Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

238
SENAI - RJ versão preliminar Elementos de Instalações Elétricas Prediais

description

 

Transcript of Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Page 1: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ

versão preliminar

Elementos deInstalaçõesElétricasPrediais

Page 2: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 3: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Rio de Janeiro2003

Elementos deInstalaçõesElétricasPrediais

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 4: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

FIRJAN – Federação das Indústrias do Estado do Rio de JaneiroEduardo Eugenio Gouvêa VieiraPresidente

Diretoria Corporativa OperacionalAugusto Cesar Franco de AlencarDiretor

SENAI – Rio de JaneiroFernando Sampaio Alves GuimarãesDiretor Regional

Diretoria de EducaçãoRegina Maria de Fátima TorresDiretora

Page 5: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ

Elementos deInstalaçõesElétricasPrediais

Page 6: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Elementos de Instalações elétricas prediais© 2003SENAI - Rio de JaneiroDiretoria de Educação

Gerência de Educação Profissional - SENAI-RJLuís Roberto Arruda

Produção EditorialVera Regina Costa Abreu

Gerência de ProdutoCarlos Bernardo Ribeiro Schlaepfer

Pesquisa de Conteúdo e RedaçãoAntonio Gomes de Mello

Revisão PedagógicaIzabel Maria de Freitas Sodré

Revisão Gramatical e EditorialIzabel Maria de Freitas Sodré

Revisão TécnicaAntonio Gomes de Mello

Angela Elizabeth Denecke

Projeto Gráficog-dés design

Editoração EletrônicaEmerson Gonçalves

FICHA TÉCNICA

Edição revista e ampliada do materialElementos de Instalações elétricas prediais

Material para fins didáticosPropriedade do SENAI-RJReprodução total ou parcial, sob expressa autorização

SENAI-RJGEP-Gerência de Educação Profissional

Rua Mariz e Barros, 678 – Tijuca20270-002 – Rio de Janeiro-RJTel.: (0xx21) 2587-1121Fax: (0xx21) 2254-2884www.rj.senai.br

Page 7: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Introdução

1- Normas de segurança. . . . . . . . . . . . . . . . 171.1 - Equipamentos de proteção . . . . . . . . . . . . . . . . . 19

1.1.1 - Equipamentos de proteção coletiva - EPC . . . . . . . . . . . . . . . 19

1.1.2 - Equipamentos de proteção individual - EPI. . . . . . . . . . . . . . . 20

1.1.3 - Equipamentos de proteção individual do eletricista . . . . . . . . . . 21

1.2 - Cuidados específicos . . . . . . . . . . . . . . . . . . . . 221.2.1 - PC de força . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 - Quadro de tomadas - andares . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 - Quadro de tomadas - concretagem. . . . . . . . . . . . . . . . . . . 22

1.2.4 - Iluminação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.5 - Gambiarras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 - Recomendações gerais . . . . . . . . . . . . . . . . . . . 231.4 - Fontes de choque elétrico . . . . . . . . . . . . . . . . . . 23

1.4.1 - Choque elétrico - definição . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.2 - Efeitos indiretos e diretos . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.3 - Resistência elétrica do corpo humano . . . . . . . . . . . . . . . . . 24

1.4.4 - Tensões de toque e passo . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.5 - Tensões de passo e toque . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.6 - Tabela de acidentes com eletricidade. . . . . . . . . . . . . . . . . . 25

1.5 - Segurança do trabalho . . . . . . . . . . . . . . . . . . . 261.5.1 - Regras básicas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.2 - Regras para o trabalho com energia elétrica . . . . . . . . . . . . . . 26

2 - Aplicação de conhecimento de leitura einterpretação de plantas . . . . . . . . . . . . . . . 29

2.1- Escalas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.1.1 - Conceito. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2 - Tipos de escala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Page 8: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

2.2 - Planta baixa . . . . . . . . . . . . . . . . . . . . . . . . . 342.3 - Simbologia das instalações elétricas . . . . . . . . . . . . 362.4 - Projeto de instalação elétrica . . . . . . . . . . . . . . . . 37

3 - Montagem e instalação desistemas de tubulações . . . . . . . . . . . . . . . . 39

3.1 - Localização de elementos e traçado depercurso da instalação elétrica . . . . . . . . . . . . . . . . . . 41

3.1.1 - Rede elétrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.1 - Rede exposta . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.2 - Rede embutida . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 - Materiais utilizados . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2.1 - Lápis de carpinteiro . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2.2 - Giz de alfaiate . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2.3 - Escadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2.4 - Linha de bater . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2.5 - Prumo de centro . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2.6 - Metro articulado . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.2.7 - Trena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2.8 - Nível . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 - Localização de elementos . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3.1 - Tomada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3.2 - Interruptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.3.3 - Lâmpada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4 - Traçado do percurso da instalação elétrica . . . . . . . . . . . . . . . 48

3.1.4.1 - Na parede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.4.2 - No teto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 - Montagem e instalação detubulações metálicas e PVC com caixas e conduletes . . . . . . 49

3.2.1 - Eletrodutos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1.1 - Eletroduto rígido metálico . . . . . . . . . . . . . . . . . . . . . 49

3.2.1.2 - Eletroduto rígido plástico (PVC) . . . . . . . . . . . . . . . . . . 50

Page 9: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

3.2.1.3 - Eletrodutos flexíveis metálicos (conduítes) . . . . . . . . . . . . 51

3.2.1.4 - Tabelas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2 - Corte, abertura de roscas e curvamento . . . . . . . . . . . . . . . . 52

3.2.2.1 - Ferramentas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2.1.1 - Serra manual. . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2.1.2 - Corta-tubos . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2.1.3 - Tarraxa simples com catraca. . . . . . . . . . . . . . . . 53

3.2.2.1.4 - Tarraxa para PVC . . . . . . . . . . . . . . . . . . . . . 54

3.2.2.1.5 - Morsa de bancada para tubos . . . . . . . . . . . . . . . 54

3.2.2.1.6 - Morsa de corrente . . . . . . . . . . . . . . . . . . . . . 55

3.2.2.1.7 - Limatão redondo . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2.1.8 - Almotolia . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2.1.9 - Vira - tubos . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.2.2 - Curvatura de eletroduto rígido metálico . . . . . . . . . . . . . . 57

3.2.2.2.1 - Fases da operação. . . . . . . . . . . . . . . . . . . . . 57

3.2.2.2.2 - Maçarico . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2.2.3 - Soprador térmico . . . . . . . . . . . . . . . . . . . . . 60

3.2.2.2.4 - Mola . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2.2.5 - Areia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 - Junção com luvas, buchas e arruelas. . . . . . . . . . . . . . . . . . 63

3.2.3.1 - Luva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3.1.1 - Luvas e conectores sem rosca . . . . . . . . . . . . . . 64

3.2.3.2 - Buchas e arruelas . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.4 - Fixação e estanqueidade de caixa depassagem em paredes e lajes . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.4.1 - Caixas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.5 - Conduletes roscáveis e sem rosca. . . . . . . . . . . . . . . . . . . 67

3.2.5.1 - Conduletes roscáveis – tipos e bitolas . . . . . . . . . . . . . . 67

3.2.5.2 - Conduletes sem rosca. . . . . . . . . . . . . . . . . . . . . . . 68

3.2.5.3 - Conduletes com ou sem rosca,equipados com acessórios elétricos . . . . . . . . . . . . . . . . . . . . 69

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . . 69

Page 10: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

4 - Enfiação e conexão de condutores elétricos . . . 714.1 - Materiais e ferramentas para emenda de condutores . . . 73

4.1.1 - Ferro elétrico de soldar . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.2 - Solda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 - Breu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.4 - Fita isolante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 - Emendas de condutores. . . . . . . . . . . . . . . . . . . 754.2.1 - Emendas em prosseguimento . . . . . . . . . . . . . . . . . . . . . 75

4.2.2 - Emendas em derivação . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.3 - Emendas na caixa de passagem . . . . . . . . . . . . . . . . . . . . 80

4.2.4 - Utilização da solda, do cadinho e da pasta de soldar . . . . . . . . . 80

4.3 - Tracionamento de condutores em tubulações . . . . . . . . 814.4 - Componentes de acionamento . . . . . . . . . . . . . . . 82

4.4.1 - Interruptor de uma seção e lâmpada incandescente . . . . . . . . . . 82

4.4.1.1 - Interruptor de uma seção (simples) . . . . . . . . . . . . . . . . 82

4.4.1.2 - Receptáculo reto normal . . . . . . . . . . . . . . . . . . . . . 82

4.4.1.3 - Lâmpada incandescente . . . . . . . . . . . . . . . . . . . . . 82

4.4.1.4 - Diagrama unifilar e multifilar . . . . . . . . . . . . . . . . . . . . 83

4.4.2 - Interruptor de duas seções e lâmpadas incandescentes . . . . . . . 84

4.4.2.1 - Interruptor de duas seções . . . . . . . . . . . . . . . . . . . . 84

4.4.2.2 - Diagrama multifilar e unifilar . . . . . . . . . . . . . . . . . . . . 84

4.4.3 - Interruptor de três seções e lâmpadas incandescentes . . . . . . . . 85

4.4.4 - Interruptor paralelo (three - way) . . . . . . . . . . . . . . . . . . . . 85

4.4.5 - Interruptor intermediário (four - way) . . . . . . . . . . . . . . . . . . 86

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . . 88

5 - Montagem e instalação desistema de acionamento; iluminação. . . . . . . . . 89

5.1- Peças e aparelhos instalados emiluminação fluorescente . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 - Luminária fluorescente . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.2 - Calha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.3 - Receptáculo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.4 - Difusor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.5 - Starter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.6 - Suporter starter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.7 - Reator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Page 11: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

5.1.8 - Lâmpada fluorescente de catodo preaquecido . . . . . . . . . . . . . 93

5.1.8.1 - Lâmpadas fluorescentes circulares . . . . . . . . . . . . . . . . 93

5.1.8.2 - Lâmpadas fluorescentes compactas eletrônicas . . . . . . . . . 94

5.2 - Lâmpadas fluorescentes X Lâmpadas incandescentes . . . 945.3 - Diagramas com lâmpadas fluorescentes . . . . . . . . . . 95

5.3.1 - Comandadas por interruptores paralelos(three-way – 2 comandos) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 - Comandadas por interruptores paralelos(three-way) e intermediário(s) (four-way – 3 comandos) . . . . . . . . . . . . 96

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . . 95

6 - Tomadas . . . . . . . . . . . . . . . . . . . . . . . 996.1 - Normas de instalações elétricas em iluminação e tomadas (NBR - 5410) . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1 - Tomadas de corrente . . . . . . . . . . . . . . . . . . . . . . . . . 100

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . 101

7 - Montagem e instalação de sistema deacionamento e de sensores de presença . . . . . 103

7.1 - Interruptor automático por presença . . . . . . . . . . . 1057.2 - Sensor de presença . . . . . . . . . . . . . . . . . . . . 107

7.2.1 - Tipos e esquemas de ligação . . . . . . . . . . . . . . . . . . . . . 107

7.3 - Instalação de fotocélula . . . . . . . . . . . . . . . . . . 108

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . 109

7.4 - Instalação de chave de bóia. . . . . . . . . . . . . . . . 1097.4.1 - Funcionamento da chave de bóia de contatos de mercúrio . . . . . 109

7.4.2 - Funcionamento da chave de bóia flutuante decontatos de mercúrio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 - Instalação de disjuntor termomagnético. . . . . . . . . . 1117.5.1 - Disjuntor termomagnético. . . . . . . . . . . . . . . . . . . . . . . 111

7.5.2 - Tipos e utilização . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.6 - Dispositivos DR . . . . . . . . . . . . . . . . . . . . . . 1127.6.1 - Interruptores DR . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Page 12: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

7.6.2 - Disjuntores DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.6.3 - Corrente diferencial-residual de atuação . . . . . . . . . . . . . . . 113

7.7 - Quadro de distribuição . . . . . . . . . . . . . . . . . . 1137.7.1 - Ligações típicas de um QD . . . . . . . . . . . . . . . . . . . . . . 115

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . 1247.8 - Instalação de minuterias. . . . . . . . . . . . . . . . . . 124

7.8.1 - Minuteria eletromecânica . . . . . . . . . . . . . . . . . . . . . . . 124

7.8.1.1 - Funcionamento da minuteria eletromecânica . . . . . . . . . . 126

7.8.2 - Minuteria modular universal (eletrônica) . . . . . . . . . . . . . . . 127

7.8.3 - Minuteria eletrônica . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.8.4 - Minuteria individual . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . 129

7.9 - O programador horário (Time-switch) . . . . . . . . . . . 130

8 - Aterramento. . . . . . . . . . . . . . . . . . . . 1358.1 - Conceito . . . . . . . . . . . . . . . . . . . . . . . . . . 1378.2 - Surtos, descargas atmosféricas . . . . . . . . . . . . . . 137

8.2.1 - Surtos em linhas de força. . . . . . . . . . . . . . . . . . . . . . . 137

8.2.2 - Surtos em linhas de transmissão de dados. . . . . . . . . . . . . . 138

8.2.3 - Descargas atmosféricas (raios) . . . . . . . . . . . . . . . . . . . . 138

8.3 - Proteção . . . . . . . . . . . . . . . . . . . . . . . . . . 1388.3.1 - Blindagens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.3.2 - Segurança contra choques elétricos . . . . . . . . . . . . . . . . . 138

8.3.3 - Curto-circuito fase-terra . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 - Sistemas de aterramento . . . . . . . . . . . . . . . . . 1398.4.1 - Esquemas de aterramento . . . . . . . . . . . . . . . . . . . . . . 140

8.5 - Valor da resistência de aterramento . . . . . . . . . . . . 1428.5.1 - Instalações elétricas de baixa tensão. . . . . . . . . . . . . . . . . 142

8.5.2 - Computadores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.5.3 - Telecomunicações . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.6 - Componentes e materiais . . . . . . . . . . . . . . . . . 1448.6.1 - Hastes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.6.2 - Cabos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.6.3 - Conectores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.6.4 - Solda exotérmica . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Page 13: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

8.6.5 - Poço de inspeção . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.6.6 - Poço de aterramento . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.6.7 - Eletrodos de aterramento . . . . . . . . . . . . . . . . . . . . . . . 146

8.6.8 - Condutor de proteção. . . . . . . . . . . . . . . . . . . . . . . . . 146

8.7 - Novidades da NBR-5410/97. . . . . . . . . . . . . . . . 1478.7.1 - Integração dos aterramentos . . . . . . . . . . . . . . . . . . . . . 147

Mãos-à-obra . . . . . . . . . . . . . . . . . . . . . 148

9 - Instalação de computadores. . . . . . . . . . . 1499.1 - Tomada para computador . . . . . . . . . . . . . . . . . 1519.2 - Estabilizador de voltagem . . . . . . . . . . . . . . . . . 153

10 - Instalação de nobreaks(estabilizador de pequeno porte) . . . . . . . . . . 155

10.1 - Princípio de funcionamento do “nobreak” (não cair) . . . 15710.2 - Entrada e saída de tensões . . . . . . . . . . . . . . . 159

11 - Circuitos internos de telefone . . . . . . . . . 16111.1 - Previsão dos pontos telefônicos . . . . . . . . . . . . . 16311.2 - Determinação do número de caixas de saída . . . . . . 16411.3 - Determinação da altura e doafastamento do cabo de entrada aéreo. . . . . . . . . . . . . 16511.4 - Instalação de tomada para telefone . . . . . . . . . . . 165

11.4.1 - Instalação embutida em tubulação . . . . . . . . . . . . . . . . . 166

11.5 - Emenda de fios internos . . . . . . . . . . . . . . . . . 168

12 - Padrão 12kW (simplificado parafornecimento de energia em baixa tensão aconsumidores – montagens) . . . . . . . . . . . . 171

12.1 - Determinação de carga instalada . . . . . . . . . . . . 17312.2 - Condições gerais de fornecimento . . . . . . . . . . . . 17412.3 - Ramais de ligação . . . . . . . . . . . . . . . . . . . . 17512.4 - Ramais de entrada (ligação) . . . . . . . . . . . . . . . 17512.5 - Exemplos de ramais de ligação . . . . . . . . . . . . . 177

Page 14: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

13 - Instalação de motores elétricos . . . . . . . . 20913.1 - O motor elétrico . . . . . . . . . . . . . . . . . . . . . 211

13.1.1 - Motores de corrente contínua . . . . . . . . . . . . . . . . . . . . 211

13.1.2 - Motores de corrente alternada . . . . . . . . . . . . . . . . . . . 211

13.1.3 - Motor monofásico . . . . . . . . . . . . . . . . . . . . . . . . . . 212

13.1.4 - Motor trifásico . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

13.1.5 - Chaves monofásicas de comando direto . . . . . . . . . . . . . . 216

13.2 - Instalação de chaves de comando de motores CA . . . 21713.2.1 - Chaves de comando (monofásica e trifásica) . . . . . . . . . . . . 217

13.2.1.1 - Chave monofásica de reversão manual . . . . . . . . . . . . 217

13.2.1.2 - Chave trifásica de partida direta . . . . . . . . . . . . . . . . 218

13.2.1.3 - Chave reversora de comando manual tripolar. . . . . . . . . 219

13.2.1.4 - A chave estrela-triângulo . . . . . . . . . . . . . . . . . . . . 220

14 - Eletrobomba . . . . . . . . . . . . . . . . . . . 22114.1 - Bomba centrífuga . . . . . . . . . . . . . . . . . . . . 22314.2 - Motobomba monofásica . . . . . . . . . . . . . . . . . 22314.3 - Funcionamento da bomba centrífuga . . . . . . . . . . 22414.4 - Diagramas unifilar e multifilar da motobombacomandada por chave de bóia . . . . . . . . . . . . . . . . . 22414.5 - Funcionamento do motor monofásico . . . . . . . . . . 225

14.5.1 - Correção de prováveis defeitos . . . . . . . . . . . . . . . . . . . 226

14.6 - Diagrama dos circuitos principal e de comando paramotor trifásico . . . . . . . . . . . . . . . . . . . . . . . . . . 227

14.6.1 - Funcionamento do circuito damotobomba trifásica com chave de bóia . . . . . . . . . . . . . . . . . . . 228

14.6.1.1 - Diagrama do circuito auxiliar ou de comando . . . . . . . . . 228

14.6.1.2 - Funcionamento do circuito auxiliar . . . . . . . . . . . . . . . 228

14.6.1.3 - Diagrama do circuito principal . . . . . . . . . . . . . . . . . 229

14.6.1.4 - Funcionamento do circuito principal . . . . . . . . . . . . . . 229

14.6.1.5 - Diagrama unifilar da motobomba trifásica,com chave magnética . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

14.6.1.6 - Diagrama multifilar da motobomba trifásica,com chave magnética e chaves de bóia . . . . . . . . . . . . . . . . . 231

15 - Ventilador de teto . . . . . . . . . . . . . . . . 233

Page 15: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Introdução

A preocupação do SENAI-RJ em oferecer cursos atualizados a partir de um processo de delineamento de perfis profissionais de competências, levou à instalação, em 1997, do Comitê Técnico Setorial de Instalações Prediais – Eletrici-dade.

Esse fórum consultivo setorial – dentre outros igualmente existentes – é inte-grado por representantes do setor produtivo, do acadêmico e de representantes da própria instituição e tem por finalidade estabelecer o delineamento daqueles perfis, a partir dos quais poderão ser traçados caminhos sempre mais atuais – e por isso mais eficazes – para os cursos oferecidos pela instituição.

Este livro foi elaborado com base no resultado do trabalho de desenho pedagógico realizado a partir dos perfis profissionais do eletricista de obras, apon-tados e delineados pelo Comitê Técnico Setorial de Instalações Prediais – Eletrici-dade, dentro dos princípios e orientações da concepção de educação profissional do SENAI-RJ. Trata-se, portanto, de programa formativo modularizado e concebido pedagogicamente com vistas a favorecer a construção progressiva da competência e da capacidade de transferência de conhecimentos, demandados hoje para a atuação produtiva em um contexto de constantes mudanças.

Page 16: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 17: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

01Normasde segurança

Page 18: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 19: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ1901 Normas deSegurança

Toda norma de segurança é um princípio técnico e científico, baseado em experiências anteriores, que se propõe a nos orientar sobre como prevenir aci-dentes em determinada atividade.

1.1 – Equipamentos de proteção

1.1.1 – Equipamentos de proteção coletiva – EPC

São equipamentos instalados pelo empregador, nos locais de trabalho, para dar proteção a todos os que ali executam suas tarefas, preservando a inte-gridade física do empregado no exercício das suas funções.

Contam-se entre eles:

· fusíveis e disjuntores;

· andaimes;

· apara-lixos;

· balaústres;

· corrimão;

· placas e avisos;

· aparelhos de ar condicionado;

· aspiradores de pó e gases;

· ventiladores e exaustores;

· tampas;

· extintores de incêndio;

· mangueira;

· hidrantes;

· guarda-corpos;

· barreira de proteção contra luminosidade e radiação;

· telas, etc.

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 20: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ20 01 Normas deSegurança

1.1.2 – Equipamentos de proteção individual – EPI

São equipamentos de uso pessoal, cuja finalidade é proteger o trabalhador contra os efeitos incomodativos e/ou insalubres dos agentes agressivos. A NR-6 da Portaria nº 3214, de 08/06/78, do Ministério do Trabalho, regulamenta o assunto, tornando obrigatório o fornecimento gratuito do EPI pelo empregador e o uso, por parte do trabalhador, apenas para a finalidade a que se destina.

Destacam-se entre eles:

• capacete contra impactos – para a proteção do crânio. Também se faz essa proteção com touca, rede, gorro e boné, contra a ação de arranca-mento do couro cabeludo (escalpelamento);

• respiradores (filtro mecânico ou químico) ou máscaras (oxigênio ou ar mandado) contra a ação de poeiras, gases e vapores, com a finalidade de proteger as vias respiratórias;

• abafadores de ruído (tipo concha ou inserção) para proteção da audição;

• óculos, de vários tipos, contra a ação de impacto e radiação luminosa, para proteção dos olhos;

• viseira ou protetor facial, para proteção da face contra a ação de impacto e radiação luminosa;

• avental, contra a umidade, calor, cores, respingos, etc. para proteção do tronco;

• braçadeiras ou luva de cano, usadas contra a ação de umidade, calor, corte, respingos, eletricidade, etc.;

• luva de cano curto, médio ou longo, utilizada contra a ação de umidade, calor, corte, respingos, eletricidade, etc.;

• sapato, botina, bota de PVC, perneira (polainas) e calça-bota para proteção das pernas e pés contra a ação de umidade, calor, perfuração, respingos, etc.;

A sua vida pode depender do bom estado desses equipamentos. Portanto, zele por

eles.

Page 21: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ2101 Normas deSegurança

• cinto de segurança (comum ou tipo alpinista), usado como proteção contra queda de altura.

Cuidados necessários em relação aos EPI

Todo EPI deve ser verificado antes de ser usado (EPI defeituoso torna-se uma condição insegura).

Para cada tipo de serviço existe um EPI apropriado.

Deve-se sempre usar o EPI, cuidando de sua conservação com vistas à sua dura-

bilidade e eficiência.

1.1.3 – Equipamentos de proteção individual do ele-tricista

Use seus EPI específicos:

– capacete contra impacto;

– cinto de segurança;

– botina vulcanizada para eletricista;

– luvas de borracha para eletricista com luvas de cobertura;

– porta-ferramentas;

– óculos de segurança.

Page 22: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ22 01 Normas deSegurança

1.2 – Cuidados específicos em:

1.2.1 – PC de força

– Identifique todas as chaves.

– Mantenha, no mínimo, duas chaves-reserva.

– Faça o aterramento do PC.

– Mantenha o PC fechado e sinalizado. Não use cadeado.

