de massa do sistema, pois a equação não fornece nenhuma

informação a respeito da aceleração de outros pontos do sistema.

Page 3: Centro demassa

Exemplo:

1) As três partículas da figura abaixo estão inicialmente em repouso. Cada uma sofre a ação de um

força externa devido a agentes fora do sistema das três partículas. As orientações das forças estão

indicadas e os módulos são: F1 = 6,0 N , F2 = 12 N , F3 = 14 N . Qual é a aceleração do centro de massa

do sistema e em que direção ele se move?

Resolução:

Como as partículas estão inicialmente em repouso, o centro de massa também deve está em

repouso. Quando o centro de massa começa a acelerar, ele se move na direção da e da .

Assim podemos calcular:

Assim , o módulo de é dado por:

= 1,16 m/

E o ângulo ( em relação ao semi – eixo x positivo ) é dado por θ =

Page 4: Centro demassa

2) Três pontos materiais, A, B e D, de massas iguais a m estão situados nas posições indicadas na

figura ao lado. Determine as coordenadas do centro de massa do sistema de pontos materiais.

VELOCIDADE DO CENTRO DE MASSA

Considere um sistema de pontos materiais cujas massas são m1, m2, ..., mn, e sejam v1, v2, ..., vn,

respectivamente,

suas velocidades num certo instante. Neste instante, o centro de massa possui velocidade

vC dada por uma média ponderada das velocidades dos pontos materiais do sistema, sendo os pesos

dessa média as respectivas massas, ou seja:

Chamemos de m a massa total do sistema, isto é:

Substituindo-se a expressão _ na expressão _, resulta:

Mas representa a quantidade de movimento total do sistema de

pontos

materiais (Qsistema). Logo:

Page 5: Centro demassa

Portanto:

A quantidade de movimento de um sistema de pontos materiais é igual à quantidade de

movimento do centro de massa, considerando que toda a massa do sistema está concentrada nele.

ACELERAÇÃO DO CENTRO DE MASSA

Considere um sistema de pontos materiais m1, m2, ..., mn, e sejam a1, a2, ..., an, respectivamente,

suas acelerações num certo instante. Neste instante, o centro de massa possui aceleração aC dada por uma

média ponderada das acelerações dos pontos materiais do sistema, sendo os pesos dessa média as

respectivas massas, ou seja:

Seja m a massa total do sistema, isto é:

Substituindo-se a expressão 2 na expressão 1, resulta:

Mas m1a1, m2 a2, ..., mnan representam, respectivamente, as forças resultantes F1, F2, ..., Fn, que agem

nos pontos materiais. Portanto:

Entretanto, representa a resultante de todas as forças externas que agem no

sistema de pontos materiais (Fext.), uma vez que a resultante das forças que uma partícula do sistema

exerce sobre as outras (forças internas) é nula, devido ao princípio da ação e reação. Assim, temos:

Portanto:

O centro de massa se move como se fosse uma partícula de massa igual à massa total do sistema

e sob ação da resultante das forças externas que atuam no sistema.

Page 6: Centro demassa

Momento Linear

O momento linear de uma partícula é uma grandeza vetorial definida através da equação:

( momento de uma partícula)

Onde m é a massa e a velocidade da partícula. Como m é uma grandeza escalar positiva a equação

acima mostra que e têm a mesma orientação. A unidade de momento no SI é o quilograma – metro

por segundo ( kg . m/s ).

A taxa de variação com o tempo do momento de uma partícula é igual a força resultante que atua

sobre a partícula e tem a mesma orientação que essa força.

Em outras palavras podemos afirmar que a força resultante aplicada a uma partícula faz variar o

momento linear da partícula. Na verdade , o momento linear da partícula só pode mudar se a partícula

estiver sujeita a uma força. Se não existir força nenhuma força, não pode mudar.

Momento Linear de um sistema de partículas:

O momento linear de um sistema de partículas é igual ao produto da massa total do sistema pela

velocidade do centro de massa.

Impulso

Definimos Impulso, como sendo à força resultante que atua sobre uma partícula num determinado

intervalo de tempo

I =ΣF ⋅Δt

Aplicando a 2ª Lei de Newton e dado que é constante teremos que

também será constante,

portanto:

Logo o impulso será:

Impulso de uma força, F, é igual à variação do momento linear da partícula.

Page 7: Centro demassa

Exemplo:

Num curto ensaio de colisão, um automóvel de massa 1500 kg, colide com um muro, como se

representa na figura. A velocidade inicial do automóvel era vi = -15,0 m/s e a final vf = 2,6 m/s, se a

colisão durar 0,150 s, achar o impulso provocado pela colisão, e a força média exercida sobre o

automóvel.

Exercícios:

1) Uma partícula de 2kg tem coordenadas xy ( -1,20 m ; 0,500 m ) e uma partícula de 4,00kg tem

coordenadas xy ( 0,600 m ; -0,750 m ). Ambas estão em um plano horizontal. Em que

coordenada (a) x e (b) y deve ser posicionada uma terceira partícula de 3,00kg para que o

centro de massa do sistema de três partículas tenha coordenadas ( -,500 m ; -0,700 m ).

2) Determine as coordenadas do centro de massa da placa homogênea de espessura constante, cujas

dimensões estão indicadas na figura.

