Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em...

87
UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água em granitóides do Complexo Itu (SP) Aluna Helen Soares Borges da Silva Orientadora Leila Soares Marques São Paulo 2011

Transcript of Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em...

Page 1: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS

DEPARTAMENTO DE GEOFÍSICA

Dissertação de Mestrado

Estudo em laboratório da dinâmica dos isótopos de urânio

no processo de interação rocha-água em granitóides do

Complexo Itu (SP)

Aluna

Helen Soares Borges da Silva

Orientadora

Leila Soares Marques

São Paulo

2011

Page 2: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

HELEN SOARES BORGES DA SILVA

Estudo em laboratório da dinâmica dos isótopos de urânio

no processo de interação rocha-água em granitóides do

Complexo Itu (SP)

São Paulo

2011

Dissertação apresentada ao Instituto de

Astronomia, Geofísica e Ciências Atmos-

féricas da Universidade de São Paulo co-

mo parte dos requisitos para obtenção do

título de Mestre em Ciências na área de

Geofísica: Versão corrigida.

Page 3: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Sumário Agradecimentos .................................................................................................................. iii

Lista de figuras .................................................................................................................... iv

Lista de tabelas .................................................................................................................... vi

Resumo ............................................................................................................................... vii

Abstract ............................................................................................................................. viii

Capítulo 1

Introdução ............................................................................................................................ 1

Capítulo 2

Geoquímica do Urânio ......................................................................................................... 4

2.1 Retrospectiva da série de Uranio ............................................................................... 4

2.2 Química do Urânio ..................................................................................................... 8

2.3 Equilíbrio radioativo secular...................................................................................... 9

2.4 Geoquímica do urânio em águas subterrâneas ........................................................ 10

2.5 Fracionamento entre os membros das séries do urânio .......................................... 11

Capítulo 3

Contexto Geológico e Amostragem .................................................................................... 14

3.1 Amostragem .............................................................................................................. 16

Capítulo 4

Procedimento Experimental .............................................................................................. 18

4.1 Preparação das amostras ......................................................................................... 18

4.2 Determinação da área superficial ............................................................................ 20

4.3 Aparato Experimental .............................................................................................. 22

Page 4: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

ii

4.4 Análise de Urânio ..................................................................................................... 25

4.4.1 Espectrometria Alfa ........................................................................................... 26

4.4.2 Ataque e dissolução das amostras de rocha ...................................................... 27

4.4.3 Tratamento químico das amostras de água ...................................................... 28

4.4.4 Separação e purificação química do U .............................................................. 29

4.4.5 Eletrodeposição .................................................................................................. 30

4.4.6 Espectrômetro Alfa ............................................................................................ 31

4.4.7 Rendimento químico .......................................................................................... 32

4.4.8 Determinação da concentração de urânio ......................................................... 33

Capítulo 5

Resultados e discussões ...................................................................................................... 36

5.1 Nomenclatura química das rochas do Complexo Itu .............................................. 36

5.2 Resultados das análises de urânio ............................................................................ 39

5.2.1 Qualidade das determinações de urânio na água ............................................. 48

5.2.2 Lixiviação de urânio das rochas ........................................................................ 49

5.3 Resultados das análises de cátions dissolvidos ......................................................... 61

6 Considerações finais ........................................................................................................ 71

7. Referências ..................................................................................................................... 73

Page 5: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

iii

Agradecimentos

Agradeço primeiramente a Deus.

A minha orientadora, que desde meu ingresso na universidade vem me ajudando e ensinando, com paciência e bondade.

Ao programa da Capes pela bolsa de mestrado concedida e ao CNPq pelo suporte financeiro ao projeto.

Aos professores do IAG pelo conhecimento proporcionado durante esses anos.

Ao pessoal do laboratório de Geofísica Nuclear, especialmente ao Roberto que sempre me ajudou durante as etapas do processamento químico.

Aos meus queridos amigos, Livia, Camila, Mariana, Rosilene e Marcelo, que me ajudaram e animaram durante os períodos difíceis.

Aos meus amigos Gabriel, Renata e Emilio, companheiros de estudos e de chá. Pela companhia e apoio durante todo o trabalho.

Aos meus colegas da pós-graduação.

Aos motoristas e técnicos do IAG, que me ajudaram durante o processo de coleta e preparação das amostras.

A minha família, por todo apoio e amor.

E ao querido Fausto, por sempre estar comigo nos momentos bons e ruins.

Page 6: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

iv

Lista de figuras

Figura 2.1: Esquematização proposta por Rutherford para a primeira série de decaimento

publicada ............................................................................................................................... 6

Figura 2.2: Série de decaimento segundo Fajans (1913) ......................................................... 7

Figura 2.3: Séries de decaimento radioativo encabeçadas pelos isótopos 238U e235U.

(http:gulfsci.usgs.gov/tampabay/data/2_biogeochemical_cycles/images) ................................ 9

Figura 3.1: Mapa do Complexo Múltiplo, Centrado e Plurisserial Itu ................................... 15

Figura 4.1: Aparato Experimental ......................................................................................... 23

Figura 4.2: Sistema de lixiviação em funcionamento. ........................................................... 24

Figura 4.3: Frascos contendo as amostras coletadas em uma das amostragens. ..................... 25

Figura 4.4:Espectro alfa da análise de amostras geológicas, onde os isótopos de U e Th não

foram separados .................................................................................................................. 27

Figura 4.5:Colunas aniônicas utilizadas na etapa da cromatografia de troca iônica. ............... 30

Figura 4.6: Sistema de eletrodeposição. ................................................................................ 31

Figura 5.1: Diagrama R1-R2 de nomenclatura de rochas plutônicas ..................................... 38

Figura 5.2: Espectro alfa obtido para amostra de rocha LM-GR-15. ..................................... 45

Figura 5.3: Espectros alfa obtidos na análise de água LM-GR-01A ..................................... 46

Figura 5.4: Espectros alfa obtidos na análise de água LM-GR-16B ...................................... 47

Figura 5.5: Comparação entre as concentrações de urânio obtidas por espectrometria alfa e

ICP-MS para algumas das amostras de água investigadas. .................................................... 49

Figura 5.6: Comportamento da massa de urânio lixiviado normalizada para as amostras

estudadas e suas duplicatas em função do tempo do experimento. ........................................ 55

Figura 5.7: Acumulação da massa de urânio em função do tempo de amostragem. ............... 56

Page 7: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

v

Figura 5.8: Massa total de urânio lixiviado normalizado pela concentração desse elemento na

rocha para cada amostra e sua duplicata............................................................................... 57

Figura 5.9: Razões de atividades 234U/238U em função da duração do experimento. ............... 59

Figura 5.10: Relação das atividades do 234U em função das de 238U para cada uma das

amostras de água analisadas. ................................................................................................ 60

Figura 5.11: Diagrama dos coeficientes lineares das retas ajustadas por mínimos quadrados

dos parâmetros da linha de regressão referentes aos dados da figura 5.9. .............................. 61

Figura 5.12: Dissolução dos elementos em função do tempo na amostra LM-GR-01 ............ 63

Figura 5.13: Dissolução dos elementos em função do tempo na amostra LM-GR-02. ........... 64

Figura 5.14: Dissolução dos elementos em função do tempo na amostra LM-GR-05. ........... 65

Figura 5.15: Dissolução dos elementos em função do tempo na amostra LM-GR-15. ........... 66

Figura 5.16: Dissolução dos elementos em função do tempo na amostra LM-GR-16. ........... 67

Figura 5.17: Dissolução total dos cátions para cada amostra. ................................................ 70

Page 8: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

vi

Lista de tabelas Tabela 5.1: Análises dos principais cátions presentes nas amostras de água em contato

com a rocha ........................................................................................................................ 37

Tabela 5.2: Concentrações de urânio nas rochas do Complexo Itu ................................. 39

Tabela 5.3: Dados de área superficial e da densidade de cada uma das amostras,

incluindo as duplicatas. ...................................................................................................... 40

Tabela 5.4: Resultados das análises de urânio obtidas por espectrometria alfa para as

amostras de água investigadas. .......................................................................................... 42

Tabela 5.5: Concentrações de urânio determinadas por ICP-MS e espectrometria alfa

para algumas das amostras de água analisadas neste trabalho. ....................................... 48

Page 9: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

vii

Resumo São apresentados os resultados do estudo do processo de lixiviação de urânio de granitóides

do Complexo Itu (SP), através de experimentos de laboratório, para elucidar os mecanismos

envolvidos no processo de interação rocha-água. Para tanto, foram coletadas seis amostras

representativas das diferentes fácies graníticas do Complexo Itu, as quais foram submetidas

ao processo de lixiviação utilizando um aparato experimental especialmente projetado e de-

senvolvido para esta pesquisa. Das rochas analisadas três são sienogranitos, duas são granitos

alcalinos e uma é monzodiorito. Fragmentos de cada uma das rochas foram mantidos em fras-

cos de vidro, contendo água destilada que ficou percolando pelo sistema constantemente, sob

temperatura ambiente. Periodicamente, ao menos uma vez por mês, a água foi retirada para

análise de urânio e substituída por outra. Cada granito foi submetido ao processo de lixiviação

juntamente com uma duplicata e o sistema ficou em funcionamento por 180 dias. As concen-

trações de urânio e as razões de atividades 234U/238U nos granitóides e nas amostras de água

foram determinadas pela técnica de espectrometria alfa, que requer uma alta purificação quí-

mica do urânio. A rotina experimental adotada mostrou-se satisfatória, apresentando rendi-

mentos químicos variando entre 28 e 96%. A comparação dos resultados com aqueles deter-

minados por ICP-MS, em seis amostras, indicou bons níveis de exatidão, com erros relativos

variando de 2,3 a 12,8% (média = 7±4%). A quantidade total de urânio lixiviado, normalizado

pela área superficial da rocha submetida à lixiviação e também pela concentração deste ele-

mento nos granitóides, variou significativamente de uma amostra para outra, indicando rea-

ções envolvendo diferentes fases minerais. As maiores quantidades de urânio foram lixiviadas

nas primeiras etapas do experimento, apresentando em seguida decréscimo gradual, com esta-

bilização da taxa de dissolução, exceto para um sienogranito da Intrusão Cabreúva. As razões

de atividade 234U/238U determinadas nas águas indicaram desequilíbrio radioativo significati-

vo, com valores variando entre 1,63 ± 0,02 e 2,9 ± 0,1, que indicam lixiviação preferencial do 234U. Esses enriquecimentos de 234U não foram causados por recuo alfa direto, mas devem-se

à fragilização da rede cristalina dos minerais que contêm urânio e à mudança no estado de o-

xidação deste elemento de 4+ para 6+. As análises dos cátions presentes nas águas analisadas

sugerem que plagioclásio e biotita foram os minerais que mais sofreram dissolução. Como os

minerais acessórios (apatita, titanita e allanita) que concentram urânio estão associados com a

biotita, a sua dissolução pode ter acarretado a mobilização deste elemento nessas fases, con-

tudo, estudos adicionais são necessários para confirmar esta hipótese.

Palavras chave: urânio, espectrometria alfa, desequilíbrio radioativo, granitos, Complexo Itu.

Page 10: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

viii

Abstract This paper presents the results of uranium lixiviation process in granitoids from Itu Complex

(SP), through laboratory experiments, in order to elucidate the mechanism involved during

rock-water interaction. To achieve this, six representative samples were taken from different

granite facies of Itu Complex and submitted to an experimental lixiviation apparatus that was

developed and built for this project. Fragments of each sample were maintained in glass bot-

tles, containing distilled water that percolated the system constantly, at room temperature. Pe-

riodically (at least once a month) the water was removed for uranium dissolution analyses and

replaced with fresh distilled water. Each granite sample and one duplicate were submitted to

the lixiviation process and the system remained operating for 180 days. The uranium concen-

tration and the 234U/238U activity ratios of both the granitoids and water samples were deter-

mined by alpha spectrometry, that requires a high level of uranium chemical purification. The

experimental routine used was satisfactory with chemical recovery varying from 28 and 96%.

The comparison of these results with those determined with ICP-MS, in six samples, indicat-

ed good accuracy levels, with relative errors varying from 2,3 to 12,8% (average=

7±4%).The total amount of dissolved uranium, normalized by the respective superficial area

of the rock, varied significantly from one sample to another, indicating reactions that involve

different mineral phases. During the first water sampling it was observed the highest values

for uranium lixiviation, which were followed by a gradual decrease of the dissolution rates,

tending to present a constant rate at the end of the experiment, except for one sample from the

Cabreúva Intrusion. The 234U/238U activity ratios indicated a significant radioactivity disequi-

libria, with values between 1,63 ± 0,02 e 2,9 ± 0,1 , that indicate preferential leaching of the 234U. This enrichment was not caused by direct alpha recoil, but was probably due to the crys-

tal lattice damage of uranium enriched minerals and it’s oxidation state change from 4+ to 6+.

The analyses of the cations present in the water samples suggest that plagioclase and biotite

are the minerals most affected by dissolution. As the uranium enriched accessory minerals

(apatite, titanite and allanite) are associated with biotite, its dissolution may have enhanced

the mobilization of this element from accessory phases, although additional studies are nec-

essary to confirm this hypotheses.

Keywords : uranium, alpha spectrometry, radioactive disequilibrium, granites,Itu Complex.

Page 11: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 1 - Introdução

1

Capítulo 1

Introdução

O urânio é um dos elementos que mais contribui para a radioatividade natural terres-

tre. Trata-se de um elemento litófilo incompatível, pois apresenta grande dificuldade de entrar

nos retículos cristalinos dos minerais das rochas ígneas por possuir grande raio iônico e por

apresentar estados de oxidação tetravalente e hexavalente positivos. Desta forma, o urânio

acaba concentrando-se nas fases finais dos processos de diferenciação magmática, ou seja, em

rochas ácidas, como granitos e riolitos. (Ivanovich & Harmon, 1992).

Seus dois isótopos principais são o 238U e 235U que, juntamente com o 232Th, encabe-

çam as três séries naturais de decaimento radioativo. Através de diferentes tipos de decaimen-

to sucessivos, as séries do urânio, actínio e do tório produzem vários elementos, também ra-

dioativos, até alcançarem o estado estável em três isótopos de Pb (206Pb, 207Pb e 208Pb). Os

elementos dessas séries possuem meias-vidas distintas e quando não há perturbação do siste-

ma onde esses isótopos estão (sistema fechado) por períodos superiores a 1 Ma, todos os

membros presentes em cada uma das séries apresentam a mesma atividade (Ivanovich &

Harmon, 1992). Contudo, em certos ambientes geológicos esses filhos podem ser fracionados

(entrar ou sair dos sistemas geológicos), devido às suas diferentes características geoquímicas.

Desta forma, os radioisótopos pertencentes às séries do U e Th vêem sendo amplamente in-

vestigados e utilizados, tendo aplicações em diversas áreas das ciências da Terra, tais como

oceanografia, geocronologia e petrologia ígnea (Bourdon et al., 2003).

Os membros da série de decaimento do 238U mais comumente utilizados, além do pró-

prio 238U, nesses estudos são o 234U, 230Th, 226Ra e 210Pb, enquanto na série do 235U o isótopo

mais empregado é o 231Pa. Devido às suas meias vidas, esses elementos são usados para in-

vestigar processos geológicos que ocorreram no Quaternário Recente, em várias escalas de

tempo, tanto na geocronologia, como nos processos dinâmicos que causam o fracionamento

químico (Ivanovich & Harmon, 1992; Dickin, 1995).

Os radioisótopos da série do U têm sido amplamente usados com sucesso em estudos

de águas superficiais (rios, lagos, mares e oceanos) e subterrâneas. As águas carregam infor-

Page 12: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 1 - Introdução

2

mações muito importantes, pois herdam características dos meios com os quais entraram em

contato durante seu percurso. Esse é o caso da radioatividade presente nas águas, que advêm

da sua interação com os elementos radioativos presentes nas rochas, solos e minerais.

A água pode, então, ser considerada como um dos principais agentes transportadores

de elementos radioativos. O contato inicia-se na superfície dos minerais/grãos presentes nas

rochas, com lento ataque dos retículos cristalinos. Esse contato é facilitado quando as rochas

apresentam micro-fraturas causadas por processos tectônicos e térmicos. De acordo com

Dickson (1990), os minerais que contem elementos alcalinos ou alcalinos terrosos são os ata-

cados com mais facilidade, como por exemplo, plagioclásios, feldspatos, micas etc., os quais

podem apresentar concentrações de urânio que não são desprezíveis, fazendo com que esse

elemento acabe migrando para a água.

O intemperismo e mais comumente a interação rocha-água fracionam os radioisótopos 238U, 234U e 230Th, criando desequilíbrio entre eles em solos e perfis intemperizados. Isto re-

sulta do fato do U e Th serem incorporados por diferentes fases minerais, que se comportam

de modo diferente com relação ao intemperismo e também pelo fato desses dois elementos

possuírem comportamento geoquímico muito contrastante quando presentes em solução (Iva-

novich & Harmon, 1992).

Estudos sobre a caracterização da interação entre rochas e água incluem a determina-

ção das taxas de dissolução e outros processos físicos e químicos. Os resultados da interação

rocha-água freqüentemente resultam em razões de atividades 234U/238U, do urânio dissolvido,

maiores do que a unidade nas águas, evidenciando um desequilíbrio radioativo entre o pai e

filho (Osmond & Cowart, 1992).

O estudo em laboratório da lixiviação em rochas ígneas tem sido realizado sob situa-

ções que tentam se aproximar dos processos naturais, com o objetivo de determinar a mobili-

dade do urânio (Bonotto & Andrews, 1993; Crespo et al., 1996; Andersen et al., 2009). Ape-

sar da simulação em laboratório ser uma simplificação do que verdadeiramente ocorre na na-

tureza, esses estudos são importantes para a observação e compreensão dos processos, e assim

uma extrapolação para os sistemas naturais pode ser feita.

Em trabalhos realizados na região de Itu e Salto no Estado de São Paulo (Souza, 2006;

Reyes, 2009), águas extraídas de poços profundos apresentaram concentrações de atividade

de U elevadas (até 40,7 ± 0,8 mBq/L) e variações significativas nas razões (234U/238U) tanto

entre poços, como em função do tempo de amostragem, com coletas mensais que chegaram a

cobrir 18 meses de análise ininterrupta. Em todas as análises efetuadas verificou-se enrique-

Page 13: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 1 - Introdução

3

cimento significativo de 234U em relação ao 238U, com razões de atividades 234U/238U de até

18,3 ± 0,4.

Com base nesses resultados foi realizado, por Collaço (2008), um estudo preliminar da

mobilidade do urânio em processo de lixiviação em laboratório com duas amostras de grani-

tóides das intrusões Salto e Cabreúva, pertencentes ao Complexo Itu. As concentrações de U

nas rochas investigadas foram de 7,7± 0,3, 7,5 ± 0,3 e 7,3 ± 0,3 µg/g e apesar das concentra-

ções de urânio serem iguais, considerando-se as incertezas analíticas, os teores lixiviados du-

rante o experimento variaram significativamente entre as amostras, indicando que os minerais

portadores de urânio eram diferentes.

Esses resultados motivaram um estudo mais profundo dos processos de interação ro-

cha-água em granitóides do Complexo de Itu, através de experimentos em laboratório, a fim

de se investigar a mobilidade do urânio nesses ambientes. Cabe destacar que esses granitóides

constituem um aqüífero fraturado, cujas águas são muito utilizadas para fins residenciais em

vários condomínios e indústrias, sendo de fundamental importância entender os processos pe-

los quais o urânio é lixiviado da rocha para a água e como é o seu comportamento em solu-

ção.

Para que essa investigação fosse realizada, era também necessário aprimorar o aparato

experimental utilizado por Collaço (2008), para que a água circulasse pelas rochas de maneira

mais efetiva, sendo este também um dos objetivos da presente pesquisa.

A técnica de espectrometria alfa foi utilizada para a medida das razões de atividades 234U/238U nas amostras de água que ficaram em contato com rochas representativas das dife-

rentes intrusões que compõem o Complexo Itu, permitindo também o cálculo das concentra-

ções de urânio pelo método de diluição isotópica. O método possui os níveis de precisão e

exatidão requeridos para esse tipo de investigação.

Análises químicas complementares, para a determinação dos elementos maiores, me-

nores e traço nas rochas e nas águas foram também realizadas utilizado as técnicas de fluores-

cência de raios X e a técnica de ICP-OES.

Page 14: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

Capítulo 2

Geoquímica do Urânio 2.1 Retrospectiva da série de Uranio

Após a descoberta dos raios X (1895), vários pesquisadores iniciaram pesquisas nesta

área, dentre eles, Henri Becquerel. Ao conduzir um estudo sobre a relação entre esse tipo de

radiação e a luz visível, Becquerel identificou que certos cristais de sais de urânio emitiam

radiação continuamente sem a necessidade de luz, ou seja, independentemente da fosfores-

cência (Becquerel, 1896a). Verificou também que além da luminosidade, os cristais de sais de

urânio liberavam raios, distintos dos raios X, com poder de penetrar a matéria (Becquerel,

1896b). Foi então descoberta a radioatividade, na época chamada de radiação Becquerel. A-

penas dois anos mais tarde o termo radioatividade seria usado pela primeira vez por Marie

Curie.

A descoberta de Becquerel inspirou outros cientistas, dentre eles Marie Curie, cujo

tema escolhido para o seu doutoramento foi o estranho tipo de radiação emitida pelos cristais

de urânio, que permitiu verificar que a radioatividadeera emitida por vários compostos e mi-

nerais. Ela demonstrou que a radioatividade advinha principalmente do urânio e tório (Curie,

1898) e iniciou os primeiros estudos para caracterizar a natureza atômica desses elementos.