– Use somente fusíveis ou disjuntores com amperagem adequada.

– Instale as chaves, de forma que elas fechem de baixo para cima.

– Desligue, sinalize e prenda a chave, se possível, com cadeado, ao fazer manutenção de um circuito.

1.2.2 – Quadro de tomadas – andares

– Instale no mínimo duas tomadas:

• monofásicas de 127V;

• bifásicas de 220V;

• trifásicas de 220V.

– Ligue as tomadas a uma chave blindada ou a um disjuntor.

– Faça somente ligações com pino (plug).

– Não permita mais de um equipamento na mesma tomada.

1.2.3 – Quadro de tomadas – concretagem

– Instale, no mínimo, duas tomadas trifásicas de 220V.

– Faça somente ligação com pino (plug).

1.2.4 – Iluminação

– Proteja a lâmpada da escada contra contatos acidentais.

Page 23: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ2301 Normas deSegurança

1.2.5 – Gambiarras

– Faça as gambiarras com pino (plug) e proteção nas lâmpadas.

– Coloque defletor na gambiarra de pintura.

– Instale luminária à prova de explosão na gambiarra para aplicação de laminados.

1.3 – Recomendações gerais– Não improvise instalações elétricas.

– Faça emendas resistentes e proteja-as com fita isolante, mantendo a bitola do fio.

– Substitua as instalações elétricas em mau estado.

– Recolha as instalações e equipamentos elétricos fora de uso.

– Faça o aterramento de todos os equipamentos.

– Não utilize tubulações e ferragens para o aterramento.

– Avise os trabalhadores antes de desligar um circuito.

– Verifique as instalações das máquinas e equipamentos antes do início das atividades.

– Conserve as suas ferramentas de trabalho em bom estado.

1.4 – Fontes de choque elétrico

Se você tocar na carcaça do motor, tomará um choque. Servirá, portanto, de caminho para a corrente de fuga.

Essa situação está totalmente fora das previsões, devido ao alto grau de perigo que a envolve; pode, inclusive, ser fatal.

Page 24: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ24 01 Normas deSegurança

1.4.1 – Choque elétrico – definição

Choque elétrico é um estímulo rápido e acidental do sistema nervoso do corpo humano, pela passagem de uma corrente elétrica.

1.4.2 – Efeitos indiretos e diretos

São efeitos indiretos de um choque elétrico:

• quedas;

• ferimentos;

• manifestações nervosas.

Os efeitos que se chamam indiretos são:

• formigamento;

• contração muscular;

• queimaduras;

• parada respiratória;

• parada cardíaca.

1.4.3 – Resistência elétrica do corpo humano

Dados experimentais revelam que:

• o corpo humano tem uma resistência média de 1300Ω;

• uma corrente de 50mA pode ser fatal.

1.4.4 – Tensões de toque e passo

Se uma pessoa toca um equipamento aterrado ou o próprio condutor, pode ser que se estabeleça – dependendo das condições de isolamento – uma dife-rença de potencial entre a mão e os pés. Conseqüentemente, teremos a passa-gem de uma corrente pelo braço, tronco e pernas; dependendo da duração e intensidade da corrente, pode ocorrer fibrilação no coração, com graves riscos.

Page 25: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ2501 Normas deSegurança

Esta é a chamada tensão de toque, e é particularmente perigosa nas regiões externas de uma malha de subestação, principalmente nos cantos.

1.4.5 – Tensões de passo e toque

Se, mesmo não estando encos-tando em nada, a pessoa estiver colo-cada lateralmente ao gradiente de potencial, estará sujeita a um diferen-cial de tensão de uma corrente atra-vés das duas pernas, que geralmente é de menor valor e não é tão peri-gosa quanto a tensão de toque, porém ainda pode causar problemas, depen-dendo do local e da intensidade.

1.4.6 – Tabela de acidentes com eletricidade

INTENSIDADE (MILIAMPÈRES)

1 – LIMIAR

EM SENSAÇÃO

1 a 9

9 a 20

20 a 100

ACIMA DE 100

VÁRIOS

AMPÈRES

PERTURBAÇÕES POSSÍVEIS

NENHUMA

Sensação cada vez mais desagradável à medida que a tensão aumenta; contrações

musculares.

Sensação dolorosa; contrações violen-tas, perturbações

circulatórias.

Sensação insupor-tável; contrações violentas, pertur-bações circulat. graves: fibrilação ventricular/asfixia.

Asfixia imediata;

fibrilação ventricular.

Asfixia imediata; queimaduras

graves.

ESTADO APÓS O CHOQUE

NORMAL

NORMAL

MORTE

APARENTE

MORTE

APARENTE

MORTE

APARENTE

MORTE

APARENTE

IMEDIATA

SALVAMENTO

DESNECESSÁRIO

RESPIRAÇÃO ARTIFICIAL

MUITO

DIFÍCIL

MUITO

DIFÍCIL

PRATICAMENTE IMPOSSÍVEL

RESULTADO FINAL PROVÁVEL

NORMAL

NORMAL

RESTABEL.

OU MORTE

MORTE

MORTE

MORTE

Page 26: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ26 01 Normas deSegurança

1.5 – Segurança do trabalhoSegurança do trabalho é um conjunto de procedimentos educacionais, téc-

nicos, médicos e psicológicos empregados para evitar lesões a pessoas, danos aos equipamentos, ferramentas e dependências.

1.5.1 – Regras básicas

1 – Adquira conhecimento do trabalho.

2 – Cumpra as instruções, evite improvisar.

3 – Use o equipamento de proteção adequado.

4 – Use a ferramenta adequada e sem defeitos.

5 – Não brinque e não se arrisque à toa.

6 – Ordem, arrumação e limpeza são vitais.

7 – As falhas devem ser comunicadas ao chefe, se for o caso.

8 – Levante pesos corretamente – peça ajuda.

9 – Você é o responsável pela sua segurança/equipe.

10 – Em caso de acidente, informe à sua chefia, quando houver, ou pro-cure socorro médico.

11 – Utilize a isolação ou desligue a energia.

1.5.2 – Regras para o trabalho com energia elétrica

1 – Todo circuito sob tensão é perigoso.

2 – Use os equipamentos e isolações adequados.

3 – Só utilize ajuste ou repare equipamentos e instalações elétricas, quando autorizado.

4 – Sempre que possível, desligue os circuitos antes do trabalho – use avisos e trancas.

5 – Antes de religar, verifique se outra pessoa não está trabalhando com o mesmo circuito.

Page 27: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ2701 Normas deSegurança

6 – Use sinais de advertência e delimite as áreas com a sinalização adequada.

7 – Não improvise na montagem de instalações/equipamentos.

8 – Observe rigorosamente as instruções para montagem, manutenção ou troca de ligações.

9 – Faça inspeção visual antes de usar equipamentos ou instalações.

10 – Não faça reparo temporário de forma incorreta: gatos, quebra-galhos causam acidentes.

11 – Não trabalhe em manutenção de equipamentos/instalações elétricas sob tensão sem conhecimento/supervisão.

12 – Não use escadas metálicas em trabalho com energia.

13 – Use exclusivamente extintores de CO2 ou pó químico, quando houver incêndio em equipamentos ou instalações elétricas.

14 – Fios, barramentos, transformadores devem ficar fora da área de trânsito de pessoas.

15 – Não use anéis, pulseiras ou outros adornos metálicos em serviços com energia.

16 – Não use ferramentas elétricas na presença de gases ou vapores.

17 – Não trabalhe sob tensão em áreas sujeitas à explosão.

18 – Lembre-se de que a corrente elétrica pode ser fatal. A tensão, nem sempre.

Page 28: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 29: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

de plantas02Aplicação de conhecimento de leitura e interpretação

Page 30: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 31: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ3102 interpretação de plantas

Aplicação de conhecimento de leitura e

2.1 – EscalasPara que haja um bom desempenho no trabalho de um eletricista, são

necessários alguns conhecimentos a respeito de escalas.

2.1.1 – Conceito

Escala é a relação que existe entre o tamanho do desenho de um objeto e o seu tamanho real.

Ao determinarmos uma escala, primeiramente é necessário ter a preocupação de que as medidas do objeto e do desenho estejam numa mesma unidade.

Assim, podemos escrever:

medidas do tamanho do desenhomedidas reais do objeto

Escala =

Simplificando, escrevemos da seguinte maneira:

DR

E =

sendo: E = Escala

D = Medidas do tamanho do desenho

R = Medidas reais do objeto

Utilizando esta fórmula, poderemos determinar três situações:

1 – a escala utilizada para desenhar o objeto;

2 – o tamanho do desenho de um objeto em uma determinada escala;

3 – o tamanho real do objeto desenhado.

Page 32: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ32 02 interpretação de plantas

Aplicação de conhecimento de leitura e

1 – A escala utilizada para desenhar o objeto

Determine a escala em que foi desenhado um quadrado, sabendo que o tamanho

real de sua aresta é 10cm, e no desenho esta aresta está medindo 2cm.

D

RE =

2

10E =

Simplificando a fração por 2 (isto é, dividindo numerador e denominador por 2),

2

10E =

1

5E =

Pode-se concluir que o desenho está na escala de 1:5 (lê-se: escala um por cinco).

2 – O tamanho do desenho de um objeto em uma determinada escala

Determine o tamanho do desenho de um quadrado, sabendo que a medida real de

sua aresta é 10cm e que a escala utilizada é de 1:5.

D

RE =

1

5E = D

10 =

1

5 5 • D = 10 D = 2cm

Feitas as operações, conclui-se que o tamanho do desenho da aresta do quadrado é 2cm.

3 – O tamanho real do objeto desenhado

Determine o tamanho real da aresta do quadrado, sabendo que o tamanho do

desenho desta aresta é 2cm e foi utilizada a escala de 1:5.

D

RE = 2

R =

1

5 1 • R = 5 • 2 D = 10cm

Conclui-se que o tamanho real da aresta do quadrado é 10cm.

2.1.2 – Tipos de escala

1. Escala natural2. Escala de redução3. Escala de ampliação

1. Escala natural

É a utilizada quando o tamanho do desenho do objeto é igual ao tamanho real do mesmo.

2. Escala de redução

É a utilizada quando o tamanho do desenho do objeto é menor que o tama-nho real do mesmo.

Page 33: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ3302 interpretação de plantas

Aplicação de conhecimento de leitura e

3. Escala de ampliação

É a utilizada quando o tamanho do desenho do objeto é maior que seu tamanho real.

Normalmente, utiliza-se esta escala quando se faz o desenho de objetos pequenos. Assim, se quisermos desenhar a planta baixa de uma residência, precisaremos utilizar a escala de redução, pois:

• não seria possível desenhar a planta baixa da residência em seu tamanho real;

• não haveria papel que pudesse ser utilizado para tão grande desenho;

• onde arrumaríamos uma mesa maior que o tamanho da residência para, sobre ela, colocarmos o papel e fazermos o desenho?

• como manusearíamos um desenho neste tamanho?• é perfeitamente possível compreender a planta baixa da

residência, se desenhada em tamanho menor.

Observe a ilustração seguinte.

Tamanho real da residência (não seria possível representá-lo.)

Tamanho do desenho da residência:

Planta baixaESC. 1:50

Page 34: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ34 02 interpretação de plantas

Aplicação de conhecimento de leitura e

Além do desenho de plantas baixas, quaisquer objetos que se represen-tem graficamente de forma reduzida são desenhados utilizando-se a escala de redução.

Para reconhecermos se uma escala é de redução, basta-nos observar a notação da mesma. Se o número que vem escrito depois dos dois pontos for maior que o escrito antes desses dois pontos, a escala é de redução.

Observemos a notação:

ESCALA 1:5

1Número anterior aos dois pontos

5Número posterior aos dois pontos

Na escala de redução, o número que vem escrito antes dos dois pontos é sempre o número 1, e representa o tamanho do desenho do objeto; o número que vem escrito depois dos dois pontos indica quantas vezes o objeto é maior que o tamanho do desenho.

2.2 – Planta baixaPara construir uma casa, uma escola ou uma indústria, é necessária, ini-

cialmente, a elaboração de vários projetos, como o arquitetônico, o elétrico, o hidráulico, o estrutural, etc.

Ao eletricista cabe, apenas, interpretar e, posteriormente, executar a mon-tagem da instalação elétrica.

Para se fazer o projeto elétrico, o responsável tem que ter em mãos o pro-jeto arquitetônico. A partir dele, projetará a instalação elétrica.

Após o projeto elétrico ter sido elaborado, chegará até nossas mãos uma cópia, para que seja analisado. Baseados nele, poderemos passar a sua execução.

Para que não se tenha dificuldade em interpretá-lo, é necessário termos alguns conhecimentos a respeito da leitura do projeto arquitetônico.

O elemento que mais interessa no projeto de arquitetura é a planta baixa. Para entendê-la, vejamos, inicialmente, o seu conceito.

PLANTA BAIXA é a projeção que se obtém, quando se corta, imagina-riamente, uma edificação, com um plano horizontal paralelo ao plano do piso.

Page 35: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ3502 interpretação de plantas

Aplicação de conhecimento de leitura e

A altura entre o plano cortante e o plano da base é tal, que per-mite cortar ao mesmo tempo portas, janelas, basculantes e paredes.

Normalmente, esta altura é de 1,50m .

Ilustrando:

Quando cortamos a edificação com o plano, estamos olhando de cima para baixo.

A representação desta edificação em planta baixa será con-forme a ilustração que se segue:

Page 36: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ36 02 interpretação de plantas

Aplicação de conhecimento de leitura e

2.3 – Simbologia das instalações elétricas

Page 37: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ3702 interpretação de plantas

Aplicação de conhecimento de leitura e

2.4 – Projeto de instalação elétrica É o planejamento da instalação com todos os seus detalhes. Sua finali-

dade é a de proporcionar condições para a realização de um trabalho rápido, econômico e estético. O projeto é sempre elaborado por especialistas, cabendo ao eletricista apenas interpretá-lo e executá-lo.

– a letra indica o ponto de comando e o respectivo ponto a ser comandado.

– o número entre dois traços indica o número do circuito.

Page 38: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

Montagem e instalação

Page 39: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

03Montagem e instalaçãode sistemas de tubulações

Page 40: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 41: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ4103 sistemas de tubulações

Montagem einstalalação de

3.1 – Localização de elementos e traçado de percurso da instalação elétrica

Para o estudo deste assunto, é preciso observar como se faz a leitura de um desenho de instalação elétrica.

Esquema de uma instalação elétrica

a

a

60W

ABNT REPRESENTA

a

Tomada baixa

Ponto de luzlâmpada

Interruptor simples(uma seção)

Condutores:retorno, fase, neutro

a60W

Observe o esquema ao lado e use a legenda, com os respectivos símbolos, para uma leitura correta.

Alguns conhecimentos são indis-pensáveis para a execução do trabalho de uma instalação elétrica: o que é uma rede elétrica, quais os materiais neces-sários para a instalação, o que é uma planta baixa e quais os procedimentos necessários para traçar o percurso da instalação.

Page 42: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ42 03 sistemas de tubulações

Montagem einstalalação de

3.1.1 – Rede elétrica

É o conjunto de condutores ou tubos, no esquema representados por sím-bolos, que fazem parte de uma instalação elétrica.

A rede pode ser de dois tipos: exposta ou embutida.

3.1.1.1 – Rede exposta

É composta por clites, roldanas e rede de eletroduto exposta (ou apa-rente).

3.1.1.2 – Rede embutida

Como o próprio nome diz, é embutida na alvenaria com eletrodutos metálicos ou em PVC.

Visualizando uma planta baixa, e após localizarmos sua posição na construção, precisamos estabelecer as ferramentas, os materiais e utensílios necessários para realizar o respectivo processo de marcação.

O percurso de uma instalação, os pontos de localização de aparelhos e os dispositivos são colocados sobre linhas e pontos traçados anteriormente na superfície, onde devem ser fixados os elementos da instalação.

3.1.2 – Materiais utilizados

Dentre os vários tipos de materiais usados, encontramos:

3.1.2.1 – Lápis de carpinteiro

É usado para obras no osso.

3.1.2.2 – Giz de alfaiate

É empregado em paredes já acabadas, quando há necessidade de aumentar as instalações já existentes.

3.1.2.3 – Escadas

Quando são usadas em instalações elétricas, encontramos três tipos dife-rentes:

Page 43: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ4303 sistemas de tubulações

Montagem einstalalação de

b) escada de abrir

É composta de duas escadas simples, presas nas extremida-des por um eixo chamado pivô, o qual pode ser movido. Possui, na lateral, uma haste metálica articulável, o que evita uma abertura muito ampla e, conse-qüentemente, seu deslizamento. Não há necessidade de estar apoiada em postes ou paredes.

Por ser uma escada bastante estável é usada para trabalhos suspensos, permitindo a subida de dois operadores. É de grande aplicação nos trabalhos de eletricidade.

c) escada com apoio

É composta de duas escadas, uma delas com degraus mais largos. É presa nas extremidades por um eixo chamado pivô e, para que possamos movê-la, possui uma haste articulável na lateral, que

Cuidados no uso da escada simples

a) escada simples

Precisa estar apoiada na parede ou porta onde estamos exe-cutando o serviço. A distância entre a parede e o apoio na base da escada deve ser a quarta-parte de seu comprimento. Observe as figuras.

Page 44: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ44 03 sistemas de tubulações

Montagem einstalalação de

3.1.2.4 – Linha de bater

É um instrumento simples, composto de linha de algodão (tipo Urso 000) envolvida em pó corante. É utilizada para efetuar o traçado de percurso entre dois pontos distantes.

Como a linha de bater é usada em traçados de percurso longo, necessitamos de utilização de corantes, que variam de acordo com a superfície a ser marcada. Caso a superfície esteja pintada, é reco-mendado o uso de corantes claros, tais como talco ou pó de giz.

3.1.2.5 – Prumo de centro

É um instrumento formado por uma peça de metal suspensa por um fio e serve para que se determine a direção vertical. É muito aplicado na construção civil com o objetivo de verificar a perpendicularidade ou prumo de qualquer estrutura.

Nas instalações elétricas empregamos o prumo de centro para marcar as descidas de linhas nas paredes, para determinar os pontos de luz no teto e para transportar as marcas feitas no piso.

3.1.2.6 – Metro articulado

É uma escala de madeira ou metal – no caso, alumí-nio – com dupla face graduada em milímetro, centímetro, metro ou em polegada e suas respectivas divisões.

evita que a mesma escorregue. É um tipo de escada que dificulta um grande afastamento entre as partes.

• As escadas devem ser pintadas ou envernizadas objetivando

sua impermeabilização. De preferência, devemos evitar que

fiquem ao tempo.

• O uso de escadas metálicas deve ser evitado, devido à grande

capacidade que possuem de conduzir eletricidade.

Page 45: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ4503 sistemas de tubulações

Montagem einstalalação de

O metro articulado pode ser de dois tipos: SIMPLES e DUPLO.

SIMPLES – mede até um metro (1m)

DUPLO – mede até dois metros (2m)

Deve-se ter cuidado na manipulação do metro articulado para evitar sua quebra.

3.1.2.7 – Trena

É uma fita métrica de pano ou de aço dentro de uma caixa de couro ou plástico, como mostra a figura.

Existem trenas para medidas de grande extensão, possuindo até 100 metros. Entretanto, as trenas mais comuns são as que medem 1, 2, 3 ou 5 metros. Elas trazem todas as medidas lineares, assim como o metro articulado, e podem medir superfícies curvas, adaptando-se a qual-quer contorno.

3.1.2.8 – Nível

É um instrumento que serve, principalmente, para medir a horizontali-dade. Constitui-se de uma régua de madeira, de plástico ou de alumínio na qual está fixado um tubo de vidro ligeiramente curvado e com uma quantidade de álcool que permite a formação de uma bolha de ar no seu interior. Através do vidro fixado horizontalmente na régua de madeira verifica-se o nivelamento quando a bolha de ar estiver fixada no centro do vidro, isto é, entre os dois traços marcados nele.

Existem outros tipos de nível que apresentam um ou dois vidros fixos perpendicularmente ao comprimento da régua. São chamados de “vidros de prumo” e servem para verificar se uma parede ou uma viga estão no prumo perpendicular ou horizontal.

Page 46: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ46 03 sistemas de tubulações

Montagem einstalalação de

Elementos bem localizados e percursos bem determinados são condições básicas para a execução de quase todo o trabalho do ele-tricista.

O profissional, para marcar a localização de uma lâmpada, interruptor e tomada, precisa do metro articulado, de trena, prumo de centro, linha de bater, pó corante e giz.

Para traçarmos as diagonais e o percurso da instalação devemos pedir o auxílio

de alguém, ou então prender uma extremidade da linha de bater, segurando a outra,

esticando-a e deixando-a bater, a seguir, para deixar a marca na superfície.

3.1.3 – Localização de elementos

Serão aqui examinados os procedimentos necessários para traçar o per-curso da instalação elétrica, estabelecendo a localização dos elementos funda-mentais: tomada, interruptor e lâmpada.

Procedimentos semelhantes devem ser utilizados para instalar quaisquer outros elementos.

3.1.3.1 – Tomada

1 – Marcar o ponto referencial da tomada no piso.

a) Identifique, na planta baixa, o local onde será marcada a tomada.

b) Meça a distância entre o símbolo e um ponto de referência (porta, janela, parede, etc.).

c) Faça a conversão da medida da planta baixa para a medida real (use a escala indicada na planta baixa).

d) Marque no piso do cômodo o ponto referen-cial da tomada, usando a medida real.

Page 47: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ4703 sistemas de tubulações

Montagem einstalalação de

2 – Marcar o ponto refe-rencial do interruptor simples no piso.

a) Meça na parede, utilizando o metro articulado, a altura do interruptor, na mesma direção do ponto de referência feito no piso.

b) Localize o interruptor na parede, usando giz.

2 – Localizar a tomada na parede.a) Meça na parede, utilizando o metro

articulado, a altura da tomada, na mesma direção do ponto de referência feito no piso.

b) Localize a tomada na parede usando o giz:

baixa: 0,30m meia altura: 1,5m do piso acabado alta: 2m

3.1.3.2 – Interruptor

1 – Marcar o ponto referen-cial do interruptor simples no piso.

a) Identifique, na planta baixa, o local onde será marcado o interruptor simples.

b) Meça, na planta baixa, a distância entre o símbolo e a porta.

c) Marque, no piso do cômodo, o ponto referencial do interruptor.

Page 48: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ48 03 sistemas de tubulações

Montagem einstalalação de

3.1.3.3 – Lâmpada

1 – Marcar o ponto referencial da lâmpada no piso.a) Trace as diagonais, utilizando a linha de bater.b) Reforce com giz o cruzamento das diagonais.c) Marque no piso do cômodo o ponto referencial da

lâmpada.

2 – Localizar a lâmpada no teto.a) Transfira a marca do piso para o teto, utilizando o

prumo de centro.b) Localize a lâmpada no teto, marcando com giz a

posição exata onde se encontra o fio de prumo de centro.

3.1.4 – Traçado do percurso da instalação elétrica

3.1.4.1 – Na parede

a) Coloque o prumo de centro de maneira que coincida com a marca do interruptor no piso.

b) Marque um ponto referencial no teto.

c) Apóie a linha de bater no ponto referencial do teto.

d) Apóie e estique a linha de bater na perpendicular até o ponto referencial, puxe a linha de bater dez centímetros aproximadamente e solte-a, traçando o percurso da instalação elétrica na parede.

Page 49: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ4903 sistemas de tubulações

Montagem einstalalação de

3.1.4.2 – No teto

a) Apóie a linha de bater até o ponto final do percurso traçado na parede.

b) Estique a linha de bater até a localização da lâmpada.

c) Puxe a linha de bater dez centímetros apro-ximadamente e solte-a, marcando o traçado do per-curso da instalação elétrica no teto.

