Componentes da placa mãe

19
Componentes da placa mãe O componente básico da placa-mãe é o PCB, a placa de circuito impresso onde são soldados os demais componentes. Embora apenas duas faces sejam visíveis, o PCB da placa-mãe é composto por um total de 4 a 10 placas (totalizando de 8 a 20 faces!). Cada uma das placas possui parte das trilhas necessárias, e elas são unidas através de pontos de solda estrategicamente posicionados. Ou seja, embora depois de unidas elas aparentem ser uma única placa, temos na verdade um sanduíche de várias placas. Como o PCB é um dos componentes de mais baixa tecnologia, é comum que a produção seja terceirizada para países como a China, onde a mão de obra é mais barata. É por isso que muitas placas-mãe possuem um "PCB made in China" decalcado em algum lugar da placa, mesmo que as demais etapas de produção tenham sido realizadas em outro lugar. A maior parte dos componentes da placa, incluindo os resistores, MOSFETs e chips em geral, utilizam solda de superfície, por isso é muito difícil substituí-los manualmente, mesmo que você saiba quais são os componentes defeituosos. Os menores componentes da placa são os resistores e os capacitores cerâmicos. Eles são muito pequenos, medindo pouco menos de um milímetro quadrado e por isso são instalados de forma automatizada (e com grande precisão). As máquinas que fazem a instalação utilizam um conjunto de braços mecânicos e, por causa da velocidade, fazem um barulho muito similar

Transcript of Componentes da placa mãe

Page 1: Componentes da placa mãe

Componentes da placa mãeO componente básico da placa-mãe é o PCB, a placa de circuito impresso onde são soldados os demais componentes. Embora apenas duas faces sejam visíveis, o PCB da placa-mãe é composto por um total de 4 a 10 placas (totalizando de 8 a 20 faces!). Cada uma das placas possui parte das trilhas necessárias, e elas são unidas através de pontos de solda estrategicamente posicionados. Ou seja, embora depois de unidas elas aparentem ser uma única placa, temos na verdade um sanduíche de várias placas.

Como o PCB é um dos componentes de mais baixa tecnologia, é comum que a produção seja terceirizada para países como a China, onde a mão de obra é mais barata. É por isso que muitas placas-mãe possuem um "PCB made in China" decalcado em algum lugar da placa, mesmo que as demais etapas de produção tenham sido realizadas em outro lugar.

A maior parte dos componentes da placa, incluindo os resistores, MOSFETs e chips em geral, utilizam solda de superfície, por isso é muito difícil substituí-los manualmente, mesmo que você saiba quais são os componentes defeituosos.

Os menores componentes da placa são os resistores e os capacitores cerâmicos. Eles são muito pequenos, medindo pouco menos de um milímetro quadrado e por isso são instalados de forma automatizada (e com grande precisão).

As máquinas que fazem a instalação utilizam um conjunto de braços mecânicos e, por causa da velocidade, fazem um barulho muito similar ao de uma metralhadora. A "munição" (os componentes) também é fornecida na forma de rolos, onde os componentes são pré-posicionados entre duas folhas plásticas.

Page 2: Componentes da placa mãe

Depois que todos os componentes são encaixados, a placa passa por uma câmara de vapor, que faz com que os pontos de solda derretam e os componentes sejam fixados, todos de uma vez.

Page 3: Componentes da placa mãe

Você pode diferenciar os resistores dos capacitores que aparecem na foto pela cor. Os resistores são escuros e possuem números decalcados, enquanto os capacitores são de uma cor clara. Estes pequenos capacitores são sólidos, compostos de um tipo de cerâmica. Eles são muito diferentes dos capacitores eletrolíticos (que veremos em detalhes a seguir) e possuem uma capacitância muito mais baixa.

Outros componentes, como os slots, capacitores e a maior parte dos conectores, utilizam o sistema tradicional, onde os contatos são encaixados em perfurações feitas na placa e a solda é feita na parte inferior. Na maioria dos casos, eles são instalados manualmente, por operários. É por isso que a maioria das fábricas de placas são instaladas em países da Ásia, onde a mão de obra é barata. No final da produção, a placa-mãe passa por mais uma máquina de solda, que fixa todos os componentes com contatos na parte inferior de uma só vez.