Examinando diversos minerais, Marie Curie notou que a radioatividade do U natural

era mais baixa do que a observada para alguns compostos naturais deste elemento. Para veri-

ficar se esse resultado era devido à natureza química do composto, ela sintetizou um dos mi-

nerais e notou que o composto sintético tinha uma radioatividade mais baixa do que a do e-

xemplar natural. Isso a levou a crer que os minerais deveriam conter algum outro elemento

desconhecido, mais ativo do que o U (Curie, 1898). Como já havia estudado todos os elemen-

tos conhecidos, essa impureza parecia ser algo novo. De fato, tratavam-se de dois elementos -

polônio e rádio - que, com sua dedicação e auxílio de seu marido, Pierre Curie, foram extraí-

dos com sucesso da pechblenda (Curie & Curie, 1898; Curie et al., 1898). Esses estudos des-

Page 15: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

5

pertaram a atenção do mundo cientifico e levaram vários pesquisadores a se dedicarem a pes-

quisas da radioatividade. Rutherford observou que haviam apenas algumas formas de radiação

que eram capazes de penetrar a matéria, distinguindo e nomeando as radiações alfa e beta

(Rutherford, 1899).

Em 1899 André Louis Debierne (1900) descobriu o actínio em conseqüência da pes-

quisa sobre a pechblenda que os Curie iniciaram. Rutherford (1900a) observou em uma “e-

manação” do tório (220Rn), o decréscimo exponencial da radioatividade com o tempo, e seu

trabalho sobre o assunto introduziu a famosa equação dN/dt=-λN, assim como o conceito da

meia-vida. A meia vida por ele medida para a emanação do Th foi de 60 segundos, valor mui-

to próximo do conhecido hoje (55,6 s para o 220Rn). Na continuação da sua pesquisa observou

que as paredes dos frascos onde mantinha a emanação do Th se tornaram radioativas. Ao me-

dir a meia-vida (Rutherford, 1900b), ele, sem saber, estava desbravando a série de decaimento

do Th e medindo o decaimento do 212Pb, chegando a um resultado de 11 horas. Seus estudos

junto com Soddy, fazendo uso da separação química do Th, levaram ao chamado Th-X, 224Ra

(Rutherford & Soddy, 1902). Crookes verificou, a partir de reações de dissolução e precipita-

ção com sais de urânio, uma outra substância ativa, que foi nomeada U-X, 234Th (Crookes,

1900).

Becquerel, retomando sua pesquisa sobre o assunto, notou que o U uma vez retirado

do U-X, tinha sua radioatividade drasticamente reduzida, e que essa radioatividade parecia

aumentar e retornar ao valor do urânio inicial se ele fosse deixado por um um período sufici-

entemente longo (Becquerel, 1901). Rutherford e Soddy acolheram essa idéia. Eles separaram

o Th-X do Th e fizeram uma série de medidas que demonstrava a correspondência exata entre

o retorno ao valor da radioatividade do Th, e o decaimento da radioatividade no Th-X. As-

sim, deram a primeira descrição de equilíbrio secular e sugeriram que os elementos passavam

por transformações espontâneas. Esse reconhecimento levou a primeira publicação da série de

U em 1903 (Rutherford, 1903) (Figura 2.1):

Page 16: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

Figura 2.1: Esquematização proposta por Rutherford para a primeira série de decaimento pu-

blicada (Rutherford, 1903).

Com os estudos de separação química, essas séries foram rapidamente sendo preen-

chidas e em apenas um ano mais de 15 elementos radioativos se tornaram conhecidos, cada

um com sua meia-vida medida, e arranjados em quatro séries de decaimento: do U, Th, Ac e

Ra (Rutherford, 1904).

Pierre Currie descobriu que a radioatividade liberava grandes quantidades de calor

(Curie & Laborde, 1903), e neste mesmo ano, foi também descoberto que o decaimento alfa

liberava He (Ramsay & Soddy, 1903).

O He logo começou a ser usado para datar materiais geológicos, inicialmente por Ru-

therford em 1905, que calculou a primeira idade radiométrica de aproximadamente 500 Ma

para uma amostra de pechblenda, e depois por Strutt que examinou uma variada gama de mi-

nerais (Strutt, 1905). Pouco depois, Boltwood percebeu que o conteúdo de Pb em minerais

aumentava com a idade e ficou claro que este elemento era o produto final da radioatividade.

Boltwood também foi o responsável por adicionar elementos nas séries de decaimento com

sua descoberta do ionium (230Th), ligando a série de decaimento do U e do Ra (Boltwood,

1907). A descoberta do 234U, inicialmente conhecido como UrII, se deu em 1912.

As tentativas de separar substâncias por processos químicos estavam sendo frustradas

a essa altura. Apesar de possuírem propriedades radioativas e massas moleculares distintas,

algumas delas não eram separáveis umas das outras, aparentando ser quimicamente idênticas.

Devido a esses problemas, em 1910, Soddy supôs que poderiam existir formas diferentes de

um mesmo elemento (Soddy, 1910), tendo finalmente, em 1913, usado o termo isótopo para

classificar um mesmo elemento, mas com valores distintos de massa e meia-vida (Soddy,

1913b). Nesse mesmo ano ele escreveu: “rádio-tório, ionium, tório, U-X e rádio- actínio são

Page 17: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

7

grupos de elementos isótopos, cujas as massas atômicas calculadas variam entre 228 e 234”

(agora sendo conhecidos como os isótopos de 228Th, 230Th,232Th, 234Th e 227Th). Ele foi laure-

ado com o prêmio Nobel de Química em 1921 pelo seu trabalho com os isótopos.

Assim as cadeias de decaimento continuavam a ser preenchidas e um filho do U-X foi

descoberto - conhecido hoje como o 234Pa- e chamado de “brevium” devido a sua meia-vida

curta. (Fajans & Gohring, 1913 apud Bourdon et al., 2003). A série de decaimento publicada

por Fajans (1913 apud Bourdon et al., 2003) aproximava-se muito da usada atualmente (Figu-

ra 2.2), diferindo apenas na ausência do ramo de decaimento do Ra-A (218Po) e na precisão do

valor de algumas meias-vida.

Figura 2.2: Série de decaimento segundo Fajans (1913) (modificada de Boudorn et al., 2003).

A regra do deslocamento foi abordada por Soddy (1913b) e Fajans (1913). Eles traba-

lharam independentemente e deduziram que, baseado no comportamento químico dos isóto-

pos na série de decaimento e nas suas massas moleculares, podia-se observar um deslocamen-

to do elemento na tabela periódica conforme sofria o decaimento. Quando um elemento mu-

dava por emissão alfa, o elemento resultante era deslocado duas vezes para a esquerda (em

relação ao elemento pai) na tabela e quando o decaimento era provocado por emissão de raio

beta, o filho era movido um grupo para a direita. Isso permitiu que a série de decaimento fos-

se arranjada pela massa e pelo número atômico , assemelhando-se ainda mais às séries do U.

Assim, apenas 17 anos após a descoberta da radioatividade, o trabalho de estabelecer a

seqüência dos isótopos de decaimento do U e Th estava quase completo, em 1913. Ainda se-

riam necessários mais 40 anos até serem desenvolvidas técnicas para a medição de alguns

desses isótopos, e assim as séries do U começarem a ser aplicadas em diferentes questões nas

ciências da Terra.

Page 18: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

2.2 Química do Urânio

O urânio constitui o mais pesado elemento químico de ocorrência natural, pertencendo

a família dos actinídeos, com número atômico 92 e número de massa 238. É um elemento ra-

dioativo, cujo símbolo químico é representado pela letra U, e possui estados de valência 2+,

3+,4+,5+ e 6+. Os estados 4+ (insolúvel) e 6+(solúvel) são os mais freqüentes na natureza e

são representados por UO+2 e UO2

2+. O urânio possui três isótopos naturais, que também são

radioativos, mas com abundâncias bem distintas na natureza, 238U (99,28%), 235U (0,72%) e 234U (0,0054%) (Hess et al., 1985). Os isótopos 238U e 235U encabeçam duas séries de decai-

mento que finalizam, através do decaimento de vários filhos com meias-vidas distintas, em

isótopos estáveis de chumbo (Figura 2.3). O U está entre os elementos que mais contribuem

para a radioatividade natural terrestre e suas séries de decaimento, por terem vários filhos com

meias-vidas conhecidas, são amplamente utilizadas para datação radiométrica e para o estudo

de processos de fracionamento químico nos processos magmáticos (Faure, 1986; Dickin,

1995).

Page 19: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

9

Figura 2.3: Séries de decaimento radioativo encabeçadas pelos isótopos 238U e235U.

(http:gulfsci.usgs.gov/tampabay/data/2_biogeochemical_cycles/images)

2.3 Equilíbrio radioativo secular

Como os isótopos de 238U e 235U possuem meias-vidas muito longas em comparação

com os seus produtos de decaimento, 238UT1/2 = 4,5 x 109 anos e 235UT1/2 = 7,1 x 108 anos

(Dickin, 1995), a situação na qual a atividade do pai é a mesma que a de todos os seus filhos -

equilíbrio radioativo secular- é muito provável de ser alcançada. Entretanto, para ser atingido

o estado de equilíbrio, o sistema precisa ser fechado, ou seja, não podem ter ocorrido trocas

químicas nem físicas com o meio externo por um longo período de tempo.

Para alcançar 98,5% do estado de equilíbrio, é necessário que tenha se passado o tem-

po equivalente a cerca de seis meias-vidas do radioisótopo com menor constante de decai-

Page 20: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

mento da série. Assim, para a série do 238U o equilíbrio radioativo secular é atingido após um

período de 1,5 milhões de anos desde o fechamento do sistema (Ivanovich & Harmon, 1992).

Sendo a atividade expressa pelo produto da constante de decaimento e o número de

átomos do elemento, quando o equilíbrio secular for estabelecido numa rocha ou mineral, as

taxas de decaimento dos filhos serão iguais àquelas dos seus pais, assim:

(2.1)

onde: λ1 e N1 referem-se ao pai e λ2 e N2 ao filho.

Considerando-se o caso específico dos radioisótopos 238U o 234U, que pertencem à

mesma série radioativa, conforme o esquema de decaimento mostrado a seguir, se o equilíbrio

radioativo secular for estabelecido em uma rocha ou mineral que contenham urânio, a taxa de

decaimento do 234U será igual àquela do 238U e, conseqüentemente, a razão de suas atividades

será igual a 1.

2.4 Geoquímica do urânio em águas subterrâneas

O final da década de 80 e a década de 90 foi caracterizado por um grande desenvolvi-

mento analítico, que possibilitou a realização de medidas de alta precisão das meias-vidas dos

nuclídeos 234U, 230Th e 226Ra, pertencentes à série do 238U, pela técnica de espectrometria de

massa de ionização térmica (TIMS), sendo que diversos trabalhos sobre o assunto foram pu-

blicados (e.g. Chen et al., 1986; Edwards et al., 1987; Cohen e O’Nions ,. 1991; Chabaux et

al. 1994). Essas pesquisas colaboraram para vários estudos que investigavam o comportamen-

to do U na hidrosfera, os quais foram muito bem sintetizados por Osmond & Ivanovich

(1992), Gascoyne (1992), Osmond & Cowart (1992), entre outros. Mais recentemente, o uso

da técnica de ICP-MS para análises de isótopos de U e Th (Turner et al., 2001; Robinson et

al., 2002) também foram publicados. O desenvolvimento dessas técnicas pode ser visto em

Goldstein e Stirling (2003).

A série do 238U vêm sendo amplamente aplicada a diferentes áreas de estudo, contudo

o comportamento geoquímico do urânio pode variar em diferentes meios. Desde o trabalho de

238U α → 234Th β → 234Pa β → 234U

λ1N1 = λ2N2 = ...λnNn

Page 21: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

11

Osmond & Cowart (1992) vários resultados de outras pesquisas foram publicados para a ca-

racterização de águas subterrâneas (Dabous & Osmond, 2001; Abdull-Hadi et al., 2001; Lee

et al., 2001; Bonotto et al., 2001,Tricca et al. 2001; Porcelli, 2003) e, assim, o comportamento

geoquímico do U nesse meio foi se tornando cada vez mais conhecido.

Na água o U é caracterizado por dois principais estados de oxidação,+4 ou +6, que são

espécies predominantemente estáveis com H2O. Para cada estado o urânio possui um compor-

tamento completamente diferente, sendo o U6+ no geral considerado mais solúvel do que o

U4+. Sob condições anóxicas o U4+ é muito insolúvel e comumente se precipita como uranini-

ta insolúvel. Essa característica pode ser alterada em pH baixo na presença de fluoreto e

quando o pH é acima de 7-8, resultado da complexação do U4+ com íons hidróxido; nessas

condições a solubilidade do urânio U4+ é aumentada. No estado hexavalente o U é muito so-

lúvel e ocorre em condições oxidantes, forma o íon uranila (UO22+) que é facilmente comple-

xado com carbonatos e hidróxidos, e também com fosfato e fluoreto. Assim, a formação de

complexos com uranila aumenta significativamente a solubilidade de minerais de U e a mobi-

lidade do U em águas subterrâneas (Langmuir, 1978). Compostos orgânicos também influen-

ciam na presença de urânio em águas subterrâneas.

Essa solubilidade do urânio caracteriza a superfície da Terra com elevada concentra-

ção de urânio em águas superficiais e subterrâneas (Porcelli & Swarzenski, 2003) e com um

longo tempo de residência em oceanos (Cochran & Masque, 2003).

2.5 Fracionamento entre os membros das séries do urânio

O equilíbrio radioativo secular é muito comum em sistemas com rochas, contudo para

águas subterrâneas um desequilíbrio significativo é observado. Isso porque a radioatividade

natural das águas advém da sua interação com rochas e minerais. Essas interações resultam

em fracionamento dos radioisótopos das séries de decaimento do U. Existem dois processos

principais que levam a esse fracionamento e consequentemente desequilíbrio: o químico e o

físico, por recuo alfa.

Os processos químicos incluem a termodinâmica dos radioisótopos, a interação dos

radioisótopos com os minerais, transporte por materiais orgânicos, micro-organismos e colói-

des. Como já mencionado, o urânio pode apresentar estado de oxidação tetravalente ou hexa-

valente, assim, as características do meio irão limitar a solubilidade desses íons. Geralmente,

Page 22: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

no estado +6 o urânio é solúvel e altamente móvel, sendo facilmente lixiviado e contribuindo

para o fracionamento na série de decaimento do 238U.

As características químicas, tais como a concentração de ligas orgânicas ou inorgâni-

cas, força iônica e pH da solução também afetam a mobilidade dos radionuclídeos. O urânio

pode ter um comportamento completamente diferente dependendo das características do meio

em que ele se encontra, passando de um estado muito solúvel para um estado de imobilidade

Matérias orgânicas, coloides e micro-organismos também colaboram para o fraciona-

mento dos membros das séries de decaimento do urânio. O transporte por coloide pode modi-

ficar completamente a aparente mobilidade de um elemento, quando comparado com o resul-

tado esperado por termodinâmica. Estudos sobre o impacto de coloides na mobilidade dos ra-

dionuclídeos têm sido amplamente realizadas (Dearlove et al.,1991; Moulin e Ouzounian,

1992). Um exemplo disso é o caso do tório, que é conhecido por sua baixa solubilidade e con-

sequentemente pouca mobilidade na água, mas pode se tornar significantemente móvel na

forma coloidal. O Th é basicamente carregado para águas de rios na forma particulada (An-

derson et al., 1995; Porcelli et al., 2001; Vigier et al., 2001).

Quando os radionuclídeos são adsorvidos ocorre também fracionamento. As regiões

intergranulares dos minerais são superfícies importantes para a adsorção dos isótopos de urâ-

nio, sendo que este processo é fortemente relacionado com a interação com matéria orgânica,

colóides e micro-organismos. Assim, a adsorção em superfícies dos minerais é controlada por

características químicas e físicas.

Além do fracionamento químico, o outro processo responsável pelo desequilíbrio pai-

filho é o recuo alfa. O decaimento radioativo do 238U para 234U envolve um decaimento alfa e

dois betas. Quando o 238U decai para o 234Th, através da emissão alfa, a energia liberada du-

rante o decaimento mobiliza o tório da posição inicialmente ocupada pelo urânio na estrutura

cristalina dos minerais. Se a distância entre a fronteira do grão for menor do que o alcance do 234Th, este pode ser diretamente ejetado do grão para o fluido, em processo denominado de

recuo alfa direto (Kigoshi, 1971; De Paolo et al., 2006). Isso aumenta a concentração de 234U

na água, pois o 234Th (meia-vida de 24,1 dias) e seu filho o 234Pa (6,69 h) possuem meias vi-

das-curtas com a produção do 234U .

O recuo alfa direto nem sempre ocorre e as ejeções, decorrentes dos decaimentos, po-

dem afetar/alterar a rede cristalina dos minerais e causar o aumento do nível de energia, pro-

vocando uma mudança de oxidação do urânio de U4+ to U6+, que é mais solúvel. O retículo

cristalino afetado permite que o radioisótopo filho, agora situado em uma posição do sítio

Page 23: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 2 – Geoquímica do Urânio

13

cristalográfico fisicamente mais suscetível para a lixiviação, saia mais facilmente da estrutura

mineral do que o radioisótopo pai.

A variação na temperatura, capacidade para trocas catiônicas e área específica do mi-

neral são os parâmetros físicos que podem causar fracionamento (Prikryl et al., 2001).

Em suma, o recuo alfa, as propriedades termodinâmicas dos radionuclídeos em solu-

ção, a adsorção em fases minerais, as complexações por matérias orgânicas e o transporte por

coloide são processos mais importantes que controlam a mobilidade, e consequentemente o

fracionamento entre os radioisótopos das séries de decaimento do urânio em águas subterrâ-

neas. Por essas razões, em águas subterrâneas o 234U é mais facilmente encontrado em exces-

so em relação ao seu pai o 238U.

Page 24: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-3-Contexto Geológico e Amostragem

14

Capítulo 3

Contexto Geológico e Amostragem

Os granitóides que abrangem as regiões sul e sudeste do Brasil especialmente no esta-

do de São Paulo, foram amplamente estudados para a caracterização geológica, petrográfica,

geoquímica, isotópica, estrutural e tectônica desses corpos intrusivos.

No presente estudo foram investigados os granitóides que ocorrem na região dos mu-

nicípios de Itu, Itupeva, Salto, Indaiatuba e Cabreúva, localizados a cerca de 70 km da cidade

de São Paulo, cuja área é aproximadamente delimitada pelos paralelos 23°03’ e 23°18’S e

meridianos 47°03’ e 47°18’W (Figura 3.1).

As primeiras descrições dessas rochas foram feitas por Hasui et al. (1969), que as de-

nominaram de Maciço de Itu, que apresenta forma alongada com direção aproximada SW-

NE, abrangendo uma área de 310 km2. Posteriormente, estes granitóides foram objeto de vá-

rios outros estudos geológicos, mineralógicos, petrográficos, geocronológicos, geoquímicos e

geofísicos, destacando-se os de Pascholati et al. (1987), Pascholati (1990) e Galembeck

(1997).

Através de informações obtidas por sensoriamento remoto, características petrográfi-

cas, levantamentos de campo e dados obtidos em laboratório para determinar as concentra-

ções de U, Th e K, Pascholati et al. (1987) e Pascholati (1990) verificaram a ocorrência de

diversas intrusões no maciço. Assim, foram individualizados quatro corpos principais deno-

minados de Granito Salto, Granito Fazenda Cruz Alta, Granito Fazenda Japão e Granito Itu-

peva. Os corpos com contornos não muito bem definidos e com características distintas dos

demais foram denominados de Granitos Indiferenciados. A todo conjunto de intrusões foi da-

do o nome de Suíte Intrusiva de Itu, que tem como encaixantes gnaisses, xistos e quartzitos.

Conforme destacado por Pascholati (1990), as concentrações dos elementos radioati-

vos naturais U, Th e K constituem importantes marcadores para caracterização dos corpos da

suíte. Os granitos Salto e Itupeva são os que apresentam as maiores concentrações de urânio,

cujas médias são de 7,5 ± 4,6 µg/g (N=16), 5,3 ± 3,4 µg/g (N=34), respectivamente. O Grani-

to Cruz Alta possui concentrações de urânio um pouco mais baixas do que os outros dois,

Page 25: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-3-Contexto Geológico e Amostragem

15

com média de 3,8 ±0,7 µg/g (N=6), enquanto o Granito Fazenda Japão é o que apresenta os

menores teores de urânio (média = 3,5 ±1,7 µg/g; N=14). Nesse trabalho foram analisadas 50

amostras dos granitos indiferenciados, cuja média foi de 4,6 ±2,5 µg/g.

Por outro lado, Galembeck (1997) propôs que as rochas da região ocorrem como um

complexo que foi denominado de Complexo Múltiplo, Centrado e Plurisserial Itu,constituído

por quatro corpos denominados de intrusões Itupeva, Cabreúva, Salto e Indaiatuba (Figura

3.1)

Figura 3.1: Mapa do Complexo Múltiplo, Centrado e Plurisserial Itu (simplificado de Galem-

beck, 1997), mostrando a localizacao das amostras investigadas.

Comparando-se os trabalhos de Pascholati (1990) e Galembeck (1997) é possível veri-

ficar que as intrusões Itupeva e Salto são aproximadamente correspondentes aos granitos de

Page 26: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-3-Contexto Geológico e Amostragem

16

Itupeva e Salto, enquanto a intrusão Cabreúva engloba os granitos Cruz Alta, Fazenda Japão e

parte dos granitos indiferenciados.

No presente trabalho foi utilizada a nomenclatura das intrusões de acordo com Galem-

beck (1997). De acordo com essa autora, o Complexo Itu é predominantemente composto por

sienogranitos róseos a avermelhados e monzogranitos róseo-avermelhados com ocorrência de

monzodioritos, granodioritos e quartzo-monzonitos, como subordinados. As rochas são, no

geral, constituídas de feldspato potássico e quartzo, com biotita como seu principal mineral

máfico.