3.2 – Montagem e instalação de tubulações metálicas e PVC com caixas e conduletes

3.2.1 – Eletrodutos

São tubos de metal ou plástico, rígido ou flexível, utilizados com a finali-dade de conter os condutores elétricos e protegê-los da umidade, ácidos, gases ou choques mecânicos.

Há diferentes tipos de eletrodutos, que serão descritos a seguir.

3.2.1.1 – Eletroduto rígido metálico

Descrição1 – Tubo de aço dobrável ou ferro galvanizado.2 – Com ou sem costura longitudinal.3 – Pintado interna e externamente com esmalte de cor preta.

Page 50: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ50 03 sistemas de tubulações

Montagem einstalalação de

4 – Fabricado com diferentes diâmetros e espessuras de parede.5 – Adquirido em vara de 3 metros e dotado de rosca externa nas extre-

midades. (a)6 – Comprimento da rosca igual à metade do comprimento da luva. (b)Função: conter e proteger os condutores.

Os de parede grossa chamam-se “eletrodutos pesados” e os de parede fina, “ele-

trodutos leves”.

3.2.1.2 – Eletroduto rígido plástico (PVC)

Descrição1 – Tubo de plástico dobrável.2 – Sem costura longitudinal.3 – Dotado de rosca externa na extremidade. (a)4 – Fabricado com diferentes diâmetros e espessuras de parede.5 – Adquirido em vara de 3 metros.6 – Comprimento da rosca igual à metade do comprimento da luva. (b)Função: conter e proteger os condutores.

Page 51: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ5103 sistemas de tubulações

Montagem einstalalação de

Eletrodutos Rígidos Metálicos tipo Rosqueável

Diâmetronominal (pol.)

Diâmetroexterno (mm)

Diâmetrointerno (mm)

Área útilinterna (cm2)

Peso de umavara (kg)

1/2 22 15 2,0 3,6 3/4 26 21 3,5 4,7 1 34 27 5,6 6,9 1 1/4 43 35 9,8 9,1 1 1/2 49 41 13,4 11,5 2 60 53 22,0 16,0 2 1/2 73 62 31,3 24,0 3 89 78 46,3 31,0 3 1/2 102 90 64,8 36,0 4 114 102 83,2 44,0 5 141 128 130,8 61,0 6 168 154 189,0 90,0

3.2.1.3 – Eletrodutos flexíveis metálicos (con-duítes)

Estes eletrodutos não podem ser embutidos nem utilizados nas partes externas das edificações, em localizações perigosas e não podem nunca ser expostos à chuva ou ao sol. Devem constituir trechos contínuos e não devem ser emendados. Necessitam ser firmemente fixados por braçadeiras. Em geral, são empregados na instalação

de motores ou de outros aparelhos sujeitos à vibração ou que tenham necessidade de ser deslocados em pequenos

percursos. Também são utilizados em ligações de diversos quadros. Para a sua fixação,

usa-se o box reto ou curvo. São encon-trados em diversos diâmetros, expres-sos em polegadas (1/2”, 3/4”, 1”) e vendidos a metro.

O eletroduto flexível de plástico é bastante utilizado nas instalações

das edificações, desde que haja condições adequadas.

As características principais dos eletrodutos são fornecidas por uma

tabela em correspondência com o diâmetro nominal.

Ex.: Um eletroduto rígido metálico de 1 polegada terá 34mm de

diâmetro externo, 27mm de diâmetro interno. Sua área útil interna terá

5,6cm2 e ele pesará 6,9kg.

3.2.1.4 – Tabelas

Page 52: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ52 03 sistemas de tubulações

Montagem einstalalação de

Eletrodutos de PVC Rígidos tipo Rosqueável

16 3/8 16,7 2,0 0,140 1,8 0,120 20 1/2 21,1 2,5 0,220 1,8 0,150 25 3/4 26,2 2,6 0,280 2,2 0,240 32 1 33,2 3,2 0,450 2,7 0,400 40 1 1/4 42,2 3,6 0,650 2,9 0,540 50 1 1/2 47,8 4,0 0,820 3,0 0,660 60 2 59,4 4,6 1,170 3,1 0,860 75 2 1/2 75,1 5,5 1,750 3,8 1,200 85 3 88,0 6,2 3,300 4,0 1,500

3.2.2 – Corte, abertura de roscas e curvamento

3.2.2.1 – Ferramentas

Algumas ferramentas poderâo ser utilizadas quando da aplicação dos ele-trodutos, com a finalidade de fazer corte, abrir roscas ou fazer curvas. Dentre elas, destacam-se:

3.2.2.1.1 – Serra manual

Descrição1 – Lâmina de serra. (a)

2 – Semi-arco (b) com ranhuras (c) para ajustar o arco ao compri-mento da lâmina da serra.

3 – Semi-arco (d) com cabo ou pinho (e), bainha (f) e pino de anco-ragem. (g)

4 – Esticadores (h) e pinos (i) para montagem da lâmina.

5 – Porca-borboleta (j) de ajuste da tensão da lâmina e arruela. (l)

6 – Alças (m) de encaixe dos esticadores.

Função: serve para cortar metais e outros materiais duros.

Classe A(Pesado)

Classe B(Leve)

Diâmetronominal

Referência de rosca

Diâmetro externo

Espessura da parede

Peso aprox. por metro

Espessura da parede

Peso aprox. por metro

DNmm

PB 14(Ref.)

polegada

d.mm

epmm

Pkg/m

Pkg/m

epmm

a

m

i

h

l

j

e

d

f

g

c

b

h

im

Page 53: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ5303 sistemas de tubulações

Montagem einstalalação de

Existem mais dois tipos de tarraxas que variam quanto ao cossinete:

• TARRAXA UNIVERSAL – contém cossinete ajustável, de acordo

com o diâmetro a ser roscado.

• TARRAXA SIMPLES COM COSSINETE AJUSTÁVEL – é uti-

lizada para, gradativamente, abrir a rosca.

A lâmina de serra é fabricada em aço temperado de duas qualidades: em “aço ao carbono” e em “aço rápido”, sendo esta última de maior qualidade.

A lâmina de serra é normalizada, quanto ao comprimento, em 8, 10 e 12 polegadas e, quanto ao número de dentes por polegada, em 18, 24 e 32 dentes. A lâmina de 32 dentes é a mais usada pelos eletricistas.

3.2.2.1.2 – Corta-tubos

Descrição1 – Corpo. (a)2 – Navalha circular cortadora. (b)3 – Roletes. (c)4 – Cabo móvel com parafusos de ajuste. (d)Função: cortar, rapidamente, eletrodutos

rígidos metálicos.

3.2.2.1.3 – Tarraxa simples com catraca

Descrição1 – Corpo. (a)2 – Trava da catraca. (b)3 – Guia4 – Cossinete intercambiável. (c)5 – Braço (cabo). (d)Função: abrir rosca externa em eletrodutos

rígidos metálicos.

Page 54: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ54 03 sistemas de tubulações

Montagem einstalalação de

3.2.2.1.4 – Tarraxa para PVC

Descrição1 – Corpo. (a)2 – Braço (cabo). (b)3 – Guia. (c)4 – Cossinete intercambiável. (d)Função: abrir rosca externa em eletroduto

de PVC (plástico).

• Procedimento:

Encaixar o tubo na tarraxa pelo lado da guia, girando uma(1) volta para a direita e 1⁄4 de volta para a esquerda, repetindo a operação até obter a rosca no comprimento desejado.

Existe, também, para abrir rosca externa em eletroduto de PVC, a conhecida tarraxa-rápida (quebra-galho), sendo muito utilizada em serviços rápidos. É encontrada para diversos diâmetros de eletroduto: 1⁄2”, 3⁄4”, 1”, etc.

3.2.2.1.5 – Morsa de bancada para tubos

Descrição1 – Corpo. (a)2 – Manípulo. (b)3 – Parafuso de aperto. (c)4 – Trava. (d)5 – Articulação. (e)6 – Mordente. (f)7 – Mandíbula fixa. (g)8 – Mandíbula móvel. (h)Função: prender os tubos para o trabalho de corte e roscamento.

a

b

c

g

f

d

h

e

Page 55: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ5503 sistemas de tubulações

Montagem einstalalação de

Existe outra ferramenta, chamada escarea-

dor, que substitui o limatão redondo.

3.2.2.1.6 – Morsa de corrente

Descrição1 – Corpo. (a)2 – Parafuso de aperto. (b)3 – Trava de corrente. (c)4 – Mordente. (d)5 – Corrente. (e)

3.2.2.1.8 – Almotolia

Descrição1 – Bico. (a)2 – Tubo. (b)3 – Tampa roscada. (c)4 – Depósito de óleo. (d)Função: lubrificar peças e ferramentas.

Função: prender os tubos, para o trabalho de corte e rosca-mento.

3.2.2.1.7 – Limatão redondo

Descrição1 – Corpo. (a)2 – Cabo. (b)3 – Forma: cilíndrica, levemente afiada.Função: escarear tubos ou aberturas circulares ou côncavas.

a

b

c

d

e

Page 56: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ56 03 sistemas de tubulações

Montagem einstalalação de

O óleo usado é o lubrificante (óleo de máquina).

Para curvar eletrodutos rígidos metálicos será utilizada uma ferramenta simples, denominada VIRA-TUBOS.

3.2.2.1.9 – Vira-tubos

Descrição1 – Pedaço de tubo galvanizado. (a)2 – “T” (peça de encanamento hidráulico). (b)Função: serve para curvar tubos.

O vira-tubos mais utilizado pelo eletricista, para curvar eletrodutos, é a ferramenta que resulta da adaptação de uma peça de encanamento hidráulico (T), com um pedaço de tubo galvanizado, de aproximadamente um metro de comprimento.

Existem, no comércio, vários outros tipos de vira-tubos para curvar ele-trodutos, como os que aparecem nas ilustrações abaixo:

Além desses, para curvar eletrodutos de bitola superior a uma polegada, utilizamos o VIRA-TUBOS HIDRÁULICO. Mas nem sempre o eletricista dispõe do vira-tubos apropriado. É comum, entre os profissionais, a utilização de certos artifícios para curvar eletrodutos, tais como os que aparecem nas figu-ras a seguir.

b

a

Page 57: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ5703 sistemas de tubulações

Montagem einstalalação de

3.2.2.2 – Curvatura de eletroduto rígido metálico

Quando se deseja que uma rede de eletrodutos transponha um obstáculo ou acompanhe uma superfície com uma curvatura especial, e quando não há uma curva postiça adequada para aquela circunstância, pode-se dobrar o ele-troduto. Esse trabalho de dobrar ou curvar um eletroduto, embora seja muito empregado, deve, sempre que possível, ser evitado. Quando, entretanto, for obrigatório, deve-se fazê-lo a frio e com todos os cuidados para que não haja redução sensível na seção interna.

3.2.2.2.1 – Fases da operação

1) Preparar um gabarito de curva.

Com um arame grosso de ferro, por exemplo, prepare um modelo do formato que o tubo deve ter. Faça as curvas no arame e, a cada conformação dada no mesmo, experimente no local onde irá o tubo ser fixado.

2) Iniciar a dobragem.

Escolha uma das extremidades do eletroduto para iniciar o trabalho. Enfie a ponta do eletroduto no T do vira-tubos, e firme o tubo no chão, com o pé. Usando o próprio eletroduto como alavanca, inicie o seu encurvamento.

A cada pequena curvatura deve-se mudar a posição do T para não amassar o tubo.

Page 58: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ58 03 sistemas de tubulações

Montagem einstalalação de

Quando há necessidade, pode-se, empregando o gabarito de arame, marcar, aproximadamente, no eletroduto, os limites da curva.

3) Concluir a dobragem.

Coloque o eletroduto no chão, prendendo-o sob os pés e com a extremidade livre encostada na parede. Coloque junto ao eletroduto o gabarito e, com o T, complete a curvatura iniciada na fase anterior.

Como na fase anterior, a cada pequeno encurvamento, mude a posição T no eletro-

duto.

ELETRODUTO (polegada)

RAIO DA CURVA(cm)

1/23/411 1/41 1/222 1/234

101315202530384661

a - As curvas devem corresponder ao diâmetro interno do eletroduto. Assim, os

raios mínimos das curvas devem obedecer à seguinte tabela:

Por exemplo: ao curvar um eletroduto de 3 polegadas, o

raio mínimo da curva deverá ser de 46cm.

b - Não recue o tubo no vira-tubos para fechar mais a curva

em algum ponto, nem force muito no mesmo lugar, para não

amassá-lo.

c - A costura do tubo (a) deverá ficar na sua faixa neutra

(para cima), pois as costuras constituem um perigo para o

isolamento do condutor.

Page 59: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ5903 sistemas de tubulações

Montagem einstalalação de

Para curvar eletroduto rígido de plástico, será utilizada uma fonte de calor brando, como o maçarico.

Moldagem ou soldagem de plástico

Caso se deseje dobrar, moldar ou soldar peças de PVC ou de polietileno, deve-se proceder lentamente, com muito cuidado e de maneira controlada, para assim se conhecer o efeito do calor no material correspondente, porque, nestes casos, variações relati-vamente pequenas na temperatura podem causar deformações nas peças.

3.2.2.2.2. – Maçarico

É um equipamento que proporciona a chama necessária para os trabalhos de curvamento em eletroduto de PVC.

Existem vários tipos de maçaricos, a saber: a gás, a gasolina, a querosene, oxiacetilênico, etc.

O gás liquefeito do petróleo é um hidrocarboneto leve (butano ou propano comercial) normalmente gasoso, extraído do gás natural ou dos gases de refinaria.

Os gases, quando comprimidos acima de certa pressão, que varia conforme o gás, se liquefazem. Após a descompressão, voltam ao estado gasoso. Por esse motivo, o gás do petróleo é ven-dido comercialmente em bujões de 1, 3, 5 e 13kg; em cilindros de 45kg e em carrapetas de 90 a 120kg, no estado líquido, sob forte pressão, sendo descomprimido à medida que é usado.

O GLP (gás liquefeito do petróleo) tem sido largamente aceito, pela facilidade de seu uso e transporte.

Page 60: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ60 03 sistemas de tubulações

Montagem einstalalação de

Tipo nº Potência Temperatura

do ar de saída HL 1500 1400W I – 300ºC II – 500ºC

Volume de saída de ar Peso

220V 110V

I – 240l/min II – 400l/min I e II – 400l/min 0,8kg

• Maçarico a gás

Descrição1 – Queimador. (a)2 – Suporte múltiplo de duplo comando. (b)3 – Registro tradicional. (c)4 – Gatilho. (d)5 – Suporte para sustento. (e)

• Utilização do maçarico a gás

Você irá trabalhar com material de fácil combustão, ou seja, que facilita ou alimenta a queima. Por isso, todo cuidado é pouco.

• Procedimento:

• Verificar se o maçarico está em perfeitas condições de uso, assim como a mangueira.

• Não utilizar isqueiro; usar fósforo de segurança.

• Utilizar mangueira de tamanho adequado, de modo a permitir uma certa distância entre o bujão e o local onde está sendo utilizado o maçarico.

• Não deixar a mangueira ficar enrolada.

• Utilizar espuma de sabão e nunca o fogo, para verificação de escapa-mento de gás.

• Evitar, no final do trabalho, a concentração do gás na mangueira; para isto, desligar inicialmente a torneira do bujão, até que a chama se extinga total-mente.

3.2.2.2.3 – Soprador térmico

a

e

c

b

d

Page 61: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ6103 sistemas de tubulações

Montagem einstalalação de

O soprador térmico oferece uma grande gama de aplicações, tais como:

• raspar a fundo, sem nenhuma dificuldade, pinturas de tintas a óleo, sin-téticas, etc.;

• aquecer plásticos para moldar ou soldar;

• secar superfícies úmidas;

• efetuar solda de estanho em chapas ou tubos;

• aquecer tubulações de água gelada.

O soprador térmico é sempre uma grande vantagem onde o calor facilite ou acelere o desenvolvimento do trabalho, sem a presença de chama aberta.

Instruções de segurança e acionamento

• Observar que a tensão da rede deve ser a mesma indicada na placa de carac-

terísticas do produto.

• Conectar o plug à tomada somente com o interruptor desligado.

• Desconectar o plug da tomada, antes de efetuar qualquer tipo de trabalho no aparelho.

• Substituir o cabo elétrico, o plug e a tomada, caso estejam danificados: eles

deverão estar sempre em perfeitas condições.

• Nunca dirigir o jato de ar quente a pessoas ou animais ou utilizá-lo como secador

de cabelo.

• Não utilizar o aparelho próximo de gases ou materiais inflamáveis.

• Não mergulhar o aparelho em líquido de qualquer espécie.

• Verificar, logo após o uso, antes de apoiá-lo sobre alguma superfície, se o tubo de

saída de ar não está muito quente de forma a causar algum dano. Antes de terminar

o trabalho, procurar um lugar seguro onde colocar o aparelho. Por ex.: suporte com

gancho.

• Colocar o aparelho de pé sobre uma mesa/bancada, para uso estacionário.

• Não tocar o tubo aquecido.

• Ao trabalhar sobre uma escada, procurar sempre uma posição segura e uma

distância suficiente da superfície a tratar.

• O jato de ar quente deverá sair livremente do tubo.

Page 62: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ62 03 sistemas de tubulações

Montagem einstalalação de

• Não tapar a entrada ou saída de ar.

• Antes de guardar o aparelho, uma vez concluído o serviço, verificar se ele está

totalmente frio.

• Guardar o soprador térmico fora do alcance de crianças: ele não é um brinquedo.

Manutenção

As entradas e saídas de ar deverão estar sempre limpas e desobstruídas. Substitua imediatamente as peças danificadas. Utilize somente peças de reposição originais.

Além de fonte de calor para curvar eletroduto rígido de plástico, utiliza-se também areia ou mola.

3.2.2.2.4 – Mola

Descrição1 – Arame de aço.2 – Enrolado sob forma de espiral. (a)3 – Com guia (b) e argola na extremidade. (c)Função: impedir a deformação do diâmetro interno do eletroduto durante

o curvamento.

Utilização da mola

Para impedir a redução do diâmetro interno do ele-troduto rígido de plástico (PVC) durante o seu curva-mento, devem-se observar os seguintes procedimentos:

• Selecionar a mola correspondente ao diâmetro do eletroduto que será curvado.

• Colocar a mola sobre o eletroduto, de maneira que coincida com o trecho que será curvado, e segurar a guia da mola com as mãos, fazendo topo, isto é, até atingir a extremidade do eletroduto, com os dedos polegar e indicador.

fazer topo

Page 63: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ6303 sistemas de tubulações

Montagem einstalalação de

b

a

• Introduzir a mola no eletroduto, empurrando-a, até que os dedos voltem a fazer topo com a entrada que servia como referência.

• Retirar a mola depois de curvar o eletroduto.

3.2.2.2.5 – Areia

São os seguintes os procedimentos a serem observados quando se utiliza areia:

• Encher o eletroduto com areia seca, vedando as extremidades.

• Retirar a areia, depois de curvar o eletroduto.

3.2.3 – Junção com luvas, buchas e arruelas

3.2.3.1 – Luva

Descrição1 - Peça de metal ou plástico. (a)2 - Dotada de rosca interna. (b)3 - Específica pelo comprimento e pelo diâmetro nominalFunção: serve para emendar eletrodutos.

Ao se utilizarem as luvas para fazer junção de eletrodutos é importante observar o comprimento do tubo, que deve ser de 2cm para que a conexão seja perfeita. Se a tubulação ficar exposta ao tempo, é recomendável que se utilize veda-rosca, como material vedante entre roscas. Não utilize aperto excessivo, através do uso de chaves.

Page 64: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ64 03 sistemas de tubulações

Montagem einstalalação de

3.2.3.1.1 – Luvas e conectores sem rosca

O uso de luvas e conectores sem rosca é prático e funcional nas instalações aparentes onde houver a utilização de conectores rígidos e demandam menor tempo de trabalho.

Tanto luvas quanto conectores são encontrados com ou sem vedação, fabricados em borracha auto-extinguível.

3.2.3.2 – Buchas e arruelas

Na montagem dos eletrodutos nas caixas, empregam-se porcas especiais, que existem em diferentes dimensões, adequadas aos eletrodutos com que devem trabalhar.

As porcas que são colocadas pelo lado interno das caixas servem, princi-palmente, para proteger o isolamento dos condutores e são também conhecidas como “buchas” (fig. 7). As que são colocadas pelo lado externo das caixas servem para dar o aperto de fixação do eletroduto à caixa e são chamadas comu-mente de “arruelas” (fig. 8).

luva com vedação

luva sem vedação

conector com vedação

conector sem vedação

conector curvo para box

fabricado em alumínio silício

3/8” a 4”

conector reto para box

fabricado em alumínio silício

3/8” a 4”

simples

BUCHAS

com bornes para ligação à terra

ARRUELAS

Page 65: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ6503 sistemas de tubulações

Montagem einstalalação de

3.2.4 – Fixação e estanqueidade de caixa de passa-gem em paredes e lajes

3.2.4.1 – Caixas

Em todas as extremidades de eletrodutos em que há entradas, saídas ou emendas de condutores, ou nos pontos de instalação de aparelhos e dispositi-vos, devem ser usadas caixas que são fabricadas em chapas de aço, esmaltadas, galvanizadas ou em plástico, protegidas interna e externamente.

As caixas possuem orelhas para a fixação de tampas, aparelhos ou dispo-sitivos, assim como orifícios parcialmente abertos para a introdução e fixação dos eletrodutos. Nas instalações expostas, elas podem ser substituídas por con-duletes.

O desenho abaixo mostra a localização de caixas, luvas, curvas, buchas, arruelas e tubos.

retangular4”x 2”

quadrada4”x 4”

octogonal4”x 4”

Furo para fixação da caixa à superfície

Orifícios parcialmenteabertos para os condutos

Orelhas para fixação dos aparelhos, dispo-

sitivos ou tampo

caixa de derivação octogonal 4”x 4”

curva 90º 16

luva 20

caixa de derivação 4”x 2”

curva 90º 16

curva 90º 20

Caixa modelo retangular 4”x 2”

Page 66: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ66 03 sistemas de tubulações

Montagem einstalalação de

Na instalação da rede de eletrodutos rígidos na caixa de passagem, devem ser observadas as recomendações das ilustrações abaixo:

A fixação dos eletrodutos e caixas é feita pela argamassa da estrutura.

A máxima distância da face da caixa à superfície acabada da parede deve ser de 6mm.

Os eletrodutos são fixados por grampos ou braçadeiras.

Quando possível, deve-se deixar uma folga de 5mm entre o eletroduto e a superfície.

Rede embutidaOs eletrodutos e caixas foram encerrados permanentemente na estrutura ou acabamento do edifício.

Rede expostaOs eletrodutos ficam monta-dos à superfície da estrutura do edifício.

A distância máxima nos trechos com curva será de 15m menos 3m para cada curva.

O menor diâmetro de um eletroduto deve medir 1/2”.

O número máximo de curvas entre duas caixas será de 2 curvas de 90º.Nos casos de curvas meno-res que 90º, admitem-se até 4 curvas.

Distância máxima entre suportes nos trechos não verticais:eletroduto 1/2” → 2,0meletroduto 3/4” e maiores → 3,0m

Distância máxima entre caixas em tre-chos retos: 15m.

Distância mínima entre suportes em trechos verticais:eletroduto 1/2” → 2,0meletroduto 3/4” e 1” → 2,5meletroduto 1 1/4” a maiores → 3,0m

Page 67: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ6703 sistemas de tubulações

Montagem einstalalação de

3.2.5 – Conduletes roscáveis e sem rosca

Para executar instalações com tubulações aparentes usa-se também caixa de derivação (conduletes).