LINHA DE MONTAGEM DA PLACA-MÃE

outro item de destaque é o regulador de tensão, cujo componente mais importante são os MOSFETs, que são transistores de uso externo, facilmente reconhecíveis pelo tamanho avantajado:

Três MOSFETs e uma bobina, formando um dos estágios do regulador de tensão

Page 4: Componentes da placa mãe

uma fonte ATX fornece tensões de 12V, 5V e 3.3V, sendo que a maioria dos componentes em um PC atual utilizam tensões mais baixas, como no caso dos processadores (que atualmente trabalham com tensões muito baixas, como 1.1 ou 1.25V) e dos módulos de memória, que usam 1.5V (DDR3) ou 1.8V (DDR2). Os reguladores são os responsáveis por reduzir e estabilizar as tensões fornecidas pela fonte, gerando as tensões usadas pelos diversos componentes.

Parte da energia é transformada em calor, de forma que os reguladores estão entre os componentes que mais esquentam numa placa atual. Em muitas placas, eles recebem dissipadores de alumínio e, em alguns casos, até mesmo coolers ativos. O volume e a capacidade dos reguladores de tensão são um quesito importante nas placas "premium", destinadas a suportarem grandes overclocks.

Os reguladores de tensão são formados por um conjunto de MOSFETs, alguns capacitores, uma bobina e um controlador. Placas antigas utilizavam um único regulador de tensão, mas conforme os processadores foram evoluindo e passando a consumir cada vez mais energia, as placas passaram a utilizar reguladores divididos em "fases", onde temos vários reguladores de tensão trabalhando em paralelo, formando um sistema capaz de fornecer um volume muito maior de energia e um fluxo mais estável.

Tecnicamente, um regulador de tensão com mais fases é superior, já que o trabalho é dividido entre mais componentes. Isso permite que o regulador desperdice menos energia na forma de calor, ao mesmo tempo em que oferece um fluxo de energia mais estável para o processador.

Placas atuais utilizam reguladores de tensão com 3, 4, 6, 8 ou mesmo 12 fases. É fácil descobrir o número de fases do regulador da placa-mãe, pois cada fase é composta por um conjunto idêntico de componentes, que são instalados em série próximo ao encaixe do processador.

Esta placa da foto, por exemplo, utiliza um regulador de tensão com 3 fases. Note a presença de 3 bobinas idênticas (a primeira delas bem ao lado do conector de energia), cercadas por MOSFETs e capacitores na parte superior:

Page 5: Componentes da placa mãe

Em teoria, uma placa com um regulador de 4 fases pode fornecer 33% mais energia para o processador do que um com 3 fases, e um de 8 fases pode fornecer o dobro que um de 4 fases. Naturalmente, o resultado final depende da qualidade e das especificações dos componentes usados, mas a regra geral é que quanto mais fases, maior é a capacidade de fornecimento da placa.

A principal vantagem de usar uma placa com um regulador de tensão de 6 ou 8 fases, ao invés de uma com um regulador de 3 ou 4 fases, é a garantia de que a placa será capaz de manter um fornecimento estável em situações de stress, como ao fazer um overclock agressivo.

O maior problema é que um número maior de fases faz com que a placa desperdice mais energia nos momentos de baixa atividade. A diferença entre usar uma placa com um regulador de tensão de 8 fases e outra similar, com um regulador de tensão de 4 fases, pode chegar a mais de 6 watts enquanto o processador está ocioso.

Não é uma diferença muito grande, mas não deixa de ser um fator a se levar em conta. Se você está comprando um processador de baixo consumo e não pretende fazer grandes overclocks, não existe necessidade de pagar mais caro por uma placa com um regulador de tensão de 8 ou 16 fases.

Em seguida, temos a questão estética. A fim de diferenciar seus produtos, cada vez mais fabricantes adotam cores alternativas no PCB das placas, como preto, azul, ou até mesmo vermelho, fugindo do verde tradicional. A cor tem apenas efeito decorativo, não é um indicador da qualidade da placa. Da mesma forma que a cor da placa, a cor dos slots pode variar. Os slots PCI, que são originalmente brancos,

Page 6: Componentes da placa mãe

podem ser azuis numa placa da ECS ou amarelos numa DFI, por exemplo. As placas coloridas podem ser usadas para criar um visual diferente ao fazer um casemod.