A Intrusão Salto, além de possuir as maiores concentrações de urânio do complexo, é

também caracterizada por rochas graníticas porfiríticas e porfiróides com textura “rapakivi”,

na qual os feldspatos potássicos são bordejados por plagioclásio. Já a Intrusão Itupeva abran-

ge diversos tipos de granitos, incluindo os equigranulares de cor rósea e cinza, inequigranula-

res róseos, porfiríticos e porfiróides de cor rosada e melagranitóides. A Intrusão Cabreúva

possui 12 fácies distintas, sendo as principais compostas por granitos equigranulares de gra-

nulação variada (grossa, média e fina a média) de coloração rosada, como também por rochas

porfiróides róseas que raramente podem apresentar textura “rapakivi”. Fazem também parte

da Intrusão Cabreúva, mas com ocorrência bem menos abundante, granitos porfiríticos aver-

melhados e acinzentados, às vezes do tipo “rapakivi”, bem como equigranulares de coloração

cinza e melagranitóides. A Inrusão Indaiatuba engloba granitóides porfiríticos e porfiróides

com textura “rapakivi” (Galembeck, 1997).

3.1 Amostragem

Para estudar o comportamento dos isótopos de urânio durante a interação rocha-água,

foram coletadas amostras de granitos do Complexo Itu. As amostras foram coletadas de ma-

neira a abranger as quatro intrusões do complexo, totalizando 18 amostras para esse estudo.

Para este trabalho foram selecionados seis granitos, sendo dois da Intrusão Cabreúva, dois de

Itupeva, um de Indaiatuba e um de Salto.

As amostras LM-GR-01 e LM-GR-02, com coordenadas 23°15’07,5’’S e

47°09’44,3’’W, foram coletadas no local de ocorrência da Intrusão Cabreúva (Figura 3.1). A

amostra LM-GR-01 possui cor rosa-acinzentada, textura porfirítica, com matriz de granulo-

metria média, com textura porfiritica. Seus principais minerais são feldspato potássico e

Page 27: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-3-Contexto Geológico e Amostragem

17

quartzo, com plagioclásio e biotita em quantidade subordinada. Os fenocristais do feldspato

potássico possuem dimensões de 10-30 mm. Textura rapakivi também foi observada nesta

rocha. A amostra LM-GR-02 possui cor cinza azulado e rosado, textura porfirítica com

fenocristais de feldspato de coloração rosa claro e matriz de granulação fina a média,

composta por feldspato potássico, quartzo, plagioclásio e biotita. Esta rocha é conhecida na

região como granito azul e possui ocorrência limitada.

As amostras LM-GR-05 e LM-GR-10 foram coletadas na região da Intrusão Itupeva

(Figura 3.1). O local do afloramento da amostra LM-GR-05 possui coordenadas

23°07’35,8’’S e 47°08’26,3’’W e o afloramento da LM-GR-10 ocorre nas coordenadas

23°10'15"S e 47°05'32"W. A amostra LM-GR-05 possui coloração rósea acinzentada, textura

fanerítica média e inequigranular, tendo feldspato rosado e quartzo como os minerais mais

abundantes, com quantidade bem sudordinada de plagioclásio e biotita. A amostra LM-GR-10

é uma rocha melanocrática, fracamente porfirítica com fenocristais de no máximo 0,5 cm de

feldspato em matriz de granulação fina. Galembeck (1997) denominou essas rochas de mela-

granitos.

A amostra LM-GR-15 foi coletada nas coordenadas 23º12’42.15”S e 47º17’54.12”W e

corresponde ao Granito Salto (Figura 3.1). Sua coloração é rósea-avermelhada, possui textura

fracamente porfirítica, com fenocristais de feldspato potássico variando entre 0,5 e 1cm. A

matriz é inequigranular e de granulação média, sendo composta por feldspato potássico,

quartzo, plagioclásio e biotita, sendo que os dois últimos ocorrem subordinadamente.

A amostra LM-GR-16 com coordenadas 23°11'30"S e 47°08'40"W foi coletada na re-

gião onde afloram as rochas da Intrusão Indaiatuba (Figura 3.1). É uma rocha porfirítica, com

granulometria média a grossa e coloração rósea acinzentada. Os fenocristais de até 3 cm são

compostos por feldspato potássico, com quartzo e plagioclásio e biotita na matriz inequigra-

nular.

Page 28: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

18

Capítulo 4

Procedimento Experimental

As amostras de água que ficaram em contato com os granitóides do Complexo Itu fo-

ram submetidas a diferentes técnicas para suas caracterizações químicas. As concentrações de

urânio foram determinadas utilizando a técnica de espectrometria alfa, no laboratório de Geo-

física Nuclear IAG-USP. As análises químicas para a determinação dos elementos maiores,

menores e traços foram realizadas no Laboratório de Química do Departamento de Mineralo-

gia e Geotectônica do Instituto de Geociências da USP por ICP-OES (espectrometria de emis-

são óptica com plasma indutivamente acoplado). As rochas também tiveram sua composição

química determinada por Fluorescência de Raios X no Instituto de Geociências e Ciências

Exatas da UNESP (Rio Claro) e por espectrometria alfa no IAG-USP. Para verificar a quali-

dade das determinações das concentrações de urânio determinadas por espectrometria alfa,

algumas amostras de água foram também analisadas por ICP-MS no Instituto de Geociências

da UNICAMP.

4.1 Preparação das amostras

Na natureza o processo de lixiviação é lento, demorando centenas a milhares de anos

para ocorrer. Ao aumentar a área exposta para o contato rocha-água, a quantidade de átomos

de urânio em contato com a água também aumenta, acelerando assim o processo de lixiviação

do elemento em estudo. Ao britar as amostras em fragmentos menores esse intuito de acelera-

ção da lixiviação em laboratório pôde ser alcançado.

Com o auxílio de uma marreta e prensa hidráulica, cada bloco de rocha coletada foi

partido em frações menores até ser alcançada uma massa total de 5 kg. Esses fragmentos fo-

ram, então, separados para britagem. Antes do início da próxima etapa tornou-se necessário

estabelecer um critério para o diâmetro máximo dos fragmentos de rocha que seriam submeti-

Page 29: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

19

dos à lixiviação, sendo que o valor de 9,52 mm foi o adotado para essa pesquisa. Definido es-

se critério, os 5kg de fragmentos foram totalmente britados, em processo manual, até que to-

dos os grãos passassem por uma peneira de aço inoxidável com abertura de 9,52 mm.

Ao término da britagem, a amostra foi homogeneizada e quarteada, sendo que uma

fração de aproximadamente 300g foi quarteada e separada para a análise química. O restante

da amostra foi novamente homogeneizado e duas frações de cerca de 2kg (para análise em

duplicata) foram separadas por quarteamento. Como anteriormente mencionado, para o pre-

sente estudo, cinco amostras de diferentes granitos foram selecionadas. Assim, como cada

amostra foi analisada em duplicata, dez alíquotas foram submetidas à lixiviação em laborató-

rio.

Separada a amostra e sua duplicata, o próximo passo foi medir a massa de cada fração

e estimar o diâmetro médio dos grãos. Como a quantidade de urânio lixiviado está relacionada

com a área superficial da rocha exposta à lixiviação, uma estimativa da área superficial de ca-

da fração a ser mantida em contato com a água precisava ser realizada. Para estimar o diâme-

tro dos grãos, e posteriormente seus respectivos raios, foram utilizadas várias peneiras de aço

inoxidável, com diferentes malhas de abertura. As frações de cerca de 2 kg passaram por ma-

lhas com 6,35 mm; 5,60 mm; 4,75 mm; 2,00 mm; 1,68 mm; 0,85 mm; 0,42 mm; 0,25 mm;

0,149 mm e 0,105 mm de abertura. Cada uma das frações foi cuidadosamente pesada e o diâ-

metro médio dos grãos foi estimado como sendo a média dos valores de abertura da malha das

peneiras pela qual o grão passou e na qual o grão ficou retido.

A fração separada inicialmente com cerca de 300 g , foi pulverizada a 150 mesh

(0,105 mm) com o auxílio de um moinho mecânico e um almofariz de ágata. Essa fração foi

homogeneizada e utilizada para a determinação da concentração de U e dos elementos maio-

res, menores e traços nas rochas que foram submetidas ao processo de lixiviação.

É importante ressaltar que durante todo o processo de preparação das amostras, os ma-

teriais utilizados foram muito bem lavados antes e depois de sua utilização, para cada amos-

tra. Esses cuidados foram tomados para evitar possíveis contaminações entre uma amostra e

outra (contaminação cruzada).

Page 30: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

20

4.2 Determinação da área superficial

No processo de mobilização do urânio para a fase líquida, a área superficial de contato

é um parâmetro muito importante, pois quanto maior a área superficial, maior será o número

de átomos de urânio submetidos ao processo de lixiviação. A área superficial de cada amostra

foi calculada de acordo com a massa e diâmetro dos seus fragmentos.

As amostras britadas possuem fragmentos de vários tamanhos e formas irregulares.

Para separá-los foram utilizadas, como mencionado anteriormente, peneiras com malhas dis-

tintas. As massas das frações relacionadas a cada malha foram determinadas com uma balança

analítica.

Assumindo-se como simplificação que os grãos são esféricos, a massa m de um grão é

dada por:

(4.1)

onde: ρ = densidade e r = raio do grão.

De acordo com a aproximação feita, um grão representa uma esfera e como em cada

fração contendo massa M há n grãos, então:

(4.2)

Sabendo-se que a área de uma esfera é A, então para n esferas:

(4.3)

Os parâmetros M e r de cada fração foram medidos depois da britagem. Para a deter-

minação da densidade de cada rocha analisada utilizou-se a teoria de empuxo de Arquimedes.

Nesse princípio, quando um corpo sólido é totalmente imerso em um líquido de densidade

A = n4πr2 =M 4πr2

ρ4

3π r3

=3M

ρr

n =M

m

m = ρ4

3π r3

Page 31: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

21

conhecida, a densidade do corpo é obtida através da relação entre a massa do corpo e o volu-

me do líquido deslocado.

Na situação de equilíbrio, a resultante das forças é nula, ou seja, o empuxo E age sobre

o corpo sólido equilibrando seu peso (Pc):

(4.4)

O peso do corpo em função da sua densidade é:

(4.5)

onde: Vc é o volume do corpo (cm3) e g a aceleração da gravidade (cm/s2).

Utilizando água como o líquido no qual o corpo é mergulhado, o empuxo pode ser de-

terminado através do peso (P V deslocado) do volume deslocado (VL):

(4.6)

Posicionando o corpo totalmente imerso e sendo ele mais denso que o líquido, o vo-

lume deslocado é igual ao volume do corpo:

(4.7)

Combinando-se as equações (4.5 e 4.6), obtêm-se:

(4.8)

Desenvolvendo esta equação:

(4.9)

ρc =PcρH2O

E=mcgρH2O

ρH2OVg

=mc

V

Vg =Pc

ρc

=E

ρH2O

VL =Vc =V

PVdeslocado= ρH2O

VLg = E

Pc = ρVcg

Pc = E

Page 32: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

22

Utilizando água destilada cuja densidade é igual a 1g/cm3 (sob temperatura ambiente)

e sabendo que o volume do corpo é igual ao volume deslocado, então:

(4.10)

As medidas de densidade foram efetuadas no laboratório com o auxílio de um béquer

com água, um fio de cobre de massa desprezível e uma balança analítica. A massa da amostra

seca foi a primeira a ser medida, depois a amostra foi totalmente submersa no béquer com á-

gua, a balança foi tarada e então mediu-se a massa de água deslocada. Essas etapas foram rea-

lizadas para cinco fragmentos diferentes de cada amostra. A densidade da amostra foi calcu-

lada pela razão entre a massa da amostra seca e a massa de água deslocada Essas etapas foram

realizadas para cinco fragmentos diferentes de cada amostra, sendo adotada como incerteza o

desvio o padrão.

Como a densidade da água varia com a temperatura, as medidas foram corrigidas atra-

vés da determinação da densidade de uma amostra de quartzo puro, cujo valor é conhecido

(2,65 g/cm3). Essa correção permite também eliminar possíveis erros sistemáticos na determi-

nação de densidade. Conforme destacado por Cônego Jr.et al. (2008), na determinação da

densidade de vários minerais com valores conhecidos, o método fornece resultados com ele-

vados níveis de precisão (2%) e exatidão (3%).

4.3 Aparato Experimental

O objetivo deste projeto, como já mencionado, foi investigar a mobilidade do urânio

no sistema rocha-água. Para realizar esse estudo em laboratório, foi desenvolvido um aparato

experimental, baseado no modelo utilizado por Collaço (2008) para um estudo preliminar da

lixiviação do urânio em rochas do Complexo de Itu.

Diferentemente do arranjo experimental utilizado por Collaço (2008), o novo aparato

deveria ser montado de modo a maximizar a percolação da água entre os grãos da rocha brita-

da. Isso foi alcançado ao forçar a percolação da água pelos grãos situados na parte inferior do

V = mH2Odeslocada

∴ρc =mc

mH2Odeslocada

Page 33: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

23

frasco onde a amostra foi mantida. Depois de várias tentativas o seguinte aparato foi fabricado

e utilizado nos experimentos, conforme descrito a seguir.

Cada conjunto foi constituído por dois frascos de vidro (um para a amostra e outro pa-

ra a água deionizada), uma tampa de nylon contendo três orifícios, duas mangueiras de silico-

ne para a ligação dos frascos e uma bomba de aquário (Figura 4.1).

Figura 4.1: Aparato Experimental

A tampa do frasco onde as amostras foram colocadas possui uma abertura maior por

onde as amostras foram colocadas e dois bicos para entrada e saída da água. No bico da entra-

da um tubo longo de vidro foi acoplado permanecendo a poucos centímetros da base do fras-

co. Essa geometria do arranjo permitiu que a percolação da água acontecesse de baixo para

cima, aumentando a percolação da água entre os grãos.

Ao colocar as diferentes frações de rocha no frasco de vidro já tampado, foi tomado o

cuidado de não deixar as frações mais finas (diâmetros menores) por baixo para não formarem

uma camada de argila, o que dificultaria a circulação da água. A seguir, a abertura da tampa

de nylon, por onde as amostras foram colocadas, foi fechada com uma rolha de borracha. No

segundo frasco foi colocada a água deionizada e a bomba de aquário. O frasco foi tampado,

finalizando assim os cuidados necessários para o início do funcionamento do sistema.

A percolação foi iniciada ao ligar a bomba de aquário, com o bombeamento da água

para frasco contendo os fragmentos de amostra, através da mangueira de silicone. A água en-

trava pelo bico da tampa de nylon, passava pelo tubo de vidro e iniciava a percolação pelos

grãos situados no inferior do frasco. Quando o nível da água atingia a tampa de nylon, a bom-

Page 34: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

24

ba era desligada, as mangueiras desconectadas e o sistema permanecia em repouso por um

dia. Esse período foi necessário para o assentamento dos grãos mais finos, diminuindo a quan-

tidade de finos que passariam para o frasco que continha a bomba. Após um dia de descanso,

o sistema foi ligado novamente, mas desta vez ao atingir a tampa de nylon, a água passou a

fluir do frasco contendo a amostra, através da outra mangueira de silicone, retornando ao fras-

co com água deionizada. Formou-se, assim, um circuito fechado e ininterrupto de lixiviação

da rocha (figura 4.2)

Figura 4.2: Sistema de lixiviação em funcionamento.

Cada conjunto consistiu de cerca de 2 kg da amostra e 3 L de água deionizada (Figura

4.2). Ao todo foram montados 14 conjuntos sendo 12 referentes as 6 amostras e suas duplica-

tas, 1 contendo apenas água (branco) e um primeiro conjunto denominado Teste. No início, o

conjunto Teste tinha a amostra 1 e sua duplicata, mas devido a problemas na fase da imple-

mentação do aparato, esse conjunto acabou sendo desativado.

No primeiro mês as coletas ocorreram depois de sete dias do conjunto funcionando e

novamente depois de quinze dias, contados a partir da primeira coleta. As coletas seguintes

aconteceram a cada trinta dias, a partir da última coleta, sendo que ao todo foram realizadas 7

Page 35: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

25

coletas, totalizando seis meses. A cada coleta foram medidos o pH, temperatura, resistividade

e volume da água retirada. Em seguida, cada amostra foi acidificada com HCl 9M até alcan-

çar um pH de 2 e armazenada para análise (Figura 4.3). Uma alíquota de 100 mL foi separada

para análise de cátions por ICP e o restante utilizado na análise por espectrometria alfa.

Figura 4.3: Frascos contendo as amostras coletadas em uma das amostragens.

4.4 Análise de Urânio

Para a determinação da concentração de urânio e razões de atividades 234U/238U, as

amostras de água e de rocha foram tratadas e analisadas no Laboratório de Geofísica Nuclear

do IAG-USP. A técnica utilizada foi de espectrometria alfa, que envolve várias etapas de pro-

cessamento químico.

Page 36: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

26

4.4.1 Espectrometria Alfa

Ao utilizar a espectrometria alfa é necessário que as amostras passem por um alto grau

de purificação, evitando o espessamento da fonte a ser contada, uma vez que as partículas alfa

apresentam curto alcance por interagir com o meio (Knoll, 1989).

As amostras passaram por uma pré-concentração de urânio, separação de outros ele-

mentos químicos e sua purificação (utilizando a técnica de cromatografia de troca iônica), e

por fim foram preparadas as fontes radioativas por eletrodeposição.

As etapas de processamento radioquímico e eletrodeposição que antecedem a conta-

gem alfa, ocasionam a eventual perda do elemento a ser analisado. Para quantificar essa perda

comumente utilizam-se traçadores radioativos do mesmo elemento a ser analisado ou que

possuam o mesmo comportamento químico. Além disso, as partículas alfa emitidas pelo tra-

çador devem possuir energias distintas daquelas emitidas pelos radioisótopos a serem analisa-

dos. Preferivelmente, os radioisótopos do traçador não devem ocorrer naturalmente nas amos-

tras e quando houver mais de um isótopo do mesmo elemento, deve-se conhecer com acurácia

a razão de atividades entre eles. Cabe ainda destacar que não deve ocorrer fracionamento

químico entre os radioisótopos do traçador e os presentes na amostra investigada. Para as aná-

lises deste estudo foi utilizado o traçador 232U-228Th com atividade específica de 0,68±0,02

Bq/g.

O par 232U-228Th é muito utilizado como traçador na espectrometria alfa, pois a ener-

gia alfa emitida pelo 232U é bem conhecida e distinta das energias do 234U e 238U. Em águas o

Th é considerado pouco solúvel e praticamente sem mobilidade (Langmuir e Herman, 1980),

mas com a adição desse traçador nas amostras de água, o Th passa a ser mais um dos possí-

veis interferentes na análise. As amostras de rocha contêm naturalmente Th e ainda são acres-

cidas do 228Th com o traçador. As energias de alguns dos radioisótopos de U e Th são muito

semelhantes e se esses radioisótopos não forem separados, na etapa da cromatografia iônica,

os picos irão se sobrepor (Figura 4.4).

Page 37: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

27

Figura 4.4:Espectro alfa da análise de amostras geológicas, onde os isótopos de U e Th não

foram separados (Santos, 2001).

4.4.2 Ataque e dissolução das amostras de rocha

As amostras que haviam sido previamente pulverizadas a 150 mesh e homogeneiza-

das, foram pesadas em balança analítica (cerca de 0,05 g) e colocadas em béqueres de teflon.

Em seguida, foram adicionados aproximadamente 0,05g de traçador de 232U no béquer. O ata-

que e a dissolução foram realizados conforme descrito em Santos & Marques (2007), utili-

zando-se uma mistura dos ácidos fluorídrico, nítrico e clorídrico. O resíduo remanescente da

dissolução foi solubilizado com 25 mL de HCl concentrado e algumas gotas de HNO3 con-

centrado sob temperatura de 100 ºC. A solução permaneceu sobre uma chapa aquecedora por

cerca de 30 minutos, onde se verificou sua turbidez; se após esse período ela estivesse límpi-

da, água deionizada era adicionada até ser obtido um volume de 100 mL. Caso contrário, a

amostra era evaporada e um novo ciclo de ataque ácido seria necessário.

Como os granitóides investigados possuem baixa abundância de minerais máficos, nos

quais os teores de ferro são altos, ao fim da etapa de dissolução, foi necessário adicionar 10

mL de uma solução de Fe3+ (5mg/mL em meio HCl 9M) e em seguida o urânio foi co-

Page 38: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

28

precipitado, com o hidróxido de Fe, através da adição a quente de uma solução saturada de

hidróxido de sódio. Cabe notar que não houve necessidade de adicionar carregador de ferro

para a análise da amostra LM-GR-10 (melagranito), já que ela possui abundância relativa-

mente elevada de minerais máficos.

Para garantir que todos os hidróxidos fossem quantitativamente precipitados e decan-

tados, as soluções foram deixadas em repouso por cerca de 12 horas. O precipitado foi, então,

filtrado e solubilizado em 40 mL de HCL 9M, estando pronto para ser submetido à etapa

cromatográfica.

4.4.3 Tratamento químico das amostras de água

As amostras de água previamente coletadas (Figura 4.3) foram transferidas para bé-

queres de 5 L, evaporadas até atingirem um volume de aproximadamente 500 mL, e transferi-

das novamente para um béquer de 1 L. Ao realizar essa transferência o béquer de 5 L foi la-

vado com HCl 0,5 M para evitar a possível perda de urânio que poderia ter permanecido reti-

do nas paredes do béquer. Na fase inicial da pesquisa todo o volume restante, após a etapa de

evaporação, foi utilizado para a determinação da concentração de urânio, mas depois das pri-

meiras análises, verificou-se que a metade do volume inicial (1,5 L) poderia ser processada

sem afetar a qualidade dos dados. Este procedimento garantiu uma segunda alíquota da amos-

tra, permitindo reprocessamento da mesma, caso o rendimento químico fosse muito baixo (in-

ferior a 35%) ou se ocorresse um eventual problema experimental, resultando na sua perda.

Cabe destacar que, para aproveitamento do resultado da análise de urânio, adotou-se a reco-

mendação proposta por Gill et al. (1992) de não utilizar (ou utilizar com muita cautela) dados

obtidos em situações em que a recuperação química foi inferior a 35%. De acordo com esses

autores, como também a experiência do próprio laboratório (e.g. Collaço, 2008), as determi-

nações de urânio por espectrometria alfa perdem a reprodutibilidade para rendimentos quími-

cos abaixo desse valor.