Page 8: Centro demassa

3) As partículas A e B, de massas m e 2 m, deslocam-se ao longo do eixo Ox, com velocidades escalares

vA _ 5,0 m/s e vB _ 8,0 m/s. Qual é a velocidade escalar do centro de massa?

4)As partículas A e B, de massas 1,5 kg e 1,0 kg, deslocam-se com velocidades vA e vB perpendiculares

entre si e de módulos vA _ 2,0 m/s e vB _ 4,0 m/s. Calcule o módulo da velocidade do centro de massa do

sistema constituído pelas duas partículas.

5) As esferas A e B possuem massas m e 3m, respectivamente. A esfera A é abandonada de uma altura h _

0,45 m do solo e B está em repouso. Seja g _ 10 m/s2 a aceleração da gravidade. Determine:

a) o módulo da aceleração do centro de massa do sistema constituído pelas esferas A e B, enquanto A

estiver em queda livre.

b) o módulo da velocidade do centro de massa do sistema, no instante em que a esfera A atinge o solo.

6) Dois patinadores, um com 65 kg de massa e o outro com 40 kg, estão de pé em um rinque de patinacão

no gelo segurando uma vara de massa desprezível com 10 m de comprimento. Partindo das extremidades

da vara, os patinadores se puxam ao longo da vara até se encontrarem. Qual a distância percorrida pelo

patinador de 40 kg?

Page 9: Centro demassa

7) Uma pedra é deixada cair em t = 0. Uma segunda pedra, com uma massa duas vezes maior, é

deixada cair do mesmo ponto em t = 100ms.

a) A que distância do ponto inicial da queda está o centro de massa das duas pedras em t = 300 ms

( suponha que as duas pedras ainda não chegaram ao solo)

b) Qual é a velocidade do centro de massa das duas pedras nesse instante?

8) Um automóvel de 1000 kg está parado em um sinal de trânsito. No instante em que o sinal abre o

automóvel começa a se mover com uma aceleração constante de 4 m/ . No mesmo instante um

caminhão de 2000 kg, movendo-se no mesmo sentido com velocidade constante de 8,0 m/s, ultrapassa o

automóvel.

a) Qual é a distância entre o CM do sistema carro – caminhão e o sinal de trânsito em t = 3s?

b) Qual é a velocidade do centro de massa nesse instante?

9) Uma bola de 0,70 kg está se movendo horizontalmente com uma velocidade de 5,0 m/s quando se

choca com uma parede vertical e ricocheteia com uma velocidade de 2,0 m/s. Qual é o módulo da

variação do momento linear da bola?

10) Um caminhão de 2100 kg viajando para o norte a 41 km/h vira leste e acelera até 51 km/h.

a) Qual é a variação da energia cinética do caminhão?

b) Qual é o módulo da variação do momento?

11) Uma força no sentido negativo de um eixo x é aplicada por 27 ms a uma bola de 0,40 kg que estava

se movendo a 14 m/s no sentido positivo do eixo. O módulo da força é variavel e o impulso tem um

módulo de 32,4 N . S. Quais são (a) o módulo e (b) o sentido da velocidade da bola imediatamente após a

aplicação da força? Quais são (c) a intensidade média da força .

12) Em uma brincadeira comum, mas muito perigosa, alguém puxa uma cadeira quando uma pessoa está

prestes a se sentar, fazendo com que a vítima se estatele no chão. Suponha que a vítima tem 70 kg, cai de

uma altura de 0,50 m e a colisão com o piso dura 0,082 s. Quais são os módulos (a) do impulso e (b) da

força média aplicada pelo piso sobre a pessoa durante a colisão?

13) Em fevereiro de 1995 um paraquedista saltou de um avião, caiu 370 m sem conseguir abrir o

paraquedas e aterrissou em um campo de neve, sofrendo apenas pequenas escoriações. Suponha que sua

velocidade imediatamente antes do impacto era de 56 m/s (velocidade terminal), que sua massa (incluindo

os equipamentos) era de 85 kg e que a força da neve sobre ele tenha atingido o valor (relativamente

seguro) de 1,2 x 105 N. Determine (a) a profundidade mínima da neve para que escapasse sem ferimentos

graves e (b) o módulo do impulso da neve sobre ele.

14) Uma bola de 1,2 kg cai verticalmente em um piso com uma velocidade de 25 m/s e ricocheteia com

uma velocidade inicial de 10m/s. (a) Qual é o impulso recebido pela bola durante o conato com o piso?

(b) Se a bola fica em contato com o piso por 0,020s, qual é a força média exercida pela bola sobre o piso?

15) No tae Kwon do, a mão de um atleta atinge o alvo com uma velocidade de 13 m/s e para após 5,0 ms.

Suponha que durante o choque a mão é independente do braço e tem uma massa de 0,70 kg. Determine os

módulos (a) do impulso e (b) da força média que a mão exerce sobre o alvo.

Page 10: Centro demassa

16) Um bandido aponta uma metralhadora para o peito do Super-homem e dispara 100 balas/min.

Suponha que a massa de uma bala é de 3 g, que a velocidade das balas é de 500 m/s e qe as balas

ricocheteiam no peito do super-herói sem perder velocidade. Qual é o módulo da força média que s balas

exercem sobre o peito do Super- homem?