Continuando, existe uma regra geral de que, quanto mais baixa for a temperatura de funcionamento, mais tempo os componentes dos PCs tendem a durar. De uma forma geral, um PC em que a temperatura dentro do gabinete fique em torno dos 35°C, tende a apresentar menos defeitos e problemas de instabilidade e durar mais do que um onde a temperatura fique em torno dos 45°C, por exemplo.

Naturalmente, existem exceções, já que no mundo real entram em cena os imprevistos do dia a dia e até mesmo falhas na produção dos componentes que abreviem sua vida útil. Mas, se você fizer um teste de maior escala, monitorando o funcionamento de 100 PCs de configuração similar ao longo de 5 anos, por exemplo, vai ver que uma diferença de 10 graus na temperatura influencia de forma significativa a vida útil.

O principal motivo disso são os capacitores eletrolíticos, que são usados em profusão em placas-mãe, placas de vídeo e em diversos outros componentes.

Os capacitores permitem armazenar pequenas quantidades de energia, absorvendo variações na corrente e entregando um fluxo estável para os componentes ligados a ele. Você pode imaginar que eles atuam como pequenas represas, armazenando o excesso de água na época das chuvas e entregando a água armazenada durante as secas.

Imagine por exemplo uma situação em que o processador está em um estado de baixo consumo de energia e subitamente "acorda", passando a operar na

Page 7: Componentes da placa mãe

frequência máxima. Temos então um aumento imediato e brutal no consumo, que demora algumas frações de segundo para ser compensado. Durante esse período, são os capacitores que fornecem a maior parte da energia, utilizando a carga armazenada.

Tanto o processador principal quanto a GPU da placa de vídeo e os controladores responsáveis por barramentos diversos (PCI Express, AGP, PCI, etc.) são especialmente suscetíveis a variações de tensão, que podem causar travamentos e até mesmo danos. Basicamente, é graças aos capacitores que um PC pode funcionar de forma estável.

Existem diversos tipos de capacitores. Tradicionalmente, os mais usados em placas-mãe e outros componentes são os capacitores eletrolíticos. Eles possuem uma boa capacidade e são muito baratos de se produzir, daí a sua enorme popularidade. O problema é que eles possuem uma vida útil relativamente curta, estimada em de 1 a 5 anos de uso contínuo, variando de acordo com a qualidade de produção e as condições de uso.

Entre os fatores "ambientais", o que mais pesa na conta é, justamente, a temperatura de funcionamento. Uma redução de 10 graus na temperatura interna do gabinete pode resultar num aumento de até 100% no tempo de vida útil dos capacitores, daí a recomendação de caprichar na ventilação e, caso necessário, instalar exaustores adicionais.

Durante a década de 1990 existiram muitos casos de placas-mãe com capacitores de baixa qualidade (sobretudo em placas da PC-Chips, ECS, Soyo e Abit), que falhavam depois de apenas um ou dois anos de uso. As coisas começaram a melhorar a partir da virada do milênio, com os fabricantes percebendo que usar capacitores de baixa qualidade acaba causando mais prejuízo do que ganho. Infelizmente, como temos uma grande predominância de equipamentos de baixa qualidade aqui no Brasil, ainda é preciso ter um certo cuidado.

Com o passar do tempo, os capacitores eletrolíticos perdem progressivamente a sua capacitância, deixando os componentes desprotegidos. O capacitor passa então a atuar como um condutor qualquer, perdendo sua função. Sem a proteção proporcionada por ele, os circuitos passam a receber diretamente as variações, o que, além de abreviar sua vida útil, torna o sistema como um todo mais e mais instável.

Como o processo é muito gradual, você começa notando travamentos esporádicos nos momentos de atividade mais intensa, que passam a ser mais e mais frequentes, até chegar ao ponto em que você acaba sendo obrigado a trocar de placa-mãe, pois o micro simplesmente não consegue mais nem concluir o boot.

Nesses casos, o defeito raramente é permanente, de forma que ao substituir os capacitores defeituosos, a placa volta a funcionar normalmente. É aí que entram os técnicos e as empresas que fazem manutenção de placas-mãe, substituindo capacitores e outros componentes defeituosos.

Internamente, um capacitor eletrolítico é composto por duas folhas de alumínio, separadas por uma camada de óxido de alumínio, enroladas e embebidas em um eletrólito líquido (composto predominantemente de ácido bórico, ou borato de

Page 8: Componentes da placa mãe

sódio), que acaba evaporando em pequenas quantidades durante o uso. Como o capacitor é hermeticamente selado, isto com o tempo gera uma pressão interna que faz com que ele fique estufado. Esse é o sinal visível de que o capacitor está no final de sua vida útil. Em alguns casos, o eletrólito pode vazar, corroendo as trilhas e outros componentes próximos, causando assim uma falha prematura do equipamento.