Após a evaporação das amostras, o traçador de 232U juntamente com 10 mL de carre-

gador de ferro (Fe3+) foi adicionado em cada uma delas. O urânio foi co-precipitado com os

hidróxidos de Fe e Al presentes, por meio da adição de hidróxido de amônio. O precipitado

resultante permaneceu em repouso por uma noite com o propósito de maximizar sua digestão

e decantação.

Page 39: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

29

Em seguida o precipitado foi filtrado, solubilizado com HCl 9M, o qual dissolve os

hidróxidos formados que contêm urânio, e evaporado até a secura. O ataque e dissolução fo-

ram realizados seguindo o procedimento descrito em Santos e Marques (2007), logo após essa

etapa as amostras estavam prontas para serem submetidas à etapa cromatográfica de troca iô-

nica.

4.4.4 Separação e purificação química do U

A determinação dos radionuclídeos emissores alfa exige o cuidado da eliminação dos

elementos maiores, menores e traços que espessam o alvo radioativo e que causam interferên-

cias no espectro alfa. A técnica de cromatografia de troca iônica é muito eficiente para elimi-

nar essas interferências. A separação e purificação do U foram realizadas por meio da croma-

tografia de troca iônica, com resina aniônica AG 1-X8 (100-200 mesh) preenchendo colunas

de vidro de cerca de 10 cm de comprimento e 15 mm de diâmetro (Figura 4.5).

Antes de serem utilizadas, as resinas foram lavadas com 100 mL de água deionizada e em se-

guida pré-condicionadas com 40 mL de HCL 9M. A solução obtida após o ataque químico

(cerca de 40 mL) foi percolada na resina, que nesta condição retém o U e Fe, deixando passar

o Th. Em seguida a coluna foi lavada por três vezes consecutivas com 10 mL de HCl 9M pa-

ra garantir a total eluição do Th. O Fe foi eluído com 40 mL de HNO3 8M e em seguida o U

eluído com 100 mL de HCl 0,1 M.

Page 40: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

30

Figura 4.5:Colunas aniônicas utilizadas na etapa da cromatografia de troca iônica.

Mesmo após a separação cromatográfica, notou-se que as amostras apresentaram uma

coloração levemente amarelada, indicando a presença de Fe. Como este elemento é um forte

interferente na eletrodeposição (Kressin 1977), a solução foi passada novamente pela resina.

Assim, a solução com o urânio eluído foi evaporada até a secura, recuperada em HCl 9M e

novamente levada ao processo de percolação pela resina, mas agora utilizando no máximo 30

mL de HNO3 8M. Isto se faz necessário já que nessas condições a perda de urânio é minimi-

zada.

4.4.5 Eletrodeposição

Uma vez purificado, o urânio foi eletrodepositado seguindo o método de Hallstadius

(1984). Para tanto, a solução contendo urânio foi evaporada até quase a secura e recuperada

em 1 mL de solução de Na2SO4 0,3M . Em seguida adicionaram-se 0,3 mL de H2SO4 concen-

trado e essa solução foi aquecida até que não houvesse mais resquícios de Na2SO4. Ao efetuar

essa etapa tomou-se o cuidado de não deixar a solução aquecer demasiadamente para não e-

vaporar todo o H2SO4. A seguir adicionaram-se 5 mL de água deionizada e 2 gotas de azul de

timol à solução, acrescentando-se gotas de NH4OH até que o pH fosse ajustado para um valor

entre 2,1 e 2,4.

Essa solução foi transferida para a célula de eletrodeposição já montada (Figura 4.6).

O béquer que armazenava a solução foi lavado com H2SO4 e a solução resultante dessa lava-

gem transferida para a célula de eletrodeposição. Por último, o pH foi ajustado novamente

com NH4OH concentrado até que faixa entre 2,1 e 2,4 fosse alcançada.

A eletrólise ocorreu por uma hora a uma densidade de corrente de 1,2 A/cm2. Faltando

um minuto para o final, foi adicionado 1 mL de NH4OH concentrado para a fixação do depó-

sito. O urânio foi eletrodepositado em um disco de aço inoxidável polido com 25 mm de diâ-

metro e espessura de 0,5 mm, sendo que ao término da eletrodeposição a fonte foi lavada com

4 mL de NH4OH 3% e um pouco de acetona. Em seguida, cada fonte foi colocada para secar

sob a luz de uma lâmpada de 250 W por cerca de 20 minutos. Após essa etapa a fonte estava

pronta para ser submetida à contagem.

Page 41: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

31

Figura 4.6: Sistema de eletrodeposição: a - uma célula de lucite com fundo rosqueável; b e c - tampa da célula com um ânodo composto por fio de platina; d - disco de aço inoxidável no

qual o urânio é depositado; e - base de latão com rosca (cátodo) .

4.4.6 Espectrômetro Alfa

O sistema de detecção utilizado para a determinação das concentrações de atividades

dos radioisótopos 234U e 238U e de suas respectivas razões de atividades foi um espectrômetro

alfa. Como as atividades dos radioisótopos de urânio eram distintas em cada amostra, as dura-

ções das contagens não foram as mesmas. O critério utilizado para determinar o tempo de

permanência de cada amostra no espectrômetro foi a observação do menor pico de atividade

presente no espectro. Quando esse pico alcançava 1000 contagens a medida foi encerrada,

com a garantia de erros inferiores a 3% nas medidas de atividade dos isótopos de 238U, 234U e 232U (Ivanovich e Murray, 1992). No geral, para as amostras de água o tempo de medida foi

de no máximo 4 dias, enquanto as de rocha permaneceram por até 10 dias em contagem no

espectrômetro.

O espectrômetro utilizado no Laboratório de Geofísica Nuclear do IAG-USP é da

marca Canberra, modelo A450. O detector é composto de um semicondutor de silício do tipo

barreira de superfície, calibrado para operar em energias entre 3 e 7 MeV, sob pressão da or-

dem de 10-2 mBar.

Page 42: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

32

Um detector deve ter a capacidade de distinguir picos com energias muito próximas e

para medir essa capacidade determina-se sua resolução em energia. A definição da resolução

R de um pico é a largura total à meia altura FWHM (Full Width at Half Maximum), que em

termos da porcentagem é dada por:

(4.11)

onde: R é a resolução; FWHM é a largura total à meia altura e H0 o canal do centróide do pi-

co.

A eficiência de um detector refere-se a fração da radiação total emitida pela fonte em

estudo que é registrada pelo detector. A eficiência é calculada pela seguinte equação:

(4.12)

onde: Amedida é a atividade medida de uma fonte calibrada e Acalibrada é o valor de atividade

certificado.

4.4.7 Rendimento químico Durante as várias etapas de processamento químico das amostras e de confecção dos

alvos alfa há o risco de perda dos radioisótopos a serem analisados. A fim de detectar e quan-

tificar essa possível perda durante o processamento químico, traçadores foram adicionados às

amostras no início do processo. O cálculo do rendimento químico é obtido pela medida da

taxa de contagem do 232U no espectro alfa com aquela esperada para a quantidade de traçador

adicionado, sendo dado pela seguinte equação:

(4.13)

Rq(%) =Atr100

tεmtrAesp

ε(%) =Amedida

Acalibrada

100

R =FWHM

H 0

100

Page 43: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

33

onde: Atr é a área do pico do traçador no espectro alfa, t é a duração da contagem, ε a eficiên-

cia do detector, mtr a massa do traçador utilizado e Aesp a atividade específica do traçador uti-

lizado.

As incertezas do rendimento químico foram calculadas por propagação de erro, con-

forme a seguinte equação:

(4.14)

4.4.8 Determinação da concentração de urânio

A atividade de uma amostra é dada pelo número de desintegrações por unidade de

tempo, e foi determinada de acordo com a seguinte equação:

(4.15)

onde: Apico é a área do pico do radioisótopo já corrigido para a geometria do detector: para

este trabalho foi utilizado o fator 2 para correção, pois a geometria do detector utilizado é

semi-esférica. A incerteza da atividade foi dada por:

(4.16)

As razões de atividades foram obtidas diretamente do espectro alfa, através do cálculo

da área líquida de cada pico. Isto é possível porque os dois isótopos foram processados juntos

e estão presentes na mesma fonte submetida à contagem. Assim nos calculos, o Rq e a efici-

ência do detector (ε) se cancelam. Dessa forma os erros das razões de atividade estão relacio-

nados somente com a incerteza das áreas dos picos no espectro alfa:

σ A(Bq ) =σ Apico

Apico

2

+σ ε

ε

2

+σ Rq

Rq

2

A(Bq)

A(Bq) =Apico.100.100

t.ε.Rq

σ Rq =σ Atr

Atr

2

+σ ε

ε

2

+σ mtr

mtr

2

+σ Aesp

Aesp

2

Rq

Page 44: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

34

(4.17)

Com a determinação da atividade do 238U realizada, o próximo passo foi calcular a

concentração do urânio na amostra. Foi usado somente o isótopo do 238U para a determinação

da concentração do U, pois na natureza ele é o mais abundante (99,2745%), seguido pelo 235U

que tem abundância de 0,72% e pelo 234U com 0,0055%. O número de átomos (N) pode ser

determinado pela atividade (A) e pela constante de desintegração, através das equações:

(4.18)

(4.19)

Sendo a incerteza de N dada por:

(4.20)

Para calcular a massa de urânio, utilizou-se a seguinte equação (Souza, 2006):

(4.21)

Sendo que a incerteza associada à massa é dada por:

(4.22)

onde: Ma é a massa atômica do 238U e Na o número de Avogadro. Assim a concentração de

urânio foi dada por:

σ m =σ N

Nm

m(g) =NM a

Na

σ N =σ

A238

A238 N

N =A238

λ

A238 = Nλ

σ 234U238U

=σ 234U234U

2

+σ 238U238U

2

.234U238U

Page 45: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-4-Procedimento Experimental

35

(4.23)

onde: mamostra é a massa da amostra analisada e o fator 10-9 foi utilizado para a obtenção da

concentração em ng/g, a mais adequada para este trabalho. A incerteza é dada por:

(4.24)σ [U ](ng/g) =

σ m

m

2

+σ mamostra

mamostra

2

[U ]

[U ](ng / g) =m

mamostra10−9

Page 46: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

36

Capítulo 5

Resultados e discussões

Conforme descrito no capítulo anterior, diferentes métodos foram empregados para as

análises dos granitóides e das águas investigadas.

As concentrações de elementos maiores, menores e traços das rochas analisadas, de-

terminadas pela técnica de fluorescência de raios X, encontram-se na Tabela 5.1. Os resulta-

dos obtidos na determinação das concentrações de urânio pelo método de espectrometria alfa

são apresentados na Tabela 5.2. Os dados de área superficial e da densidade de cada uma das

amostras, incluindo as duplicatas, estão na Tabela 5.3.

Na análise das águas que ficaram em contato com os granitóides foram utilizados os

métodos de espectrometria alfa, para medidas das concentrações e razões de atividades 234U/238U (Tabela 5.4), sendo que algumas medidas complementares, realizadas por ICP-MS,

foram também efetuadas para verificar a qualidade das análises de urânio (Tabela 5.5). Na

Tabela 5.6 encontram-se os resultados das análises dos principais cátions presentes. Para iden-

tificar cada amostra de água que ficou em contato com a rocha e também o número da coleta,

foi adotada a nomenclatura: as letras A e B colocadas na frente do nome da amostra designam

cada uma das duplicatas; o número colocado a seguir identifica a coleta. Por exemplo, a sexta

coleta da amostra de água, que ficou em contato com a duplicata da rocha LM-GR-01, foi de-

nominada de LM-GR-01B-6.

5.1 Nomenclatura química das rochas do Complexo Itu

Os óxidos de elementos maiores e menores foram utilizados para identificar a que ti-

pos litológicos pertencem as rochas investigadas, empregando-se para tal o diagrama R1-R2,

proposto por De La Roche et al. (1980) para a nomenclatura de rochas vulcânicas e plutônicas

(Figura 5.1).

Page 47: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

37

Tabela 5.1: Análises dos principais cátions presentes nas amostras de água em contato com a rocha

Amostra SiO2

(%)

TiO2

(%)

Al2O3

(%)

Fe2O3

(%)

MnO (%)

MgO (%)

CaO (%)

Na2O (%)

K2O (%)

P2O5

(%) GR-01 75,08 0,25 12,83 2,06 0,05 0,11 0,90 3,38 5,35 0,05 GR-02 72,39 0,38 13,35 2,69 0,06 0,15 1,15 3,32 5,83 0,06 GR-05 77,57 0,12 12,14 0,96 0,03 0,04 0,71 3,04 5,42 0,02 GR-10 58,83 2,15 13,65 10,04 0,15 2,23 4,87 3,34 3,34 0,90 GR-15 76,87 0,24 11,86 1,38 0,02 0,15 0,63 3,24 4,96 0,04 GR-16 75,53 0,30 12,67 1,66 0,04 0,16 0,87 3,11 5,57 0,06

Cr Ni Ba Rb Sr La Ce Zr Y Nb (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (µg/g) (ppm) (ppm)

GR-01 11 3 726 228 108 69 145 266 46 39 GR-02 30 3 1177 225 145 59 147 381 47 42 GR-05 11 2 300 263 110 58 112 109 24 25 GR-10 15 18 1758 79 370 64 118 392 35 GR-15 26 1 300 287 56 35 84 174 35 35 GR-16 10 3 519 235 110 90 176 228 34 33

Cu Zn Co V (µg/g) (µg/g) (µg/g) (µg/g)

GR-01 1 49 1 8 GR-02 1 50 2 10 GR-05 <1 19 <1 4 GR-10 25 124 23 157 GR-15 <1 19 <1 5 GR-16 <1 35 <1 4

Page 48: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

38

Figura 5.1: Diagrama R1-R2 de nomenclatura de rochas plutônicas, conforme proposto por De La Roche et al. (1980). Legenda: losango fechado = LM-GR-01; quadrado = LM-GR-02; xis = LM-

GR-05; estrela = LM-GR-10; losango aberto = LM-GR-15; círculo = LM-GR-16.

Quando os parâmetros R1 (4Si–11(Na+K)- 2(Fe+Ti)) e R2 (6Ca+2Mg+Al) calcula-

dos, em milicátions, para cada uma das amostras são lançados no diagrama, verifica-se que as

amostras LM-GR-01, LM-GR-02, LM-GR16 são sienogranitos, enquanto as amostras LM-

GR-05 e LM-GR-15 situam-se no campo dos granitos alcalinos, embora bem próximos da

linha divisória com os sienogranitos. A amostra LM-GR-10 (denominada em campo de mela-

granito) situa-se sobre a linha divisória entre monzodioritos e tonalitos.

Page 49: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

39

5.2 Resultados das análises de urânio

As concentrações de urânio nas seis amostras de rocha encontram-se na Tabela 5.2.

Observa-se que as concentrações de urânio variaram de 5,2 ± 0,2 µg/g no sienogranito LM-

GR-01 a 1,1 ± 0,1 µg/g no monzodiorito LM-GR-10, sendo que em todas elas os radioisóto-

pos 238U e 234U estão em equilíbrio radioativo secular. Os rendimentos químicos variaram de

39 a 64%, mostrando que a técnica foi eficiente para extrair o urânio presente nas rochas es-

tudadas.

No caso das amostras de água, mantidas em contato com os granitóides, as coletas

foram feitas duas vezes no primeiro mês de funcionamento do sistema, passando em seguida a

ser mensal, até serem alcançados 6 meses de operação. No total, foram coletadas 70 amostras

de água, nas quais foram determinadas as concentrações de urânio, normalizadas pela área

superficial (Tabela 5.3), bem como as razões de atividade 234U/238U (Tabela 5.4).

Cabe notar que as amostras de água que ficaram em contato com o monzodiorito LM-

GR-10 não foram analisadas, devido ao fato de apresentarem concentrações muito baixas de

urânio. As primeiras medidas realizadas nessas águas indicaram que seria necessário triplicar

a massa de rocha utilizada, demandando mudança no aparato experimental e inviabilizando a

realização da pesquisa, no prazo estipulado para o desenvolvimento deste projeto. Assim, op-

tou-se por interromper as análises dessas águas.

Tabela 5.2: Concentrações de urânio nas rochas do Complexo Itu

Amostra U (µg/g) Rendimento (%)

LM-GR-01 5,2±0,2 57±2

LM-GR-02 4,6±0,2 49±1

LM-GR-05 4,9±0,2 39±1

LM-GR-10 1,1±0,1 45±2

LM-GR-15 5,1±0,3 38±1

LM-GR-16 4,6±0,2 64±2

Page 50: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

40

Tabela 5.3: Dados de área superficial e da densidade de cada uma das amos-tras, incluindo as duplicatas.

Amostra Raio (mm)

Massa (g)

Área Superficial (m2)

Densidade (g/cm3)

Amostra Raio (mm)

Massa (g)

Área Superficial (m2)

Densidade (g/cm3)

LM-GR-1A

7,94±1,59 960,06±0,01 0,1377±0,0001

2,635±0,002

LM-GR-10A

7,94±1,59 1090,99±0,01 0,1453±0,0002

2,838±0,003

6,01±0,35 216,19±0,01 0,04099±0,00003 6,01±0,35 262,75±0,01 0,0463±0,0001 5,21±0,46 149,11±0,01 0,03261±0,00003 5,21±0,46 155,57±0,01 0,0316±0,0000 3,38±1,38 398,30±0,01 0,13435±0,0001 3,38±1,38 281,87±0,01 0,0883±0,0001 1,84±0,16 63,85±0,01 0,03951±0,00003 1,84±0,16 39,27±0,02 0,0226±0,0000 1,27±0,42 150,70±0,01 0,1356±0,0001 1,27±0,42 61,97±0,01 0,0518±0,0001 0,64±0,22 111,69±0,01 0,2002±0,0002 0,64±0,22 55,88±0,01 0,0930±0,0001 0,34±0,08 45,77±0,01 0,1555±0,0001 0,34±0,08 21,77±0,01 0,0687±0,0001 0,20±0,05 40,45±0,01 0,2308±0,0002 0,20±0,05 21,62±0,01 0,1146±0,0001 0,13±0,02 26,07±0,01 0,2337±0,0002 0,13±0,02 19,42±0,01 0,1617±0,0002

0,10±0,01 42,24±0,01 0,4958±0,0004 0,10±0,01 63,39±0,01 0,691±0,001 Total 2204,43±0,01 1,8369±0,0004 Total 2074,50±0,01 1,5146±0,0004

LM-GR-1B

7,94±1,59 791,88±0,01 0,1136±0,0001

2,635±0,002

LM-GR-10B

7,94±1,59 1155,76±0,01 0,1540±0,0002

2,838±0,003

6,01±0,35 286,90±0,01 0,05439±0,00004 6,01±0,35 218,39±0,01 0,03845±0,00004 5,21±0,46 139,91±0,01 0,03060±0,00002 5,21±0,46 123,74±0,01 0,02513±0,00003 3,38±1,38 415,25±0,01 0,1401±0,0001 3,38±1,38 291,38±0,01 0,0913±0,0001 1,84±0,16 45,40±0,01 0,02809±0,00002 1,84±0,16 31,06±0,01 0,01785±0,00002 1,27±0,42 171,26±0,01 0,1541±0,0001 1,27±0,42 84,28±0,01 0,0704±0,0001 0,64±0,22 140,24±0,01 0,2514±0,0002 0,64±0,22 39,52±0,01 0,0658±0,0001 0,34±0,08 60,27±0,01 0,2048±0,0002 0,34±0,08 22,73±0,01 0,0717±0,0001 0,20±0,05 51,98±0,01 0,2966±0,0002 0,20±0,05 24,13±0,01 0,1279±0,0002 0,13±0,02 30,53±0,01 0,2737±0,0002 0,13±0,02 20,32±0,01 0,1691±0,0002

0,10±0,01 51,21±0,01 0,6010±0,0005 0,10±0,01 65,06±0,01 0,7091±0,0008 Total 2184,83±0,01 2,1485±0,0005 Total 2076,37±0,01 1,5407±0,0004

LM-GR-2A

7,94±1,59 1046,99±0,01 0,1495±0,0001

2,647±0,002

LM-GR-15A

7,94±1,59 1062,77±0,01 0,1536±0,0001

2,615±0,002

6,01±0,35 248,09±0,01 0,04683±0,00003 6,01±0,35 237,14±0,01 0,04530±0,00003 5,21±0,46 184,36±0,01 0,04015±0,00003 5,21±0,46 148,35±0,01 0,03269±0,00002 3,38±1,38 380,61±0,01 0,1278±0,0001 3,38±1,38 353,16±0,01 0,1200±0,0001 1,84±0,16 42,42±0,01 0,02613±0,00002 1,84±0,16 49,84±0,01 0,03107±0,00002 1,27±0,42 98,42±0,01 0,0882±0,0001 1,27±0,42 102,98±0,01 0,0934±0,0001 0,64±0,22 78,28±0,01 0,1397±0,0001 0,64±0,22 100,12±0,01 0,1809±0,0001 0,34±0,08 42,12±0,01 0,1425±0,0001 0,34±0,08 41,01±0,01 0,1404±0,0001 0,20±0,05 51,89±0,01 0,2948±0,0002 0,20±0,05 34,25±0,01 0,1969±0,0001 0,13±0,02 30,25±0,01 0,2700±0,0002 0,13±0,02 20,22±0,01 0,1826±0,0001

0,10±0,01 61,48±0,01 0,7184±0,0005 0,10±0,01 37,38±0,01 0,4421±0,0003 Total 2264,91±0,01 2,0440±0,0004 Total 2187,22±0,01 1,6190±0,0003