Onde as condições de instalações exigem, utiliza-se fita veda--rosca como material vedante entre roscas. Não utilize aperto excessivo, através de uso de chaves. Obtém-se rosqueamento per-feito através de aperto manual.

3.2.5.1 – Conduletes roscáveis – tipos e bitolas

Page 68: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ68 03 sistemas de tubulações

Montagem einstalalação de

Exemplo de instalações com condulete roscável

3.2.5.2 – Conduletes sem rosca

São um tipo de caixa de derivação sem rosca própria, para instalação apa-rente. As eletrodutos são fixados às entradas por meio de parafuso.

Conduletes sem rosca - tipos e bitolas

Abraçadeiras adequadas proporcio-nam segurança e alinhamento per-feito.

Alterações ou transferências de ins-talações são efetuadas com rapidez e segurança, conforme pode ser cons-tatado pela ilustração.

A conexão das extremidades de tubulações é simplificada através da aplicação de luvas.

Page 69: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ6903 sistemas de tubulações

Montagem einstalalação de

Exemplo de instalação de condulete sem rosca

3.2.5.3 – Conduletes com ou sem rosca, equipados com acessórios elétricos

Os conduletes com acessórios elétricos são dotados de tampos inter-cambiáveis, permitindo as mais varia-das combinações. Todas as tampas equipadas podem ser fornecidas iso-ladamente para montagem em painéis ou já montadas nos conduletes, con-forme tabela ao lado.

Desenvolver, em condições de qualidade e segurança, diagrama e lay-out para

montagem e instalação de sistema de tubulação aparente para instalação de uma

lâmpada comandada por interruptor simples e uma tomada.

O projeto deve ser desenvolvido de acordo com as normas técnicas específicas e

a legislação brasileira em vigor.

Tarefa a ser realizada em sala-de-aula.

1Conector curvo pa-ra box: facilita a exe-cução de curvas, pois com a reti-rada da tampa os fios deslizam livre-mente.

2Bucha e arruela; enquanto a arruela fixa o tubo, a bucha evita o descasca-mento do fio e serve de contraporca para fixação.

3Exemplo de apli-cação de conector reto que permite a execução de insta-lações completas com eletrodutos li-sos, sem roscas.

4Luvas e conectores sem rosca: para conexão de eletrodutos rí-gidos. Fornecidos sem ou com vedação de borracha. Permitem contornos com aplicação de con-duletes.

Page 70: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 71: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

04Enfiação e conexãode condutores elétricos

Page 72: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 73: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ7304 Enfiação e conexão decondutores elétricos

4.1 – Materiais e ferramentas para emenda de condutores

4.1.1 – Ferro elétrico de soldar

Descrição– Para ligar à rede de 110V – ou 220V.– Consumo de 100 a 200W. – Temperatura aproximada na ponta: 300ºC.– De uso manual.– Tipo de ponta reta ou curva intercambiável.– Tipo machadinha, para serviços pesados.

4.1.2 – Solda

Descrição– Liga de chumbo e estanho, na proporção de 40% de chumbo e 60% de

estanho, ou em outras proporções, 25% ou 75%, por exemplo.– Apresenta-se em forma de barra ou fio, com núcleo de breu.– A temperatura de fusão é aproximadamente 170ºC.– De uso manual.– Ao fundir-se, adere a outros metais, especialmente o cobre e o bronze.– A solda feita somente de estanho é também conhecida como solda

branca ou solda fraca.

Page 74: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ74 04 Enfiação e conexão decondutores elétricos

4.1.3 – Breu

Descrição– Resina em estado sólido.– Amorfa.– Cor amarelo-âmbar.– Funde-se à temperatura pouco superior a 150ºC e, acima desta,

volatiliza-se.– Age como fundente na soldagem com liga de chumbo-estanho.– É isolante elétrico.– Dissolve-se em álcool.

Quando a solda não vier com núcleo de breu, pode-se usar também a pasta de soldar, encontrada, normalmente, em lata de 110g.

Instruções para o uso da pasta de soldar• Remover das peças sujeiras, tintas e resíduos de isolantes de borracha ou

quaisquer matérias estranhas, usando lixa, lima ou escarificador.• Aplicar a pasta diretamente sobre a superfície a ser soldada.• Aquecer a peça o suficiente para que a solda se espalhe rápida e prontamente.• Deixar esfriar.• Limpar a peça.

4.1.4 – Fita isolante

Descrição– Flexível, maleável, impermeável.– Dielétrica com ruptura acima de 750V.– Adesiva, sendo sensível à pressão.– Plástica, em várias cores.– Seccionável com lâmina ou tesoura.– Resistente à umidade e a agentes corrosivos.– Em rolo de 19mm X 20m; espessura: 0,19mm e em outras dimensões.

Além dos materiais e ferramenta apresentados, são também utilizados o alicate universal (corta, dobra e aperta) e a faca de eletricista ou canivete.

Page 75: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ7504 Enfiação e conexão decondutores elétricos

4.2 – Emenda de condutores As emendas de fios e cabos devem possibilitar:

1- a passagem da corrente admissível para o condutor mais fino sem aquecimento excessivo, ou seja, não devem apresentar mau contato e ter suficiente seção, de modo que não venham a aquecer muito por efeito Joule.

2- resistência mecânica suficiente para o serviço ou tipo de instalação;

3- isolamento pelo menos igual ao dos condutores emenda-dos e com a mesma classe de isolamento.

4.2.1 – Emendas em prosseguimento

Sempre que a extensão de uma rede ou linha aberta for maior que o condutor disponível, devem-se emendar os condutores em prosseguimento.

O comprimento das pontas deve ser

igual a 50 vezes o diâmetro do condutor

nu, aproximadamente.

Na prática, pode-se desencapar o fio

1,5mm2 → 8cm; 2,5mm2 → 10cm e o fio

4mm2 → 13cm.

Os procedimentos que se seguem devem ser atentamente observados:

1 – Desencapar as pontas dos condutores.

Com uma faca, retire o isolamento em direção à ponta, assim como se estivesse apontando um lápis.

Page 76: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ76 04 Enfiação e conexão decondutores elétricos

As pontas devem ficar completamente enroladas e apertadas no condutor, porém com pequeno espaça-mento entre as espiras, para a solda penetrar.

b) Complete a torção das pontas com a ajuda de um ou dois alicates, dependendo do diâmetro do condutor.

2 – Limpar os condutores.

Retire os restos de isolamento porventura presos ao metal, ou raspe com as costas da lâmina a oxidação.

No caso de o condutor ser estanhado, não deve ser

raspado.

3 – Emendar os condutores.

a) Cruze as pontas dos condutores, conforme mostra o desenho e, a seguir, torça uma sobre a outra em sentido oposto.

Cada ponta deve dar seis voltas sobre o condutor, no mínimo.

Ao manusear a faca, evite ferir-se com a lâmina. O movimento de cortar deve ser exe-

cutado afastando a lâmina da mão que segura o objeto.

Page 77: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ7704 Enfiação e conexão decondutores elétricos

4 – Soldar a emenda.

a) Ligue o ferro de soldar à rede de energia e deixe-o aquecer até a tem-peratura de fusão da solda.

Verifique, antes de ligar, se a tensão da tomada é adequada ao ferro, ou seja: ferro

para 127V, tomada também de 127V.

b) Aplique um pouco de solda à ponta do ferro para que esta faça bom contato térmico com a emenda.

c) Encoste a ponta do ferro à emenda, aque-cendo-a.

d) Aplique o fundente (breu) sobre a emenda, caso a solda não tenha o seu núcleo de breu. Ou então utilize a pasta de soldar.

e) No início, aplique a solda entre a ponta do ferro e a emenda, até que a solda flua para a mesma.

f) Mude a posição do ferro para cima da emenda e aplique solda no local até preencher todos os espaços entre as espiras.

g) Repita o processo em toda a extensão da emenda.

Às vezes é necessário aplicar novamente o breu ou a pasta de soldar em algumas

partes mais oxidadas, onde se nota que a solda não pega.

h) Retire o ferro de soldar, rapidamente, sem arrastar na emenda e deixe esfriar.

5 – Isolar a emenda em prosseguimento.

a) Inicie na extremidade mais cômoda, pren-dendo a ponta da fita e, em seguida, dê uma volta sobre a mesma.

Page 78: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ78 04 Enfiação e conexão decondutores elétricos

b) Continue enrolando a fita, de modo que cada volta se sobreponha à anterior, na metade da largura da fita, até atingir uns dois centímetros sobre o encapamento do condutor.

Mantenha a fita esticada durante todo o tempo, para que a aderência seja perfeita.

c) Retorne com a fita, enrolando-a agora com inclinação oposta, porém da mesma forma anterior.

d) Complete o isolamento com três ou mais camadas, de modo que a espessura do isolamento fique, pelo menos, igual ao encapamento do condutor.

e) Seccione a fita com uma lâmina.

f) Pressione a ponta da fita, fazendo-a aderir ao isolamento.

4.2.2 – Emendas em derivação

Na ligação dos ramais, será necessário emendar os condutores em derivação.

Observe atentamente a seqüência de procedimentos:

1 – desencapar as pontas dos condutores do circuito ramal.

Proceda como anteriormente.

2 – desencapar os condutores da linha.

a) Marque com dois piques de faca uma faixa de uns 20mm a partir do ponto de derivação.

b) Retire, com uma faca, o isolamento em volta do condutor, entre as marcas.

A faca não deve atingir o metal para evitar pontos de ruptura (quebra) do condutor.

2 piques a 20mm

2 piques a 20mm

Page 79: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ7904 Enfiação e conexão decondutores elétricos

5 – soldar a emenda em derivação.

Proceda como anteriormente.

6 – isolar a emenda em derivação.

Ao manusear a faca, evite ferir-se com a

lâmina.

3 – limpar os condutores.

Proceda como anteriormente.

4 – emendar os condutores.

a) Cruze a ponta sobre a derivação e enrole-a sobre esta, de modo que as espiras fiquem com ligeiro espaçamento entre si.

b) Complete a torção da ponta com a ajuda do alicate.

A ponta deve ficar

completamente enrolada

e apertada no condutor

e contar, pelo menos, 6

(seis) espiras.

a) Enrole a fita primeiramente no condutor da rede e, ao voltar, enrole-a no condutor do ramal.

b) Para os demais detalhes, proceda como anteriormente.

Page 80: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ80 04 Enfiação e conexão decondutores elétricos

4.2.3 – Emendas na caixa de passagem

Os procedimentos a seguir devem ser atentamente observados:

a) desencape as pontas, em um comprimento igual a cinqüenta vezes o diâmetro do condutor nu.

b) cruze os condutores.

c) torça os condutores, inicialmente com a mão, auxiliado por um alicate.

d) dê o aperto final com dois alicates.

e) dobre a ponta dos condutores.

4.2.4 – Utilização da solda, do cadinho e da pasta de soldar

O profissional, em muitas ocasiões, necessita soldar terminais, bornes, assim como as emendas dos condutores, para que o contato elétrico nesses pontos seja o mais perfeito possível, evitando assim o aquecimento causado pela corrente elétrica, que pode proporcionar incêndio e maior consumo de energia.

É importante lembrar, também, que a solda evita que essas conexões se desfaçam, no caso de os condutores serem puxados, ou então no caso de esta-rem oxidados pela maresia.

É ainda bastante comum isolar as emendas dos condutores e outras partes descobertas das instalações com fita isolante, para que não ocorra curto-cir-cuito, no caso de os condutores com potencial elétrico diferente se unirem, ou para que as pessoas não fiquem sujeitas a choque elétrico.

Para soldar, proceda observando os seguintes passos:

1) corte a solda em pequenos pedaços.

Page 81: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ8104 Enfiação e conexão decondutores elétricos

2) coloque os pedaços de solda no cadinho e aqueça-o.

3) passe a pasta de soldar nas emendas já dobradas. Utilize um pincel.

4) verifique se a solda fundiu completamente. Utilize o maçarico a querosene ou a gás.

A solda estará com sua fusão ideal, quando ficar com uma tonalidade rubra.

5) mergulhe as emendas no cadinho cheio e retire-as rapida-mente.

6) isole a emenda e acomode-a dentro da caixa.

Tão logo a emenda esfrie, limpe-a com trapo ou estopa, embebendo-os em álcool.

4.3 – Tracionamento de condutores em tubulações

Os condutores serão enfiados dentro do eletroduto, através de um arame guia. Quando houver muita dificuldade para a penetração, usa-se, inicialmente, fita ou fio de plástico, que servirá de guia para o arame.

Faz-se amarração no arame com os condutores desencapados, devendo-se evitar um acúmulo excessivo deles em um só ponto, para não tornar mais difícil sua passagem dentro da tubulação.

Após a amarração, passa-se fita isolante e logo depois parafina ou talco industrial, para a penetração da conexão fluir com maior facilidade dentro do eletroduto.

Page 82: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ82 04 Enfiação e conexão decondutores elétricos

Os condutores devem ter um tamanho adequado para a amarração e, sendo da

mesma cor, deve-se fazer uma marcação própria nos mesmos, de modo a facilitar pos-

teriormente a sua ligação.

4.4 – Componentes de acionamento

4.4.1 – Interruptor de uma seção e lâmpada incandes-cente

4.4.1.1 – Interruptor de uma seção (simples)

É um dispositivo de manobra, de corpo termoplástico com furos para fixação, dois bornes de ligação dos condu-tores, uma tecla ou alavanca que fecha e abre o circuito elétrico. No corpo estão indicadas, normalmente, a intensi-dade de corrente, 10A, e a tensão, 250V.

4.4.1.2 – Receptáculo reto normal

Possui uma base de porcelana, com rosca metálica interna, onde é atarraxada a lâmpada, e os bornes nos quais são ligados os condutores. Serve como ponto de conexão entre a lâmpada e os condutores. Na base estão indicadas a intensidade da corrente e a tensão. Normalmente, as bases mais usadas são para roscas E-27; para lâmpadas de potência elevada, usa-se a base E-40.

4.4.1.3 – Lâmpada incandescente

É composta de bulbo de vidro, base metálica roscada e filamento de tungstênio. Serve para transformar energia elétrica em luz. No bulbo, estão indicadas a potência (por exemplo: 60W) e a tensão de funcionamento (127V ou 220V).

Page 83: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ8304 Enfiação e conexão decondutores elétricos

4.4.1.4 – Diagrama unifilar e multifilar

Diagrama é a representação de uma instalação elétrica ou parte dela, por meio de símbolos gráficos.

Diagrama unifilar – é representado por meio de símbolos gráficos dos componentes da instalação, situados na planta baixa, apresentando a posição física dos elementos.

No diagrama apresentado, aparecem: interruptor de uma seção, ponto de luz incandescente, eletrodutos e condutores. Esse diagrama permite verificar a disposição de elementos de um cir-cuito. Nesse caso, observamos que há um interruptor simples próximo à porta, comandando um ponto de luz. Eles estão ligados por condutores que passam por dentro dos eletrodutos.

• Diagrama multi-filar ou funcional – é a representação do cir-cuito elétrico por meio de símbolos gráficos, permi-tindo analisar o seu fun-cionamento.

Como se pode observar, o condutor fase é ligado ao interrup-tor, para uma perfeita interrupção do circuito, pois com o interrup-tor desligado (aberto) pode-se trocar a lâmpada sem risco, já que o condutor fase é o que dá choque.

O condutor retorno ou volta é o que interliga interruptor e lâmpada.

Os pontos que aparecem no diagrama representam um con-tato ou uma ligação elétrica. A ausência desses pontos significa que não há ligação elétrica. Veja as figuras abaixo:

F

N

ligação ausência de ligação

Page 84: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ84 04 Enfiação e conexão decondutores elétricos

4.4.2 – Interruptor de duas seções e lâmpadas incan-descentes

4.4.2.1 – Interruptor de duas seções

É um dispositivo de manobra, fabricado em material termoplástico, para suportar intensidade de 10 ampères, sob tensão de 250 volts. É uma peça com-posta de um corpo com furos para fixação, quatro bornes de ligação dos condu-tores e duas teclas ou alavancas que fecham e abrem os circuitos elétricos.

4.4.2.2 – Diagrama multifilar e unifilar

Vejamos os diagramas multifilar e unifilar, que permitirão entender o cir-cuito elétrico.

O diagrama multifilar, representado na Fig. a, serve de orientação ao pro-fissional para fazer ligações, mostrando como o circuito funciona.

Em dois bornes serão ligados os fios de retorno ou volta; em um terceiro, será ligado o fio fase, que fará “ponte” com o quarto (em negrito).

A distância dos pontos de luz para a parede corresponde à metade da distância entre os pontos de luz. No exemplo dado, os pontos de luz próximos à parede ficarão 1,5m afastados da mesma e, entre eles, a distância será de 3m. Isso significará uma boa uniformidade de iluminação. A Fig. b ilustra como ficarão os pontos de luz.

Fig. a Fig. b

Page 85: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ8504 Enfiação e conexão decondutores elétricos

4.4.3 – Interruptor de três seções e lâmpadas incan-descentes

A instalação do interruptor de três seções é análoga à do interruptor de duas seções. Observem-se os diagramas:

• multifilar:

• unifilar:

L1

L2

L3

F

N

4.4.4 – Interruptor paralelo (three-way)

Já se tornou bastante comum a utilização de um sistema que permite ao usuário acender e apagar a luz de locais diferentes. O dispositivo que possibi-lita, por exemplo, acender a luz junto à porta e apagá-la junto à cama ou vice--versa é o interruptor paralelo.

Esse tipo de interruptor caracteriza-se por possuir três bornes de ligação, sendo também conhecido como THREE-WAY. Possui uma alavanca ou tecla que, quando acionada, estabelece a ligação do contato fixo com um dos conta-tos móveis. Podemos deduzir que serão instalados sempre dois interruptores paralelos para acender ou apagar a luz de dois pontos diferentes. Este é um interruptor muito utilizado em corredores e escadas.

c

c

b) unifilar :

Page 86: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ86 04 Enfiação e conexão decondutores elétricos

Símbolo do interruptor paralelo usado no diagrama:

a) unifilar: b) multifilar

Diagramas:

UNIFILAR:

MULTIFILAR:

4.4.5 – Interruptor intermediário (four-way)

É utilizado quando desejamos comandar a luz de mais de dois locais dife-rentes. Ele será ligado sempre entre dois interruptores paralelos.

Símbolo do interruptor intermediário usado em diagrama:

a) unifilar b) multifilar ou

Page 87: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ8704 Enfiação e conexão decondutores elétricos

Diagramas:

1– com três comandos:

UNIFILAR

MULTIFILAR

2 – com quatro comandos:

UNIFILAR

Page 88: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ88 04 Enfiação e conexão decondutores elétricos

MULTIFILAR

Da observação dos diagramas é possível concluir que, para aumentar o número de comandos, basta acrescentar sempre, entre os dois interruptores paralelos, mais interruptores intermediários.

É importante que o interruptor intermediário seja testado antes de ser ligado, para

que sejam identificados os dois bornes de ligação de entrada e os dois de saída, tanto

na posição cruzada, quanto na posição paralela.

Desenvolver, em sala-de-aula, diagrama e lay-out para montagem de tubulação

para instalação de um circuito que envolva: interruptor simples; interruptor de duas

seções; interruptor de três seções; interruptor three-way; interruptor four-way.

Executar o projeto, de acordo com as normas técnicas específicas e a legislação

brasileira em vigor, em condições de qualidade e segurança.

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 89: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

iluminação05 de acionamento; Montagem einstalação de sistema

Page 90: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 91: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ91acionamento; iluminação

Montagem einstalalação de sistema de05

5.1 – Peças e aparelhos instalados em iluminação fluorescente

5.1.1 – Luminária fluorescente

É um aparelho de iluminação composto de calha, receptáculos, difusor, starter, reator, lâmpada fluorescente e acessório de fixação.

Existem tipos diversos dessa luminária, que podem ser embutidos, pendentes ou fixa-dos diretamente à superfície.

5.1.2 – Calha

É uma peça composta de estrutura metálica esmaltada, com rasgos para os receptáculos, furos para starter, reator e fixação. Possui mode-los diferentes, com e sem difusor, para uma ou mais lâmpadas, de comprimento variado. Serve para refletir e dirigir o fluxo luminoso para a área a ser iluminada.

5.1.3 – Receptáculo

É uma peça composta de corpo de baquelita ou plástico; contatos, onde são introduzidos os pinos das lâmpadas, e bornes, para ligar os condutores. Pode ser conjugado com o suporte do starter. Serve para susten-tar a lâmpada, ligando-a, através de seus bornes, ao circuito.

Há tipos diversos, como para lâmpadas fluores-centes de catodo preaquecido e catodo quente (HO).

Page 92: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ92 acionamento; iluminação

Montagem einstalalação de sistema de05

5.1.4 – Difusor

É um acessório da luminária que abriga a lâmpada, evitando a luz direta e difundindo a iluminação de maneira uniforme. É fabricado em vidro, plástico ou acrílico, que dá à iluminação um aspecto ornamental.

5.1.5 – Starter

É um dispositivo que atua como interruptor automático, abrindo o circuito dos filamentos depois do tempo necessário para o seu aquecimento.

5.1.6 – Suporter starter

É uma peça composta de corpo da baquelita ou plástico, con-tatos e bornes; possui um furo para penetração do starter, onde se encontram dois contatos para os pinos do starter que vão ligá-lo, através de seus bornes, ao circuito.

5.1.7 – Reator

É um aparelho montado em caixa de chapa de ferro e imerso em massa isolante. Da caixa do reator saem os condutores em cores diferentes, a fim de facilitar sua ligação aos outros elemen-tos da instalação. Há na caixa o esquema da ligação e característi-cas, tais como o número da lâmpada, tensão, potência, que devem ser obedecidas pelo instalador. Serve para proporcionar as duas tensões necessárias ao funcionamento da lâmpada. Há reatores próprios para cada tipo de lâmpada, como, por exemplo, conven-cionais, os de partida rápida e os eletrônicos.

Os reatores de partida convencional necessitam de starter para entrarem em funcionamento.

Page 93: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ93acionamento; iluminação

Montagem einstalalação de sistema de05

Reatores eletrônicos para lâmpadas fluorescentes tubulares, quando utili-zados em conjunto com as lâmpadas fluorescentes de 18, 36 e 58W, apresentam benefícios como:

– menor consumo de energia;– menor aquecimento do ambiente;– ausência de ruído;– ausência de efeito estroboscópico e de cintilação;– altíssimo fator de potência;– alimentação múltipla: 50Hz, 60Hz e corrente contínua (para iluminação

de emergência);– peso e volumes menores;– incremento da vida útil das lâmpadas em 50%;– vida útil dos reatores mais longa (20 anos);– aprovação por laboratórios internacionais;– em conformidade com diversas normas internacionais.

5.1.8 – Lâmpada fluorescente de catodo preaquecido

É um aparelho de iluminação composto de tubo cilíndrico de vidro, com parede interna recoberta com substância fluorescente, filamento de tungstênio, base metálica, pinos conectados ao filamento e suportes de filamento. Serve para iluminar ambientes residenciais, comerciais, industriais, escolares e hos-pitalares. Existe também no mercado a lâmpada fluorescente circular e mais recentemente a compacta.

Para iluminar, principalmente, ambientes comerciais e industriais há, também, a de catodo quente (HO).

CATODO PREAQUECIDO CATODO QUENTE (HO)

5.1.8.1 – Lâmpadas fluorescentes circulares

São alternativas para o uso de lâmpadas fluorescentes. Substituem as incandescentes em residências, condomínios, hotéis, etc., com as seguintes van-tagens:

Page 94: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ94 acionamento; iluminação

Montagem einstalalação de sistema de05

– consumo 60% menor;– menor aquecimento do ambiente;– luz bem distribuída;– maior durabilidade.