Ao contrário de chips BGA e outros componentes que usam solda de superfície, os contatos dos capacitores são soldados na parte inferior da placa. Embora trabalhoso, é possível substituir capacitores estufados ou em curto usando um simples ferro de solda, o que permite consertar ou estender a vida útil da placa.

Aqui temos um caso dramático, de uma placa com diversos capacitores estufados, três deles já apresentando sinais de vazamento:

A partir de 2006 os capacitores eletrolíticos começaram a dar lugar aos capacitores de estado sólido (chamados de Conductive Polymer Aluminum), onde a folha de alumínio banhada no líquido eletrolítico é substituída por uma folha de material plástico (um polímero) contendo um eletrolítico sólido de alumínio. Por não conterem nenhum tipo de líquido corrosivo, estes capacitores não são suscetíveis aos problemas de durabilidade que caracterizam os capacitores eletrolíticos.

Embora mais duráveis, os capacitores de estado sólido são mais caros que os capacitores eletrolíticos. Como o uso deles aumenta em até US$ 10 o custo de produção da placa (o que acaba causando um aumento considerável no preço final), eles foram inicialmente usados apenas em placas "premium", desenvolvidas para o público entusiasta.

Com o passar do tempo, entretanto, eles foram gradualmente se popularizando, até se tornarem norma. Hoje em dia, já é raro encontrar placas-mãe novas que ainda

Page 9: Componentes da placa mãe

utilizam capacitores eletrolíticos.

Os capacitores de estado sólido podem ser diferenciados dos eletrolíticos facilmente, pois são mais compactos e possuem um encapsulamento inteiriço:

Capacitores de estado sólido

BIOS

O BIOS contém todo o software básico, necessário para inicializar a placa-mãe, checar os dispositivos instalados e carregar o sistema operacional, o que pode ser feito a partir do HD, CD-ROM, pendrive, ou qualquer outra mídia disponível. O BIOS inclui também o setup, o software que permite configurar as diversas opções oferecidas pela placa. O processador é programado para procurar e executar o BIOS sempre que o micro é ligado, processando-o da mesma forma que outro software qualquer. É por isso que nenhuma placa-mãe funciona "sozinha": você precisa ter instalado o processador e os módulos de memória para que o PC possa iniciar o boot.

Por definição, o BIOS é um software, mas por outro lado ele fica gravado em um chip espetado na placa-mãe, o que ofusca um pouco a definição. Na maioria dos casos, o chip combina uma pequena quantidade de memória Flash (512 ou 1024 KB no caso dos chips PLCC), o CMOS (que é composto por 128 a 256 bytes de memória volátil) e o relógio de tempo real. Nas placas antigas era utilizado um chip DIP, enquanto nas atuais é utilizado um chip PLCC (Plastic Leader Chip Carrier), que é

Page 10: Componentes da placa mãe

bem mais compacto:

Mais recentemente, muitos fabricantes passaram a armazenar o BIOS em chips de memória Flash NOR de acesso serial, que também cumprem com a função, mas são menores e um pouco mais baratos que os chips PLCC. Outra tendência crescente é o uso de um segundo chip com uma cópia de backup do BIOS, que é usada em caso de problemas com a programação do chip principal (como no caso de um upgrade de BIOS mal-sucedido).

Em placas da Gigabyte, por exemplo, o recurso é chamado de "Dual-BIOS" e os dois chips de memória Flash são chamados de B_BIOS e M_BIOS:

Page 11: Componentes da placa mãe

Como os chips de memória Flash atuais possuem uma capacidade maior que a usada pelo BIOS, quase sempre existe algum espaço livre para armazenamento de informações de diagnóstico ou outros recursos implementados pelos fabricantes. No caso das placas da Gigabyte, por exemplo, é possível usar parte do espaço livre para guardar pequenos arquivos e outras informações (criando um TXT com senhas ou informações diversas que não é perdido ao formatar o HD, por exemplo) usando o Smart Recovery, que faz parte da suíte de softwares da placa.

Continuando, o CMOS serve para armazenar as configurações do setup. Como elas representam um pequeno volume de informações, ele é bem pequeno em capacidade.