LM-GR-2B

7,94±1,59 938,09±0,01 0,1340±0,0001

2,647±0,002

LM-GR-15B

LM-GR-15B

7,94±1,59 1089,70±0,01 0,1575±0,0001

2,615±0,002

6,01±0,35 232,02±0,01 0,04379±0,00003 6,01±0,35 230,65±0,01 0,04406±0,00003 5,21±0,46 162,54±0,01 0,03539±0,00003 5,21±0,46 98,39±0,01 0,02168±0,00001 3,38±1,38 385,35±0,01 0,1294±0,0001 3,38±1,38 342,68±0,01 0,1165±0,0001 1,84±0,16 41,92±0,01 0,02582±0,00002 1,84±0,16 56,15±0,01 0,03501±0,00002 1,27±0,42 103,72±0,01 0,0929±0,0001 1,27±0,42 145,70±0,01 0,1321±0,0001 0,64±0,22 77,76±0,01 0,1388±0,0001 0,64±0,22 93,40±0,01 0,1687±0,0001 0,34±0,08 46,47±0,01 0,1572±0,0001 0,34±0,08 47,63±0,01 0,1631±0,0001 0,20±0,05 51,68±0,01 0,2936±0,0002 0,20±0,05 41,78±0,01 0,2402±0,0002 0,13±0,02 42,82±0,01 0,3821±0,0003 0,13±0,02 24,42±0,01 0,2206±0,0002

0,10±0,01 54,47±0,01 0,6365±0,0005 0,10±0,01 49,79±0,01 0,5888±0,0004 Total 2136,84±0,01 2,0696±0,0004 Total 2220,29±0,01 1,8883±0,0003

Page 51: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

41

Amostra Raio

(mm) Massa

(g) Área Superficial

(m2) Densidade

(g/cm3) Amostra Raio

(mm) Massa

(g) Área Superficial

(m2) Densidade

(g/cm3)

LM-GR-5A

7,94±1,59 1144,07±0,01 0,165±0,001

2,62±0,01

LM-GR-16A

7,94±1,59 1029,24±0,01 0,1477±0,0001

2,634±0,002

6,01±0,35 298,58±0,01 0,0570±0,0002 6,01±0,35 228,05±0,01 0,04325±0,00003 5,21±0,46 138,92±0,01 0,0306±0,0001 5,21±0,46 120,73±0,01 0,02642±0,00002 3,38±1,38 386,27±0,01 0,1312±0,0005 3,38±1,38 445,96±0,01 0,1505±0,0001 1,84±0,16 43,51±0,01 0,0271±0,0001 1,84±0,16 62,66±0,01 0,03878±0,00003 1,27±0,42 144,01±0,01 0,1305±0,0005 1,27±0,42 138,21±0,01 0,1244±0,0001 0,64±0,22 117,28±0,01 0,212±0,001 0,64±0,22 116,87±0,01 0,2096±0,0002 0,34±0,08 50,22±0,01 0,172±0,001 0,34±0,08 45,72±0,01 0,1554±0,0001 0,20±0,05 47,36±0,01 0,272±0,001 0,20±0,05 38,78±0,01 0,2214±0,0002 0,13±0,02 24,99±0,01 0,225±0,001 0,13±0,02 52,07±0,01 0,4669±0,0004

0,10±0,01 47,12±0,01 0,557±0,002 0,10±0,01 23,56±0,01 0,2766±0,0002 Total 2442,33±0,01 1,979±0,002 Total 2301,85±0,01 1,861±0,001

LM-GR-5B

7,94±1,59 944,46±0,01 0,136±0,001

2,62±0,01

LM-GR-16B

7,94±1,59 1040,14±0,01 0,1493±0,0001

2,634±0,002

6,01±0,35 280,29±0,01 0,0535±0,0002 6,01±0,35 186,02±0,01 0,03528±0,00003 5,21±0,46 184,31±0,01 0,0406±0,0002 5,21±0,46 213,88±0,01 0,04680±0,00004 3,38±1,38 472,25±0,01 0,160±0,001 3,38±1,38 500,47±0,01 0,1689±0,0001 1,84±0,16 63,42±0,01 0,0395±0,0001 1,84±0,16 67,33±0,01 0,04167±0,00003 1,27±0,42 155,47±0,01 0,141±0,001 1,27±0,42 141,53±0,01 0,1274±0,0001 0,64±0,22 109,75±0,01 0,198±0,001 0,64±0,22 150,10±0,01 0,2692±0,0002 0,34±0,08 46,18±0,01 0,158±0,001 0,34±0,08 53,90±0,01 0,1832±0,0001 0,20±0,05 40,48±0,01 0,233±0,001 0,20±0,05 46,10±0,01 0,2632±0,0002 0,13±0,02 27,61±0,01 0,249±0,001 0,13±0,02 21,44±0,01 0,1923±0,0002

0,10±0,01 43,90±0,01 0,519±0,002 0,10±0,01 38,78±0,01 0,4553±0,0004 Total 2368,12±0,01 1,927±0,002 Total 2459,69±0,01 1,93256±0,0004

Page 52: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

42

Tabela 5.4: Resultados das análises de urânio obtidas por espectrometria alfa para as amos-

tras de água investigadas.

Amostras Coleta Dias Rq (%) (234U/238U) A 238U (Bq)

A 234U (Bq)

m de 238U*

(ng/gm2)

Ac. m de 238U**

(ng/gm2)

LM-GR-1A 1 7 75±3 2,0±0,1 0,077 ±0,004 0,15 ±0,01 1,5 ± 0,1 1,5 ± 0,1 2 22 46±1 1,93±0,05 0,052 ±0,002 0,099 ±0,004 1,0 ± 0,1 2,6 ± 0,2 3 52 69±2 1,87±0,05 0,042 ±0,002 0,079 ±0,003 0,8 ± 0,1 3,4 ± 0,2 4 82 58±2 1,9±0,1 0,046 ±0,002 0,088 ±0,004 0,9 ± 0,1 4,3 ± 0,2 5 112 71±3 1,8±0,1 0,049 ±0,003 0,089 ±0,004 1,0 ± 0,1 5,3 ± 0,2 6 142 57±2 1,9±0,1 0,024 ±0,001 0,046 ±0,002 0,49 ± 0,04 5,8 ± 0,2 7 172 51±2 1,9±0,1 0,034 ±0,002 0,063 ±0,003 0,7 ± 0,1 6,5 ± 0,2

LM-GR-1B 1 7 76±3 1,88±0,05 0,094 ±0,004 0,18 ± 0,01 1,6 ± 0,1 1,6 ± 0,1 2 22 51±2 1,92±0,05 0,057 ±0,002 0,110 ±0,004 1,0 ± 0,1 2,6 ± 0,2 3 52 68±2 1,9±0,1 0,040 ±0,002 0,075 ±0,003 0,7 ± 0,1 3,3 ± 0,2 4 82 65±2 1,9±0,1 0,040 ±0,002 0,075 ±0,004 0,7 ± 0,1 4,0 ± 0,2 5 112 53±2 1,8±0,1 0,021 ±0,001 0,039 ±0,002 0,37 ± 0,03 4,4 ± 0,2 6 142 - - - - - 4,4 ± 0,2 7 172 35±1 1,9±0,1 0,038 ±0,002 0,071 ±0,003 0,7 ± 0,1 5,0 ± 0,2

LM-GR-2A 1 7 68±3 2,54±0,04 0,44 ± 0,02 1,12 ± 0,05 8 ± 1 7,4 ± 0,6 2 22 79±3 2,45±0,04 0,34 ± 0,02 0,84 ± 0,04 6 ± 1 13,0 ± 0,8 3 52 90±3 2,49±0,03 0,40 ± 0,02 1,00 ± 0,04 7 ± 1 20 ± 1 4 82 96±4 2,45±0,04 0,28 ± 0,01 0,68 ± 0,03 4,6 ± 0,4 24 ± 1 5 112 88±4 2,4±0,1 0,16 ± 0,01 0,39 ± 0,02 2,7 ± 0,2 27 ± 1 6 142 40±1 2,4±0,1 0,078 ±0,004 0,19 ± 0,01 1,3 ± 0,1 28 ± 1 7 172 57±2 2,6±0,1 0,045 ±0,002 0,12 ± 0,01 0,7 ± 0,1 29 ± 1

LM-GR-2B 1 7 84±3 2,49±0,03 0,49 ± 0,02 1,2 ± 0,1 9 ± 1 8,9 ± 0,7 2 22 79±3 2,59±0,04 0,34 ± 0,02 0,87 ± 0,04 6 ± 1 15,1 ± 0,9 3 52 84±3 2,42±0,03 0,28 ± 0,01 0,68 ± 0,03 5,2 ± 0,4 20 ± 1 4 82 87±3 2,45±0,03 0,26 ± 0,01 0,65 ± 0,03 4,8 ± 0,4 25 ± 1 5 112 70±3 2,4±0,1 0,15 ± 0,01 0,37 ± 0,02 2,8 ± 0,2 28 ± 1 6 142 54±2 2,1±0,1 0,09 ± 0,01 0,19 ± 0,01 1,6 ± 0,1 29 ± 1 7 172 40±1 2,4±0,1 0,046 ±0,002 0,11 ± 0,01 0,8 ± 0,1 30 ± 1

* massa de urânio normalizada pela massa e área superficial da rocha ** acumulação da massa de urânio normalizada ao longo do experimento

Page 53: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

43

Amostras Coleta Dias Rq (%) (234U/238U) A 238U (Bq)

A 234U (Bq)

m de 238U (ng/gm2)

Ac. m de 238U

(ng/gm2)

LM-GR-5A 1 7 74±3 1,66±0,02 1,02 ± 0,04 1,7 ± 0,1 17 ± 1 17 ± 1 2 22 83±3 1,84±0,02 0,71 ± 0,03 1,3 ± 0,1 12 ± 1 29 ± 2 3 52 79±3 1,84±0,01 0,64 ± 0,02 1,18 ± 0,04 11 ± 1 40 ± 2 4 82 74±3 1,88±0,02 0,55 ± 0,02 1,04 ± 0,04 9 ± 1 49 ± 2 5 112 80±2 1,89±0,03 0,41 ± 0,02 0,78 ± 0,04 7 ± 1 56 ± 2 6 142 80±3 1,8±0,1 0,19 ± 0,01 0,36 ± 0,02 3,3 ± 0,3 59 ± 2 7 172 84±3 2,0±0,1 0,15 ± 0,01 0,30 ± 0,01 2,5 ± 0,2 62 ± 2

LM-GR-5B 1 7 85±3 1,85±0,02 0,85 ± 0,04 1,6 ± 0,1 15 ± 1 15 ± 1 2 22 28±1 1,63±0,02 0,90 ± 0,04 1,5 ± 0,1 16 ± 1 31 ± 2 3 52 73±3 1,89±0,01 0,73 ± 0,03 1,4 ± 0,1 13 ± 1 44 ± 2 4 82 88±3 1,86±0,02 0,58 ± 0,02 1,07 ± 0,04 10 ± 1 54 ± 2 5 112 46±2 1,89±0,01 0,40 ± 0,02 0,75 ± 0,03 7 ± 1 61 ± 2 6 142 81±3 2,0±0,1 0,19 ± 0,01 0,37 ± 0,02 3,3 ± 0,3 65 ± 2 7 172 91±3 1,9±0,1 0,14 ± 0,01 0,28 ± 0,01 2,6 ± 0,2 67 ± 2

LM-GR-15A 1 7 76±3 2,40±0,03 0,47 ± 0,02 1,1 ± 0,1 11 ± 1 10,8 ± 0,9 2 22 78±3 2,40±0,03 0,26 ± 0,01 0,62 ± 0,03 6 ± 1 17 ± 1 3 52 61±3 2,42±0,03 0,52 ± 0,02 1,3 ± 0,1 12 ± 1 29 ± 1 4 82 81±3 2,45±0,03 0,23 ± 0,01 0,55 ± 0,02 5,2 ± 0,4 34 ± 1 5 112 81±3 2,4±0,1 0,20 ± 0,01 0,47 ± 0,02 4,6 ± 0,4 38 ± 2 6 142 66±2 2,29±0,04 0,075 ±0,003 0,17 ± 0,01 1,7 ± 0,1 40 ± 2 7 172 52±2 2,4±0,1 0,10 ± 0,01 0,24 ± 0,01 2,3 ± 0,2 42 ± 2

LM-GR-15B 1 7 80±3 2,45±0,03 0,53 ± 0,02 1,3 ± 0,1 11 ± 1 10,3 ± 0,8 2 22 85±3 2,45±0,04 0,38 ± 0,02 0,94 ± 0,04 7 ± 1 18 ± 1 3 52 86±4 2,40±0,03 0,56 ± 0,03 1,3 ± 0,1 11 ± 1 28 ± 1 4 82 51±2 2,38±0,03 0,34 ± 0,01 0,80 ± 0,03 6,5 ± 0,5 35 ± 1 5 112 84±3 2,4±0,1 0,15 ± 0,01 0,36 ± 0,02 2,9 ± 0,2 38 ± 1 6 142 40±1 2,4±0,1 0,074 ±0,004 0,18 ± 0,01 1,4 ± 0,1 39 ± 1 7 172 72±3 2,3±0,1 0,082 ±0,004 0,19 ± 0,01 1,6 ± 0,1 41 ± 1

LM-GR-16A 1 7 82±3 2,57±0,05 0,27 ± 0,01 0,70 ± 0,03 5,2 ± 0,5 5,2 ± 0,5 2 22 72±3 2,5±0,1 0,27 ± 0,01 0,67 ± 0,03 5,0 ± 0,5 10,2 ± 0,7 3 52 63±2 2,65±0,04 0,26 ± 0,01 0,69 ± 0,03 5 ± 1 15,1 ± 0,8 4 82 51±2 2,66±0,04 0,23 ± 0,01 0,61 ± 0,03 4,3 ± 0,4 19,4 ± 0,9 5 112 77±3 2,6±0,1 0,12 ± 0,01 0,32 ± 0,01 2,3 ± 0,2 22 ± 1 6 142 72±2 2,6±0,1 0,102 ±0,005 0,26 ± 0,01 1,9 ± 0,2 24 ± 1 7 172 80±3 2,9±0,1 0,072 ±0,004 0,21 ± 0,01 1,4 ± 0,1 25 ± 1

LM-GR-16B 1 7 90±3 2,60±0,02 0,30 ± 0,01 0,78 ± 0,03 5,1 ± 0,4 5,1 ± 0,4 2 22 87±3 2,59±0,04 0,25 ± 0,01 0,65 ± 0,03 4,3 ± 0,4 9,4 ± 0,6 3 52 83±3 2,61±0,04 0,26 ± 0,01 0,69 ± 0,03 4,5 ± 0,4 13,9 ± 0,7 4 82 87±3 2,7±0,1 0,23 ± 0,01 0,60 ± 0,03 3,9 ± 0,4 17,7 ± 0,8 5 112 47±2 2,59±0,04 0,15 ± 0,01 0,39 ± 0,02 2,6 ± 0,2 20,3 ± 0,8 6 142 82±3 2,6±0,1 0,106 ±0,005 0,28 ± 0,01 1,8 ± 0,2 22,1 ± 0,9 7 172 80±3 2,9±0,1 0,085 ±0,004 0,25 ± 0,01 1,4 ± 0,1 23,5 ± 0,9

* massa de urânio normalizada pela massa e área superficial da rocha ** acumulação da massa de urânio normalizada ao longo do experimento

Page 54: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

44

Conforme discutido anteriormente, o cálculo do rendimento químico é importante para

garantir a reprodutibilidade dos valores obtidos, já que quando a recuperação é inferior a 35%,

o dado apresenta menor confiabilidade (Gill et al., 1992). O rendimento químico para as aná-

lises de água variou entre 28% e 96% , com média de 71±16% (N=69; devido à perda de uma

amostra durante a coleta). O valor de 28% corresponde à análise da amostra LM-GR-05B-2

(coletada após 22 dias do início de funcionamento do sistema). O espectro alfa corresponden-

te a essa análise ficou com baixa resolução, causada por espessamento da fonte, resultante de

algum interferente (provavelmente Fe), que não foi eficazmente removido durante as etapas

do processamento químico. Como as partículas alfa foram absorvidas na própria fonte e tam-

bém pelo fato de não ser possível separar adequadamente cada um dos picos presentes no es-

pectro, o rendimento químico diminuiu consideravelmente.

Em função desse problema, decidiu-se mudar o procedimento experimental, para evi-

tar que o mesmo acontecesse com as outras amostras. Assim, logo após a etapa de evapora-

ção, as amostras de água passaram a ser divididas em duplicatas, de maneira que se algo erra-

do ocorresse durante o processamento químico, outra alíquota da mesma amostra estaria dis-

ponível para ser analisada.

Os resultados obtidos mostram que o método mostrou-se eficiente para as análises de

rocha e água (Tabelas 5.3 e 5.4). Na maior parte das análises, foi possível observar claramente

os picos do 238U, 234U e do traçador 232U, conforme exemplificado na Figura 5.2, referente à

análise da rocha LM-GR-15, bem como nas Figuras 5.3 e 5.4, relativas à análise de águas

LM-GR-01A e LM-GR-16B, respectivamente. Observa-se nos espectros alfa, mostrados nes-

sas figuras, que o U foi completamente separado de seus interferentes (Th e Fe, por exemplo)

durante o processamento químico.

Page 55: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

45

4 4.5 5 5.5Energia MeV

0

50

100

150

200

Número de contagens

LM-GR-15

238U 234U

235U

232U

Figura 5.2: Espectro alfa obtido para amostra de rocha LM-GR-15.

Page 56: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

46

4 4.5 5 5.5Energia (MeV)

0

100

200

300

400

500

600

700

Número de contagens

LM-GR-1A-2

238U

234U

235U

232U

4 4.5 5 5.5Energia (MeV)

0

100

200

300

400

500

600

700

Número de contagens

LM-GR-1A-6

238U

234U

235U

232U

Figura 5.3: Espectros alfa obtidos na análise de água LM-GR-01A (2ª e 6ª coletas).

Page 57: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

47

4 4.5 5 5.5Energia (MeV)

0

100

200

300

400

500

600

700

800

900

1000

Número de contagens

LM-GR-16B-1

238U

234U

235U

232U

4 4.5 5 5.5Energia (MeV)

0

100

200

300

400

Número de contagens

LM-GR-16B-7

238U

234U

235U

232U

Figura 5.4: Espectros alfa obtidos na análise de água LM-GR-16B (1ª e 7ª coletas).

Page 58: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

48

5.2.1 Qualidade das determinações de urânio na água Com a finalidade de verificar a exatidão das concentrações de urânio, obtidas nas á-

guas por espectrometria alfa, foram selecionadas seis amostras para determinação por ICP-

MS, que é uma técnica reconhecida internacionalmente por fornecer resultados com elevados

índices de precisão e exatidão, mesmo em análises de baixas concentrações, com um limite de

detecção para o urânio de 0,003 µg/L. Os erros relativos entre os dois métodos, admitindo-se

os valores obtidos por ICP-MS como referência, variaram de 2,3 a 12,8% (média = 7±4%;

N=6), mostrando a boa qualidade dos resultados obtidos por espectrometria alfa. Observa-se

na Figura 5.5, através dos parâmetros da reta ajustada pelo método de mínimos quadrados,

que as concentrações obtidas pelas duas técnicas são estatisticamente iguais, considerando as

incertezas analíticas.

Tabela 5.5: Concentrações de urânio determinadas por ICP-MS e espectrome-tria alfa para algumas das amostras de água analisadas neste trabalho.

Amostras U (ng/g)

ICP-MS

U (ng/g)

alfa

Erro Relativo

(%)

LM-GR-01 A (142 dias) 4,1±0,1 4,0±0,2 2,3

LM-GR-02 B (142 dias) 12,4±0.4 14,0±0,9 12,8

LM-GR-05 A (172 dias ) 27,6±0,9 25,2±1,3 8,6

LM-GR-15 A (172 dias) 14,5±0,5 15,9±1,0 9,8

LM-GR-15 B (22 dias) 65,1±2,1 63,3±2,8 2,8

LM-GR-16 A (142 dias) 16,9±0,5 17,9±0,9 6,1

Page 59: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

49

0 10 20 30 40 50 60 70

U Alfa (ng/g)

0

10

20

30

40

50

60

70

U IC

P-M

S (ng/g)

y=1,05(0,03) x - 1(1)R2= 0,996

Figura 5.5: Comparação entre as concentrações de urânio obtidas por espectrometria alfa e

ICP-MS para algumas das amostras de água investigadas.

5.2.2 Lixiviação de urânio das rochas

Com o objetivo de retirar toda a água que continha o urânio lixiviado da rocha, na fase

final da coleta foi necessário adicionar ao sistema cerca de 1 L de água deionizada para perco-

lar pela rocha. Esse procedimento permitiu maximizar a retirada do urânio presente em solu-

ção, entretanto, o volume final (conjunto contendo a amostra de água que permaneceu em

contato com a rocha e a água deionizada adicionada ao sistema) não representa a concentra-

ção de urânio na solução que estava em contato com a rocha. Desta forma, optou-se por nor-

malizar a massa de urânio lixiviado, pela massa e área superficial da rocha que ficou em con-

tato com a água (Tabela 5.4). Através dessa normalização foi possível comparar diretamente

resultados das análises em duplicata.

Os resultados mostram que a massa de urânio lixiviado varia de amostra para amostra,

sendo que os valores diminuem com o decorrer do experimento (Figura 5.6), principalmente

na fase inicial de exposição das rochas às águas. De modo geral, as análises das amostras em

duplicata forneceram resultados bem similares, exceto para as determinações efetuadas em

algumas das coletas das amostras LM-GR-01 e LM-GR-05, nas quais houve vazamento de

água do sistema com a perda de parte da amostra.

