Colisional

191
Dobras Falhas e Dobras Falhas e Montanhas Montanhas

Transcript of Colisional

Page 1: Colisional

Dobras Falhas e Dobras Falhas e MontanhasMontanhas

Page 2: Colisional

Dobras e EmpurrõesDobras e Empurrões

• Enormes cadeias de montanhas se formam quando placas convergem.

• Rochas Contorcidas mostram a força da tectônica de placas.

Page 3: Colisional

Limites de Placas Convergentes Limites de Placas Convergentes e Dobramentoe Dobramento

Colisão Oceano-Oceano

Island Arc: Japan,Aleutians, Cent. Am.

Colisão Continente-ContinenteBelt:Alps, Himalayans, Appalachians

Page 4: Colisional

Evidência de Compressão LateralEvidência de Compressão Lateral

• Camadas inicialmente horizontais são dobradas, quebradas e deslocadas.

• Muitas rochas dobradas são colocadas lado a lado ou uma sobre as outras.

Page 5: Colisional

Arenito DobradoArenito Dobrado

Source: Martin Bond/Science Photo Library/Photo Researchers, Inc.

Page 6: Colisional

Estudando Falhas e DobrasEstudando Falhas e Dobras

• O ramo da geologia que estuda a deformação crustal é chamada Geologia Estrutural.

• Estruturas Geologicas.

Page 7: Colisional

StressStress

Unidade são Pressão: Força/Área

Três tipos de stress

a) Compressão causa dobras

b) Tensão causa afinamento

c) Cisalhamento causa falhas

Page 8: Colisional

Compression, Tension, Compression, Tension, and Shearing Stressand Shearing Stress

Convergente Divergente Transformante

Page 9: Colisional

Tipos de deformaçãoTipos de deformação

• Deformação Elastica

• Feições Rúpteis

• Deformação Plástica

Page 10: Colisional

Relação Relação entre entre Stress e Stress e StrainStrain

Page 11: Colisional

Baixa Baixa Temperatura e Temperatura e Pressão e Pressão e Sudden StressSudden Stress

Page 12: Colisional

Alta Temp ou Alta Temp ou PressãoPressão

Page 13: Colisional

Fatores afetando a deformação de Fatores afetando a deformação de rochasrochas

• Intensidade do stress aplicado

• Calor –Temperatura da rocha

• Quantidade do tempo de Stress aplicado

• Composição da Rocha

Page 14: Colisional

Interpretando Rochas DeformadasInterpretando Rochas Deformadas

• Mais penetrativo em rochas sedimentares

• Importância da deformação– Indica o passado do movimento das placas– Indica antigos eventos geológicos– Localização de recursos naturais

• O MAIS IMPORTANTE

• Mapeamento • : Orientação das rochas: direção e mergulho

Page 15: Colisional

Strike and DipStrike and Dip

Page 16: Colisional

DobrasDobras

• Dobras definição: Bends em camadas de rochas• Tipos: sinclinais e anticlinais Sinclinal (dobrada para baixo) Parte mais

interna são rochas mais jovens Anticlinal (Dobrada para cima) Parte mais interna dado por rochas mais antigas

Partes de uma dobras (flacos, Plano axial, eixo)

Nota: Anticlinais e sinclinais são estruturas em rochas e não superfícies da paisagem

Page 17: Colisional

Rochas DobradasRochas Dobradas

Source: Breck P. Kent

Anticlinais e Sinclinais

Page 18: Colisional

Source: Tom Bean

Lucky we have ways of recognizing right side upWhat are they?

OlderYounger

OverturnedArea

Older

Younger

Page 19: Colisional

Rochas dobradas antes da erosãoRochas dobradas antes da erosão

Page 20: Colisional

Após ErosãoApós Erosão

Page 21: Colisional

Topography may be opposite of Structure Topography may be opposite of Structure

AnticlineAnticline Before/After Erosion Before/After Erosion

Notice center rock oldest

Page 22: Colisional

Topography may be opposite of Structure Topography may be opposite of Structure

Syncline Before/After ErosionSyncline Before/After Erosion

Notice center rock youngest

Page 23: Colisional

Simetria de DobrasSimetria de Dobras

a) Dobras Abertas ou Simétricas

b) Dobras Assimétricas

c) Dobras Inclinadas

d) Dobras Recumbentes

e) Dobras Reclinadas

Page 24: Colisional
Page 25: Colisional
Page 26: Colisional
Page 27: Colisional

Not a good drawing, axial plane should be horizontal

Page 28: Colisional

Plunging FoldsPlunging Folds

Nose of anticline points direction of plunge, syncline nose in opposite direction

UpEnd Down

End

Page 29: Colisional

Caimento de Dobras Caimento de Dobras

Source: GEOPIC©, Earth Satellite Corporation

Page 30: Colisional

Interpretando DobrasInterpretando Dobras

• Determine if center rocks are older or younger than flanks: fossils, right side up clues (graded bedding and mudcracks)

• Are limbs parallel or “Nosed”?