Assim como a memória RAM principal, ele é volátil, de forma que as configurações são perdidas quando a alimentação elétrica é cortada. Devido a isso, toda placa-mãe inclui uma bateria, que mantém as configurações quando o micro é desligado.

A mesma bateria alimenta também o relógio de tempo real (real time clock), que, apesar do nome pomposo, é um relógio digital comum, que é o responsável por manter atualizada a hora do sistema, mesmo quando o micro é desligado.

Se você prestou atenção nos três parágrafos anteriores, deve estar se perguntando por que as configurações do setup não são armazenadas diretamente na memória Flash, em vez de usar o CMOS, que é volátil. Isso seria perfeitamente possível do ponto de vista técnico, mas a ideia de usar memória volátil para guardar as configurações é justamente permitir que você possa zerar as configurações do setup (removendo a bateria, ou mudando a posição do jumper) em casos onde o micro deixar de inicializar por causa de alguma configuração incorreta.

Um caso clássico é tentar fazer um overclock muito agressivo e o processador passar a travar logo no início do boot, sem que você tenha chance de entrar no setup e desfazer a alteração. Atualmente basta zerar o setup para que tudo volte ao normal, mas, se as configurações fossem armazenadas na memória Flash, a coisa seria mais complicada.

Para zerar o CMOS, você precisa apenas cortar o fornecimento de energia para ele. Existem duas formas de fazer isso. A primeira é (com o micro desligado) remover a bateria da placa-mãe e usar uma moeda para fechar um curto entre os dois contatos da bateria durante 15 segundos. Isso garante que qualquer carga remanescente seja eliminada e o CMOS seja realmente apagado. A segunda é usar o jumper "Clear CMOS", que fica sempre posicionado próximo à bateria. Ele possui duas posições possíveis, uma para uso normal e outra para apagar o CMOS ("discharge", ou "clear CMOS"). Basta mudá-lo de posição durante 15 segundos e depois recolocá-lo na posição original.

Uma dica é que muitas placas vêm de fábrica com o jumper na posição "discharge", para evitar que a carga da bateria seja consumida enquanto a placa fica em estoque. Ao montar o micro, você precisa se lembrar de verificar e, caso necessário, mudar a posição do jumper. Caso contrário a placa não funciona, ou exibe uma mensagem de erro durante o boot e não salva as configurações do setup.

Page 12: Componentes da placa mãe

Muitos fabricantes ainda disponibilizam disquetes de boot, contendo uma versão reduzida do FreeDOS ou MS-DOS, mas muitos já passaram a disponibilizar CDs de boot (basta gravar a imagem .iso usando o Nero, K3B ou outro programa de gravação e dar boot), o que elimina a necessidade de ter que instalar um drive de disquetes na máquina só para poder atualizar o BIOS.

Uma ideia nova, que foi inaugurada pela Asus e vem sendo adotada por cada vez mais fabricantes, é incluir o utilitário de atualização diretamente no próprio BIOS. Nesse caso, você só precisa pressionar uma combinação de teclas durante o boot e indicar a localização do arquivo de atualização. Em placas antigas ele precisava ser gravado num disquete ou CD-ROM (você precisava queimar um CD, colocando o arquivo no diretório raiz), mas a maioria das placas atuais já suporta o uso de cartões de memória ou mesmo de partições do HD, desde que você coloque o arquivo no diretório raiz.

Atualizar o BIOS é sempre um procedimento potencialmente perigoso, já que sem ele a placa não funciona. Na grande maioria dos casos, o programa também oferece a opção de salvar um backup do BIOS atual antes de fazer a atualização. Esse é um passo importante, pois se algo sair errado, ou você tentar gravar uma atualização para um modelo de placa diferente, ainda restará a opção de reverter o upgrade, regravando o backup da versão antiga.

A maioria das placas atuais incorpora sistemas de proteção, que protegem áreas essenciais do BIOS, de forma que, mesmo que acabe a energia no meio da atualização, ou você tente gravar o arquivo errado, a placa ainda preservará as funções necessárias para que você consiga reabrir o programa de gravação e terminar o serviço. Temos também o caso das placas com dois chips de BIOS, onde o segundo chip é protegido contra gravação.