Page 60: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Cap

ítul

o 6

- C

onsi

dera

ções

fin

ais

50

5.6:

Aná

lise

s d

os p

rin

cipa

is c

átio

ns

pre

sent

es n

as a

mos

tras

de

águ

a em

con

tato

com

a r

ocha

. A

mos

tra

Dia

s C

olet

a A

l (pp

m)

Ba

(pp

m)

Ca

(pp

m)

Fe

(pp

m)

K (

ppm

) M

g (p

pm

) N

a (p

pm

) S

r (p

pm

)

1A

7 1

0,08

1 ±

0,

002

3,64

±

0,

03

5,75

±

0,

09

0,19

1 ±

0,

002

3,52

±

0,

06

0,75

6 ±

0,

007

2,22

±

0,

05

0,05

3 ±

0,

001

22

2

0,05

63

±

0,00

03

0,07

2 ±

0,

002

4,62

±

0,

07

0,08

3 ±

0,

002

1,81

±

0,

01

0,38

6 ±

0,

007

0,68

5 ±

0,

004

0,03

2 ±

0,

001

52

3

0,02

15

±

0,00

03

0,07

41

±

0,00

04

4,61

±

0,

02

0,02

86

±

0,00

01

1,30

±

0,

01

0,25

4 ±

0,

004

0,41

±

0,

01

0,03

0 ±

0,

001

82

4

0,10

±

0,

04

0,06

96

±

0,00

04

4,94

±

0,

05

0,03

1 ±

0,

001

1,06

±

0,

02

0,38

5 ±

0,

002

0,35

0 ±

0,

005

0,03

03

±

0,00

03

11

2 5

0,10

7 ±

0,

001

0,08

2 ±

0,

001

5,09

±

0,

09

0,04

2 ±

0,

001

1,89

±

0,

03

0,22

6 ±

0,

004

0,54

7 ±

0,

004

0,03

39

±

0,00

05

14

2 6

0,11

6 ±

0,

005

0,16

8 ±

0,

003

4,42

±

0,

02

0,01

4 ±

0,

001

0,88

±

0,

01

0,16

3 ±

0,

002

0,51

8 ±

0,

008

0,03

34

±

0,00

02

17

2 7

0,28

5 ±

0,

003

0,09

4 ±

0,

002

5,71

±

0,

09

0,04

0 ±

0,

001

0,89

±

0,

04

0,18

2 ±

0,

002

0,60

5 ±

0,

007

0,04

1 ±

0,

001

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

1B

7 1

0,04

2 ±

0,

001

1,27

±

0,

02

5,98

±

0,

08

0,02

14

±

0,00

03

3,85

±

0,

04

0,74

9 ±

0,

007

3,37

±

0,

04

0,05

42

±

0,00

07

22

2

0,07

2 ±

0,

001

0,13

6 ±

0,

003

4,84

±

0,

07

0,05

7 ±

0,

001

2,08

4 ±

0,

005

0,38

3 ±

0,

003

0,71

6 ±

0,

008

0,03

36

±

0,00

04

52

3

0,04

85

±

0,00

02

0,07

2 ±

0,

001

4,2

±

0,1

0,03

58

±

0,00

03

1,25

±

0,

02

0,23

±

0,

01

0,85

4 ±

0,

003

0,03

40

±

0,00

05

82

4

0,09

±

0,

08

0,09

6 ±

0,

002

5,01

±

0,

01

0,02

58

±

0,00

03

1,02

±

0,

02

0,27

7 ±

0,

006

0,40

6 ±

0,

006

0,04

11

±

0,00

08

11

2 5

0,03

64

±

0,00

02

0,07

6 ±

0,

001

4,60

±

0,

01

0,03

70

±

0,00

03

0,83

±

0,

02

0,17

1 ±

0,

003

0,41

±

0,

01

0,04

68

±

0,00

08

14

2 6

0,00

±

0,

00

0,00

0 ±

0,

000

0,00

±

0,

00

0,00

00

±

0,00

00

0,00

0 ±

0,

000

0,00

0 ±

0,

000

0,00

0 ±

0,

000

0,00

00

±

0,00

00

17

2 7

0,14

4 ±

0,

002

0,14

6 ±

0,

002

11,6

±

0,

2 0,

038

±

0,00

1 1,

353

±

0,00

8 0,

462

±

0,00

3 0,

671

±

0,00

6 0,

0770

±

0,

0005

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

2A

7 1

0,26

7 ±

0,

004

0,35

4 ±

0,

004

15,6

±

0,

28

0,05

6 ±

0,

001

10,1

0 ±

0,

05

0,45

2 ±

0,

007

3,32

±

0,

03

0,10

3 ±

0,

002

22

2

0,11

5 ±

0,

001

0,38

±

0,

01

15,9

±

0,

16

0,02

76

±

0,00

03

5,07

±

0,

07

0,21

2 ±

0,

002

0,99

7 ±

0,

009

0,07

9 ±

0,

001

52

3

0,17

7 ±

0,

002

1,13

±

0,

01

16,0

±

0,

10

0,06

8 ±

0,

001

4,14

±

0,

05

0,16

6 ±

0,

001

0,63

1 ±

0,

004

0,07

9 ±

0,

002

82

4

0,14

5 ±

0,

001

0,20

4 ±

0,

002

15,8

±

0,

17

0,05

2 ±

0,

002

3,20

±

0,

04

0,12

99

±

0,00

06

0,46

9 ±

0,

003

0,06

78

±

0,00

06

11

2 5

0,23

8 ±

0,

001

0,15

6 ±

0,

003

15,8

±

0,

28

0,02

99

±

0,00

04

2,64

±

0,

03

0,10

5 ±

0,

001

0,39

0 ±

0,

008

0,05

5 ±

0,

001

14

2 6

0,11

1 ±

0,

006

0,15

2 ±

0,

001

15,8

±

0,

17

0,00

6 ±

0,

001

3,03

±

0,

05

---

±

0,

410

±

0,00

8 0,

0576

±

0,

0002

17

2 7

0,12

4 ±

0,

001

0,12

0 ±

0,

002

14,4

±

0,

20

0,03

65

±

0,00

01

2,35

±

0,

03

---

±

0,

360

±

0,00

2 0,

0508

±

0,

0007

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

2B

7 1

0,16

8 ±

0,

001

0,30

±

0,

01

8,23

±

0,

09

0,05

56

±

0,00

05

6,0

±

0,2

0,26

5 ±

0,

002

6,51

±

0,

05

0,05

35

±

0,00

08

22

2

0,11

5 ±

0,

002

0,27

±

0,

01

16,9

±

0,

1 0,

042

±

0,00

1 5,

0 ±

0,

1 0,

212

±

0,00

2 0,

828

±

0,00

5 0,

0699

±

0,

0006

52

3

0,28

7 ±

0,

003

0,31

8 ±

0,

002

16,6

±

0,

1 0,

087

±

0,00

1 4,

17

±

0,01

0,

168

±

0,00

3 0,

753

±

0,00

2 0,

0672

±

0,

0006

82

4

0,10

6 ±

0,

002

0,20

4 ±

0,

005

16,5

2 ±

0,

09

0,04

93

±

0,00

01

3,53

±

0,

04

0,11

5 ±

0,

001

0,48

5 ±

0,

005

0,05

31

±

0,00

03

11

2 5

0,22

4 ±

0,

005

0,15

14

±

0,00

02

16,3

3 ±

0,

02

0,03

33

±

0,00

04

2,76

±

0,

02

0,14

2 ±

0,

001

0,58

±

0,

01

0,04

06

±

0,00

05

14

2 6

0,32

9 ±

0,

003

0,13

2 ±

0,

001

15,9

±

0,

2 0,

0320

±

0,

0004

2,

81

±

0,03

--

- ±

0,35

6 ±

0,

006

0,03

53

±

0,00

03

17

2 7

0,13

3 ±

0,

002

0,11

6 ±

0,

002

13,8

±

0,

1 0,

034

±

0,00

1 2,

27

±

0,03

--

- ±

0,33

0 ±

0,

004

0,02

99

±

0,00

03

Page 61: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Cap

ítul

o 6

- C

onsi

dera

ções

fin

ais

51

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

5A

7 1

0,06

2 ±

0,

001

0,79

±

0,

01

15,4

8 ±

0,

08

0,01

34

±

0,00

04

4,64

±

0,

04

1,30

7 ±

0,

007

2,08

±

0,

05

0,12

7 ±

0,

002

22

2

0,06

4 ±

0,

001

0,04

00

±

0,00

04

18,3

±

0,

1 0,

0064

±

0,

0001

2,

52

±

0,04

0,

800

±

0,00

9 0,

551

±

0,00

4 0,

110

±

0,00

2

52

3

0,06

8 ±

0,

001

0,06

92

±

0,00

05

17,4

±

0,

2 0,

0445

±

0,

0005

1,

59

±

0,03

0,

535

±

0,00

8 0,

522

±

0,00

6 0,

095

±

0,00

1

82

4

0,07

1 ±

0,

002

0,03

33

±

0,00

02

17,5

±

0,

1 0,

0521

±

0,

0009

1,

29

±

0,02

0,

3741

±

0,

0007

0,

474

±

0,00

2 0,

082

±

0,00

2

11

2 5

0,15

14

±

0,00

04

0,02

93

±

0,00

01

18,9

±

0,

2 0,

0265

±

0,

0001

0,

85

±

0,02

0,

281

±

0,00

7 0,

336

±

0,00

3 0,

065

±

0,00

1

14

2 6

0,19

0 ±

0,

002

0,02

64

±

0,00

02

18,9

3 ±

0,

03

0,02

88

±

0,00

03

0,81

±

0,

02

0,19

24

±

0,00

01

0,53

±

0,

01

0,05

41

±

0,00

09

17

2 7

0,11

9 ±

0,

001

0,02

41

±

0,00

02

19,3

9 ±

0,

05

0,03

66

±

0,00

03

0,77

8 ±

0,

009

0,18

0 ±

0,

002

0,35

6 ±

0,

004

0,04

6 ±

0,

001

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

5B

7 1

0,08

8 ±

0,

002

0,48

±

0,

01

14,2

4 ±

0,

08

0,01

52

±

0,00

03

4,54

±

0,

05

1,25

±

0,

01

2,01

±

0,

04

0,12

2 ±

0,

002

22

2

0,05

2 ±

0,

001

5,03

±

0,

05

17,9

4 ±

0,

08

0,01

06

±

0,00

04

2,44

1 ±

0,

008

0,83

8 ±

0,

005

1,78

±

0,

01

0,11

96

±

0,00

06

52

3

0,11

1 ±

0,

001

0,14

2 ±

0,

002

18,6

±

0,

4 0,

0758

±

0,

0006

1,

80

±

0,01

0,

531

±

0,00

8 0,

559

±

0,00

6 0,

105

±

0,00

3

82

4

0,09

2 ±

0,

003

0,03

27

±

0,00

02

19,4

6 ±

0,

04

0,05

43

±

0,00

07

1,15

±

0,

02

0,35

9 ±

0,

003

0,40

9 ±

0,

009

0,09

4 ±

0,

002

11

2 5

0,17

0 ±

0,

003

0,03

07

±

0,00

05

19,6

±

0,

2 0,

0322

±

0,

0004

1,

03

±

0,02

0,

398

±

0,00

6 0,

508

±

0,00

2 0,

0800

±

0,

0004

14

2 6

0,12

2 ±

0,

001

0,03

07

±

0,00

05

20,0

±

0,

1 0,

012

±

0,00

1 0,

91

±

0,02

0,

216

±

0,00

3 0,

486

±

0,00

4 0,

079

±

0,00

1

17

2 7

0,11

7 ±

0,

002

0,02

50

±

0,00

05

19,7

±

0,

3 0,

0350

±

0,

0006

0,

81

±

0,01

0,

236

±

0,00

3 0,

54

±

0,01

0,

073

±

0,00

1

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

10A

7

1 0,

095

±

0,00

2 0,

074

±

0,00

1 11

,75

±

0,06

0,

0411

±

0,

0006

5,

37

±

0,07

1,

64

±

0,01

2,

03

±

0,03

0,

067

±

0,00

1

22

2

0,17

8 ±

0,

003

0,08

5 ±

0,

002

12,1

1 ±

0,

04

0,05

33

±

0,00

06

3,41

±

0,

04

1,14

±

0,

02

0,78

9 ±

0,

001

0,06

60

±

0,00

06

52

3

0,20

1 ±

0,

003

0,07

8 ±

0,

001

12,5

±

0,

1 0,

0333

±

0,

0005

3,

17

±

0,06

0,

94

±

0,01

1,

05

±

0,02

0,

0707

±

0,

0007

82

4

0,09

6 ±

0,

002

0,07

5 ±

0,

001

10,2

±

0,

1 0,

0586

±

0,

0009

3,

090

±

0,00

1 0,

72

±

0,01

0,

96

±

0,01

0,

0614

±

0,

0005

11

2 5

0,07

60

±

0,00

04

0,06

2 ±

0,

001

7,8

±

0,1

0,05

02

±

0,00

08

2,09

±

0,

01

0,54

5 ±

0,

009

0,71

5 ±

0,

003

0,07

7 ±

0,

002

14

2 6

0,03

4 ±

0,

001

0,04

6 ±

0,

001

5,39

±

0,

03

0,04

06

±

0,00

06

1,78

±

0,

02

0,39

4 ±

0,

002

0,53

8 ±

0,

005

0,06

17

±

0,00

06

17

2 7

0,00

0 ±

0,

000

0,00

±

0,

00

0,00

±

0,

00

0,00

00

±

0,00

00

0,00

±

0,

00

0,00

0 ±

0,

000

0,00

0 ±

0,

000

0,00

00

±

0,00

00

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

10B

7

1 0,

094

±

0,00

3 0,

085

±

0,00

1 12

,2

±

0,1

0,08

4 ±

0,

001

5,90

±

0,

01

1,75

±

0,

01

2,31

±

0,

06

0,07

2 ±

0,

002

22

2

0,09

8 ±

0,

002

0,09

0 ±

0,

001

12,6

7 ±

0,

03

0,03

97

±

0,00

04

3,98

±

0,

04

1,20

±

0,

02

0,79

1 ±

0,

004

0,07

41

±

0,00

01

52

3

0,18

9 ±

0,

002

0,08

0 ±

0,

001

12,4

0 ±

0,

09

0,03

88

±

0,00

04

3,00

±

0,

01

0,91

5 ±

0,

007

0,63

±

0,

02

0,08

0 ±

0,

001

82

4

0,16

5 ±

0,

005

0,07

4 ±

0,

002

9,9

±

0,1

0,09

2 ±

0,

001

2,59

±

0,

04

0,69

5 ±

0,

002

0,75

3 ±

0,

004

0,07

75

±

0,00

08

11

2 5

0,05

2 ±

0,

001

0,08

9 ±

0,

001

8,3

±

0,1

0,05

69

±

0,00

07

2,31

±

0,

02

0,60

1 ±

0,

008

0,78

2 ±

0,

009

0,07

2 ±

0,

001

14

2 6

0,03

03

±

0,00

05

0,04

5 ±

0,

002

5,52

±

0,

05

0,03

41

±

0,00

05

1,85

0 ±

0,

007

0,39

5 ±

0,

003

0,47

9 ±

0,

002

0,05

23

±

0,00

04

17

2 7

0,00

±

0,

00

0,00

±

0,

00

0,00

±

0,

00

0,00

00

±

0,00

00

0,00

±

0,

00

0,00

0 ±

0,

000

0,00

0 ±

0,

000

0,00

00

±

0,00

00

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

Page 62: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Cap

ítul

o 6

- C

onsi

dera

ções

fin

ais

52

15A

7

1 0,

176

±

0,00

1 0,

167

±

0,00

1 11

,89

±

0,07

0,

126

±

0,00

1 1,

99

±

0,04

1,

20

±

0,02

3,

05

±

0,02

0,

096

±

0,00

1

22

2

0,07

9 ±

0,

001

0,18

6 ±

0,

003

11,6

5 ±

0,

07

0,03

39

±

0,00

01

1,00

3 ±

0,

004

0,68

9 ±

0,

003

1,40

±

0,

02

0,07

65

±

0,00

05

52

3

0,20

5 ±

0,

001

0,18

8 ±

0,

002

12,7

8 ±

0,

04

0,04

70

±

0,00

02

1,06

1 ±

0,

007

0,56

4 ±

0,

005

0,62

6 ±

0,

004

0,08

75

±

0,00

05

82

4

0,13

0 ±

0,

001

0,36

2 ±

0,

002

10,7

1 ±

0,

04

0,04

56

±

0,00

04

0,96

±

0,

01

0,37

0 ±

0,

004

0,88

1 ±

0,

009

0,06

1 ±

0,

001

11

2 5

0,08

8 ±

0,

001

0,14

7 ±

0,

001

10,8

3 ±

0,

06

0,03

48

±

0,00

03

0,74

5 ±

0,

008

0,32

3 ±

0,

004

0,85

8 ±

0,

007

0,05

90

±

0,00

04

14

2 6

0,05

3 ±

0,

003

0,11

6 ±

0,

001

7,81

±

0,

01

0,04

2 ±

0,

001

---

0,21

8 ±

0,

005

0,53

8 ±

0,

008

0,04

57

±

0,00

03

17

2 7

0,04

2 ±

0,

000

0,12

9 ±

0,

001

9,82

±

0,

08

0,00

75

±

0,00

01

0,63

0 ±

0,

005

0,21

8 ±

0,

003

0,49

1 ±

0,

002

---

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

15B

7

1 0,

150

±

0,00

2 0,

180

±

0,00

4 13

,7

±

0,1

0,04

95

±

0,00

07

2,42

±

0,

02

1,67

±

0,

04

2,15

±

0,

05

0,08

79

±

0,00

05

22

2

0,12

9 ±

0,

001

0,19

2 ±

0,

001

11,8

±

0,

2 0,

273

±

0,00

2 1,

14

±

0,03

0,

721

±

0,00

6 0,

751

±

0,00

9 0,

0640

±

0,

0006

52

3

0,18

4 ±

0,

001

0,20

2 ±

0,

002

13,9

±

0,

1 0,

0470

±

0,

0003

1,

76

±

0,04

0,

597

±

0,00

9 1,

25

±

0,03

0,

0763

±

0,

0002

82

4

0,15

6 ±

0,

003

0,36

1 ±

0,

008

12,6

±

0,

2 0,

208

±

0,00

3 1,

221

±

0,00

8 0,

444

±

0,00

4 0,

83

±

0,03

0,

074

±

0,00

1

11

2 5

0,12

2 ±

0,

002

0,15

0 ±

0,

001

10,9

±

0,

1 0,

0437

±

0,

0008

0,

733

±

0,00

8 0,

3160

±

0,

0007

0,

541

±

0,00

3 0,

089

±

0,00

1

14

2 6

0,08

98

±

0,00

04

0,12

1 ±

0,

001

8,4

±

0,1

0,04

82

±

0,00

05

---

0,22

1 ±

0,

002

0,42

2 ±

0,

002

0,11

1 ±

0,

001

17

2 7

0,13

88

±

0,00

04

0,13

6 ±

0,

001

10,4

9 ±

0,

09

0,04

59

±

0,00

02

0,69

8 ±

0,

005

0,25

11

±

0,00

07

0,51

6 ±

0,

002

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

16A

7

1 0,

145

±

0,00

2 0,

0316

±

0,

0001

16

,6

±

0,3

0,03

42

±

0,00

04

4,6

±

0,1

1,23

0 ±

0,

009

2,23

±

0,

06

0,08

5 ±

0,

001

22

2

0,07

9 ±

0,

001

0,02

56

±

0,00

01

16,7

±

0,

2 0,

0364

±

0,

0005

2,

29

±

0,03

0,

70

±

0,02

0,

680

±

0,00

9 0,

090

±

0,00

1

52

3

0,08

3 ±

0,

001

0,02

49

±

0,00

04

18,3

±

0,

1 0,

0346

±

0,

0001

2,

01

±

0,03

0,

574

±

0,00

1 0,

575

±

0,00

7 0,

107

±

0,00

2

82

4

0,10

1 ±

0,

001

0,03

44

±

0,00

03

20,2

±

0,

2 0,

0408

±

0,

0006

1,

89

±

0,02

0,

506

±

0,00

4 0,

827

±

0,00

6 --

-

11

2 5

0,07

65

±

0,00

03

0,02

52

±

0,00

02

19,3

±

0,

1 0,

0326

±

0,

0001

1,

29

±

0,01

0,

372

±

0,00

4 0,

457

±

0,00

2 --

-

14

2 6

0,05

83

±

0,00

04

0,02

646

±

0,00

002

21,4

5 ±

0,

09

0,02

21

±

0,00

03

1,09

±

0,

01

0,34

1 ±

0,

001

0,31

4 ±

0,

004

---

17

2 7

0,02

89

±

0,00

01

0,02

44

±

0,00

03

21,8

±

0,

1 0,

0078

±

0,

0005

0,

776

±

0,00

5 0,

281

±

0,00

2 0,

245

±

0,00

1 --

-

Am

ostr

a D

ias

Col

eta

Al (

ppm

) B

a (p

pm

) C

a (p

pm

) F

e (p

pm

) K

(pp

m)

Mg

(pp

m)

Na

(pp

m)

Sr

(pp

m)

16B

7

1 0,

138

±

0,00

4 0,

0311

±

0,

0003

16

,17

±

0,02

0,

0371

±

0,

0004

4,

33

±

0,04

1,

35

±

0,05

2,

17

±

0,03

0,

0848

±

0,

0004

22

2

0,15

2 ±

0,

002

0,02

83

±

0,00

01

17,4

±

0,

2 0,

0458

±

0,

0008

2,

63

±

0,02

1,

01

±

0,01

0,

690

±

0,00

2 0,

090

±

0,00

1

52

3

0,06

76

±

0,00

01

0,02

59

±

0,00

02

17,2

5 ±

0,

08

0,03

96

±

0,00

04

2,04

5 ±

0,

005

0,55

3 ±

0,

002

0,59

±

0,

02

0,10

1 ±

0,

002

82

4

0,06

0 ±

0,

001

0,03

53

±

0,00

04

20,4

±

0,

1 0,

0508

±

0,

0003

1,

76

±

0,02

0,

508

±

0,00

4 0,

675

±

0,00

5 --

-

11

2 5

0,26

7 ±

0,

001

0,03

00

±

0,00

01

20,3

5 ±

0,

02

0,12

1 ±

0,

001

1,45

±

0,

02

0,38

8 ±

0,

002

0,49

9 ±

0,

004

---

14

2 6

0,03

63

±

0,00

01

0,02

71

±

0,00

02

21,1

±

0,

1 0,

0083

±

0,

0001

1,

01

±

0,02

0,

310

±

0,00

3 0,

275

±

0,00

2 --

-

17

2 7

0,02

63

±

0,00

01

0,02

42

±

0,00

01

20,2

±

0,

2 0,

0065

±

0,

0001

0,

749

±

0,00

7 0,

248

±

0,00

2 0,

206

±

0,00

2 --

-

Page 63: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

53

Observa-se na Figura 5.6 que o comportamento do urânio lixiviado das amostras LM-

GR-02 e LM-GR-16 é bem similar. Embora esses dois sienogranitos apresentem a mesma

concentração de urânio (4,6±0,2 µg/g), uma maior quantidade foi lixiviada da amostra LM-

GR-02, sendo que nesta rocha a perda de urânio no final do experimento foi dez vezes menor

do que a inicial. Enquanto para a amostra LM-GR-16 essa perda foi mais lenta (variação de

cerca de 4 vezes) no mesmo período. Isso reflete diferenças na paragênese mineral, princi-

palmente de fases que devem conter urânio. Isto é reforçado pelas análises químicas dessas

duas rochas que mostram diferenças significativas nas concentrações de Fe, Ca, Ba e Zr (Ta-

bela 5.1).