• Determine limb dips from measurements, stream V’s. Strike and Dip

• Use nose rules for anticlines and synclines

Page 31: Colisional

Again: Strike and DipAgain: Strike and Dip

Page 32: Colisional

3-D: Domos e Bacias3-D: Domos e Bacias

Page 33: Colisional

FraturasFraturas

Fraturas

- Juntas: fraturas SEM movimento relativo

- Falhas: fraturas com movimento relativo

Page 34: Colisional

Joints: Fractures – with no movementJoints: Fractures – with no movement

Source: Martin G. Miller/Visuals Unlimited

Page 35: Colisional

Tipos de Falhas – Falhas de Tipos de Falhas – Falhas de deslizamento (Dip-slip faults)deslizamento (Dip-slip faults)

1) Termos: Hanging wall (capa) and footwall (lapa)

2) Falha Normal(a) Grabens(b) Horsts

3) Falha Reversaa) Baixo ângulo chamadas de empurrão ( Thrust faults)

4) Falhas Obliquas

Page 36: Colisional

Dip-Slip Dip-Slip FaultsFaults

Page 37: Colisional

Source: John S. Shelton

Normal Fault: Hanging Wall Down

KeyBed

Hanging wall overhangs the fault plane

Page 38: Colisional

Normal Fault (Hanging Wall down)

Page 39: Colisional

Reverse Fault Reverse Fault (chamada de “Thrust Fault” SE for de baixo ângulo)(chamada de “Thrust Fault” SE for de baixo ângulo)

Younger

(Hanging wall Up)

Page 40: Colisional

Evidências de falhasEvidências de falhas

a) Deslocamento visivel de rochas

b) Rochas Pulverizadas e “Slickensides”

c) Camadas-chaves cortadas por falhas reaparecem em qualquer lugar

Page 41: Colisional

Fracture Zones and SlickensidesFracture Zones and Slickensideshttp://pangea.stanford.edu/~laurent/english/research/Slickensides.gif

Page 42: Colisional

• Falhas transcorrentes Srike-slip faults

1) Exemplo: San Andreas Transform fault

2) Paisagem Distintiva (vales lineares, cadeias de lagos, saltos topográficos)

3) Rocha fresca pulverizada

Page 43: Colisional

San San Andreas Andreas FaultFault

Source: Georg Gerster/Wingstock/Comstock

Page 44: Colisional

Movimentos Horizontal ao longo Movimentos Horizontal ao longo Strike-Slip FaultStrike-Slip Fault

Page 45: Colisional

Oblique SlipOblique Slip

Also seen in Transform Faults such as San Andreas

Page 46: Colisional

• Strike-slip faults 1) Exemplo: Falhas transformantes de Mid-

Ocean Ridge

2) Pequeno recobrimento da cadeia

2) Falha de San Andreas é também uma cadeia de recobrimento, mas numa escala diferente

Page 47: Colisional

Falhas & Placas TectônicasFalhas & Placas Tectônicas

Divergence

Convergence

Transform

Page 48: Colisional

• Falha Normal : mid-ocean ridges e rift continental rifts são a mesma coisa.

• Margens Divergentes

– Superfície da rochas é empurrada

– Lapa das falhas é puxada para baixo

Page 49: Colisional

Formação de Horst e Formação de Horst e GrabenGraben

Page 50: Colisional

Horst and Horst and Graben FormationGraben Formation

Page 51: Colisional

Graben na Graben na IslândiaIslândia

Source: Simon Fraser/Science Photo Library/Photo Researchers, Inc.

Page 52: Colisional

• Falhas Reversa e de empurrão : Limites de placas convergentes

• Capa é jogada para cima.

Page 53: Colisional

Lewis Thrust FaultLewis Thrust Fault

Page 54: Colisional

Lewis Thrust Fault (cont'd)Lewis Thrust Fault (cont'd)

Page 55: Colisional

Lewis Thrust Fault (cont'd)Lewis Thrust Fault (cont'd)

Source: Breck P. Kent

PreCambrian Limestone over Cretaceous Shales

Page 56: Colisional

Placas tectônicas e falhasPlacas tectônicas e falhas

• c) Strike-slip faults: Limites Transformantes

Page 57: Colisional

San San Andreas Andreas FaultFault

Page 58: Colisional

Tipos e processos de construção Tipos e processos de construção de Montanhas (Orogênese)de Montanhas (Orogênese)

1. Montanhas de Vulcões

2. Montanhas dobras e empurradas (Fold-and-thrust)

3. Montanhas de blocos falhados

4. Montanhas soerguidas

Page 59: Colisional
Page 60: Colisional

Tipos de MontanhasTipos de Montanhas

• 2. Fold-and-thrust– Formadas por colisão Continente-

Continente

Page 61: Colisional

Appalachian Appalachian Mountain Mountain SystemSystem

Page 62: Colisional

Modelo para evolução dos Modelo para evolução dos AppalachesAppalaches

Supercontinent breaks up, rifts apart.

Another rift starts moving Africa west. The ocean floor breaks and one side subducts, starting a new island arc.

AnotherRift

Page 63: Colisional

The ocean floor breaks again, new subduction adds volcanics to an existing microcontinent

Net westward movement pushes the ridge, subduction zone and fragment into N.AmericaRifting restarts to the East

Page 64: Colisional

Arc and subduction zone collide w/ N.Am., westward subduction starts

The continents collide

Page 65: Colisional

Rifting Restarts

Page 66: Colisional

Montanhas Colisionais Montanhas Colisionais (The Grand Tetons in Wyoming)(The Grand Tetons in Wyoming)

Source: Peter French/DRK Photo

Page 67: Colisional

Montanhas em RiftsMontanhas em Rifts

• Rift Valleys, Mid Ocean Ridges

• Provincia Basin and Range???• Blocos de falhas normais como no

Este da Africa

• Margens Divergentes?

Page 68: Colisional

Origem da Basin and Range Origem da Basin and Range Southwestern North AmericaSouthwestern North America

Page 69: Colisional

Montanhas soerguidasMontanhas soerguidas

a) Encurvamento suave sem muita deformação

b) Material do manto ascendentes

c) Distante dos limites das placas

d) Adirondack Mountains: soerguimento de rochas profundas do PreCambriano.