5.1.8.2 – Lâmpadas fluorescentes compactas eletrônicas

São lâmpadas fluorescentes compactas com reatores eletrônicos incorpo-rados à base de rosca, ideais para a substituição imediata de incandescentes comuns. Podem ser utilizadas em qualquer luminária e, principalmente, em locais que necessitam de iluminação econômica, com acendimento por tempo prolongado. Para uso residencial, comercial ou industrial.

Características:– alta eficiência energética, com até 80% de economia de energia;– longa durabilidade: cerca de 8.000 horas;– base rosca E27;– acendimento imediato;– impossibilidade de serem “dimmerizadas”.

5.2 – Lâmpadas fluorescentes x Lâmpadas incandescentes

Page 95: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ95acionamento; iluminação

Montagem einstalalação de sistema de05

Tarefa a ser realizada em sala-de-aula

Montar e instalar, em condições de qualidade e segurança, luminárias

incandescentes, fluorescentes, halógenas e eletrônicas, considerando

as normas técnicas específicas e a legislação brasileira em vigor.

Considerar os diagramas (D-1;D-2;D-3 e D-4) que seguem (páginas

98 a 100.)

5.3 – Diagramas com lâmpadas fluo-rescentes

5.3.1 – Comandadas por interruptores para-lelos (three-way – 2 comandos)

Diagramas multifilares

D-1 • Partida convencional: uma lâmpada fluorescente de 20W – 127V, comandada de dois pontos diferentes.

D-2 • Partida rápida eletromagnética: duas lâmpadas fluo-rescentes de 20W – 127V, comandadas de dois pontos diferentes.

127V - 60HzREATOR

CONVENCIONAL1x20w

127V - 60HzREATOR PARTIDA

RÁPIDA2x20w

Page 96: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ96 acionamento; iluminação

Montagem einstalalação de sistema de05

D-3 • Partida rápida eletrônica: duas lâmpadas fluorescentes de 20W – 220V, comandadas de dois pontos diferentes.

5.3.2 – Comandadas por interruptores paralelos (three-way) e intermediário(s) (four-way – 3 comandos)

D-4 • Diagrama multifilar:

Diagrama unifilar:

Se se desejar aumentar a quantidade de comandos, devem-se introduzir no circuito mais interruptores intermediários, que ficarão sempre entre dois para-lelos.

Page 97: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

06Tomadas

Page 98: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 99: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ9906 Tomadas

6 – TomadasAs tomadas são dispositivos destinados às ligações de aparelhos ele-

trodomésticos e industriais e servem para fazer e desfazer as conexões com segurança e facilidade. Elas podem ser fixadas nas paredes ou no piso e são constantemente energizadas. Diferem pela forma de sua aplicação, pela forma e quantidade de seus contatos e por sua capacidade elétrica.

Existem tomadas para instalações externas e embutidas. A forma dos con-tatos determina o tipo de pinos que a tomada pode receber. Há tomadas para pinos redondos, pinos chatos e também para ambos os pinos (chamada tomada universal).

A quantidade dos contatos determina a função da tomada, ou seja, limita o tipo de cir-cuito em que a tomada pode ser instalada. Ela agüenta correntes elétricas apenas até um certo valor. Se esse limite for ultrapassado, haverá perigo e os contatos podem-se queimar ou se fundir.

Para evitar tais defeitos, cada tomada traz uma inscrição que mostra a carga máxima (tensão e corrente) que ela pode alimentar. Observem-se modelos de algumas tomadas.

tomada 2P+T tomada 3P

Page 100: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ100 06 Tomadas

As tomadas são ligadas dire-tamente à linha de alimentação. Observem-se diferentes ligações de tomadas.

a b c d e f

Te Te Te

R

S

T

N

6.1 – Normas de instalações elétricas em iluminação e tomadas (NBR – 5410)

Em cada cômodo ou dependência deve ser previsto, pelo menos, um ponto de luz no teto, com potência mínima de 100VA, comandado por interruptor de parede.

Determinação de potência mínima de iluminação em unidades residen-ciais.

Área do cômodo ou dependência (m2) Potência mínima de iluminação (VA)

/6 100 ¢6 100 para os primeiros 6m2 e mais 60 para cada aumento de 4m2 inteiros.

a) Os valores calculados correspondem à potência destinada à iluminação para

efeito de dimensionamento dos circuitos.

b) Para efeito de dimensionamento, pode-se admitir que a iluminação seja execu-

tada com lâmpadas incandescentes e, portanto, o fator de potência é igual a 1; o valor

em VA será igual ao valor em W.

6.1.1 – Tomadas de corrente

• Uma tomada para cada cômodo ou dependência de área igual ou inferior a 6m2.

• uma tomada para cada 5m (ou fração) de perímetro de cômodo ou dependências de área superior a 6m2, espaçadas uniformemente, exceto em banheiros, onde apenas uma tomada perto da pia deve ser obrigatoriamente pre-vista;

Page 101: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ10106 Tomadas

Cargas mínimas para as tomadas de corrente

• Para utilização geral: 100VA;

• para copas, cozinhas, copas-cozinhas e área de serviço: 600VA por tomada, até 3 tomadas e 100VA por tomada, para as excedentes;

• para utilizações específicas: a carga nominal de utilização.

• uma tomada para cada 3,5m (ou fração) de perímetro, em cozinhas, copas ou copas-cozinhas, sendo que, acima de cada ban-cada com largura igual ou superior a 30cm, deve ser prevista pelo menos uma tomada;

• uma tomada, em subsolos, sótão, garagens, varandas, hall de entrada e corredor. No caso de varanda, quando não for possível a instalação de tomada no próprio local, esta deverá ser instalada próximo a seu acesso.

As tomadas de uso específico devem ser instaladas no máximo a

1,5m do local previsto para o aparelho.

Tarefa em sala-de-aula

Montar e instalar, em condições de qualidade e segurança, toma-

das bipolares, bipolares + terra e tripolares, considerando as normas

técnicas específicas e a legislação brasileira em vigor.

Page 102: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

e de sensoresMontagem e instalação

Page 103: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

07e de sensoresMontagem e instalaçãode sistema de acionamento

de presença

Page 104: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 105: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ10507 sensores de presença

Montagem e instalação desistema de acionamento e de

7.1 – Interruptor automático por presençaO interruptor automático de presença é um interruptor estanque, arti-

culável, equipado com um sensor infravermelho que capta a radiação de calor em movimento (pessoas, animais, automóveis, etc.), dentro do seu campo de detecção, que é de 10m.

Ele possui duas regulagens: uma, que permite variar o tempo em que as lâmpadas permanecem acesas de 10seg a 10min; outra, que permite inibir seu funcionamento durante o dia, através da célula fotoelétrica nele existente.

Tem por finalidade comandar automaticamente a iluminação de ambien-tes onde não é necessário manter as lâmpadas permanentemente acesas. É econômico, pois evita gasto desnecessário de energia, mantendo as luzes apa-gadas quando não houver presença física no ambiente.

É aplicado nas habitações: em iluminação da parte externa, de hall social, de ante-salas, escadas, etc.; nas lojas: em iluminação de vitrines; nos esta-cionamentos: em iluminação de áreas externas e internas; nos edifícios: em iluminação de salas, escadas, recepções, etc., ou até de andares inteiros.

A sua instalação deve ser feita a uma altura aproximada de 2,5m do piso, de maneira que a movimentação de pessoas, veículos, animais, etc. seja prefe-rencialmente na transversal, cortando o maior número de raios possíveis, como se pode ver na ilustração a seguir.

Page 106: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ106 07 sensores de presença

Montagem e instalação desistema de acionamento e de

Alguns cuidados na instalação devem ser observados, tais como:

• instalar em local protegido, evitando fontes de calor, exposição aos raios solares, à chuva, ao vento, à poeira e sobre suportes móveis ou vibrantes;

• não deixar vidro interposto entre a fonte de calor e o produto, pois isso impede detecção de movimento;

• não utilizar o produto em sistemas de alarme;

• respeitar a capacidade máxima do aparelho e verificar se a tensão da rede é igual à dele;

• quando necessário, limpar cuidadosamente o visor com um pano ume-decido em álcool ou água.

Quando o produto voltar a ser alimentado eletricamente, seja por falta de energia

ou por ação do interruptor, automaticamente será acionada a carga, permanecendo

assim até finalizar a temporização.

Potência máxima das cargas

resistiva indutiva tensão lâmpadas lâmpadas motores do aparelho incandescentes fluorescentes em geral

127V~ 1200W 600W 300W 220V~ 1200W 600W 300W

2,50

m

10m

detalhe da instalação vista lateral vista superior

Page 107: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ10707 sensores de presença

Montagem e instalação desistema de acionamento e de

7.2 – Sensor de presença Este dispositivo detecta automaticamente a radiação infraver-

melha, emitida pelo corpo humano, acionando automaticamente uma carga elétrica.

É indicado para uso em halls de edifícios, escadas, corredo-res, garagens e demais locais onde existir movimentação de pes-soas.

Especificações:

• tensão de operação: 90V a 240V

• potência: 300/500W

• área de detecção: 120º

• campo de detecção: R = 6m

• temporização: 15seg, 40seg, 2min ou 5min

A instalação é feita em caixa 4” x 2”.

7.2.1 – Tipos e esquemas de ligação

a) sensor: 2 fios (apenas em lâmpadas incandescentes)

Page 108: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ108 07 sensores de presença

Montagem e instalação desistema de acionamento e de

b) sensor: 3 fios (qualquer tipo de lâmpada)

7.3 – Instalação de fotocélulaA fotocélula (relé fotoelétrico) tem função analógica à do interruptor

automático por presença. Enquanto este capta a radiação de calor em movi-mento, a fotocélula tem em sensor sensível à luz. Controla automaticamente lâmpadas e motores, ligando-os ao anoitecer e desligando-os ao amanhecer.

Tensão (bivolt)127/220v~

POTÊNCIA MÁXIMA DAS CARGAS

potência resistiva indutiva

lâmpadas

incandescentes lâmpadas

fluorescentes motoresem geral

1200VA 1200W 60W 300W

Para a interligação do relé fotoelétrico com a rede de distribuição, uti-liza-se uma tomada externa tripolar, que pode ser fixada em paredes, postes, painéis, etc. Há vários tipos de alça de fixação, para que se possa atender a cada caso específico.

Essa tomada atende às normas da ABNT.

O relé fotoelétrico para comando automático de iluminação externa• utiliza a variação da luminosidade de ambiente para comutação;• possui retardo automático incorporado;• aplica -se em iluminação pública, industrial, comercial, residencial, etc.;• atende às normas da NEMA, ANSI, e ABNT.

Page 109: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ10907 sensores de presença

Montagem e instalação desistema de acionamento e de

Tarefa em sala-de-aula

Montar e instalar, em condições de qualidade e segurança, sensor de presença

e fotocélula no comando de diferentes luminárias, considerando as normas técnicas

específicas e a legislação brasileira em vigor.

7.4 – Instalação de chave de bóiaChave de bóia de contato de mercúrio é um dispositivo utilizado para

acionamento de eletrobombas.

7.4.1 – Funcionamento da chave de bóia de contatos de mercúrio

Quando o reservatório (caixa d’água) superior chegar ao nível mínimo, ambos os pesos ficarão fora da água e, conseqüentemente, vencerão o contrapeso que será puxado para baixo pela linha. A ampola se inclinará e o mercúrio correrá para os contatos, fechando-os.

Se o reservatório inferior tiver água acima do nível mínimo, os contatos também estarão fecha-dos e, portanto, a bomba entrará em funcionamento enchendo o reservatório superior.

Quando o reservatório superior alcançar o nível máximo, ambos os pesos ficarão mergulhados na água e, conseqüentemente, o peso dos mesmos será menor. O contrapeso será maior e a ampola se inclinará para trás, fazendo o mercúrio correr dos contatos abrindo-os e desligando a bomba.

A bomba só terá condições de funcionar se o reservatório inferior tiver água acima do nível mínimo.

A função da chave de bóia do reservatório inferior é garantir essa condição. Portanto, se o nível baixar ao mínimo, a chave desliga, não permi-tindo que a bomba funcione.

nível máximo

nível mínimo

Page 110: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ110 07 sensores de presença

Montagem e instalação desistema de acionamento e de

7.4.2 – Funcionamento da chave de bóia flutuante de contatos de mercúrio

O funcionamento deste tipo de chave de bóia é simples. Basta que a ampola se incline, favorecendo o deslocamento do mercúrio em direção aos contatos, fechando -os.

O mercúrio é um metal líquido, bom condutor de eletricidade. Por isso ao unir os contatos, liga o circuito da bomba.

Vejamos, agora, como se comporta a chave de bóia em cada um dos reservatórios, nas situações apresentadas.

caixa superior vaziabomba ligando

caixa superior cheiabomba desligando

caixa inferior cheiabomba ligada

caixa inferior vaziabomba desligada

posições dos contatos fechados

posições dos contatos abertos

Page 111: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ11107 sensores de presença

Montagem e instalação desistema de acionamento e de

7.5 – Instalação de disjuntor termo-magnético

7.5.1 – Disjuntor termomagnético

O disjuntor é um dispositivo que, além de poder comandar um circuito, isto é, ligá-lo e desligá-lo, mesmo com carga, des-liga-o automaticamente, quando a corrente que circula ultrapassa um determinado valor, em razão de um curto-circuito ou de uma sobrecarga.

7.5.2 – Tipos e utilização

Os disjuntores, de acordo com o número de condutores vivos (fase e neutro) do circuito, podem ter 1, 2, 3 ou 4 pólos, Assim:

• os disjuntores monopolares são utilizados apenas em cir-cuitos com 1 fase e neutro (FN);

• os disjuntores bipolares devem ser utilizados em circuitos com 2 fases e neutro (2FN); eventualmente, podem ser utilizados em circuitos com 1 fase e neutro (FN), seccionando também o neutro;

• os disjuntores tripolares devem ser utilizados em circuitos com 3 fases (3F) ou em circuitos com 3 fases e neutro (3FN); even-tualmente, podem ser utilizados em circuitos com 2 fases e neutro (2FN), seccionando também o neutro;

• os disjuntores tetrapolares são utilizados apenas em circui-tos com 3 fases e neutro (3FN), quando se prevê o seccionamento do neutro.

Os disjuntores utilizados em unidades residenciais devem atender a uma das três normas seguintes:

• NBR-5361 — disjuntores de baixa tensão

• NBR IEC 60898 — disjuntores para proteção de sobrecor-rentes para instalações domésticas e similares.

Page 112: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ112 07 sensores de presença

Montagem e instalação desistema de acionamento e de

• NBR IEC 60947-2 — dispositivos de manobra e comando de baixa tensão.

Os disjuntores não devem trabalhar a mais de 80% de sua capacidade nominal. Um

disjuntor de 15A deve ser indicado para circuitos cuja corrente nominal seja de 12A.

7.6 – Dispositivos DRSão dispositivos que detectam a corrente diferencial-residual (DR) num

circuito, e atuam desligando-o, quando essa corrente ultrapassa um valor prefi-xado. A corrente diferencial-residual é produzida, num circuito, por fuga para terra ou por falta, e pode ser entendida como a corrente medida por um amperí-metro alicate, extremamente sensível, envolvendo todos os condutores vivos do circuito (fase e neutro, se existirem). Os dispositivos DR são destinados à proteção de pessoas contra choque elétrico.

7.6.1 – Interruptores DR

São dispositivos que só protegem contra choques (podem ligar e desligar circuitos manualmente, como um interruptor comum). A corrente nominal é o maior valor que pode circular continuamente pelo dispositivo e que pode ser interrompido sem danificar seus componentes internos.

7.6.2 – Disjuntores DR

Consistem num disjuntor comum, com um “módulo DR” acoplado, que protege contra choques e contra sobrecarga. A corrente nominal é o maior valor que pode circular continuamente pelo dispositivo sem provocar seu desligamento automático, nem danificar seus componentes internos.

Observem-se, a seguir, alguns exemplos de disjuntores termomagnéticos e dispositivos DR.

Page 113: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ11307 sensores de presença

Montagem e instalação desistema de acionamento e de

7.6.3 – Corrente diferencial-residual nominal de atuação

É a corrente diferencial-residual que provoca a atuação do dispositivo. Os DR cuja corrente diferencial-residual nominal de atuação é inferior ou igual a 30mA são de alta sensibilidade; aqueles cuja corrente de atuação é superior a 30mA são de baixa sensibilidade.

Em unidades residenciais, é obrigatória a proteção contra choques elétri-cos, com dispositivos DR de alta sensibilidade para:

• circuitos terminais que alimentem pontos de luz e tomadas em banheiro (excluídos os circuitos que alimentem pontos de luz situados a uma altura igual ou superior a 2,5m);

• circuitos terminais que alimentem tomadas em cozinhas, copas, copas--cozinhas, lavanderias, áreas de serviço, garagens, varandas e locais similares;

• circuitos terminais que alimentem tomadas em áreas externas ou toma-das em áreas internas que possam alimentar equipamentos no exterior.

Essa proteção pode ser proporcionada por um único DR de alta sensibili-dade (geralmente 30mA), instalado em série com o disjuntor geral, ou como chave geral no quadro de distribuição.

7.7 – Quadro de distribuiçãoO quadro de distribuição da unidade residencial é alimentado pelo circuito

de distribuição respectivo e dele partem os diversos circuitos terminais. Deve possuir, em princípio, os seguintes dispositivos:

• chave geral, que poderá ser um interruptor DR ou um disjuntor DR, ou um disjuntor mais interruptor DR;

• disjuntores termomagnéticos para a proteção dos circuitos terminais;

• espaços-reserva para ampliação (um espaço corresponde a um disjuntor monopolar).

No caso da utilização de quadros com barramentos, a corrente nominal do barramento principal deverá ser igual ou superior à corrente nominal da chave geral.

Page 114: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ114 07 sensores de presença

Montagem e instalação desistema de acionamento e de

O número de pólos dos dispositivos utilizados nos quadros de distribuição é determinado pelo tipo de circuito, por exemplo:

a) circuito FN: disjuntor de um pólo ou dois (quando é previsto o seccio-namento do neutro);

b) circuito 2FN: disjuntor de dois pólos ou três (quando é previsto o sec-cionamento do neutro);

É obrigatório prevermos uma capacidade de reserva nos quadros de distribuição, de acordo com o seguinte critério:

• quadro com até 6 circuitos: espaço-reserva para, no mínimo, 2 circuitos adicionais;

• quadro com 7 a 12 circuitos: espaço-reserva para, no mínimo, 3 circuitos adicionais;

• quadro com 13 a 30 circuitos: espaço-reserva para, no mínimo, 4 circui-tos adicionais;

• quadro com mais de 30 circuitos: espaço reserva para, no mínimo, 15% dos circuitos.

Nos quadros de distribuição com mais de uma fase, as potências dos cir-cuitos terminais deverão ser “equilibradas” nas diversas fases, de modo que as potências totais de cada uma delas sejam muito próximas. Quando um circuito terminal tiver mais de uma fase, sua potência deverá ser dividida entre elas, na tabela de cálculo do projeto.

Quadro de distribuição é o centro de distribuição de toda a instalação elétrica de uma residência, uma vez que recebe os fios que vêm do medidor e dele partem os circuitos terminais que vão alimentar diretamente as lâmpadas, tomadas e aparelhos elétricos. Encontram-se nele os dispositivos de proteção dos circuitos de uma instalação, conforme exemplificado na figura a seguir.

CIRCUITO 1 – iluminação social

CIRCUITO 2 – iluminação de serviço

CIRCUITO 3 – tomadas de uso geral

CIRCUITO 4 – tomadas de uso geral

CIRCUITO 5 – tomadas de uso específico

(Ex.: torneira elétrica)

CIRCUITO 6 – tomadas de uso específico

(Ex.: chuveiro elétrico)

Page 115: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ11507 sensores de presença

Montagem e instalação desistema de acionamento e de

O quadro de distribuição deve estar localizado em lugar de fácil acesso e o mais próximo possível do medidor, para que se evitem gastos desnecessários com os fios do circuito de distribuição, os mais grossos de toda a instalação e, portanto, os mais caros.

As figuras a seguir mostram os componentes e as ligações típicas de um quadro de distribuição.

7.7.1 – Ligações típicas de um QD

• Quadro de distribuição (QD) para fornecimento monofásico

– Disjuntor geral –(monopolar)(1) Fase (2) Neutro (3) Proteção (4) Jumps de ligação — Ligam a fase a todos os disjuntores

dos circuitos.(5) Barramento de proteção — Deve ser ligado eletricamente

à caixa do QD.(6) Disjuntores dos circuitos terminais — Recebem a fase do

disjuntor geral e distribuem para os circuitos terminais.(7) Barramento de neutro — Faz a ligação dos fios neutros

dos circuitos terminais com o neutro do circuito de distribuição, devendo ser isolado eletricamente da caixa do QD.

(8) Disjuntor geral (monopolar)

6

75

4

3 2 1 8

Page 116: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ116 07 sensores de presença

Montagem e instalação desistema de acionamento e de

• Quadro de distribuição para fornecimento bifásico

– Disjuntor geral –(bipolar)(1) Proteção(2) Fase(3) Fase(4) Neutro(5) Barramento de proteção(6) Disjuntores dos circuitosterminais bifásicos(7) Barramento de neutro(8) Disjuntores dos circuitos terminais mono-

fásicos(9) Barramento de interligação das fases(10) Disjuntor geral

• Quadro de distribuição para fornecimento trifásico

(1) Barramento de neutro(2) Disjuntor diferencial residual tetrapolar(3) Barramento de proteção(4) Disjuntores dos circuitos terminais bifásicos(5) Disjuntores dos circuitos terminais monofásicos(6) Barramento de interligação das fases

6 9 8

5

4 3 2 1

10 7

2 1

3

4

5

6

Page 117: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ11707 sensores de presença

Montagem e instalação desistema de acionamento e de

CIRCUITOS TERMINAIS

(1) Disjuntor geral(2) Fases(3) Neutro(4) Proteção (PE)(5) Quadro de distribuição

• Exemplos de circuitos terminais protegidos por disjuntores termomag-néticos

CIRCUITO DE ILUMINAÇÃO

12

3

5

4

neutro

fase

retorno

disjuntor monopolar

Page 118: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ118 07 sensores de presença

Montagem e instalação desistema de acionamento e de

• Exemplos de circuitos terminais protegidos por disjuntores DR

CIRCUITO DE TOMADAS DE USO GERAL

neutro

fase proteção

barramento de proteção

CIRCUITO DE ILUMINAÇÃO EXTERNA

barramento de proteção fase

neutro

proteção

retorno

disjuntor diferencial residual bipolar

Page 119: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ11907 sensores de presença

Montagem e instalação desistema de acionamento e de

• Exemplos de circuitos terminais protegidos por disjuntores termomagnéticos

CIRCUITO DE TOMADA DE USO ESPECÍFICO (127V)

CIRCUITO DE TOMADAS DE USO GERAL

proteção

fase neutrobarramento de proteção

disjuntor diferencial residual bipolar

disjuntor termomagnético monopolar

barramentode proteção

proteção

neutro fase

barramentode neutro

Page 120: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ120 07 sensores de presença

Montagem e instalação desistema de acionamento e de

• Exemplos de circuitos terminais protegidos por disjuntores DR

CIRCUITO DE TOMADA DE USO ESPECÍFICO (220V)

CIRCUITO DE TOMADA DE USO ESPECÍFICO (127V)

fase fase

proteção

barramento de neutro

disjuntortermomagnético

tripolar

disjuntores termomagnéticos monopolares

barramento de proteção

proteção

barramento de proteção

neutro fase

Page 121: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ12107 sensores de presença

Montagem e instalação desistema de acionamento e de

• Exemplos de circuito de distribuição monofásico protegido por disjuntor termomagnético

(1) Ligação monofásica(2) Proteção + neutro (PEN)(3) Fase(4) Disjuntor diferencial residual bipolar

CIRCUITO DE TOMADA DE USO ESPECÍFICO (220V)

proteção

barramento de proteção

fase fase

disjuntor DR

2

1

3

4

Page 122: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ122 07 sensores de presença

Montagem e instalação desistema de acionamento e de

1

6

5

3

4

2

• Exemplo de circuito de distribuição monofásico protegido por disjuntor DR

• Exemplo de circuito de distribuição bifásico ou trifásico protegido por disjuntor termomagnético

(1) Ligação monofásica(2) Quadro de distribuição monofásico(3) Neutro(4) Fase(5) Proteção(6) Disjuntor diferencial residual bipolar

(1) Ligação bifásica ou trifásica(2) Fases(3) Proteção + neutro (PEN)(4) Disjuntor ou interruptor DR tetrapolar

12 3

4

Page 123: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ12307 sensores de presença

Montagem e instalação desistema de acionamento e de

• Exemplo de circuito de distribuição bifásico ou trifásico protegido por disjuntor DR

(1) Ligação bifásica ou trifásica(2) Disjuntor diferencial residual tetrapolar

1

2

Page 124: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ124 07 sensores de presença

Montagem e instalação desistema de acionamento e de

Montar e instalar, em condições de qualidade e segurança, quadro de distribuição

de luz com disjuntor geral e cinco circuitos parciais, considerando as normas técnicas

específicas e a legislação brasileira em vigor. Esta tarefa será feita em sala-de-aula.