As rochas LM-GR-01, LM-GR-05 e LM-GR-15 possuem também concentrações de

urânio iguais (~5,0 µg/g), considerando-se as incertezas analíticas. Eliminando-se as amostra-

gens nas quais houve vazamento e perda de amostra, verifica-se também que o urânio lixivia-

do apresenta comportamento significativamente distinto (Figura 5.6).

A amostra LM-GR-01 destaca-se por apresentar baixas taxas de lixiviação de urânio,

sugerindo que este elemento possa estar principalmente concentrado em fases minerais refra-

tárias presentes nessa rocha, como zircão, allanita, apatita e/ou titanita. A amostra LM-GR-05

caracteriza-se por apresentar a maior perda de urânio (variação de oito vezes), a qual ocorreu

de modo gradual, com quantidades lixiviadas bem menores na sexta e sétima coletas. Com

relação às águas da amostra LM-GR-15, é interessante notar que na terceira coleta houve um

aumento significativo da massa lixiviada de urânio em comparação com a retirada anterior,

indicando uma possível abertura no sistema rocha-água, após cerca de 50 dias do início do

experimento. Cabe destacar, que o mesmo comportamento foi observado por Collaço (2008)

em um estudo similar também efetuado em granitóides do Complexo Itu.

Em escala bem menor, esse comportamento irregular na liberação de urânio da rocha é

também notado em todas as amostras analisadas, sugerindo que a reação entre os minerais e a

água circundante ocorre de modo episódico e variável no tempo.

Os valores cumulativos da massa de urânio lixiviado, em função do tempo de duração

do experimento, encontram-se apresentados na Figura 5.7, onde se observa uma concordância

muito boa entre as duplicatas de cada uma das amostras, já que os valores são iguais, conside-

rando-se as incertezas analíticas. A amostra LM-GR-01 é uma exceção, pois ocorreu vaza-

mento significativo entre a quarta e quinta coletas, além da perda de uma das amostras duran-

te a sexta coleta.

A Figura 5.7 mostra também que a partir da quinta coleta a quantidade total de urânio

lixiviado diminui significativamente, fazendo com a que as curvas de acúmulo comecem a-

Page 64: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

54

presentar tendência assintótica. A amostra LM-GR-01 foge à regra, pois embora apresente

alta concentração de urânio na rocha (5,2±0,2 µg/g) é a que sofre a menor lixiviação. Cabe

ainda notar que os maiores valores cumulativos ocorreram nas amostras de água que ficaram

em contato com a rocha LM-GR-05, confirmando a maior lixiviação de urânio da mesma.

Com o objetivo de efetuar uma comparação da quantidade urânio lixiviado, que fosse

independente da abundância de urânio dos granitóides, foi efetuada uma normalização da

massa total lixiviada pela concentração desse elemento nas respectivas rochas (Figura 5.8). Os

resultados obtidos reforçam que o urânio foi muito mais lixiviado do granito alcalino LM-

GR-05, que pertence à Intrusão Itupeva, enquanto a que menos liberou urânio foi o sienogra-

nito LM-GR-01, que pertence à Intrusão Cabreúva. A quantidade lixiviada desta última rocha

foi cerca de 6 vezes menor do que a observada no granito alcalino LM-GR-05. As quantida-

des de urânio lixiviado das outras três rochas são aproximadamente iguais, as quais são cerca

de três vezes maiores do que aquela da rocha LM-GR-01. Desse grupo, a que mais liberou

urânio foi o granito alcalino LM-GR-15 da Intrusão Salto, enquanto a menor quantidade lixi-

viada foi do sienogranito LM-GR-16 da Intrusão Indaiatuba.

Page 65: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

55

25 50 75 100 125 150 175

Dias

0

2

4

6

LM-GR-16A

B

0 25 50 75 100 125 150 175

Dias

0

4

8

12

LM-GR-15A

B

0

4

8

12

16

Mass

a norm

alizada de U(ng/g.m

2)

LM-GR-05

A

B

0

2

4

6

8

10

LM-GR-02A

B

0

0.4

0.8

1.2

1.6

2

LM-GR-01A

B

Os dados que se encontram dentro da elípse verde mostram a diferença na massa norma-lizada de urânio devido ao vazamento de água ocorrido na amostra LM-GR-01 B.

O dado circulado pela linha azul refere-se a uma amostra cujo rendimento químico foi abaixo de 35%; além disso ocorreu vazamento de água entre o intervalo de coleta.

Figura 5.6: Comportamento da massa de urânio lixiviado normalizada para as amostras estu-dadas e suas duplicatas em função do tempo do experimento.

Page 66: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

56

25 50 75 100 125 150 175

Dias

0

5

10

15

20

25

LM-GR-16

A

B

Dias

15

25

35

45LM-GR-15

A

B

20

40

60

Acúmulo de m

assa norm

alizad

a de U(ng/g.m

2)

LM-GR-05

A

B

5

10

15

20

25

30

35

LM-GR-02

A

B

0

2

4

6

8

LM-GR-01

A

B

A diferença entre os valores acumulados para a amostra LM-GR-01 e sua duplicata foram causados pela perda de água entre os inter-valos de coleta.

Figura 5.7: Acumulação da massa de urânio em função do tempo de amostragem.

Page 67: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

57

LM-GR-01 LM-GR-02 LM-GR-05 LM-GR-15

0

200

400

600

800

1000

1200

1400

Massa total de urânio lixiviado norm

alizada

pela concentração da rocha (m-2x10-5)

LM-GR-16

Figura 5.8: Massa total de urânio lixiviado normalizado pela concentração desse elemento na rocha para cada amostra (cor sólida) e sua duplicata (quadriculado).

As rochas da Intrusão Itupeva são caracterizadas por apresentar, como minerais essen-

ciais, feldspato potássico e quartzo, contendo subordinadamente biotita e plagioclásio (oligo-

clásio). Como acessórios ocorrem zircão, apatita e raros pseudomorfos de allanita (substituí-

dos por carbonatos), além de titanita em quantidade superior às das outras intrusões (Galem-

beck, 1997). Assim, a maior quantidade de urânio lixiviada da rocha LM-GR-05 pode estar

associada à reação da água com a titanita, que é um mineral que concentra esse elemento.

Em um trabalho realizado em paralelo (Villagrán, 2011), no qual as rochas LM-GR-01

e LM-GR-15 foram submetidas a soluções lixiviadoras com HNO3 em diferentes concentra-

ções (0,1M, 0,5 M e 1M), verificou-se que quantidades significativas de U e Fe foram mobili-

zadas. Isto, de certa forma, sugere que boa parte do urânio possa estar associada com biotita.

Cabe destacar que associados a este mineral, ocorrem zircão, titanita, allanita e apatita, con-

forme destacado por Galembeck (1997).

As razões de atividade 234U/238U obtidas para as amostras de água que ficaram em

contato com os granitóides mostram que os radioisótopos 234U e 238U estão em desequilíbrio

radioativo, com valores variando entre 1,63±0,02 e 2,9±0,1 (Tabela 5.4). Esses valores são

Page 68: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

58

significativamente maiores do que a unidade e evidenciam a lixiviação preferencial do 234U, a

qual pode ser resultante do recuo alfa direto, da mudança no estado de oxidação desse isótopo

e/ou fragilização do retículo cristalino dos minerais, decorrentes do processo de emissão da

partícula alfa pelo 238U (Osmond & Cowart, 1992; Bonotto et al., 2001; Suksi et al., 2006).

Cabe destacar que razões de atividades 234U/238U maiores do que um são típicas de águas su-

perficiais e subterrâneas (e.g. Luo et al., 2000;Dabous et al., 2002; Gäfvert et al., ,2002).

Pode-se observar que se for considerada cada rocha separadamente, as razões de ativi-

dade, das respectivas águas, podem ser consideradas constantes durante os 180 dias de expe-

rimento, já que os valores podem ser considerados iguais, levando-se em conta incertezas ana-

líticas de 2σ (Figura 5.8). Cabe notar também que as razões 234U/238U de cada amostra e da

respectiva duplicata são iguais, dentro das incertezas analíticas de 2σ.

As menores razões de atividades 234U/238U são observadas nas amostras de água que

ficaram em contato com os granitóides LM-GR-01 e LM-GR-05. A primeira caracteriza-se

por apresentar as menores taxas de lixiviação de urânio, enquanto a última é a que libera as

maiores quantidades de urânio para a água. Destaca-se que, razões de atividades similares as

aqui obtidas foram determinadas na análise de águas subterrâneas extraídas de poços profun-

dos que cortam os aqüíferos fraturados formados por esses granitóides (Souza, 2006; Reyes,

2009).

Como a lixiviação é o principal mecanismo para a liberação dos isótopos de urânio na

água, espera-se que o coeficiente linear da reta ajustada por mínimos quadrados seja zero (in-

tersecção na origem), quando são efetuados diagramas da atividade do 234U em função daque-

la do 238U (Suksi et al., 2006). Nesse caso, a observação de coeficientes lineares positivos in-

dicaria que ocorreu outro mecanismo, além da lixiviação química, adicionando 234U para a

solução, como o recuo alfa direto, que independe das condições químicas do meio e tem como

limitante apenas a posição do urânio dentro dos grãos dos minerais.

Para as amostras analisadas, a única que possui coeficiente linear positivo no diagrama

das atividades do 234U em função das de 238U é a amostra de água que ficou em contato com a

rocha LM-GR-05 (Figuras 5.9 e 5.10). Essa amostra é a que possui a maior taxa de liberação

de urânio para o meio, contudo, considerando incertezas de 2σ, o coeficiente angular não é

estatisticamente diferente de zero. Desta forma, o recuo alfa direto não é o processo que mais

contribuiu para o enriquecimento do 234U nas águas investigadas. Portanto, as altas razões de

atividades 234U/238U são provavelmente causadas pelo estado de oxidação (hexavalente positi-

vo) do 234U, bem como pela fragilização do retículo cristalino nas imediações onde os radioi-

sótopos de 238U, que sofreram decaimento, estavam localizados.

Page 69: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

59

0 25 50 75 100 125 150 175

Dias

1.6

2

2.4

2.8

LM-GR-16A

B

0 25 50 75 100 125 150 175

Dias

1.6

2

2.4

2.8 LM-GR-15A

B

1.6

2

2.4

2.8

Razõ

es de atividad

es 234U/238U LM-GR-05

A

B

1.6

2

2.4

2.8

LM-GR-02A

B

1.6

2

2.4

2.8

LM-GR-01A

B

Figura 5.9: Razões de atividades 234U/238U em função da duração do experimento.

Page 70: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

60

0.1 0.2 0.3

Atividade do 238U

0.2

0.4

0.6

0.8

Atividade do 2

34U

LM-GR-16A

B

0.1 0.3 0.5 0.7

0.2

0.6

1

1.4LM-GR-15

A

B

0.2 0.4 0.6 0.8 1

0

0.4

0.8

1.2

1.6

Atividad

e do 234 U

LM-GR-05A

B

0.1 0.2 0.3 0.4

0

0.4

0.8

1.2

1.6

LM-GR-02A

B

0.04 0.06 0.08

0

0.04

0.08

0.12

0.16

0.2

Atividade do 234 U

LM-GR-01A

B

Fit A: Y = 2,05(0,08) * X - 0,007(0,004)R2 = 0,990

Fit B: Y = 1.90(0,02) * X - 0,001(0,001)R2 = 0,9995

Fit A: Y = 2,52(0,03) * X - 0,010(0,09)R2 = 0.9434

Fit B: Y = 2,55(0,05) * X - 0,02(0,01)

R2 = 0.9181

Fit A: Y = 1,66(0,07) * X + 0,08(0,04)R2 = 0.9909

Fit B:Y = 1,7(0,1) * X + 0,06(0,06)R2 = 0.9839

Fit A: Y = 2,43(0,02) * X - 0,006(0,006)R2 = 0.9997

Fit B: Y = 2,44(0,03) * X - 0,007(0,009)R-squared = 0.9995

Fit A: Y = 2,51(0,07) * X + 0,02(0,02)R2 = 0.9957

Fit B: Y = 2,53(0,05) * X + 0,02(0,01)R2 = 0.9982

Figura 5.10: Relação das atividades do 234U em função das de 238U para cada uma das amostras de água analisadas. As retas foram obtidas pelo método de mínimos quadrados, sendo R2 o

parâmetro que mostra a qualidade dos ajustes.

Page 71: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

61

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

234U/238U

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Coeficientes an

gulares das retas ajustadas

Amostras de água

1A

1 B

2A

2B

5A

5B

15A

15B

16A

16B

Figura 5.11: Diagrama dos coeficientes lineares das retas ajustadas por mínimos quadrados

dos parâmetros da linha de regressão referentes aos dados da figura 5.9.

5.3 Resultados das análises de cátions dissolvidos As concentrações dos cátions Al, Ba, Ca, Fe, K, Mg, Na e Sr nas águas investigadas

encontram-se apresentadas na Tabela 5.6 e devem refletir aquelas dos minerais presentes nos

granitóides mais susceptíveis ao processo de dissolução.

Em geral, os minerais essenciais, presentes nas rochas ígneas, mais afetados nos pro-

cessos de interação com a água são aqueles que apresentam as maiores temperaturas de fusão,

cristalizando nas primeiras fases de solidificação dos magmas. Assim, a olivina e o plagioclá-

sio cálcico são os primeiros a sofrerem alteração, os quais são seguidos pelo piroxênio, anfi-

bólio, biotita e plagioclásio sódico. Os feldspatos potássicos são os minerais mais resistentes a

esses processos, sendo apenas menos afetados do que o quartzo (Négrel et al., 2000; Elango &

Kannan, 2007).

Nos processos de alteração de rochas graníticas, nas quais a paragênese essencial é

dada por plagioclásio, feldspato potássico e quartzo, pode ocorrer a liberação de Na, Ca, Al,

K, Ba e Sr. Os elementos K, Fe, Mg e Al são também lixiviados da biotita, enquanto Na, Ca,

Mg, Fe e Al são liberados pelos anfibólios, embora estes dois minerais ocorram de modo su-

Page 72: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

62

bordinado nessas rochas. Os minerais apatita, allanita e titanita podem liberar Ca, Ti, P, Fe e

Al. O zircão por ser muito resistente, dificilmente libera cátions para o meio. Esses minerais

acessórios, que concentram urânio, geralmente estão presentes como inclusões ou como grãos

associados com biotita e anfibólio (Zielinski et al., 1981).

Conforme mencionado no capítulo 3, de acordo com Pascholati (1990) e Galembeck

(1997), as rochas investigadas são de modo geral constituídas predominantemente por felds-

pato potássico e quartzo, com quantidade subordinada de plagioclásio, sendo biotita o acessó-

rio máfico mais importante, por vezes acompanhado de ferro-hastingsita, pertencente ao gru-

po dos anfibólios. Como traços ocorrem titanita, apatita, zircão e allanita, os quais geralmente

estão associados com biotita e com o anfibólio, quando este se encontra presente.

Dos minerais presentes nas rochas do Complexo Itu, plagioclásio, anfibólio e biotita

são os menos resistentes à água. Assim, espera-se que os elementos Ca, K, Fe, Mg, Al, Sr e

Ba sejam os mais mobilizados para a solução.

As concentrações de cátions determinadas nas amostras de água, normalizadas pelas

respectivas áreas superficiais das rochas com que elas estiveram em contato, mostram que os

processos de interação rocha-água que ocorreram nos granitóides investigados são difíceis de

serem caracterizados. Além dos processos serem complexos, em muitas das análises as con-

centrações das águas foram significativamente diferentes daquelas das respectivas duplicatas,

como pode ser observado nos diagramas das Figuras 5.12 a 5.16. Os elementos que apresenta-

ram maior variação na comparação entre duplicatas são Na, Ba e Fe. Essas diferenças ocorre-

ram especialmente nas análises das águas das três primeiras coletas e podem ser atribuídas às

tentativas de vedar os frascos do aparato experimental, nos quais aconteceram vazamentos,

principalmente logo no início de funcionamento do sistema de lixiviação. A abertura dos fras-

cos para reparo e o uso de filme de teflon comercial, parafina e diferentes tipos de cola prova-

velmente introduziram esses elementos estranhos ao sistema, causando a contaminação da

água. Outro fator a ser considerado, são as baixas concentrações dos elementos analisados na

água, em que, em algumas situações ficaram abaixo do limite de detecção da metodologia

empregada para essas determinações.

Page 73: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

63

Figura 5.12: Dissolução dos elementos em função do tempo na amostra LM-GR-01.

25 50 75 100 125 150 175

Dias

0.02

0.04

0.06

0.08

0.1

0.12

0.14 Sr

A

B

25 50 75 100 125 150 175

Dias

0.8

1.2

1.6

2

2.4

2.8Na

A

B

0.2

0.4

0.6

0.8

1

1.2Mg

A

B

2

3

4

5

6K

A

B

0

0.05

0.1

0.15

0.2

Fe

A

B

0

4

8

12

16

LM-G

R-01

Acúmulo dos elementos m

enores (mg/Lm

2 )

Ca

A

B

0.2

0.6

1

1.4

1.8

2.2

2.6

Ba

A

B

0

0.1

0.2

0.3

0.4

0.5

Al

A

B

Page 74: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

64

25 50 75 100 125 150 175

Dias

0.05

0.1

0.15

0.2

Sr

A

B

25 50 75 100 125 150 175

Dias

1

2

3

4

Na

A

B

0

0.4

0.8

1.2

Mg

A

B

0

4

8

12

K

A

B

0.1

0.2

Fe

A

B

0

10

20

30

40

50

LM-GR-02

Acúmulo dos elemen

tos (mg/Lm

2)

Ca

A

B

0.2

0.6

1

1.4 Ba

A

B

0

0.2

0.4

0.6

0.8

Al

A

B

Figura 5.13: Dissolução dos elementos em função do tempo na amostra LM-GR-02.

Page 75: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

65

25 50 75 100 125 150 175

Dias

0

0.1

0.2

0.3

Sr

A

B

25 50 75 100 125 150 175

Dias

1

1.5

2

2.5

3

Na

A

B

0.4

0.8

1.2

1.6

2 Mg

A

B

2

3

4

5

6

K

A

B

0.04

0.08

0.12

Fe

A

B

0

20

40

60

LM-GR-05

Acúmulo dos elemen

tos (mg/Lm

2)

Ca

A

B

0.2

0.6

1

1.4

1.8

2.2

2.6

3

Ba

A

B

0

0.1

0.2

0.3

0.4 Al

A

B

Figura 5.14: Dissolução dos elementos em função do tempo na amostra LM-GR-05.

Page 76: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

66

25 50 75 100 125 150 175

Dias

0

0.05

0.1

0.15

0.2

0.25Sr

A

B

25 50 75 100 125 150 175

Dias

1

2

3

4

5Na

A

B

0.4

0.8

1.2

1.6

2

2.4 Mg

A

B

1

2

3

4K

A

B

0

0.1

0.2

0.3

0.4 Fe

A

B

0

10

20

30

40

LM-GR-15

Acúmulo dos elemen

tos (mg/Lm

2)

Ca

A

B

0.2

0.4

0.6

0.8

1

Ba

A

B

0

0.1

0.2

0.3

0.4

0.5

0.6

Al

A

B

Figura 5.15: Dissolução dos elementos em função do tempo na amostra LM-GR-15.

Page 77: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

67

25 50 75 100 125 150 175

Dias

0.04

0.08

0.12

Sr

A

B

25 50 75 100 125 150 175

Dias

0.8

1.2

1.6

2

2.4

2.8Na

A

B

0.4

0.8

1.2

1.6

2

2.4 Mg

A

B

2

4

6

8K

A

B

0

0.1

0.2

0.3

0.4 Fe

A

B

0

20

40

60

LM-GR-16

Acúmulo dos elemen

tos (mg/Lm

2)

Ca

A

B

0

0.02

0.04

0.06

0.08

0.1

0.12

Ba

A

B

0

0.1

0.2

0.3

0.4

Al

A

B

Figura 5.16: Dissolução dos elementos em função do tempo na amostra LM-GR-16.

Page 78: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

68

De modo geral, os diagramas de acumulação efetuados mostram que, exceto para o Ca

e por vezes também para Ba e Al, os valores tendem a apresentar uma menor variação nas úl-

timas coletas, indicando que as quantidades lixiviadas foram diminuindo ao longo do proces-

so, o que também foi observado claramente para o comportamento do urânio. Curvas de lixi-

viação similares são apresentadas por Bonotto (2004), na análise de granitos.

As quantidades totais dos cátions dissolvidos, normalizadas pela concentração dos

mesmos nas respectivas rochas e pelas áreas superficiais das superfícies expostas à lixiviação,

também foram calculadas (Figura 5.17). Desta forma, é possível comparar diretamente as

quantidades dos elementos liberadas para a solução. A título de clareza, os resultados das aná-

lises nas quais há a suspeita de contaminação não estão apresentados na Figura 5.17.