Page 70: Colisional

The Adirondack Mountains The Adirondack Mountains of Northern New Yorkof Northern New York

Source: Clyde H. Smith/Allstock/Tony Stone Images

Page 71: Colisional

Tectônica de Placas Tectônica de Placas Construção de Construção de

MontanhasMontanhas

Page 72: Colisional

• Orogênese – O processo que coletivamente produz um cinturão montanhoso

• Inclue dobramento, falhas de empurrões, metamorfismo e atividade ígnea

• Crescimento de Montanhas têm ocorrido em um passado recente da Terra

• Cadeia Alpine-Himalayan

Page 73: Colisional

Earth’s major mountain beltsEarth’s major mountain belts

Page 74: Colisional

Crescimento de Montanhas em Crescimento de Montanhas em margens convergentesmargens convergentes

• Placas tectônicas definem o modelo para orogêneses

• Zonas de subducção ativas– Arcos Vulcânicos são exemplificados pelas Ilhas

Aleutian Islands e o Arco Andino da America do Sul

Page 75: Colisional

Mountain Belts & Continental CrustMountain Belts & Continental CrustCinturões Orogênicos – Grupos de

cadeias de Montanhas– Tamanho e distância – 1000’s km x 100’s

km

Page 76: Colisional

Mountain Belts & Continental CrustMountain Belts & Continental CrustAge – younger-higher, older-lower, cores of

continents are Cratons, N.America/ Greenland = Precambrian Shield

Rock type – sedimentary, igneous, metamorphic

Page 77: Colisional

Mountain BeltsMountain Belts

• Mountain Belts-– Folding & Faulting – Fold and Thrust Belts

Page 78: Colisional

CinCinturões Orogênicosturões Orogênicos

– Metamorfismo e plutonismo (migmatitos)

– Falhamento Normal Faulting

– Espessamento de Rochas e densidade

– Atividade Tectônica

Page 79: Colisional

Mountain BeltsMountain Belts

Page 80: Colisional

Mountain BeltsMountain Belts

Page 81: Colisional

EvoluçãEvoluçãoo• Mountain Belt evolution – 3 stages

(Accumulation, Orogenic, Uplift & Block Faulting)– Accumulation stage – accumulation of thick

sequences of sedimentary or volcanic rock along passive and active continental margins

– Orogenic stage – intense deformation, & intrusion of plutons (gravitational collapse & spreading), Wilson cycle of repeating events

– Uplift & block-faulting stage – isostatic adjustment, development of fault-block mountain ranges, lithospheric delamination

Page 82: Colisional

Mountain BeltsMountain Belts

• Mountain Belt evolution– Estágio Orogênico

Page 83: Colisional

Mountain BeltsMountain Belts• Mountain Belt evolution

– Uplift & block-faulting stage

Page 84: Colisional

Mountain BeltsMountain Belts• Mountain Belt evolution

– Uplift & block-faulting stage

Page 85: Colisional

Mountain BeltsMountain Belts• Mountain Belt evolution

– Uplift & block-faulting stage

Page 86: Colisional

Mountain BeltsMountain Belts

- Acresção de terrenos Tectonostratigraficos

- (terranos suspeitos )

Page 87: Colisional

WHAT IS OROGENY?WHAT IS OROGENY?Processo de construção de Processo de construção de

montanhasmontanhas

Deformação Dobramento e falhas de empurrão

Metamorfismo Intrusões : batólitos etcAtividade Vulcânica

Page 88: Colisional

Mauna Kea

Shield volcanoHot SpotBasalt

Mauna Loa inBackground

Kilaeua is Behind MaunaLoa

Page 89: Colisional

KilaeuaNewest ground inThe world

Asthenosphere comingTo the surface

Page 90: Colisional

Composite VolcanoMt Rainier

Compressive forcesSubduction zonesAndesitic composition

Page 91: Colisional

Guagua Pichincha, EcuadorQuito in foregroundComposite volcanoes explosive

Page 92: Colisional

Normal fault

Footwall moves Up relative toHanging wall

Tension forces

FOOTWALL

HANGING WALL

Page 93: Colisional

Tilted fault-block range: Sierra Nevada from east,Steep side of block fault; Ansel Adams photo

Page 94: Colisional

Tilted Fault-blockSierra Nevada from westSide, low angle

Yosemite valley the result Of glaciation on low-anglerelief

Page 95: Colisional

Wasatch RangeFrom Salt Lake City

Typically fault-Block system

Page 96: Colisional

Grand Tetons: Another fault-block system

Page 97: Colisional

Alternating normal faults lead to a characteristic pattern called aHorst and Graben system. An area under tension will often haveMultiple mountain ranges as a result.

Page 98: Colisional

Horst and Graben Horst and Graben Landscapes (paisagem)Landscapes (paisagem)

Figure 12.14

Page 99: Colisional

Basin and range province: tilted fault-block mountains in Nevada.The results of a horst and graben system. Nevada is under tension Because of rising magma which is unzipping the system, all the wayFrom Baja California

Sierra Nevada and Wasatch Ranges part of this system

Page 100: Colisional

REVERSE FAULTS: Hanging wall moves up relative to footwallResult of compression: plates collidingTwo types: low-angle or thrust faults, and high-angle reverse faults

Individual layers can move 100’s of kilometersAlps are a great example

Page 101: Colisional

Thrust faults main cause Of folded mountains

Page 102: Colisional

Appalachian Mountains of the US

Page 103: Colisional

Atlas Mountains, Northern Africa

Page 104: Colisional

Classic folded terrain: well-developed anticline

Page 105: Colisional

ZAGROS MTSPERSIAN GULF

AlternatingAnticlines andSynclines

Page 106: Colisional

High-angle reverse faultsForms “Sawtooth Mtns”

Flatirons classic example

Sawtooth effect result ofDifferential erosion

Page 107: Colisional

White Cloud peak

SAWTOOTH RANGE,IDAHO

Alice Lake

Page 108: Colisional

COMPLEX MOUNTAINS

Tend to have a little ofEverything: volcanoes,Folds, thrust faults, normalfaults

ALPS

HIMALAYAS

Page 109: Colisional

ANDES:ANDES:

Classic example Classic example

Page 110: Colisional

ANDES: CLASSIC EXAMPLE OF GENERIC MTNS

Page 111: Colisional

A) Compression causes expansionB) Layered rock formedC) Thrust-faultingD) Igneous intrusions: PlutonsE) UnderplatingF) Regional metamorphism

Nazca Plate

South American Plate

Page 112: Colisional

ANATOMY OF AN OROGENGIC BELT

Page 113: Colisional

• Tipo Andino• Montanhas crescem ao longo de margens

continentais

• Estágios de desenvolviment• Margem passiva

– Margem Continental faz parte da mesma placa adjacente a crosta oceânica

– Deposição de sedimentos ao longo da plataforma continental e produzindo uma espessa cunha de sedimentos de água rasa

Page 114: Colisional

• Andean-type mountain building• Estágios de desenvolvimento – Margem

continental ativa– Forma em zonas de Subducção

– Inicio de processos de Deformação

– Convergência do bloco continental block e a subducção da placa oceânica leva a deformação e metamorfismo da margem continental

– Desenvolimento de Arco Vulcânico Continental

Page 115: Colisional

– Formação de Prisma Acrescionáio

• Acumulção caótica de rochas sedimentares e metamorficas com ocasional pedaços de crosta oceânica

• Composto de duas zonas aparentemente paralelas

• Segmento marinho

• Consiste de sedimentos dobrados, falhados e metamorfisados e fluxo vulcânico

Page 116: Colisional

– Arco Vulcânico

• Desenvolve sobre o Bloco continental

• Consiste de grandes corpos intrusivos misturados juntos com rochas metamórficas de alta temperatura

– Sierra Nevada batholith é um exemplo de um resto de arco vulcânico continental

Page 117: Colisional

• Colisão Continental• Duas placas litosféricas, ambas compostas de

crosta continental• Os Himalaias são as montanhas mais jovens

formadas pela colisão da India com a Eurasia à 45 Ma.

Page 118: Colisional

• Continental collisions• Os Appalaches formados entre 250 à 300

Ma resulta na colisão da América do Norte, Europa, e Africa.

• Orogenêse aqui é complexa incluindo subducção, atividade ígnea, colisão de blocos continentais, dobramento e soerguimento da crosta

Page 119: Colisional

• Acresção Continental e cresciemento de montanhas

• Terceiro mecanismo de orogênese• Pequenos fragmentos crustais colidem e

junta-se com a margem continental• Responsável por regiões montanhosas na

borda do Pacífico • Blocos crustais Acrescidos são chamados

TERRENOS

Page 120: Colisional

Colisão Continente-continenteColisão Continente-continente

Colisão inicia-se ~20 milhões de anosHimalayas são levantados a razões de 1cm/yearMovie

Page 121: Colisional
Page 122: Colisional

Le Pichon et al., 1993

Exact estimates of material present in the orogen

Page 123: Colisional

ESTIMATES OF MISSING CONTINENTAL MATERIALTopography and erosional levels are taken into consideration:

Dewey et al. (1986) ca 1,2 x 104 km2

Le Pichon et al (1993)Linear shortening between 1850 - 2600 kmSurface loss during the past 45 myr from 57 to 62 x 105 km2

Rate of surface loss: ≈ 1,1 x 10 km2 x 10-6yrArial deficit in sections ≈ 33 - 52 x 105 km2 (max)

18 - 30 x 105 km2 (min)(Depends on estimates of original surface elevation)

WHAT IS THE EXPLANATIONS FOR THE DEFICIT?

India Tarim

erosion

Present continentalcrust

Page 124: Colisional

1) LATERAL TRANSPORT OF MATERIAL

Page 125: Colisional

Tapponnier et al., 1982, 1986

The lateral extrusion modelFor SE Asia

Page 126: Colisional

FournierJolivet et al.

Page 127: Colisional

2) VERTICAL TRANSPORT OF MATERIAL(SUBDUCTION / EDUCTION)

Page 128: Colisional

LATE- TO POST-OROGENIC TECTONIC PROCESSES

THE PRESENT DEFORMATION PATTERN HAS A STRONG CORRELATION WITH TOPOGRAPHY, AND CANNOT BE EXPLAINED ONLY FROM THE PLATE-MOTIONS AND AMBIENT FORCES AFFECTING THE REGION

Page 129: Colisional

collision

subduction

Page 130: Colisional

STABLE EURASIA NORTH AMERICA

PLATE

N. CHINA

OK

PACIFIC PLATE

PHSP

S. CHINA

INDIA

AUSTRALIA

AF

Page 131: Colisional

Syn- to post-orogenic extension

Regional extension

Jolivet et al, 1999

Page 132: Colisional

Movimentos Verticais da crostaMovimentos Verticais da crosta

• Ajustamento Isostático

• Crosta menos densa flutua sobre rochas deformadas e densas do manto

• Conceito de crosta suspensa em balanço graviatacional é chamado de isostasia

Page 133: Colisional

O principio da of isostasiaO principio da of isostasia

Page 134: Colisional

Mountain building away from Mountain building away from plate marginsplate margins

• Example: the American West, extending from the Front Range of the southern Rocky Mountains across the Colorado Plateau and through the Basin and Range province

Page 135: Colisional

• Espessamento Crustal sugere que a diferença de elevação onde as cadeias de montanhas se encontra deve ser o resultado do fluxo do manto

• Manto quente provoca o soerguimento da cadeia e como resultado gera-se platôs e bacias.

• Colorado Plateau and the Basin and Range province

Page 136: Colisional

Cadeias de Montanhas geradas a Cadeias de Montanhas geradas a distância da margens de placasdistância da margens de placas

• Soerguimento associado com a Província Basin and Range province iniciou a 50 Ma e permanece até hoje.