7.8 – Instalação de minuteriasAs minuterias nada mais são do que um interruptor temporizado que fun-

ciona sob o comando de um ou vários pulsadores localizados nas dependências de um prédio – normalmente corredores, escadas e arredores, onde se localizam as lâmpadas de iluminação. Têm por objetivo economizar energia elétrica, evi-tando que permaneçam iluminadas as citadas dependências, quando não houver trânsito de pessoas.

7.8.1 – Minuteria eletromecânica

1 – Caixa de baquelita ou plástico (a).

2 – Eletroímã composto de bobina (b) e núcleo (c).

3 – Mecanismo de relojoaria composto de trem de engrenagem (d), massa de pêndulo (e), mola (f).

4 – Alavanca de náilon (g).

5 – Contatos: auxiliar (h), fixo (i) e principal (j).

6 – Bornes de conexão (l) numerados de 1 a 6; contato auxiliar (1); con-tato de carga (2); terminal comum da bobina (5); terminal de 220V da bobina (4); terminal de 115V de bobina (3); e contato principal (6).

7 – Furo para fixação da tampa (m).

8 – Furos de fixação (n).

Função: serve para controlar a iluminação por um tempo determinado de 2 a 4 minutos.

Page 125: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ12507 sensores de presença

Montagem e instalação desistema de acionamento e de

a

e

d

f

l

n

j

i

h

g

c

m

b

n

1 2 3 4 5 6

Page 126: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ126 07 sensores de presença

Montagem e instalação desistema de acionamento e de

É comum, na instalação da minuteria eletromecânica, usar-se uma chave seletora.

Esta chave, como o próprio nome indica, seleciona o circuito que vai entrar em funcionamento. No caso de a mesma ser ligada num circuito de minu-teria, ela seleciona o circuito “DIRETO” ou “MINUTERIA”, de modo que, na posição “DIRETO”, as lâmpadas ficarão acesas todo o tempo, e, na posição “MINUTERIA”, ficarão controladas por esta. Opcionalmente, se a chave sele-tora ficar desligada de qualquer contato, nenhum circuito irá funcionar.

A seguir, apresenta-se o diagrama funcional de um circuito, com minute-ria eletromagnética, chave seletora, três lâmpadas incandescentes e três pulsa-dores.

minuteria eletromagnética

7.8.1.1 – Funcionamento da minuteria eletromecânica

Ao pressionarmos um dos pulsadores, a bobina é energizada, atraindo o núcleo que puxa a mola, onde se armazena a energia. Essa energia impulsiona um trem de engrenagens que tem seu movimento liberado aos poucos por uma mola de escape e um pêndulo, cuja oscilação pode ser regulada pelo desloca-mento da massa ao longo de sua haste. Esse mecanismo é semelhante ao de

127V AC

Page 127: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ12707 sensores de presença

Montagem e instalação desistema de acionamento e de

um relógio, regulando o tempo de funcionamento da minuteria. Através dele, uma alavanca abre o contato auxiliar da bobina e fecha o contato principal que mantém acesas as lâmpadas, durante o tempo necessário ao trânsito de pessoas. Acabando esse tempo, a alavanca desarma os contatos, desligando as lâmpadas. A minu-teria estará pronta para ser acionada novamente.

Um tipo mais moderno e versátil é a minuteria eletrônica, que, devido ao seu pequeno tamanho, pode ser usada individual-mente, isto é, uma em cada andar do prédio, o que ocasiona maior economia de energia e diminui a freqüência de substituição de lâmpadas queimadas.

7.8.2 – Minuteria modular universal (eletrônica)

Especificações:

• Potência de chaveamento: 1200VA

• Tensão de operação: 90 a 240V

• Temporização: 90s

• Aciona qualquer tipo de carga (lâmpadas incandescentes, flu-orescentes com reator convencional e eletrônico, fluorescentes com-pactas, de vapor de mercúrio, de vapor de sódio, dicróicas, etc.)

• Não consome energia quando desligada.

Esquema de ligação

1) Instalação com pulsadores (ligação básica)

Page 128: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ128 07 sensores de presença

Montagem e instalação desistema de acionamento e de

7.8.3 – Minuteria eletrônica

É um aparelho destinado a controlar lâmpadas incandescentes ou fluores-centes (40W mínimo), através de regulagem para funcionamento permanente ou temporizado de 15 segundos a 5 minutos.

O pré-aviso de extinção de luz funciona com encaixe de jumper (contato) somente para lâmpadas incandescentes, com redução da luminosidade durante 10 segundos. Possui lâmpada néon na parte frontal, para sinalização de funcio-namento. Incorpora fusível de ação rápida (10A). A tensão e potência máxima são respectivamente: 127V/1000W e 220V/2000W.

Esquema de ligação

Page 129: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ12907 sensores de presença

Montagem e instalação desistema de acionamento e de

7.8.4 – Minuteria individual

Aciona lâmpadas incandescentes (40W mínimo) mantendo-as acesas durante aproximadamente 1 minuto e 30 segundos. Possui um pulsador equi-pado com acessório luminoso, facilitando sua localização em ambientes escu-ros. Pode substituir o interruptor simples (de uma seção) em caixa 4” x 2”, aproveitando a mesma instalação. A tensão e potência máxima são, respectiva-mente: 127V/300W e 220V/600W.

Esquema de ligação:

Tarefa em sala-de-aula

Montar e instalar, em condições de qualidade e segurança, comando de lâmpadas

incandescentes com minuteria e de lâmpadas fluorescentes com programador, consi-

derando as normas técnicas específicas e a legislação brasileira em vigor.

Page 130: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ130 07 sensores de presença

Montagem e instalação desistema de acionamento e de

7.9 – O programador horário (time-switch)O programador horário é um aparelho que permite ligar e desligar qual-

quer equipamento elétrico, de acordo com horários preestabelecidos.

O programador é acionado por um micromotor, que comanda o relógio e o disco de programação. Alguns podem ser fornecidos com bateria recarregável, a qual possibilita manter o aparelho em funcionamento quando faltar energia, sem atrasar o relógio.

O programador horário é composto basicamente por três partes distintas:

• relógio, localizado no centro do aparelho;• disco de programação, localizado ao redor do relógio;• contatos de saída, localizados na parte inferior do aparelho.

Existe uma interligação entre o relógio e o disco de programação, que é representada pela seta localizada no relógio entre as 12h e 3h.

Conforme o modelo, existem três tipos de discos de programação:

• disco de 12 horas AM (antes do meio-dia) + 12 horas PM (pós meio-dia)

Page 131: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ13107 sensores de presença

Montagem e instalação desistema de acionamento e de

• discos de 24 horas

• discos de uma semana

Note-se que o relógio e o disco de programação se movimen-tam no sentido horário ao longo do tempo, porém a seta fica cons-tantemente parada. Isso permite que identifiquemos três funções:

• horário corrente no relógio e no disco de programação;• se o horário indicado no relógio se refere a antes (AM) ou

depois (PM) do meio-dia;

Page 132: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ132 07 sensores de presença

Montagem e instalação desistema de acionamento e de

• se o contato de saída se encontra acionado (cavalete para fora do disco) ou desacionado (cavalete para dentro do disco).

O programador horário permite ligar e desligar qualquer equipamento elétrico em horários preestabelecidos pelo usuário, de acordo com sua necessi-dade. Isso é possível, graças ao disco de programação que nos permite determi-nar os horários desejados. Ao longo do disco, existem 96 ou 84 cavaletes, que podem ser posicionados para dentro ou para fora do disco de programação.

Cada um dos 96 cavaletes representa um período de 15 minutos. Os 84 cavaletes, um período de 2 horas. Com o passar das horas, o disco gira junta-mente com o relógio. Quando o cavalete passar em frente da seta do relógio, poderão ocorrer duas condições:

– o contato de saída é acionado durante o período do respectivo cavalete, desde que o mesmo esteja posicionado para fora do disco.

– o contato de saída é desacionado durante o período do respectivo cava-lete, desde que o mesmo esteja posicionado para dentro do disco.

De acordo com o equipamento elétrico a ser ligado, são necessários, pelo menos, dois fios que permitam o fornecimento de energia, a qual poderá ser proveniente:

• da tomada elétrica, que oferece os dois fios necessários para forneci-mento da energia;

• do quadro de luz, que também oferece os dois fios necessários para o fornecimento (110 volts => 1 disjuntor + Neutro; 220 volts => 2 disjuntores).

Para ser executada a correta ligação, utilizando fio de bitola 2,5mm2, pro-cede-se conforme o diagrama abaixo, observando-se as instruções a seguir:

Page 133: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ13307 sensores de presença

Montagem e instalação desistema de acionamento e de

1 – conectar o fio da fase 1 ao terminal 1 do programador horário;2 – conectar o fio da fase 2 (ou neutro) ao terminal 2 do programador;3 – fazer um “jumper” entre os terminais 2 e 3 do programador;4 – ligar o equipamento elétrico nos terminais 1 (fase 1) e 4 do programador.

Dessa forma, a energia somente será fornecida ao equipamento elétrico nos horários estabelecidos pela programação feita.

Caso a energia consumida pelo equipamento elétrico seja superior à capa-cidade máxima dos contatos de saída, deve-se proceder conforme o diagrama que se segue:

Caso o equipamento elétrico seja trifásico, procede-se conforme o dia-grama que se segue:

Page 134: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ134 07 sensores de presença

Montagem e instalação desistema de acionamento e de

Os programadores horários são largamente utilizados em ambientes indus-triais, comerciais ou residenciais. Eles comandam:

• aquecedores elétricos; luminosos de lojas, bancos e shoppings; painéis comerciais; motor do filtro de piscina; balcões frigoríficos; comando de come-douros e iluminação em granjas; preaquecimento de máquinas; sinal sonoro de entrada e saída de funcionários de fábrica; irrigações; ar-condicionado; iluminação em geral, etc.

Page 135: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

08Aterramento

Page 136: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 137: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ13708 Aterramento

8.1 – ConceitoAterramento é, essencialmente, uma conexão elétrica à terra, na qual o

valor da resistência de aterramento representa a eficácia desta ligação: quanto menor a resistência, melhor o aterramento.

A função principal de um aterramento está sempre associada à proteção, quer de pessoal ou de equipamentos. A seguir serão estudados alguns casos típicos.

Os projetos de instalações elétricas executados atualmente sempre indi-cam um ponto de aterramento para a instalação. Dependendo do projeto, é feita apenas a especificação de um valor em Ohm (V), por exemplo: 10V, 5V ou algum outro valor.

8.2 – Surtos, descargas atmosféricas

8.2.1 – Surtos em linhas de força (alimentação)

Entende-se por surto (em inglês: surge) uma perturbação anormal da cor-rente ou tensão normalmente esperada em um sistema. Há surtos causados por manobras na rede, descargas atmosféricas (raios), interferências eletromagnéti-cas, etc.

O controle dos surtos dentro de um sistema elétrico é feito através de pro-tetores contra sobretensões, tais como pára-raios de linha, supressores, capaci-tores, etc.

O aterramento é essencial para a correta operação dos protetores contra sobretensões instalados em redes de alta e baixa tensão, pois estes dispositivos drenam as correntes dos surtos para a terra, funcionando como uma válvula de escape para as correntes geradas pelas sobretensões.

Page 138: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ138 08 Aterramento

8.2.2 – Surtos em linhas de transmissões de dados

Além dos surtos em linhas de força, descritos anteriormente, os modernos equipamentos eletrônicos possuem linhas de comunicação de dados com outros equipamentos, as quais também estão sujeitas a surtos.

8.2.3 – Descargas atmosféricas (raios)

A incidência de raios sobre materiais pouco condutores, tais como telhas cerâmicas e alvenaria, provoca neles rachaduras e estilhaçamento. Uma vez ins-talado um SPDA (Sistema de Proteção contra Descargas Atmosféricas), o ater-ramento é utilizado para dissipar a corrente do raio, no solo, de forma segura, evitando os efeitos térmicos do raio e risco de choque elétrico para as pessoas.

8.3 – Proteção

8.3.1 – Blindagens

Um sistema composto de equipamentos eletrônicos sensíveis (EES) está sujeito a interferências provocadas por campos eletromagnéticos. A blindagem é um recurso utilizado para minimizar essas interferências, sendo necessário o aterramento para estabelecer um potencial zero na blindagem ou para propor-cionar um caminho externo para as correntes induzidas.

8.3.2 – Segurança contra choques elétricos

Instalações elétricas em geral apresentam materiais metálicos não energi-zados como meio de evitar contato das pessoas com partes energizadas, tais como barramentos de quadros elétricos, interior de equipamentos, etc. Contudo, se houver uma falha no isolamento desses sistemas, os operadores/usuários estarão sujeitos a choques elétricos, com o conseqüente risco para as pessoas. O aterramento é utilizado para assegurar que o potencial das partes metálicas aterradas fique sempre abaixo do nível dos potenciais perigosos, garantindo, assim, a proteção das pessoas.

Page 139: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ13908 Aterramento

8.3.3 – Curto-circuito fase-terra

O curto-circuito fase-terra em redes elétricas provoca desba-lanceamento do sistema trifásico, sobrecarga nos equipamentos e cabos da rede, comprometendo a segurança da rede elétrica e dos operadores e usuários. Para que haja um desligamento do trecho da rede afetado, é necessário que a corrente que circula pelo curto-cir-cuito seja superior ao valor de operação dos disjuntores ou fusíveis de proteção. O aterramento do neutro de transformadores e massas metálicas fornece um caminho de baixa impedância para a cor-rente de curto, possibilitando a operação da proteção.

8.4 – Sistemas de aterramentoAs topologias dos sistemas de aterramento em baixa tensão,

conforme especificadas pela NBR-5410, têm uma codificação atra-vés das letras:

• Primeira letra: situação da alimentação em relação à terra:

T — sistema aterrado

I — sistema isolado

• Segunda letra: situação das massas em relação à terra:

T — massas diretamente aterradas

N — massas ligadas ao neutro

• Outras letras: condutor neutro x condutor de proteção

S — neutro e proteção em condutores distintos

C — neutro e proteção num mesmo condutor (condutor PEN)

C - S — neutro e proteção combinados em uma parte da instalação

Page 140: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ140 08 Aterramento

8.4.1 – ESQUEMAS DE ATERRAMENTO

• TN-S — condutores neutro e de proteção separados

• TN-C-S — condutores neutro e de proteção separados em parte da instalação

Aterramentoda alimentação

massas

L1

L2

L3

N

PE

Aterramentoda alimentação

massas

L1

L2

L3

N

PE

Page 141: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ14108 Aterramento

• TN-C — funções de neutro e proteção combinadas em um único condutor

• TT – aterramentos distintos para a rede de energia e para as massas metálicas

Page 142: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ142 08 Aterramento

• IT – sistema isolado ou aterrado por impedância, estando as massas dire-tamente aterradas

8.5 – Valor da resistência de aterramento

8.5.1 – Instalações elétricas de baixa tensão

Segundo a NBR-5410/1990 (antiga NB-3), deve-se conseguir uma resistência de terra da ordem de 10 , visto que o sistema de aterramento é o mesmo do pára-raios.

A exigência pode ser de valores ainda mais baixos, em função do tipo de topologia empregada – TT, TN, IT, etc.

8.5.2 – Computadores

Por não existirem normas a respeito, há muita confusão quanto ao valor para a resistência de terra de computadores e outros sistemas semelhantes, como PLC (Programmable Logic Controller), SDCD (Sistema Digital de Con-trole Distribuído), etc. Alguns fabricantes chegam a exigir 1 ou 2 , negando-se

Page 143: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ14308 Aterramento

a manter a garantia do produto caso não se chegue a esse valor, embora muitos já tenham abandonado a prática de exigir aterra-mentos independentes.

Geralmente, um computador está ligado a um sistema elétrico, com um valor de resistência de terra da ordem de 10 , o que deve ser satisfatório na maioria dos casos.

8.5.3 – Telecomunicações

As recomendações referentes aos computadores aplicam-se, igualmente, às instalações de telecomunicações. Duas observações adicionais, porém, devem ser feitas.

A primeira é que, embora não exista uma norma oficial, há uma tradição prática, inclusive por parte da Telebrás e das estatais subsidiárias, de exigir 5 de resistência de aterramento.

A Telebrás já revisou o valor exigido para um nível coerente, mas muitas empresas e projetistas ainda não se informaram a res-peito e continuam utilizando as velhas práticas.

A segunda observação refere-se à procura de um local alto para a instalação de uma torre. Infelizmente, muitos desses luga-res altos localizam-se sobre rochas, às vezes com uma pequena camada superficial de terra, sendo impraticável cravar hastes nesses locais. No caso de camada inferior com resistividade maior, isto prejudica mais do que ajuda. Outra solução não recomendada é a de estender um cabo morro abaixo até encontrar um terreno adequado ao aterramento. A melhor recomendação é a de otimizar a equipotencialização do local, com malha de eletrodos horizon-tais de baixa indutância (fita de cobre, por exemplo), se possível instalados em valetas preenchidas com concreto.

Page 144: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ144 08 Aterramento

8.6 – Componentes e materiais

8.6.1 – Hastes

As hastes são os elementos mais comuns em pequenos sistemas, sendo também utilizadas como acessório nos aterramentos maiores; assim, sua importância em termos de execução e custos é bastante grande.

Embora um eletrodo vertical possa ser elaborado com qualquer metal que não sofra corrosão e que tenha resistência mecânica suficiente para ser cravado no solo, no Brasil utilizam-se quase que exclusivamente as hastes de aço cobre-ado, com os tubos e barras de aço galvanizado ocupando um distante segundo lugar. Podem ser usadas também as barras de cobre maciço ou de aço inoxi-dável, porém estas duas não tiveram aceitação em nosso país.

As hastes cobreadas são fabricadas nos diâmetros comerciais de 1/2”, 5/8” e 3/4”, e em comprimentos de 2,4 e 3,0 metros. Para aterramentos mais profundos, são fabricadas hastes prolongáveis, com roscas na ponta e na parte superior. Assim, crava-se uma haste de 3 metros, instala-se uma luva roscada e, nesta, uma nova haste que, ao ser cravada, vai empurrar a primeira. Esse pro-cedimento é bem mais prático do que tentar cravar uma haste contínua de 6 ou 9 metros!

8.6.2 – Cabos

Os cabos são geralmente utilizados para eletrodos horizontais, visto que, para instalá-los verticalmente, seria necessário cavar um poço ou conduzir o cabo com um tubo ou barra que já seria, por si só, um eletrodo apropriado. No Brasil, utilizam-se, quase que exclusivamente, cabos de cobre (nu, obvia-mente), ainda que o aço galvanizado seja uma corrente à altura, em termos de relação custo/benefício. As fitas de cobre são pouco utilizadas na prática, muito embora forneçam uma baixa impedância de terra e resistência semelhante a um cabo de mesma seção. Existe ainda uma parcela do mercado que utiliza o aço cobreado, num processo semelhante ao das hastes. Um problema comum, em certas regiões do Brasil, é o roubo de cabos de cobre nu instalados ao tempo ou mesmo dos enterrados. Em vista disso, nesses locais, torna-se necessário o uso de aço galvanizado.

Page 145: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ14508 Aterramento

Quanto à seção, a NBR-5419 (proteção contra descargas atmosféricas) especifica, para cabos de cobre, um mínimo de 50mm2, enquanto a NBR-5410 pede um mínimo de 25mm2.

8.6.3 – Conectores

Os conectores aparafusados ou por compressão, ou ainda os split-bolt, cumprem razoavelmente a tarefa de prover a ligação elétrica com pressão e superfície suficientes, pelo menos quando se encontram em local de fácil acesso para verificação do contato.

Sob o solo, entretanto, facilmente se instala um processo corrosivo na interface entre as peças, visto que a umidade pode penetrar livremente e, como o conector está enterrado, fica impraticável sua inspeção periódica. Assim, as normas proíbem o uso de conectores enterrados, exigindo, nesses casos, a utilização de solda exotérmica.

8.6.4 – Solda exotérmica

A solda exotérmica é realizada através da fusão de uma mistura própria, dentro de um cadinho ou molde de grafite, onde são colocados também os dois ou três elementos a serem soldados.

É necessário um certo cuidado com o molde, que costuma quebrar com facilidade se não for corretamente utilizado. Devem-se também observar as faixas de diâmetros dos elementos a soldar que determinado tamanho de molde cobre; a não observância dessa regra provoca vazamentos e/ou soldas fracas.

8.6.5 – Poço de inspeção

Serve para tornar acessível (e localizável) um sistema de aterramento, seja para medições, seja para inspeção periódica. Se for um modelo hermético, pode ser também utilizado para proteger uma ligação por conector, evitando a corrosão deste.

Atualmente são fabricados modelos em plástico e concreto, embora, na prática, também sejam utilizados poços de inspeção improvisados com tubos de PVC branco (tipo esgoto) de 150 ou 200mm de diâmetro, o que é uma solução rápida e barata, porém de qualidade e durabilidade baixas.

Page 146: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ146 08 Aterramento

8.6.6 – Poço de aterramento

No caso de pequenas áreas e/ou alta resistividade do solo, pode-se conse-guir melhorar o aterramento através de uma haste profunda, eventualmente com a adição de um tratamento do solo.

Podem ser empregadas:

haste embutida em concretohaste envolvida em poço de gel ou bentonitahaste tubular perfurada, com gel interno

Caso a resistividade da segunda camada seja superior à da primeira, o poço “vira” uma valeta, ou seja, o eletrodo deve ser instalado na horizontal, porém as opções e os materiais utilizados são os mesmos.

8.6.7 – Eletrodos de aterramento

– dimensões mínimas –

8.6.8 – Condutor de proteção

Função – aterramento de massas metálicas de equipamentos elétricos

Objetivo– segurança humana contra choques devido a contatos indiretos– rápida atuação dos dispositivos de proteção

TIPO DE ELETRODO

tubo de aço zincado perfil de aço zincado haste de aço zincado haste de aço cobreada haste de cobre fita de cobre fita de aço galvanizado cabo de cobre cabo de aço zincado

DIMENSÕES MÍNIMAS

2,4m φ25mmcantoneira de 2,4m 20 20 3mm2m φ15mm2m φ15mm2m φ15mm10m 2mm 25mm2

10m 3mm 100mm2

10m 25mm2

10m 95mm2

Page 147: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ14708 Aterramento

DimensionamentoDevem ser considerados:

– aquecimento– resistência mecânica– impedância mínima

8.7 – Novidades da NBR-5410/97– aterramento principal integrado à estrutura da edificação;– entradas de energia e sinais localizadas próximas entre si e

junto ao aterramento comum;– aterramento do neutro feito somente na entrada da

instalação;– entradas de energia e de sinais com dispositivo de proteção

contra sobretensões;– cabeações de energia e de sinal encaminhadas junto e para-

lelas, desde a entrada até o ponto de utilização;– a cabeação de um circuito de energia deve formar um grupo

compacto;– condutor de aterramento conduzido junto à cabeação de

energia, desde a entrada da instalação;– os aterramentos de energia e de sinal dos equipamentos

devem ser comuns no local de instalação.