Os resultados mostram que no granito alcalino LM-GR-01 da Intrusão Cabreúva hou-

ve liberação relativamente baixa de Al, Ca, Ba e Sr, que sugerem dissolução preferencial de

plagioclásio cálcico-sódico (Figura 5.17). Este resultado concorda com o baixo conteúdo lixi-

viado dessa rocha, já que o plagioclásio rejeita a entrada urânio na sua estrutura cristalina, a-

presentando baixíssimos coeficientes de partição sólido-líquido (Kd = 6 x 10-4; Blundy &

Wood, 2003).

Por outro lado, a rocha LM-GR-05 da Intrusão Itupeva, na qual ocorreu a maior lixivi-

ação de urânio, é a que liberou quantidades relativamente grandes de Ca e Mg, moderadas de

Al, K, Fe, Sr e Ba, além de pequena de Na. Isto indica que além de plagioclásio cálcico, uma

ou mais fases máficas devem ter sofrido dissolução, já que estas são caracterizadas pela pre-

sença de Fe e Mg. A dissolução de biotita é compatível com as quantidades observadas de

cátions liberados para a água, como também com a alta taxa de lixiviação de urânio. Neste

caso, cabe destacar que minerais os acessórios, como titanita, que concentram urânio encon-

tram-se associados à biotita nessas rochas (Galembeck, 1997). Como já mencionado anteri-

ormente, experimentos de lixiviação, com ácido nítrico diluído, efetuados nessas rochas pro-

moveram grande lixiviação de Fe e U, reforçando o envolvimento significativo da biotita nes-

se processo (Villagrán, 2011).

A rocha LM-GR-2 da Intrusão Cabreúva liberou quantidades significativas de Al, K e

Na, e moderadas de Ca e Sr e baixas de Mg e Ba, sugerindo dissolução de plagioclásio sódi-

co-cálcico.

De acordo com Galembeck (1997) a Intrusão Indaiatuba é a que apresenta a menor

resistência aos processos de intemperismo. Nas águas que ficaram em contato com o sieno-

granito LM-GR-16, pertencente a esse corpo, foram observadas quantidades altas de Ca, mo-

deradas de Al, K, Na, Fe, Mg e Sr, sugerindo a dissolução de plagioclásio sódico-cálcico e de

Page 79: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

69

biotita. Entretanto, os baixos conteúdos de Ba são incompatíveis com a dissolução de prefe-

rencial de plagioclásio, já que este elemento tem comportamento geoquímico similar ao do Sr.

Em suma, apesar dos problemas de contaminação com alguns cátions, os resultados

parecem indicar que plagioclásio e biotita foram as fases que mais reagiram com a água du-

rante a lixiviação. Os dados obtidos para o urânio sugerem que na dissolução da biotita, os

minerais acessórios que concentram urânio (titanita, apatita, allanita) e que ocorrem em asso-

ciação com esse mineral podem ter sido afetados no processo, favorecendo a lixiviação desse

elemento para a água. Entretanto, estudos adicionais são necessários para confirmar essa hipó-

tese.

Page 80: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

70

Mas

sa t

otal

do

elem

ento

lixi

viad

o n

orm

aliz

ada

pel

a co

nce

ntr

ação

da

roch

a (m

-2)

Ba

Fe

Mg

Sr

Al

Ca

K

Na

Mas

sa t

otal

do

elem

ento

lixi

viad

o n

orm

aliz

ada

pel

a co

nce

ntr

ação

da

roch

a (m

-2)

Figura 5.17: Dissolução total dos cátions para cada amostra.

Page 81: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

71

6 Considerações finais O estudo do processo de mobilização do urânio em sistema rocha-água, através de ex-

perimentos em laboratório, utilizando granitóides do Complexo Itu permitiu obter informa-

ções importantes, que são destacadas a seguir.

1- Foi projetado um aparato experimental com o qual foram realizados, com sucesso, experi-

mentos de lixiviação, com percolação ininterrupta de água pelas rochas investigadas durante

um período de cerca de 180 dias.

2- Trabalhos de campo foram realizados para a coleta de amostras representativas das diferen-

tes intrusões que compõem o Complexo Itu. Através da composição química dos elementos

maiores e menores, verificou-se que das rochas coletadas, três são sienogranitos (LM-GR-01,

LM-GR-02 e LM-GR-16), duas são granitos alcalinos (LM-GR-05 e LM-GR-15) e uma é

monzodiorito (LM-GR-10).

3- A técnica analítica de espectrometria alfa, associada ao método de diluição isotópica, per-

mitiu determinar concentrações de urânio com elevado nível de exatidão. Erros relativos de

no máximo 13% foram obtidos na comparação com as concentrações determinadas pela téc-

nica de ICP-MS, reconhecida internacionalmente por fornecer resultados com elevados níveis

de exatidão e precisão. Ressalta-se também que os resultados das análises das amostras de

água e das respectivas duplicatas são estatisticamente iguais, considerando-se as incertezas

analíticas de 1σ, exceto em algumas análises que requerem a incerteza de 2σ. A rotina expe-

rimental adotada foi eficiente para extrair o urânio presente nas amostras de água e de rocha

analisadas, apresentando rendimentos químicos entre 28 e 96%. Não foi possível analisar as

águas que ficaram em contato com a amostra LM-GR-10, devido às suas baixas concentra-

ções de urânio.

4- Embora os sienogranitos LM-GR-02 e LM-GR-16 possuam as mesmas concentrações de

urânio, a lixiviação deste elemento na primeira foi muito mais efetiva, refletindo diferença na

paragênese mineral, especialmente quanto aos minerais acessórios que devem concentrar esse

elemento, como indicado pelas análises químicas obtidas pela técnica de Fluorescência de

Raios X. Comportamento similar foi também observado entre as rochas LM-GR-01, LM-GR-

05 e LM-GR-15 que possuem concentrações iguais, considerando as incertezas analíticas. O

sienogranito LM-GR-01 caracteriza-se por apresentar a menor taxa de lixiviação de urânio de

todas as amostras analisadas, indicando que este elemento deve estar concentrado em mine-

rais acessórios muito resistentes a reações com água (como, por exemplo, zircão). Por outro

Page 82: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo 6 - Considerações finais

72

lado, o granito alcalino LM-GR-05 é o que mais liberou urânio para a água e como esta rocha

é caracterizada por apresentar uma maior quantidade de titanita do que as demais, parece que

este mineral desempenhou um papel importante na lixiviação do urânio.

5- As razões de atividades 234U/238U determinadas para as águas que ficaram em contato com

os granitóides indicam desequilíbrio radioativo, com valores variando entre 1,63±0,02 e

2,9±0,1, que mostram a lixiviação preferencial do 234U. Esse enriquecimento é decorrente dos

processos de fragilização da rede cristalina dos minerais que contêm urânio, devido à emissão

alfa e também à mudança no estado de oxidação do urânio para hexavalente positivo, que é

solúvel. Razões de atividades semelhantes foram obtidas por Souza (2006) e Reyes (2009),

em águas subterrâneas provenientes de poços profundos que cortam as intrusões Salto e Itu-

peva.

6- As concentrações de cátions dissolvidos apresentaram em alguns casos diferenças signifi-

cativas entre as amostras e suas duplicatas. Essa variação foi provavelmente causada por pro-

cessos de contaminação causados durante tentativas de impedir o vazamento de água no apa-

rato experimental. Contudo, os diagramas de acumulação efetuados mostram que os valores

tendem a apresentar uma menor variação nas últimas coletas, indicando que as quantidades

lixiviadas foram diminuindo ao longo do processo, com exceção do Ca e por vezes também

do Ba e Al. Os resultados sugerem que plagioclásio e biotita foram as fases que mais reagiram

com a água durante a lixiviação. Os dados obtidos para o urânio sugerem que na dissolução

da biotita, os minerais acessórios que concentram urânio (titanita, apatita, allanita) e que ocor-

rem em associação com esse mineral podem ter sido afetados no processo, favorecendo a lixi-

viação desse elemento para a água. Entretanto, estudos adicionais são necessários para con-

firmar essa hipótese.

Page 83: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-7-Referências

73

7. Referências

Abdul-Hadi, A. A., Alhassanieh, O., & Ghafar, M. 2001. Disequilibrium of uranium isotopes in some Syrian groundwater. Appl. Radiat. Isot., 55(1): 109-113.

Andersen , M. B., Erel, Y., & Bourdon, B. 2009. Experimental evidence for 234U–238U frac-tionation during granite weathering with implications for 234U/238U in natural waters. Geochimica et Cosmochimica Acta, 73: 4124-4141.

Anderson PS, W. G., Chen JH, Papanastassiou DA, Ingri J. 1995. 238U-234U and 232Th-230Th in the Baltic Sea and in river water. Earth and Planetary Science Letters, 130: 217-234.

Becquerel, A. H. 1896a. On the invisible rays emitted by phosphorescent bodies. Comptes Rendus de Seances de l'academie de Sciences, 122: 501-503.

Becquerel, A. H. 1896b. On the rays emitted by phosphorescence. Comptes Rendus de Seances de l'academie de Sciences, 122: 420-421.

Becquerel, A. H. 1901. Sur la radioactivitie de l'uranium. Comptes Rendus de Seances de l'academie de Sciences, 83: 977-978.

Boltwood, B. B. 1907. Note on a new radioactive element. Amer J Sci, 24: 370-372.

Bonotto, D. M., & Andrews, J. N. 1993. The mechanism of U- 234/U-238 activity ratio en-hancement in karstic limestone groundwater. Chem. Geol., 103(1-4): 193-206.

Bonotto, D. M., Andrews, J. N., & Darbyshire, D. P. F. 2001. A laboratory study of the trans-fer of U-234 and U-238 during water–rock interactions in the Carnmenellis granite (Cornwall, England) and implications for the interpretation of field data. Appl. Radiat. Isotopes, 54: 977-994.

Bonotto, D. M. 2004. Radioatividade nas águas: da Inglaterra ao Guarani. 1. ed. São Paulo: Editora UNESP.

Bourdon, B., Geochemical Society., & Mineralogical Society of America. 2003a. Uranium-series geochemistry. Washington, D.C.: Mineralogical Society of America.

Chen, J. H., Edwards, L. R., & Wasserburg, G. J. 1986. 234U-238U and 232Th in sea water. Earth Planet Sci Lett, 80: 241-251.

Cochran, J. K., & Masqué, P. 2003. Short-lived U/Th Series Radionuclides in the Ocean: Tracers for Scavenging Rates, Export Fluxes and Particle Dynamics. Reviews in Mineralogy and Geochemistry, 52: 461-492.

Cohen A. S., & O’Nions, R. K. 1991. Precise determination of femtogram quantities of radi-um by thermal- ionisation mass spectrometry. Anal Chem, 61: 2705-2706.

Collaço, B. 2008. Dinâmica dos isótopos de urânio no processo de interação rocha-água em granitóides da suite intrusica de Itú (SP). Trabalho de Graduação, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, USP, São Paulo.

Page 84: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-7-Referências

74

Cônego Jr, D. ; Drigo, C. S. ; Machado, F. B. ; Rocha Jr, E. V. ; Marques, L. S. ; Nardy, A. J. R. . Densidades de rochas básicas intrusivas e extrusivas da região norte da Província Magmá-tica do Paraná. In: 44 Congresso Brasileiro de Geologia, 2008, Curitiba. 44 Congresso Bra-sileiro de Geologia, 2008. v. CD-ROM.

Crespo, M. T., Pérez Del Villar, L., Jiménez, A., & Pelayo, M. 1996. Uranium Isotopic Dis-tribution in the Mineral Phases of Granitic Fracture Fillings by a Sequential Extraction Proce-dure. Appl. Radiat. Isot., 47(9/10): 927-931.

Crookes, W. 1900. Radio-activity of Uranium. Proc R Soc London, 66: 409-422.

Curie, M. 1898. Rays emitted by compounds of uranium and thorium. Comptes Rendus de Seances de l'academie de Sciences, 126: 1101-1103.

Curie, M., & Curie, P. 1898. Sur une nouvelle substance radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l'academie de Sciences, 127: 175-178.

Curie, P., Curie, M., & Bemont, G. 1898. Sur une nouvelle substance fortement radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l'academie de Sciences, 127: 1215-1217.

Curie, P., & Laborde, A. 1903. On the heat spontaneously released by the salts of radium. Comptes Rendus de Seances de l'academie de Sciences, 86: 673.

Dabous, A. A., & Osmond, J. K. 2001. Uranium isotopic study of artesian and pluvial contri-butions to the Nubian Aquifer, Western Desert, Egypt. Journal of Hydrology, 243: 242-253.

Dabous, A. A., Osmond, J. K., & Dawood, Y. H. 2002. Uranium/Thorium isotope evidence for ground-water history in the Eastern Desert of Egypt. Journal of Arid Environments, 50: 343-357.

Dearlove, J. P. L., Longworth, G., Ivanovich, M., Kim, J. I., Delakowitz, B., & Zeh, P. 1991. A Study of Groundwater-Colloids and Their Geochemical Interactions with Natural Radionu-clides in Gorleben Aquifer Systems. Radiochimica Acta, 52-3: 83-89.

DePaolo, D. J., Maher, K., Christensen, J. N., & McManus, J. 2006. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984. Earth and Planetary Science Letters, 248(1-2): 394-410.

Dickin, A. P. 1995. Radiogenic Isotope Geology (2 ed.). New York: Cambridge University Press.

Dickson, B. L. 1990. Radium in Groundwater, Vol. 310: 335-372. Vienna: Technical Report Series.

Edwards, L. R., Chen, J. H., & Wasserburg, G. J. 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters, 81(175-192).

Edwards, R. L., Gallup, C. D., & Cheng, J. H. 2003. Uranium-series dating of marine and la-custrine carbonates. Mineral Geochem, 52(363-405).

Page 85: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-7-Referências

75

Elango, L., & Kannan, R. 2007. Rock-water interaction and its controlo n chemical composi-tion of groundwater. In D. D. Sarkar, R., Hannigan (Ed.), Developments in Environmental Science, Vol. 5: 229-243.

Fajans, K., & Gohring, O. 1913. Uber die komplexe Natu des UrX. Naturwissenschaften, 1: 339.

Faure, G. 1986. Principles of Isotope Geology. New York: John Wiley & Sons.

Gäfvert, T., Ellmark, C., & Holm, E. 2002. Removal of radionuclides at a waterworks. Journal of Environmental Radioactivity, 63: 105-115.

Galembeck, T. M. B. 1997. O complexo Multiplo, Centrado e Plurisserial Itu-SP. Tese de Doutorad o, Instituto de Geociências, Universidade Estadual Paulista, Rio Claro.

Gascoyne, M. 1992. Geochemistry of the actinides and their daughters. In M. Ivanovich, & R. S. Harmon (Eds.), Uranium-series disequilibrium: Application to Earth, Marine, and Envi-ronmental Sciences., 2 ed.: 39-61. Oxford: Claredon Press.

Gill, J. B., Pyle, D.M., Williams, R.W. 1992. Igneous Rocks. In M. Ivanovich, Harmon, R.S. (Ed.), Uranium Series Disequilibrium - Applications to Environmental Problems, 2 ed.: 207-258. Oxford: Claredon Press.

Hallstadius, L. 1984. A method for the electrodepostion of actinides. Nuclear Instruments Methods in Physics Research, 223: 266-267.

Hasui, Y., Penalva, F., & Hennies, W. T. 1969. Geologia do Grupo São Roque, 23 Congresso Brasileiro de Geologia: 101-134. Salvador-BA: SBG.

Ivanovich, M., & Harmon, R. S. 1992. Uranium series disequilibrium:Applications to envi-ronmental problems (2 ed.).

Ivanovich, M., Murray,A. 1992. Spectroscopic methods. In M. Ivanovich, Harmon, R.S. (Ed.), Uranium series disequilibrium: Applications to Earth, Marine and Environmental Sciences: 910. Oxford: Claredon Press.

Kigoshi, K. 1971. Alpha-Recoil Thorium-234 - Dissolution into Water and Uranium-234/Uranium-238 Disequilibrium in Nature. Science, 173(3991): 47-&.

Knoll, G. F. 1989. Radiation detection and measurements. New York: John Wiley and Sons.

Langmuir, D. 1978. Uranium solution-mineral equilibria at low temperatures with applica-tions to sedimentary ore deposits. Geochim Cosmochim Acta, 42: 547-569.

Langmuir, D., & Herman, J. S. 1980. The mobility of thorium in natural waters at low tem-peratures. Geochim Cosmochim Acta, 44: 1753-1766.

Lee, M. H., Choi, G. S., Cho, Y. H., Lee, C. W., & Shin, H. S. 2001. Concentrations and ac-tivity ratios of uranium isotopes in the groundwater of the Okchun Belt in Korea. Journal of Environmental Radioactivity, 57(2): 105-116.

Luo, S., Ku, T. L., Roback, R., Murrel, M., & McLing, T. L. 2000. In-situ radionuclide transport and preferential groundwater flows at INEEL (Idaho): Decay-series disequilibrium studies. Geochim Cosmochim Acta, 64(5): 867-881.

Page 86: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-7-Referências

76

Moulin, V., & Ouzounian, G. 1992. Role of Colloids and Humic Substances in the Transport of Radio-Elements through the Geosphere. Applied Geochemistry: 179-186.

Négrel, P., Casanova, J., & Jean-François, A. 2001. Strontium isotope systematics used to de-cipher the origin of groundwaters sampled from granitoids: The Vienne Case (France). Chem. Geol., 177: 287-308.

Osmond, J. K., & Ivanovich, M. 1992a. Uranium-series mobilization and surface hydrology. In M. Ivanovich, & R. S. Harmon (Eds.), Uranium series disequilibrium:Applications to en-vironmental problems, 2 ed.: 259-289. Oxford: Claredon Press.

Pascholati, E. M. 1992. Caracterização geofísica da Suíte Intrusiva de Itu. Tese de Doutorado, , Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo.

Pascholati, E. M., Amaral, G., & Vlach, S. R. F. 1987. Contribuicpão ao conhecimento da Suíte Intrusiva de Itu., 6 SIMPÓSIO REGIONAL DE GEOLOGIA: 3-4. Rio Claro-SP: Boletim de Resumos.

Porcelli, D, Anderson, P. S., Baskaran, M., & Wasserburg, G. J. 2001. Transport of U- and Th-series in a BalticShield watershed and the Baltic Sea. Geochim Cosmochim Acta, 65: 2439-2459.

Porcelli, D., & Swarzenski, P. W. 2003. The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry, 52: 317-361.

Prikryl, J. D., Jain, A., Turner, D. R., & Pabalan, R. T. 2001. Uranium(VI) sorption behavior on silicate mineral mixtures. Journal of Contaminant Hydrology, 47(2-4): 241-253.

Ramsay, W., & Soddy, F. 1903. Experiments in radioactivity and the production of helium from radium. Proc R Soc London, 72: 204-207.

Reyes, E. 2009. Comportamento dos radioisótopos 238U, 234U, 226Ra, 228Ra e da razão isotópica 87Sr/86Sr em águas subterrapneas extraídas de corpos graníticos fraturados da Suíte Intrusiva de Itu (SP). Tese de Doutorado, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo.

Rutherford, E. 1900a. A radioactive substance emitted from thorium compounds. Philos Mag, 49: 1-14.

Rutherford, E. 1900b. Radioactivity produced in substances by the action of thorium com-pounds. Philos Mag, 49: 161-192.

Rutherford, E. 1903. Radioactive change. Philos Mag, 5: 576-591.

Rutherford, E. 1904. The succession of changes in radioactive bodies. Philos Trans R Soc 204: 169-219.

Rutherford, E., & Soddy, F. 1902. The cause and nature of radioactivity Philos Mag, 4(Part 1): 370-396.

Santos, R. N. 2001. Implantação da metodologia de espectrometria alfa para a determinação de isótopos de U e Th em rochas ígneas: aplicação ao estudo do desequilíbrio radioativo na Ilha de Trindade. Tese de Doutorado, Universidade de São Paulo, São Paulo.

Page 87: Dissertação de Mestrado - USP · DEPARTAMENTO DE GEOFÍSICA Dissertação de Mestrado Estudo em laboratório da dinâmica dos isótopos de urânio no processo de interação rocha-água

Capítulo-7-Referências

77

Santos, R. N., & Marques, L. S. 2007. Investigation of 238U-230Th-226Ra and 232Th-228Ra-228Th radioactive disequilibria in volcanic rocks from Trindade and Martin Vaz Is-lands (Brazil; Southern Atlantic Ocean). Journal of Volcanology and Geothermal Research, 161: 215-233.

Soddy, F. (Ed.). 1910. Radioactivity. (Vol. 7). London: The Chemical Society.

Soddy, F. 1913a. The radio-elements and the periodic law. Chemical News, 107: 97-99.

Soddy, F. 1913b. The radio-elements and the periodic law. Chemical News, 107: 97-99.

Souza, F. 2006. Determinação das concentrações de atividade de 234U e 238U em águas subterrâneas de três poços perfurados em rochas da Suíte Intrusiva de Itu (SP). Dissertação de Mestrado. Universidade de São Paulo, São Paulo.

Strutt, R. J. 1905. On the radio-active minerals. Proc R Soc London, 76: 88-101.

Tricca, A., Wasserburg, G. J., Porcelli, D., & Baskaran, M. 2001. The transport of U- and Th-series nuclides in a sandy unconfined aquifer. Geochimica et Cosmochimica Acta, 65(8): 1187-1210.

Vigier, N., Bourdon, B., Turner, S., & Allègre, C. J. 2001. Erosion timescales derived from U-decay series measurements in rivers. Earth and Planetary Science Letters, 193(3-4): 549-563.

Villagrán, V. A. F. 2011. Estudo em laboratório do processo de mobilização de urânio de granitóides da Suíte intrusiva de Ita (SP) por meio de soluções lixiviadoras. Trabalho de Graduação, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo.

Ziekinski, F. A., Peterman, Z. E., Stuckless, J. S., Rosholt, J.N., Nkomo, I.T. 1981. The chem-ical and isotopic record of rock-water interaction in the Sherman Granite, Wyoming and Col-orado. Contributions to Mineralogy and Petrology, 78: 209-219.