• Nem todos os geológos que estudam na região concordam com o modelo.

• Outra hipotese sugere que os terrenos da América do Norte produz o soerguimento visto no oeste americano

Page 137: Colisional

TerrenosTerrenos

• Regiões da Terra Geologicamente distintos, cada qual se comporta como um bloco crustal coerente

Page 138: Colisional

• 10 Ma– Foreland basin connected to Atlantic along thin seaway

• Infilling of foreland basin led to formation of Amazon River from seaway

Convergent Margins: Oceanic-ContinentalConvergent Margins: Oceanic-ContinentalAndes MountainsAndes Mountains

Page 139: Colisional

Margens Convergentes:Margens Convergentes: Modelos ideais Modelos ideais

Two TypesA. Subduction Type

Subduction involves only one land mass

B. Collision TypeSubduction involves collision

of two land masses

Modes of Interaction1. Island arc-oceanic2. Oceanic- continental3. Island arc- continental4. Continental- continental

Page 140: Colisional
Page 141: Colisional

• Hinterland– Overriding continent

• Foreland– Continent being

overridden• Suture Zone

– Area of severe deformation and metamorphism

– The subducting lithosphere detaches, due to continental buoyancy

Page 142: Colisional

Historia de uma Bacia ForelandHistoria de uma Bacia Foreland

Pode esta sequência pode ser descrita como transgressiva or regressiva?

Page 143: Colisional

Variousstages of orogenic maturityalong strike

Andean margins

Forelandflexure

Forelandbasin

Suture(s)

Hinterland orogenic plateau

Commoninternalstructureof orogenicbelts (inspace and time)

Page 144: Colisional

5) Remnant stageContinental collision, suture zones, deform-ation and metamorphism, mountain buildingExtensional collapse, faulting and collapsebasins4) Terminal stageNear closure of ocean, mature arcs andback-arc, accreationary wedges, HP-LTmetamorphic complexes(Mediterranean See area)

3) Vaning stage: Intra-oceanic subductionand island arcs transition to Andean margins. (SE Asia and Western Passific)

2) Mature stage Passive margins with largeshelf-areas (Atlantic Ocean)

1) Embryonic to Young stage.Rifts to small ocean basin with sea-floor spreading. (East African rift and Red Sea)

Schematic view of stages in a classical Wilson cycle

Page 145: Colisional

Late - to post-orogenic tectonic processes and exhumation mechanisms (ROCKS APPROACHING THE SURFACE)

1) EROSION (MINOR ON A REGIONAL SCALE)

2) THRUST STACKING + EXTENSION AND/OR EROSION(IMPORTANT FOR BRINGING HP AND UHP ROCKS NEXT TO EACH OTHER?

3) VERTICAL CO-AXIAL SHORTENING/HORISONTALSTRETCHING

(IMPORTANT FOR MID AND LOWER CRUST AFTER EXHUMATION TO AMPHIBOLITE FACIES)

4) HINTERLAND EXTENSION FORLAND SHORTENING(IMPORTANT AT AN EARLY STAGE OF COLLISION)

5) WHOLE-SALE EXTENSION BY PLATE-DIVERGENCEand/or TRANS-TENSION (IMPORTANT)

Page 146: Colisional

(from: Molnar and Lyon-Caen)

Normalfault-planesolution

Reversefault-planesolution

Strike-slipfault-planesolution

Map showing major earthquake fault plane solutions and the topography in the Himalayan-TibetanRegion. Notice the strong correlation betwen altitude and contractional earthquakes. Notice also theDominant NW-SE of the principal tension axes as shown by the normal fault.plane solutions.

Page 147: Colisional

(Molnar and Lyon-Caen)

Horizontal projections of principal stress axes directions derived from fault-plane solutions (pink-reverse, blue-normal, green-strike-slip) in the previous figure.

Page 148: Colisional

AMBIENT FORCEFROM PLATE MOTION

BODY FORCE FROMTOPOGRAPHY ONTHE SURFACE AND ON LITHSPHERE

Page 149: Colisional
Page 150: Colisional

THE THERMAL EFFECT OF REMOVAL OF THICK MANTLE LITHOSPHERE

Vertical stretching/lithospheric thickening

Horizontal stretching/lithospheric thinning

Modified from: England & Platt, 1994

Crust

Lithospheric mantle

Higher geotherm leads topartial melting in the lithosphere

Convective removalof thermal boundary layer

re-equilibration and extension

Partial melting in astenosphere during decompression

Adiabatic geotherm

Conductive geotherm

Page 151: Colisional

From late to post orogenic tectonics incontinental collision zones to rifts

The end of a Wilson cycle does not mark the end of the tectonicThe end of a Wilson cycle does not mark the end of the tectonicactivity in a mountainbelt. In many orogenic belts high-gradeactivity in a mountainbelt. In many orogenic belts high-graderocks formed by the crustal-thickening during collision getrocks formed by the crustal-thickening during collision getquickly exhumed.quickly exhumed.

In many instances the exhumation processes are too fast to be In many instances the exhumation processes are too fast to be accounted for by erosion alone. We have to resort to tectonicaccounted for by erosion alone. We have to resort to tectonicprocesses to explain the exhumation.processes to explain the exhumation.

The geology and seismic ativity in several modern orogenic beltsThe geology and seismic ativity in several modern orogenic beltshave an intimate relationship between shortening and extension. have an intimate relationship between shortening and extension.