Placas antigas não possuem essas camadas de proteção, de forma que um upgrade malsucedido podia realmente inutilizar a placa. Nesses casos, a solução era remover o chip e levá-lo a alguém que tivesse um gravador de EEPROM. Depois de

Page 13: Componentes da placa mãe

regravado, o chip era reinstalado na placa e tudo voltava ao normal. Ou seja, mesmo nesses casos, a placa não era realmente danificada, ficava apenas "fora de serviço".

Um truque muito usado era utilizar uma placa-mãe igual, ou pelo menos de modelo similar, para regravar o BIOS da placa danificada. Nesses casos, você dava boot com o disquete ou CD de atualização (na placa boa), removia o chip com o BIOS e instalava no lugar o chip da placa danificada (com o micro ligado), dando prosseguimento ao processo de regravação. Dessa forma, você usava a placa "boa" para regravar o BIOS da placa "ruim". Naturalmente, a troca precisava ser feita com todo o cuidado, já que um curto nos contatos podia inutilizar a placa-mãe.

Concluindo, existem também programas de gravação para Windows, que são incluídos nos CDs de drivers de muitas placas. Eles são mais fáceis de usar, mas fazer a atualização através deles é considerado menos seguro, já que, dentro do Windows e com outros programas e serviços rodando, a possibilidade de algo inesperado acontecer é maior.

Hoje em dia, a maioria dos dispositivos incluindo o HD, drive óptico, placa wireless e placa de vídeo possuem um software de inicialização, similar ao BIOS da placa-mãe. Ele pode ser gravado diretamente no dispositivo, em um chip de memória Flash, ou mesmo em algum tipo de memória ROM, ou ser incorporado ao driver. Essa segunda solução vem sendo cada vez mais adotada pelos fabricantes, pois permite eliminar o chip de memória, reduzindo o custo. É por isso que, muitas vezes (sobretudo ao tentar ativar sua placa wireless ou scanner no Linux), você precisa baixar, além do driver ou módulo necessário, também os arquivos que compõem o firmware da placa.

Os barramentos: ISA, EISA, VLB e PCI

Junto com os processadores, memória RAM e memória cache, outra classe importante são os barramentos, já que são eles os responsáveis por interligar os diferentes componentes da placa-mãe e permitir o uso de periféricos.

Acompanhando a evolução dos processadores, os primeiros anos da plataforma PC foram marcados por uma corrida em torno de barramentos mais rápidos, capazes de atender à evolução das placas de vídeo e outros periféricos. Não é tão diferente do que temos nos dias de hoje (onde as placas 3D continuam liderando a demanda por novas tecnologias), mas na época essa era uma questão realmente urgente.

O primeiro barramento de expansão usado em micros PC foi o ISA, que por incrível que pareça, foi usado do PC original (o de 1981) até a época do Pentium III. Existiram duas versões: os slots de 8 bits, que foram utilizados pelos primeiros PCs e os slots de 16 bits, introduzidos a partir dos micros 286.

Embora fossem processadores de 16 bits, os 8088 comunicavam-se com os periféricos externos utilizando um barramento de 8 bits, daí o padrão ISA original também ser um barramento de 8 bits. Inicialmente, o barramento ISA operava a apenas 4.77 MHz, a frequência de clock do PC original, mas logo foi introduzido o PC XT, onde tanto o processador quanto o barramento ISA operavam a 8.33 MHz.

Com a introdução dos micros 286, o barramento ISA foi atualizado, tornando-se o

Page 14: Componentes da placa mãe

barramento de 16 bits que conhecemos. Na época, uma das prioridades foi preservar a compatibilidade com as placas antigas, de 8 bits. Justamente por isso, os pinos adicionais foram incluídos na forma de uma extensão para os já existentes.

Como você pode ver na foto, o slot ISA é dividido em duas partes. A primeira, maior, contém os pinos usados pelas placas de 8 bits, enquanto a segunda contém a extensão, que adiciona os pinos extras:

Slot ISA

Uma coisa que chama a atenção nos slots ISA é o grande número de contatos, totalizando nada menos que 98. Por serem slots de 16 bits, temos apenas 16 trilhas de dados, as demais são usadas para endereçamento, alimentação elétrica, sinal de clock, refresh e assim por diante.

Este esquema mostra a função de cada um dos pinos em um slot ISA. Como você pode ver, não é exatamente uma implementação "simples e elegante", mas enfim, funcionava e era o que estava disponível na época:

Page 15: Componentes da placa mãe

ESQUEMA DE UM SLOT ISA