8.7.1 – Integração dos aterramentos

Pelas normas NBR-5410 e NBR-5419 interligam-se:

– neutro e condutores de proteção da rede de energia;– aterramentos do sistema de proteção contra raios;– ferragens e estruturas metálicas;– aterramentos de instalações especiais.

Page 148: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ148 08 Aterramento

Tarefa em sala-de-aula

Montar e instalar, em condições de qualidade e segurança, malha de aterramento

com 3(três) hastes, medindo a resistência de terra com a utilização do terrômetro, con-

siderando as normas técnicas específicas e a legislação brasileira em vigor.

Page 149: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

09 Instalação de computadores

Page 150: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 151: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ15109 Instalação de computadores

9.1 – Tomada para computadorOs computadores devem ter sua tomada com circuito direto do

QDL, para ficarem protegidos de possíveis problemas elétricos.

A instalação é baseada no uso da “tomada de 3 pinos” (figura ao lado), também conhecida como “tomada 2P + T”. Possui três ter-minais: fase, neutro e terra.

Deve ser lembrado que o computador foi projetado para operar com a tomada 2P + T, e não com a comum. A maioria das empresas fabricantes de equipamentos para computação proíbe a instalação de seus produtos até que a tomada 2P + T esteja disponível no local. Muitas outras anulam a garantia do equipamento, em caso de uso da instalação elétrica incorreta.

Essa tomada pode ser adquirida em lojas especializadas em material para instalações elétricas (ref. PIAL 54.313). Caso não exista uma tomada desse tipo instalada no local onde ficará o computador, deve ser providenciada sua instalação, conforme se descreve neste fascículo. Muitas vezes o usuário, na ansiedade de ver o computador funcionando, não toma o cuidado devido com a instalação elétrica e usa adaptadores ou retira o pino de terra da tomada do com-putador e utiliza uma tomada comum (própria para eletrodomésticos). Apesar de funcionarem, as instalações podem causar, a médio ou longo prazo, vários problemas ao computador:

a – o computador pode “dar choque” no usuário.b – pode ocorrer um curto-circuito quando o computador for conectado

a outro equipamento como um monitor, uma impressora ou à linha telefônica através de modem.

c – o computador fica mais sensível a interferências provenientes da rede elétrica.

d – em caso de defeito na fonte da alimentação, as placas podem ficar definitivamente danificadas, apesar da existência do fusível.

e – equipamentos de proteção como estabilizadores, nobreaks e filtros de linha não funcionam com eficiência.

Page 152: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ152 09 Instalação de computadores

Para a instalação da tomada de três pinos, deve ser adquirido o seguinte material:

· uma tomada de três pinos “2P + T” (fase, neutro e terra)· 1 metro de fio bitola 1,5mm2

· fita isolante· uma lâmpada néon ou chave de fenda néon (Néon Test)· uma chave de fenda

Devem ser seguidos os seguintes passos:

1 – desliga-se a chave geral que alimenta a tomada de dois pinos.

2 – desmonta-se a tomada de dois pinos e sepa-ram-se seus dois fios, que devem ter suas extremidades desencapadas como mostra a figura à esquerda.

3 – liga-se a chave geral.

4 – com uma lâmpada néon ou chave de fenda néon deve ser identificado qual dos fios é o fase. Segura-se com a ponta dos dedos um dos terminais da lâmpada. O outro terminal deve ser encostado em um dos fios desencapados. Se a lâmpada acender, trata-se do fio fase. O outro é o neutro. O fase faz com que a lâmpada néon acenda e o neutro a mantém apa-gada. Coloca-se algum tipo de marca identificando o fase e/ou o neutro, como, por exemplo, uma etiqueta.

5 – desliga-se a chave geral.

6 – passa-se o condutor terra (PE), vindo do quadro de distribuição ou da haste de aterramento existente. A tomada de 2P + T possui em sua parte traseira três para-fusos para a ligação dos fios: fase, neutro e terra, como mostrado na figura que à esquerda.

7 – a tomada deve ser aparafusada em sua caixa metálica ou plástica na parede e a sua tampa (conhecida como “espelho”) deve ser colocada.

O computador pode ser ligado diretamente a essa tomada na parede. Se for usado um estabilizador de voltagem, este deve ser ligado à tomada da parede e o computador fica ligado no mesmo, como indica a figura a seguir. O mesmo tipo de ligação pode ser usado como nobreak.

Page 153: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ15309 Instalação de computadores

O monitor fica ligado no painel traseiro do computador. Caso seja necessário ligar algum outro equipamento, como uma impres-sora, utiliza-se uma extensão, como na figura que se segue, que pode ser adquirida em lojas de suprimentos para informática.

Essa extensão de tomadas é vendida nas lojas especializadas em informática com o nome de filtro de linha.

9.2 – Estabilizador de voltagemPara maior proteção do computador contra interferências

elétricas, picos de tensão na rede, transientes e ruídos elétricos diversos, é aconselhável o uso do estabilizador de voltagem. Basi-camente é um transformador controlado eletronicamente, aco-plado a um filtro de linha. Mantém a tensão estável e livre de qualquer tipo de problema de ordem elétrica. Normalmente uti-liza-se um estabilizador de 800VA ou 0,8kVA. Esse estabilizador tem potência suficiente para alimentar o computador, impressora e monitor. É importante lembrar que não podem ser utilizados estabi-lizadores de televisão. Esses estabilizadores demoram cerca de um

Page 154: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ154 09 Instalação de computadores

segundo para reagir a uma queda de tensão na rede, tempo que não é tolerável para o computador. O estabilizador utilizado em informática é eletrônico, enquanto os de televisão têm processo de estabilização eletromecânico. Por isso são lentos e inadequados para computadores. As vantagens do uso de estabili-zador são as seguintes:

1. proteção contra sobretensão na rede;2. manutenção do funcionamento normal, mesmo com tensão instável;3. proteção contra interferências diversas que, normalmente, fariam o

computador “voar”;4. proteção do winchester (hard disk – HD) contra problemas causados

pela rede elétrica. O HD é muito sensível à instabilidade da rede.

Page 155: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

10Instalação denobreaks(estabilizador

de pequeno porte)

Page 156: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 157: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ157

de nobreaks 10 Instalação de nobreaks

10.1 – Princípio de funcionamento do “nobreak” (não cair)

O uso do nobreak é indispensável quando o suprimento ininterrupto de energia elétrica é de importância vital.

Em todos os locais onde é processada, eletronicamente, uma grande quan-tidade de dados, como, por exemplo, em bancos, companhias seguradoras, companhias de aviação e na administração pública, uma pequena interrupção no suprimento de energia elétrica pode conduzir a interrupções no programa, a perda de dados e a outras falhas.

Em sistemas de telecomunicações, como, por exemplo, centrais telefônicas, centrais de telex, estações de rastreamento de satélites, redes de rádio e televisão, sistemas de comunicações militares, etc., o funcionamento de equi-pamentos vitais depende cada vez mais de um suprimento seguro da energia elétrica.

Na automação de linhas de fabricação de muitos produtos industriais, uti-lizam-se hoje computadores eletrônicos. Falhas na rede podem provocar consi-deráveis prejuízos, por ocasionarem parada da produção.

Computadores eletrônicos, controladores de processo, em instalações com elevadas exigências relativas a segurança e confiabilidade de serviço, devem ser protegidos contra falhas no suprimento de energia.

Um sistema nobreak é composto basicamente por quatro componentes importantes: o retificador (RET), o inversor (INV), a chave estática (CE) e a bateria (B). O retificador transforma a tensão trifásica da rede em uma tensão contínua. O inversor produz um novo sistema trifásico que alimentará consumi-dores a ele ligados, com tensão e freqüência condicionadas (Fig. a).

A bateria está ligada em paralelo ao circuito intermediário de corrente contínua e, no caso de uma falha da rede, fornece a energia requerida pelo

Page 158: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ158 10 Instalação de nobreaks Instalação

inversor. Garante-se, assim, uma alimentação sem interrupção para os consumi-dores, sem necessidade de manobra de comutação (Fig. b).

Com o retorno da energia da rede geral, o retificador retorna as suas funções automaticamente, alimentando o inversor e carregando simultanea-mente as baterias.

No caso de sobrecargas inadmissíveis ou defeito no inversor, a chave estática comuta o suprimento dos consumidores diretamente para a rede, caso a mesma esteja dentro das tolerâncias (Fig. c).

Depois da eliminação do distúrbio, o inversor volta a alimentar os consu-midores.

Para serviços de manutenção, o sistema possui um “by-pass” manual que possibilita isolar o conjunto retificador, bateria e inversor.

• Nobreaks de 0,6 a 3kVA

As linhas de nobreaks com potências de 0,6 a 3kVA foram desenvolvidas para uso em equipamentos de informática e eletroeletrônicos, tais como micro-computadores, monitores de vídeo, impressoras, caixas registradoras, PABX, PDV´s, etc.

Os nobreaks de 0,6 a 3kVA não devem ser utilizados para alimentar motores

AC (refrigeradores, furadeiras, ventiladores, liqüidificadores, etc.), eletrodomésticos

(microondas, forno elétrico, etc.), equipamentos com fontes lineares e/ou compactas

(eliminadores de pilha).

Fig. a Fig. b Fig. c

Page 159: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ159

de nobreaks 10 Instalação de nobreaks

O padrão de polarização (terra, fase e neutro) deve ser seguido conforme a figura abaixo:

É bom lembrarmos que um aterramento adequado não é obtido

ligando-se o fio terra ao neutro da rede elétrica, nem utilizando partes

metálicas não apropriadas para este fim. Para um perfeito aterramento

e dimensionamento da rede elétrica, é necessário seguir a Norma da

ABNT sobre Instalações Elétricas de Baixa Tensão – NBR 5410.

Os nobreaks são compostos por um único gabinete, incorporando

as funções de estabilizador e filtro de linha. O usuário pode optar por

baterias internas, externas ou ambas.

10.2 – Entrada e saída de tensõesDevem ser observadas entradas e saídas de 115 ou 220V, de

acordo com o modelo.

• Características gerais

1 – regulação on-line, saída estabilizada mesmo durante o fornecimento de energia através das baterias (inversor ligado).

2 – controle remoto destacável para ligar/desligar o nobreak de maneira cômoda e segura.

pinos do cabo de força

tomada de saída

Page 160: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ160 10 Instalação de nobreaks Instalação

3 – inversor sincronizado com a rede elétrica.

4 – proteção no inversor contra sobrecarga e curto-circuito.

5 – recarga automática das baterias mesmo com o nobreak desligado.

6 – alarme audiovisual intermitente para a normalidade na rede elétrica e fim do tempo de autonomia.

7 – proteção contra descarga total das baterias.

8 – possibilidade de ser ligado na ausência de rede elétrica.

9 – circuito desmagnetizador – garante o valor de tensão adequado na saída do nobreak para equipamento de informática e similares (cargas não line-ares).

10 – proteção contra sobretensão e subtensão de rede elétrica. Na ocorrência desses eventos, o nobreak passa a operar através das baterias, pois a rede elétrica estará fornecendo tensão muito baixa ou muito alta.

O equipamento deve ser instalado em uma rede elétrica dimensionada de acordo com a Norma NBR-5410. Se a rede elétrica do Centro de Processa-mento de Dados ou do local onde o equipamento for operar não estiver adequa-damente instalada, aconselha-se a revisão desta instalação com o auxílio de um profissional qualificado.

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 161: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

11Circuitos internosde telefone

Page 162: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 163: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ16311 Circuitos internosde telefone

11.1 – Previsão dos pontos telefônicosAs tubulações telefônicas são dimensionadas em função do número de

pontos telefônicos previstos para o edifício, acumulados em cada uma de suas partes. Cada ponto telefônico corresponde à demanda de um telefone principal ou qualquer outro serviço que utilize pares físicos e que deva ser conectado à rede pública, não estando incluídas nessa previsão as extensões dos telefones ou serviços principais.

Os critérios para a previsão do número de pontos telefônicos são fixados em função do tipo de edificação e do uso a que se destinam, ou seja:

a.- Residências ou apartamentos:

De até 2 quartos - 01 ponto telefônico.

De até 3 quartos - 02 pontos telefônicos.

De 4 ou mais quartos - 03 pontos telefônicos.

b.- Lojas

01 ponto telefônico/50m2.

c.- Escritórios:

01 ponto telefônico/10m2.

d.- Indústrias:

Área de escritórios: 01 ponto telefônico/10m2.

Área de produção: estudos especiais, a critério do proprietário.

e.- Cinemas, teatros, supermercados , depósitos, armazéns, hotéis e outros:

Estudos especiais, em conjunto com a concessionária, respeitando os limites estabelecidos nos critérios anteriores.

Page 164: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ164 11 Circuitos internosde telefone

11.2 – Determinação do número de caixas de saída

O número de caixas de saída previsto para uma determinada parte de um edifício deve corresponder ao número de pontos telefônicos mais as extensões necessárias para aquela parte do prédio.

a- Residências ou apartamentos

Prever, no mínimo, uma caixa de saída na sala, na copa ou cozinha e nos quartos. As seguintes regras gerais devem ser observadas na localização dessas caixas de saída:

- Sala

A caixa de saída deve ficar, de preferência, no hall de entrada, se houver, e sempre que possível, próximo à cozinha. As caixas previstas devem ser loca-lizadas na parede, a 30 centímetros do piso.

- Quartos

Se for conhecida a provável posição das cabeceiras das camas, as caixas de saída devem ser localizadas ao lado dessa posição, na parede a 30 centíme-tros do piso.

-Cozinha

A caixa de saída deve ser localizada a 1,50 metro do piso (caixa para tele-fone de parede) e não deverá ficar nos locais onde provavelmente serão instala-dos o fogão, a geladeira, a pia ou os armários.

b- Lojas

As caixas de saída devem ser projetadas nos locais onde estiverem pre-vistos os balcões, caixas registradoras, empacotadeiras e mesas de trabalho, evitando-se as paredes onde estiverem previstas prateleiras ou vitrinas.

c- Escritórios

Em áreas onde estiverem previstas até 10(dez) caixas de saída, as mesmas devem ser distribuídas equidistantemente ao longo das paredes, a 30 centíme-tros do piso.

Page 165: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ16511 Circuitos internosde telefone

11.3 – Determinação da altura e do afasta-mento do cabo de entrada aéreo

Se o cabo de entrada do edifício for aéreo, devem ser obedecidas as alturas mínimas estabelecidas na tabela que se segue.

ALTURAS MÍNIMAS PARA A ENTRADA DE CABOS AÉREOS

Situações típicas de entradas aéreas Altura mínima daferragem com relação ao

passeio (m)

Altura mínima doeletroduto de entrada

com relação ao passeio (m)

Cabo aéreo do mesmo lado do edifício 3,50 3,00

Cabo aéreo do outro lado da rua 6,00 3,00

Edifício em nível inferior ao do passeio Estudos conjuntos com a concessionária

Os seguintes afastamentos mínimos devem ser observados entre o cabo telefônico de entrada e os cabos de energia que alimentam o edifício:

a) Cabos de baixa tensão: 0,60m.

b) Cabos de alta tensão: 2,0m.

11.4 – Instalação de tomada para telefoneCondições gerais -

As tomadas devem ser instaladas o mais próximo possível do local esco-lhido para o telefone.

Não devem ser instaladas próximas a refrigeradores, televisores, equipa-mentos de som, em locais onde venham a sofrer danos causados por objetos de uso do assinante, ou por partes móveis da edificação, nem sob pias, tanques, aparelhos de ar-condicionado ou em locais expostos a gases corrosivos.

Deve-se evitar a instalação das tomadas próximo a motores, transforma-dores, máquinas em geral, quadros de comando, ou quadros de proteção e cabos de distribuição ou alimentação de energia elétrica.

Page 166: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ166 11 Circuitos internosde telefone

11.4.1 – Instalação embutida em tubulação

Em instalação embutida, o fio FI é instalado por meio de cabo, a partir da caixa onde está localizado o bloco BL1-6, que faz a conexão com o fio externo (FE), até a caixa onde será instalada a tomada do aparelho telefônico.

Quando a alimentação é feita por meio de cabo. o fio FI é instalado a partir da caixa de distribuição, onde está localizado o bloco BL1-10, que faz a conexão com os pares do cabo.

A instalação do fio FI em tubulações é executada do modo descrito a seguir:

a) Retirar o isolamento das extremidades dos condutores do fio numa extensão de 15cm (quinze centímetros), conforme a figura que se segue.

b) Passar os condutores pela alça de guia, um em cada sentido, e dobrá--los, deixando um espaço de 3cm (três centímetros) entre a alça e o isolamento, conforme mostra a figura:

c) Envolver a amarração com fita isolante.

Page 167: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ16711 Circuitos internosde telefone

d) Puxar lenta e continuamente a guia, evitando arrancos que possam danificar os condutores ou soltá-los da guia .

e) Puxar o fio por seções. sem cortá-lo, quando houver mais de duas caixas de passagem.

f) Deixar uma folga de 30cm (trinta centímetros) em cada caixa de passagem arrumada da maneira mostrada na figura:

As figuras a seguir ilustram a instalação da tomada embutida em parede.

30cm

fixação do suporte da to-mada na caixa de saída

conexão do fio FI nos bornes da tomada

conexão de fio FI destinado a uma extensão

colocação da tomada falsa no suporte

instalação de duas tomadas numa mes-ma caixa

Page 168: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ168 11 Circuitos internosde telefone

11.5 – Emenda de fios internosOs fios internos são emendados com a seguinte seqüência de operações:

1. Distorcer cada uma das pontas dos fios, cerca de 18cm de extensão.

2. Com o alicate, cortar 6cm de um dos condutores de cada uma das pontas dos fios – o positivo de uma das pontas, e o negativo da outra – para as emendas ficarem desencontradas.

colocação da tomada no suporte redondo

fixação do espelho no suporte

visão geral da instalação

Page 169: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ16911 Circuitos internosde telefone

3. Com o alicate de corte, retirar cerca de 6cm do isolamento de cada con-dutor. Para facilitar o trabalho, tomar como gabarito o pedaço do fio cortado para medir e cortar as outras pontas.

4. Isolar toda a extensão da emenda de cada condutor com uma camada de fita isolante adequada, ultrapassando o isolamento condutor, 1cm para cada lado.

5. Torcer novamente os condutores.

6. Ao fixar o fio emendado, os grampos ou pregos isolados devem ficar a uma distância não inferior a 5cm das extremidades da emenda, para proteção do enrolamento da fita isolante.

Nas instalações embutidas, as emendas são feitas nas caixas de passagem, nunca

dentro da tubulação.

Page 170: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 171: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

12Padrão12kW (simplificado para forne-

cimento de energiaem baixa tensão a

consumidores –– montagens)

Page 172: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 173: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ17312 Padrão

12kW

O padrão 12kW tem por finalidade fixar as condições para execução de entradas de serviço, com fornecimento de energia elétrica em baixa tensão.

Este padrão simplificado atende às instalações que cumpram todas as condições abaixo:

– individual isolada

– residencial

– com medição direta

– monofásicas ou trifásicas

– limite máximo de carga de 12kW (Demanda máxima = 13,2kVA)

12.1 – Determinação de carga instaladaA carga instalada é determinada a partir da soma das potências nominais

dos aparelhos e equipamentos elétricos e das potências nominais das lâmpadas existentes nas instalações, não devendo ser considerados os aparelhos de reserva.

Para motores, devem-se considerar os valores nominais de placa, dados pelo fabricante, ou, quando não for possível essa verificação, considerar cada HP ou 1500W ou 500VA (motores e aparelhos de ar-condicionado).

Page 174: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ174 12 Padrão

12kW

Lâmpada incandescente 100W 4 400W Lâmpada incandescente 60W 4 240W Lâmpada fluorescente 20W 2 40W Tomadas 100W 8 800W Chuveiro elétrico 4400W 1 4400W Ferro elétrico 1000W 1 1000W Geladeira 300W 1 300W TV em cores (20”) 90W 1 90W Ventilador 100W 3 300W Ar-condicionado 1cv 2 3000W Bomba d´água (motor) 1cv 2 (1 reserva) 1500W

Carga instalada total = 11,43kW

12.2 – Condições gerais de fornecimento• Limites de fornecimento

Os limites para o atendimento de entradas de serviço individuais, isoladas, executadas em conformidade com este padrão, são:

Entradas monofásicas — Carga instalada 8,0kW

Entradas trifásicas — 8,0kW < Carga instalada 12,0kW (Demanda máxima: 13,2kVA)

• Tensões de fornecimento

O fornecimento de energia elétrica em baixa tensão é feito em corrente alternada, na freqüência de 60 Hertz, sendo as tensões nominais variáveis, de acordo com cada região: de 220/127V ou 380/220V (redes trifásicas a 4 fios – urbanas) e 230/115V (redes monofásicas a 3 fios – rurais).

• Tipos de atendimento, conforme o número de fases:Monofásico a 2 fios — uma fase e neutroMonofásico a 3 fios (rural) — duas fases e neutroTrifásico a 4 fios — três fases e neutro

EXEMPLO DE DETERMINAÇÃO DE CARGA INSTALADA:

UNIDADES CONSUMIDORAS (220/127V)

Tipo de carga Potência nominal Quantidade Total parcial

Page 175: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ17512 Padrão

12kW

12.3 – Ramais de ligaçãoOs ramais de ligação podem ser aéreos ou subterrâneos, con-

forme as características do sistema de distribuição da concessio-nária no local do atendimento.

A cada lote de terreno é concedido um único ramal de ligação para o fornecimento de energia à edificação nele situada, salvo casos de atendimentos especiais, que, a critério da concessionária, possam ser tecnicamente viabilizados através de mais um ramal.

• Exemplo de limites técnicos para ancoramento de ramais de ligação aéreos – padrão Light

12.4 – Ramais de entrada (ligação)Os ramais de entrada, correspondentes ao circuito de energia

não medida de uma edificação, podem ser aéreos ou subterrâneos.

• Ramal de entrada aéreo

O ramal de entrada aéreo deverá ser sempre instalado em eletroduto (derivado de ramal de ligação aéreo ancorado em fachada, pontalete ou poste), no interior de poste particular (quando empregadas caixas para medidor/disjuntor diretamente em poste),

Page 176: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ176 12 Padrão

12kW

estando suas características definidas nas tabelas de dimensionamento de mate-riais das entradas de serviço, nos padrões específicos de cada concessionária.

O circuito de energia medida até a carga, a partir da caixa para medidor, instalada em poste, muro ou fachada, junto ao limite de propriedade com a via pública, deverá ser sempre em eletroduto embutido em piso ou parede, não sendo permitidas saídas aéreas a partir do gabinete de medição.

Quando necessário levar o ramal de entrada (circuito de energia medida) através de circuito aéreo, deve existir um afastamento mínimo de 5,0 (cinco) metros, entre o gabinete de medição e um poste auxiliar interno à propriedade do cliente, sendo a interligação entre esses dois pontos (gabinete de medição – poste auxiliar) obrigatoriamente subterrânea.

Os condutores do ramal de entrada deverão ser em cobre, na seção mínima recomendada para a categoria de atendimento específica, adequadamente isola-dos para a aplicação, apresentando comprimento mínimo excedente de 1 (um) metro para permitir a sua conexão ao ramal de ligação aérea.