Page 152: Colisional

Some definitionsSome definitions::

ExhumationExhumation --> rocks approaching the surface. --> rocks approaching the surface.UpliftUplift --> rise of the earth´s surface with respect to --> rise of the earth´s surface with respect to

reference levelreference levelSubsidence Subsidence --> lowering of the earth´s surface with respect to --> lowering of the earth´s surface with respect to

reference levelreference level

Extension gives some easily recognizable features:Extension gives some easily recognizable features:

1)1) Thermal: Narrowing of isotherms; steep geothermThermal: Narrowing of isotherms; steep geotherm2)2) Structural: Normal faults and detachmentsStructural: Normal faults and detachments3)3) Metamorphic: Metamorphic hiatus exision across structural Metamorphic: Metamorphic hiatus exision across structural

featuresfeatures4)4) Sedimentary: Creation of accomodation space for sediments Sedimentary: Creation of accomodation space for sediments

Some definitionsSome definitions::

ExhumationExhumation --> rocks approaching the surface. --> rocks approaching the surface.UpliftUplift --> rise of the earth´s surface with respect to --> rise of the earth´s surface with respect to

reference levelreference levelSubsidence Subsidence --> lowering of the earth´s surface with respect to --> lowering of the earth´s surface with respect to

reference levelreference level

Extension gives some easily recognizable features:Extension gives some easily recognizable features:

1)1) Thermal: Narrowing of isotherms; steep geothermThermal: Narrowing of isotherms; steep geotherm2)2) Structural: Normal faults and detachmentsStructural: Normal faults and detachments3)3) Metamorphic: Metamorphic hiatus exision across structural Metamorphic: Metamorphic hiatus exision across structural

featuresfeatures4)4) Sedimentary: Creation of accomodation space for sediments Sedimentary: Creation of accomodation space for sediments

Page 153: Colisional

An orogenic crust will, however, not go on thickening forever An orogenic crust will, however, not go on thickening forever and the topographic elevation will reach a threshold value that and the topographic elevation will reach a threshold value that depends on the rate of convergence, the strength and density depends on the rate of convergence, the strength and density structure of the orogenic lithsophere. structure of the orogenic lithsophere.

Plateau height h ≈ 3.5 km for a convergence rate of ca 5 cm/year

If convergence continues at this rate the plateau will rise to the threshold value, and then grow in width (spread laterally as indicated by pink boxes).For the avereage height (h) to increase, we either have to • increase the rate of convergence, • increase the strength of the rocks • introduce a vertical force lifting the rocks higher, by reducing their average density so that they will float higher.

Page 154: Colisional

Increased topography will enhance the rate of Increased topography will enhance the rate of exhumation within the thickened crust by:exhumation within the thickened crust by:

EROSIONAL PROCESSESEROSIONAL PROCESSES• Increased topography will increase the precipitation, henceIncreased topography will increase the precipitation, hence

increase the rate of erosionincrease the rate of erosion• Increased topography will increase the slope instability, henceIncreased topography will increase the slope instability, hence

enhance landsliding and mass transportenhance landsliding and mass transport

TECTONIC PROCESSESTECTONIC PROCESSES• Extensonal and strike-slip faulting to transport material away Extensonal and strike-slip faulting to transport material away

from toptgraphically elevated areasfrom toptgraphically elevated areas

Increased topography will enhance the rate of Increased topography will enhance the rate of exhumation within the thickened crust by:exhumation within the thickened crust by:

EROSIONAL PROCESSESEROSIONAL PROCESSES• Increased topography will increase the precipitation, henceIncreased topography will increase the precipitation, hence

increase the rate of erosionincrease the rate of erosion• Increased topography will increase the slope instability, henceIncreased topography will increase the slope instability, hence

enhance landsliding and mass transportenhance landsliding and mass transport

TECTONIC PROCESSESTECTONIC PROCESSES• Extensonal and strike-slip faulting to transport material away Extensonal and strike-slip faulting to transport material away

from toptgraphically elevated areasfrom toptgraphically elevated areas

Page 155: Colisional

Mechanism resulting in extensional exhumation:Mechanism resulting in extensional exhumation:

1)1) Underplating and extension (critical taper)Underplating and extension (critical taper)

2)2) Slab-breakoff and orogenic collapseSlab-breakoff and orogenic collapse

3)3) Diapiric rise along density contrastsDiapiric rise along density contrasts

4)4) Subduction roll-backSubduction roll-back

5)5) Plate divergence (including transtension)Plate divergence (including transtension)

Mechanism resulting in extensional exhumation:Mechanism resulting in extensional exhumation:

1)1) Underplating and extension (critical taper)Underplating and extension (critical taper)

2)2) Slab-breakoff and orogenic collapseSlab-breakoff and orogenic collapse

3)3) Diapiric rise along density contrastsDiapiric rise along density contrasts

4)4) Subduction roll-backSubduction roll-back

5)5) Plate divergence (including transtension)Plate divergence (including transtension)

Page 156: Colisional

Some good actualistic examples:Some good actualistic examples:

Himalaya - Tibet plateau RegionHimalaya - Tibet plateau RegionMediterranean RegionMediterranean Region

-->Agean Sea-->Agean Sea-->Italy - Corsica section-->Italy - Corsica section-->Alboran Sea (Spain - Morocco)-->Alboran Sea (Spain - Morocco)

Some good actualistic examples:Some good actualistic examples:

Himalaya - Tibet plateau RegionHimalaya - Tibet plateau RegionMediterranean RegionMediterranean Region

-->Agean Sea-->Agean Sea-->Italy - Corsica section-->Italy - Corsica section-->Alboran Sea (Spain - Morocco)-->Alboran Sea (Spain - Morocco)

Page 157: Colisional

EXTENSION AT THE EXTENSION AT THE SAME TIME AS SAME TIME AS CONVERGENCE,CONVERGENCE,

SUBDUCTION ROLL-BACKSUBDUCTION ROLL-BACK

EXTENSION CHASES AFTEREXTENSION CHASES AFTERCONTRACTIONCONTRACTION

EASTWARD MIGRATION OFEASTWARD MIGRATION OFTHE EXTENSION AND THE EXTENSION AND COMPRESSION SINCE THECOMPRESSION SINCE THEEARLY TERTIARYEARLY TERTIARY

EXTENSION AT THE EXTENSION AT THE SAME TIME AS SAME TIME AS CONVERGENCE,CONVERGENCE,

SUBDUCTION ROLL-BACKSUBDUCTION ROLL-BACK

EXTENSION CHASES AFTEREXTENSION CHASES AFTERCONTRACTIONCONTRACTION

EASTWARD MIGRATION OFEASTWARD MIGRATION OFTHE EXTENSION AND THE EXTENSION AND COMPRESSION SINCE THECOMPRESSION SINCE THEEARLY TERTIARYEARLY TERTIARY

From Jolivet et al. 2004

Page 158: Colisional

From Jolivet et al. 2004

Page 159: Colisional

Late-to post Orogenic collapse

Page 160: Colisional
Page 161: Colisional
Page 162: Colisional
Page 163: Colisional

Formação de um arco de ilhas Formação de um arco de ilhas VulcânicoVulcânico

Page 164: Colisional

The origin and evolution of The origin and evolution of continental crustcontinental crust• There is a lack of agreement among

geologists as to the origin and evolution of continents

• Early evolution of the continents model • One proposal is that continental crust

formed early in Earth’s history

Page 165: Colisional

The origin and evolution of The origin and evolution of continental crustcontinental crust

• Early evolution of the continents model• Total volume of continental crust has not

changed appreciably since its origin

• Gradual evolution of the continents model • Continents have grown larger through

geologic time by the gradual accretion of material derived from the upper mantle

Page 166: Colisional

The origin and evolution of The origin and evolution of continental crustcontinental crust• Gradual evolution of the continents model

• Earliest continental rocks came into existence at a few isolated island arcs

• Evidence supporting the gradual evolution of the continents comes from research in regions of plate subduction, such as Japan and the western flanks of the Americas

Page 167: Colisional

Continents and OrogenyContinents and Orogeny• To a certain extent, the distinction between craton and mobile belt

is arbitrary, and relates only to the age since the last deformation event. It is nevertheless useful because once a mobile belt is stabilized, it can preserve details of geologic history for very long times.

Note this triple-junction here

167

Page 168: Colisional

Continents and OrogenyContinents and Orogeny• The rocks making up orogenic belts are a combination of juvenile materials (continental arcs

have a major mantle-derived component of new crust) and reworked rocks from older terranes (either by deformation in situ or by erosion and redeposition). One can think of major continental provinces in terms of the age of deformation, rather than the age of the rocks as such (though this will often be the same). Since not all the material in a new mobile belt is new, young mobile belts can be seen to truncate and incorporate parts of older mobile belts.

Here it is again

168

Page 169: Colisional

Continents and OrogenyContinents and Orogeny

• Why do continents deform in a distributed fashion over wide zones? Because continental crust and lithosphere are relatively weak. And why is that? We’ll go through the long answer…

• Orogenic belts can be thousands of kilometers wide (examples: Himalaya-Tibet-Altyn Tagh system; North American cordillera), which shows that the simple plate tectonic axiom of rigid plates with sharply defined boundaries is not that useful in describing continental dynamics.– Really, rigid plate dynamics applies best to oceanic lithosphere only.

169

Page 170: Colisional

Rheology at Plate ScaleRheology at Plate Scale

• This requires us to go into continuum mechanics, which describes how materials deform (strain) in response to applied forces (stress).

• It is possible to find clear examples where obviously weak mechanical properties of crust contribute directly to distributed deformation, as in this picture of the Zagros fold-and-thrust belt, which is full of salt (the dark spots are where the salt layers have risen as buoyant, effectively fluid blobs called diapirs or salt domes (the image is 175 km across).

• Broadly speaking, we can understand the difference between continents and oceans in this regard by considering the strength of granitic (quartz-dominated) and ultramafic (olivine-dominated) rock as functions of pressure and temperature…

170

Page 171: Colisional

The origin and evolution of The origin and evolution of continental crustcontinental crust

• Explanations describing the origin and evolution of the continents are highly speculative

Page 172: Colisional

Modern Mountain RangesModern Mountain Ranges

Major Mountain BeltsN. American Cordillera (A)Appalachians (B)Caledonian Belt (C) Andes (D) Urals (E)Himalaya (F) Alps (G)Tasman Belt (H).

http://www.physicalgeography.net/fundamentals/10k.html

Page 173: Colisional

Relevant Stages in the Plate Relevant Stages in the Plate Tectonic CycleTectonic Cycle

Stage A: Stable cratonStage A: Stable cratonStage B: RiftingStage B: RiftingStage D: Passive MarginStage D: Passive MarginStage F: Island Arc CollisionStage F: Island Arc CollisionStage H: Continental CollisionStage H: Continental Collision

J.T. Wilson: 1960’sJ.T. Wilson: 1960’s

- Devised this simple ideal model for - Devised this simple ideal model for categorizing plate movement.categorizing plate movement.

- Also developed concept of “hot - Also developed concept of “hot spots”, which helped resolve an spots”, which helped resolve an apparently conflicting phenomenon to apparently conflicting phenomenon to plate tectonics.plate tectonics.

Most of the following is adapted from LS Fichter’s Geol 230 course at JMU.

Page 174: Colisional

Divergent Margins- RiftingDivergent Margins- Rifting

• Convection cell development beneath continental crust results in thermal doming and crustal foundering.

• Axial rift graben forms, with horst terraces to either side.

GrabenHorstNormal Fault

Page 175: Colisional

Divergent Margins- RiftingDivergent Margins- Rifting

• Sedimentary Record:– Records a transgressive sequence

A) Thick siliciclastic sediment accumulations from alluvial fansB) Quartz sand and shales from transitional environments (beach, estuaries, lagoons)C) Carbonates develop as the continental margin moves away from the heat source and tectonic stability is established.

Sediment deposition records increasingly higher sea levels.Q: In this case, is sea level transgression due to eustasy or due to

regional causes??

Page 176: Colisional

Divergent Margins- RiftingDivergent Margins- Rifting

• Passive versus Active Margin– Passive: No tectonic activity

• Example: East Coast, US (mountain building ended 250 mya)

– Active: Tectonic activity (rifting, convergence, transform)• Example: West Coast, US

Page 177: Colisional

Divergent Margins- RiftingDivergent Margins- Rifting

• Modern Example: Gulf of Aden, Red Sea

• movie

Page 178: Colisional

Guiding QuestionsGuiding Questions

• What is the Wilson Cycle?• How are passive and active margins differentiated?• What environments of deposition does rifting produce?• Does a rift sedimentary sequence indicate transgressing or regressing

sea level?• What are the two major types of convergent boundaries?• What are the four ways that lithospheric plates may interact at a

convergent boundary?• What are examples of:

– An island arc-oceanic crust type boundary?– An oceanic crust- continental boundary?– A continent-continent boundary?

• What is a foreland basin, and how does it form?

Page 179: Colisional

Convergent Margins:Convergent Margins:Ideal ModelsIdeal Models

Two TypesA. Subduction Type

Subduction involves only one land mass

B. Collision TypeSubduction involves collision

of two land masses

Modes of Interaction1. Island arc-oceanic2. Oceanic- continental3. Island arc- continental4. Continental- continental

Page 180: Colisional

Convergent Margins: Island Arc- Oceanic TypeConvergent Margins: Island Arc- Oceanic Type

• Tectonic Components of a Volcanic Arc System

– Backarc

– Forearc• Zone of active

subduction

– Ocean Basin

• Normal Ocean floor= 5km• Trench=6-7km• Fractional (partial) melting

at 120km• Results in formation of

volcanic front• Approximate angle of

subduction ~25 degrees

Page 181: Colisional

Sedimentary Processes• Melange: A mixture of

metamorphosed sediments scraped from a subducting plate

• Immature lithic rich sediments shed from the volcanic highlands into the forearc and backarc troughs

• Sedimentary Basin:– FOREARC BASIN

• Sedimentary Review:– Lithic?

– Immature??

– Short or Long system?

Convergent Margins: Island Arc- Oceanic TypeConvergent Margins: Island Arc- Oceanic Type

Page 182: Colisional

• Modern Example:– Japan

Barujari Volcano,August 1994,Lombok Island,Indonesia

Pacific Plate

Eurasian Plate

Phillipine Plate

Marianas Trench: 36,000 feet below sea level

Convergent Margins: Island Arc- Oceanic TypeConvergent Margins: Island Arc- Oceanic Type

Page 183: Colisional

Convergent Margins:Convergent Margins:Ideal ModelsIdeal Models

Two TypesA. Subduction Type

Subduction involves only one land mass

B. Collision TypeSubduction involves collision

of two land masses

Modes of Interaction1. Island arc-oceanic2. Oceanic- continental3. Island arc- continental4. Continental- continental

Page 184: Colisional

• The previous example involved convergence of two slabs of oceanic crust.

• This example involves convergence of oceanic with continental crust.

Convergent Margins: Oceanic-ContinentalConvergent Margins: Oceanic-Continental

Page 185: Colisional

• Igneous Core– Plutons result from partial

melting of subducted lithosphere

– Volcanoes form, elevate crust

• Fold and Thrust Belt– Compressional forces

result in rocks that are folded and thrust over top of one another.

• Metamorphic Belt– Rocks on either side of

core are deformed by core’s heat and other processes

Convergent Margins: Oceanic-ContinentalConvergent Margins: Oceanic-ContinentalMountain Building ProcessesMountain Building Processes

Page 186: Colisional

• Accretionary Wedge– Marine sediments that are

pulled into the subduction trench by the downgoing plate. Includes melange.

• Forearc Basin– Describes the basin that

forms at the leading edge of subduction.

• Foreland Basin– Forms inland of the

developing mountain range, as a result of overburden from the fold and thrust belt.

– Process is called Lithospheric Flexure.

Processos de Construção de Cadeia de Processos de Construção de Cadeia de MontanhasMontanhas

Page 187: Colisional

• Sedimentos de uma Bacia Foreland– Molassa

• Derivada do cinturrão de dobras e empurrões

– Flysch• Filitos, turbiditos

– Inundação rápida

– Acumula Turbiditos

Page 188: Colisional

Deformation ProcessesDeformation Processes

• Syncline– Rocks folded concave up– Vertices at bottom

• Anticline– Rocks folded concave down– Vertices at top– “A” makes an anticline

Page 189: Colisional

Deformation ProcessesDeformation Processes

• Folds and faulting– Increase folding– Develop overturned fold– In an overturned fold, one

limb is greater than 90 degrees from horizontal.

– Overturned fold can break– Thrusting of overlying strata

results.

Page 190: Colisional

Deformation ProcessesDeformation Processes

• Dip– Angle that the bed forms

with the horizontal plane

• Strike– Compass direction that lies

at right angles to the dip– Always horizontal– Regional strike

• Overall trend of fold axes

Page 191: Colisional

• Modern Example: Andes Mountains in South America

• Longest continuous mountain chain in the world

• Subduction began during the Mesozoic (~200 mya)

• Mountain belt moving progressively inland

Pachapaqui mining area in Peru

Convergent Margins: Oceanic-ContinentalConvergent Margins: Oceanic-Continental