Deve ser deixado, no interior do gabinete de medição, um excesso de condutores, além dos suficientes, para permitir as conexões ao medidor e à proteção geral de entrada.

A instalação dos condutores no eletroduto do circuito de energia não medida, assim como a conexão ao ramal de ligação e ao equipamento de medição, é executada exclusivamente pela concessionária local.

• Ramal de entrada subterrâneo

Por conveniência do consumidor e mediante prévio entendimento, poderá ser concedida ligação através de ramal de entrada subterrâneo, com descida em poste da concessionária na via pública.

Quando configurada essa alternativa, fica estabelecido que a ocupação do poste da concessionária se dará a título precário.

Page 177: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ17712 Padrão

12kW

12.5 – Exemplos de ramais de ligação• Exemplo de ramal de ligação aéreo com ancoramento em fachada –

Padrão Light - RJ

Gabinete de medição na fachada – ligação monofásica

corte lateral

haste de aço cobreadaL=2000 ∅=3/4”

Page 178: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ178 12 Padrão

12kW

vista frontal

Page 179: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ17912 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em fachada – Padrão Light - RJ

Gabinete de medição na fachada – ligação trifásica

corte lateral

Page 180: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ180 12 Padrão

12kW

vista frontal

Page 181: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ18112 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em pontalete – Padrão Light - RJ

Gabinete de medição na fachada – ligação monofásica

corte lateral pontalete padrão

parafuso M16

curva PVC 180

luva PVC

cinta de aço

concretado traço

(1x3x5)

bucha arruela PVC

eletroduto PVC

saída para carga

(F+N+T)

bucha arruela PVC

eletroduto PVC 3/4”

luva PVC

curva PVC 80º

condutor de aterramentocondutor de aterramento

haste de aço cobreada

L=2000 =3/4”

caixa de aterramento

(260x250x250)

1000 (mínimo)

cadeado

disjuntor

monopolar

caixa para medidor/disjuntor

1000

eletroduto PVC

ramal de entrada monfásico

conector de perfuração

porca olhalramal de ligação

1800 (máximo)

rua

Page 182: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ182 12 Padrão

12kW

vista frontal

ramal de ligação

pontalete padrão

porca olhal parafuso M16

curva 180º PVC

luva PVC

ramal de

entrada mono-

fásica

cinta aço

eletroduto

PVC1000

bucha arruela

PVC

caixa para medidor/disjuntor

disjuntor monopolar

saída para carga (F+N+T)

eletroduto 3/4!”

caixa de aterramento

(250x250x250)

conector de aterramento

haste de aço cobreado

L=2000 =3/4”

condutor de aterramento

cobre nu

1000 (mínimo)

Page 183: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ18312 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em pontalete – Padrão Light - RJ

Gabinete de medição na fachada – ligação trifásica

corte lateral

Page 184: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ184 12 Padrão

12kW

vista frontal

Page 185: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ18512 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em poste – Padrão Light - RJ

Gabinete de medição no muro – ligação monofásica

corte lateral

Page 186: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ186 12 Padrão

12kW

vista frontal

Page 187: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ18712 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em poste – Padrão Light - RJ

Gabinete de medição no muro – ligação trifásica

corte lateral

Page 188: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ188 12 Padrão

12kW

vista frontal

Page 189: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ18912 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em poste – Padrão Light - RJ

Gabinete de medição no poste – ligação monofásica

corte lateral

Page 190: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ190 12 Padrão

12kW

vista frontal

Page 191: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ19112 Padrão

12kW

• Exemplo de ramal de ligação aéreo com ancoramento em poste – Padrão Light - RJ

Gabinete de medição no poste – ligação trifásica

corte lateral

Page 192: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ192 12 Padrão

12kW

vista frontal

Page 193: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ19312 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete de medição na fachada – ligação monofásica

corte lateral

Page 194: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ194 12 Padrão

12kW

vista frontal

Page 195: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ19512 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete de medição na fachada – ligação trifásica

corte lateral

Page 196: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ196 12 Padrão

12kW

vista frontal

Page 197: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ19712 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete pedestal de medição junto à fachada – ligação monofásica

corte lateral

Page 198: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ198 12 Padrão

12kW

vista frontal

Page 199: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ19912 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete pedestal de medição junto à fachada – ligação trifásica

corte lateral

Page 200: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ200 12 Padrão

12kW

vista frontal

Page 201: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ20112 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete de medição no muro – ligação monofásica

corte lateral

Page 202: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ202 12 Padrão

12kW

vista frontal

Page 203: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ20312 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete de medição no muro – ligação trifásica

corte lateral

Page 204: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ204 12 Padrão

12kW

vista frontal

Page 205: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ20512 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete pedestal de medição junto ao muro – ligação monofásica

corte lateral

Page 206: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ206 12 Padrão

12kW

vista frontal

Page 207: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ20712 Padrão

12kW

• Exemplo de ramal de ligação subterrâneo – Padrão Light - RJ

Gabinete pedestal de medição junto ao muro – ligação trifásica

corte lateral

Page 208: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ208 12 Padrão

12kW

vista frontal

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 209: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

13Instalação demotores elétricos

Page 210: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 211: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ21113 Instalação demotores elétricos

13.1 – O motor elétricoO motor elétrico constitui-se num dos mais notórios inventos do homem

ao longo de seu desenvolvimento tecnológico.

Sua notável presença nos mais variados setores da sociedade não ocorre por acaso.

Trata-se de uma máquina de construção simples, de custo reduzido, ver-sátil e, dentro das atuais preocupações ecológicas mundiais, não poluente.

O motor elétrico é a máquina destinada a transformar energia elétrica em energia mecânica, usando, em geral, o princípio da reação entre dois campos magnéticos. Combina as vantagens de utilização de energia elétrica (baixo custo, facilidade de transporte, limpeza e simplicidade de comando) com sua construção simples, custo reduzido e grande versatilidade de adaptação às cargas dos mais diversos tipos.

Quanto à alimentação, encontramos motores em corrente contínua e em corrente alternada.

13.1.1 – Motores de corrente contínua

São motores de custo mais elevado e, além disso, precisam de uma fonte de corrente contínua, ou de um dispositivo que converta a corrente alternada comum em contínua. Podem funcionar com velocidade ajustável entre amplos limites e se prestam a controles de grande flexibilidade e precisão. Por isso, seu uso é restrito a casos especiais em que essas exigências compensam o custo mais alto da instalação.

13.1.2 – Motores de corrente alternada

São os mais utilizados, porque toda a distribuição de energia elétrica é feita em corrente alternada.

Page 212: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ212 13 Instalação demotores elétricos

• Principais tipos

a) Motor síncrono: funciona com velocidade fixa; utilizado somente para grandes potências (devido a seu alto custo em tamanhos menores) ou quando se necessita de velocidade variável.

b) Motor de indução: funciona normalmente com uma velocidade cons-tante, que varia ligeiramente com a carga mecânica aplicada ao eixo. Devido a sua grande simplicidade, robustez e baixo custo, é o motor mais utilizado de todos, sendo adequado para quase todos os tipos de máquinas encontradas na prática. Divide-se basicamente em dois tipos: motor de rotor bobinado e motor de rotor gaiola, sendo este último muito mais empregado que o primeiro.

13.1.3 – Motor monofásico

Encontram-se motores monofásicos de fase auxiliar, com dois, quatro ou seis terminais de saída, que podem combinar-se para várias tensões de rede e para inversão da rotação por meio de chave reversora. Há motores de partida sem ou com capacitor. Este último possui um torque (arranque) mais vigoroso.

Os motores de dois (2) terminais de saída são construídos para funcionar em uma tensão apenas (ou 110 volts ou 220 volts) e não permitem inversão de rotação.

Os motores de quatro (4) terminais são construídos para funcionar em uma tensão apenas (ou 110 volts ou 220 volts), porém, podem ter sua rotação invertida, de acordo com as instruções na placa de ligação.

Os motores de seis (6) terminais são destinados a funcionar em duas tensões (110 volts e 220) volts e permitem ainda inversão de rotação.

Ligações

1

2 3

45 6

Para 110V

110V

1

2 3

45 6

Para 220V

220V

Page 213: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ21313 Instalação demotores elétricos

13.1.4 – Motor trifásico

É encontrado no comércio com 3, 6, 9 e 12 terminais de saída, possibilitando sua combinação para ligação às redes trifási-cas de 220V – 380V – 440V ou 760V. É fabricado em potências diversas, sendo comuns os valores acima de 1CV (cavalo-vapor, unidade de medida de potência mecânica). Serve para acionar bombas de água e outros tipos de máquinas.

Ligações

O motor de 3 terminais é construído para funcionar apenas em uma tensão. Sua ligação à rede se faz conectando os terminais 1, 2 e 3 aos terminais da rede L1, L2 e L3 em qualquer ordem. Entre os terminais do motor e da rede, devemos colocar a chave de comando e a proteção.

O motor de 6 terminais é o mais encontrado, e pode ser ligado para duas tensões, geralmente 220/380V ou 220/440V.

1

L1

2

L2

3

L3

1 2 5

3 4 6

110V

bobinas principais

1 2 5

3 4 6

220V

bobina auxiliar

capacitor eletrolítico

interruptor centrífugo

Page 214: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ214 13 Instalação demotores elétricos

A ligação do motor de 6 terminais para uma tensão de 220V é feita em triângulo (D), ou seja: 1 e 6, ao L1; 2 e 4, ao L2; e 3 e 5, ao L3.

A ligação para tensão de 380V ou 440V é feita em estrela ( ), ou seja: 1 ao L1, 2 ao L2, e 3 ao L3. Ficam ligados entre si e isolados 4, 5, e 6.

O motor de 9 terminais é construído para funcionar em duas tensões, seja para 220/440V ou 380/760V.

Nesse tipo de motor já estão ligados, internamente, entre si, os terminais 10, 11 e 12, daí a saída dos 9 terminais.

A ligação do motor de 9 terminais para tensão 220V ou 380V é feita em dupla estrela ( ), ou seja: 1 e 7 ao L1; 2 e 8 ao L2; e 3 e 9 ao L3. Ligados entre si e isolados: 4, 5 e 6.

A ligação do motor de 9 ter-minais para tensão 440V ou 760V é feita em estrela ( ), ou seja: 1 ao L1; 2 ao L2; 3 ao L3. Ficam ligados entre si e isolados 4 e 7; 5 e 8; e 6 e 9.

L1 L2 L3

1

2

3

4

56

Page 215: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ21513 Instalação demotores elétricos

O motor de 12 terminais pode ser ligado para quatro tensões: 220V, 380V, 440V e 760V.

A ligação do motor de 12 terminais para tensão 220V é feita em dois triângulos (DD), ou seja: 1, 7, 6 e 12 ao L1; 2, 8, 4 e 10 ao L2; e 3, 5, 9 e 11 ao L3.

1

2

3

4

5

6

7 11

8

912

10

L1

L2

L3

A ligação do motor de 12 terminais para tensão 380V é feita em duas estrelas ( ), ou seja: 1 e 7 ao L1; 2 e 8 ao L2; e 3 e 9 ao L3; ligados entre si e isolados 4, 5, 6, 10, 11 e 12.

L2

L1 L3

1

12 9 63

11

4 8

7 5

102

A ligação do motor de 12 terminais para tensão de 440V é feita em triângulo (D), ou seja: 1 e 12 ao L1; 2 e 10 ao L2; e 3 e 11 ao L3. Ficam ligados e isolados entre si 4 e 7; 5 e 8; e 6 e 9.

Page 216: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ216 13 Instalação demotores elétricos

A ligação do motor de 12 terminais para tensão de 760V é feita em estrela (Y), ou seja: 1 ao L1; 2 ao L2; e 3 ao L3, ficando ligados entre si e isolados 4 e 7; 5 e 8; 6 e 9; 10, 11 e 12.

L2

L1 L3

1

12

9

6

3

11

4

8

7

5

10

2

a) Quando for necessário inverter o sentido

de rotação do motor trifásico, basta trocarmos

duas fases entre si.

b) Os dados técnicos referentes ao motores

vêm especificados na placa de identificação

dos mesmos.

c) Na seleção correta dos motores, é impor-

tante considerar as características técnicas de

aplicação e as de carga.

d) De acordo com o país de origem

dos fabricantes de motores, seus terminais

poderão vir em números ou em letras. A

relação entre os dois é a seguinte: 1-U, 2-V,

3-W, 4-X, 5-Y e 6-Z.

13.1.5 – Chaves monofásicas de comando direto

Essas chaves são encontradas para diversas intensidades de corrente e não oferecem proteção ao motor. Servem, apenas, para manobras.

Page 217: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ21713 Instalação demotores elétricos

13.2 – Instalação de chaves de comando de motores CA

13.2.1 – Chaves de comando (monofásica e trifásica)

13.2.1.1 – Chave monofásica de reversão manual

Exemplificada na figura abaixo, é encontrada com facilidade no comércio.

Fechamento interno da chave comutada à esquerda e à direita.

Page 218: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ218 13 Instalação demotores elétricos

• Ligação da chave monofásica de reversão manual e motor de 6 terminais (110V e 220V).

13.2.1.2 – Chave trifásica de partida direta

Proporciona que o motor parta a plena tensão, com um único sentido de rotação. Observe-se o desenho:

A diferença entre a partida direta com a chave manual e a partida direta com a

chave magnética está na manobra da própria chave. Na chave manual, como o próprio

nome diz, a manobra é feita manualmente pelo operador sobre a própria chave.

Page 219: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ21913 Instalação demotores elétricos

13.2.1.3 – Chave reversora de comando manual tripolar

É um dispositivo elétrico capaz de inverter a rotação de um motor trifá-sico, sem que seja preciso alterar as conexões no motor ou na chave.

A chave possui pontes fixas com cruzamento nos bornes.

Ponte é um termo usado pelos eletricistas e significa: condutor conectado a dois bornes, que permite a passagem de corrente elétrica de um para o outro borne.

• Esquema de ligação da chave trifásica de reversão manual e motor de 6 terminais (220V e 380V).

Page 220: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ220 13 Instalação demotores elétricos

13.2.1.4 – A chave estrela-triângulo

A chave estrela-triângulo de comando manual é um dispositivo elétrico capaz de comandar a partida de motores de indução trifásicos, cuja tensão nominal, em ligação triângulo, coincide com a tensão nominal entre as fases da linha de alimentação. Tem a finalidade de reduzir para aproximadamente 1/3 a corrente de partida dos motores de potência média de 5 a 60cv.

Para que se possa dar partida em um motor de indução trifásico com ligação estrela com a chave estrela-triângulo, é necessário que este motor tenha duas tensões nominais, ou seja: 220V/380V ou 380V/660V ou 440V/760V. A tensão maior é nominal para estrela e a tensão menor é nominal para triângulo. Dessa forma, para que haja a partida em estrela, com corrente reduzida, é neces-sário que a chave faça a ligação dos terminais do motor para a maior tensão (estrela), 380V por exemplo, no primeiro caso. No entanto, o motor será “ali-mentado” em 220V, proporcionando, assim, a redução de corrente na partida. Tão logo o motor saia da inércia, passa-se a chave para a posição triângulo. Com isso, o motor terá seus terminais ligados para 220V (triângulo), e a tensão nominal do motor coincidirá com a tensão das fases de alimentação, o que vai permitir a realização de seu trabalho normal.

• Esquema da ligação do motor na chave estrela-triângulo manual

Dependendo do país de origem, o fabricante de motor pode especificar os 6 termi-

nais em números ou letras. A correlação que se estabelece entre essas especificações

está indicada na figura acima.

Page 221: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

14Eletrobomba

Page 222: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 223: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ22314 Eletrobomba

14.1 – Bomba centrífugaÉ uma máquina que serve para bombear água de um reservatório inferior

para outro superior ou para recalcar a água para aumentar a pressão da mesma. É fabricada em ferro fundido e compõe-se de saída de água ou de recalque, entrada de água ou sucção, funil e válvula de escorvamento, eixo de acopla-mento do motor à bomba e rotor. Tem gravada uma seta indicativa do sentido correto da rotação.

(a) Entrada da água ou sucção

(b) Funil

(c) Válvula de escorvamento

(d) Eixo de acoplamento do motor à bomba

(e) Rotor

14.2 – Motobomba monofásicaÉ o conjunto formado pelo acoplamento de um motor monofásico e uma

bomba centrífuga.

bomba centrífuga

Motobomba monofásica

a

b

c

e d

Page 224: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ224 14 Eletrobomba

diagrama unifilar

sentido do giro do motor

(c)

a chave de bóia superiora chave

seccionadora(f)

quadro de comando

(a)

a chave de bóia inferior

(e)

M~

(d)

(b)

Caso a bomba gire e não puxe água, há dois casos a considerar:

1- Quando a motobomba está girando ao contrário, verifica-se, na bomba, a seta

que determina o sentido de rotação. Se confirmado o giro ao contrário, troque os ter-

minais da bobina auxiliar, conforme indicação da placa de ligação do motor.

2- Quando a motobomba está girando no sentido correto, há possibilidade de

entrada de ar. Caso isto ocorra, desaperte o parafuso da válvula de escorvamento da

bomba para retirar o ar, e coloque água no seu recipiente. Feche a válvula e ligue a

eletrobomba, verificando se está puxando água.

14.3 – Funcionamento da bomba centrífugaO rotor, girando em alta velocidade, desloca a água pela ação da força cen-

trífuga para o lado do recalque. Para que a bomba funcione, é necessário que a tubulação de sucção e o corpo da bomba estejam, completamente cheios de água.

Quando a bomba está funcionando com a instalação hidráulica pronta, acontece uma vazão de água, provocada pela sucção do rotor ao puxar o líquido através da canalização, impulsionando-o para a outra caixa, geralmente em nível mais elevado.

Representação do diagrama unifilar do circuito com motobomba comandada por chave de bóia.

DESCRIÇÃO- Quadro de comando (a);- Motobomba (b);- Condutores (c);- Quantidade de condutores (d);- Chaves de bóia superior e inferior (e);- Chave seccionadora (f)

14.4 – Diagramas unifilar e multifilar da motobomba comandada por chave de bóia

(e)

Page 225: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ22514 Eletrobomba

DESCRIÇÃO- Fusíveis (a)- Chave seccionadora (b);- Chave seletora (c);- Motobomba monofásica (d);- Chaves de bóia do reservatório superior (e);- Chaves de bóia do reservatório inferior (f)

14.5 – Funcionamento do motor monofásico

A alimentação do motor da bomba se dá a partir de uma rede monofásica de 110 VCA conectada através de uma chave seccio-nadora (b), com fusíveis de proteção (a). A bomba (d) pode ser comandada de dois modos:

1) MANUAL - quando a chave seletora (c) está ligada para baixo, fechando os contatos 2 e 3. Neste caso, o operador deverá ficar vigiando o nível da água nos dois reservatórios e desligar a bomba pela chave seccionadora, quando o superior estiver cheio ou faltar água no inferior. (Ver diagrama multifilar.)

2) AUTOMÁTICO- quando a chave seletora está ligada para cima, fechando os condutores 1 e 2. Neste caso, a operação será automaticamente controlada pelas chaves de bóia (e,f). A chave seccionadora poderá ser desligada em horários que não recomen-dem o funcionamento da bomba. (Ver diagrama multifilar.)

f

Diagrama multifilar

F N

(b)

(a) (c)1

23

M~

(d)

(e)

(f)

Page 226: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ226 14 Eletrobomba

14.5.1 – Correção de prováveis defeitos

DEFEITO CAUSA CORREÇÃO

a - Motor que ronca e não parte

b- Motor funcionando com ruídos e vibrações

Capacitor de partida defeitu-oso

Interruptor centrífugo aberto

Folga nos mancais

Folga nos mancais

Graxa demasiadamente dura

Empeno do eixo

Eixo do motor e máquina desalinhados

Parafusos da tampas frouxos

Parafusos da base frouxos

Corpos estranhos entre o ventilador e as tampas

Substituir o capacitor.

Limpar e lubrifiquar o meca-nismo e ajustar os contatos.

Substituir buchas ou rola-mentos.

Substituir buchas ou rola-mentos.

Limpar os mancais e lubri-ficar com graxa indicada pelo fabricante.

Retificar ou substituir o eixo.

Verificar o alinhamento e corrigi-lo.

Reapertar os parafusos das tampas.

Reapertar os parafusos da base.

Desmontar o motor e remo-ver os corpos estranhos.

Page 227: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ22714 Eletrobomba

14.6 – Diagrama dos circuitos principal e de comando para motor trifásico.

Com relação ao funcionamento de comando, deve-se observar o seguinte:

• para se ligar a chave magnética, deve -se pressionar b1, que energizará a bobina c1.

• o contator mantém-se ligado pelo contato de retenção c1.

• o desligamento é feito pressionando-se b0.

circuito principal

fusível

botão desliga da botoeira

contato aberto (seco) da chave magnética

contato auxiliar do relé térmico

bobina da chave magnética

fusível

botão liga da botoeira

circuito de comando

Page 228: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ228 14 Eletrobomba

14.6.1 – Funcionamento do circuito da motobomba trifásica com chave de bóia

O funcionamento automático da motobomba é feito através de dois circui-tos: circuito auxiliar ou de comando e circuito principal.

14.6.1.1 – Diagrama do circuito auxiliar ou de comando

Elementos do circuito auxiliar ou de comando:

(a) - Chave de reversão.(b) - Chave de bóia superior.(c) - Chave de bóia inferior(d) - Contato NF do relé térmico.(e) - Bobina do contator.

14.6.1.2 – Funcionamento do circuito auxiliar

O circuito auxiliar comanda a chave para fechar (ligar o motor) ou abrir (desligar o motor). Sua alimentação é feita através de uma rede elétrica bifásica de 220 Vca.

O comando pode ser:

1- manual (direto): a chave unipolar de reversão (a), está ligada para a direita (interligando o terminal 1 com o terminal 2 em série com o contato NF do relé térmico (d), alimentando a bobina de contador (e)). Neste caso, a moto-bomba é acionada em regime de emergência ou para a limpeza das caixas.

2- automático: a chave de reversão (a), está ligada para a esquerda (inter-ligando o terminal 1 ao terminal 3, em série com as chaves de bóia (b e c) e com o contato NF do relé térmico (d), alimentando a bobina do contator (e)). Sendo assim, as chaves de bóia irão atuar sobre a bobina e, conseqüentemente, sobre o circuito principal, ligando ou desligando o motor da bomba conforme a necessidade determinada pelo nível da água nos reservatórios.

Veja, a seguir, o diagrama do circuito principal.

(b)

(a)

(c)(b)21

22(d)

(e)

(a)

Page 229: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ22914 Eletrobomba

14.6.1.3 – Diagrama do circuito principal

Elementos do circuito principal

(a) - Linha de entrada R-S-T(b) - Chave de faca tripolar com porta-fusível (chave selecio-

nadora)(c) - Chave magnética (guarda-motor)(d) - Chave de faca tripolar de reversão(e) - Motores trifásicos de corrente alternada (A) e (B)

14.6.1.4 – Funcionamento do circuito principal

o circuito principal é o que alimenta a motobomba a partir de uma rede trifásica. A chave de faca tripolar com porta-fusível, uma vez fechada, alimenta o circuito auxiliar e ao mesmo tempo

220V3~60HzR

S

Ta a a

b

31 13 5 3 1

32 14 6 4 2

a

b21

22

c

d

M3~

M3~

A B

e

Page 230: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ230 14 Eletrobomba

os bornes 1, 3, 5 da chave magnética. Se o comando estiver atuando (por exem-plo, as chaves de bóia estando fechadas) a bobina será energizada fechando os contatos 1 ao 2, 3 ao 4 e 5 ao 6. Portanto, os bornes de saída 2, 4 e 6 alimentarão um dos motores (A ou B), de acordo com a posição da chave reversora, cuja função é selecionar qual das bombas se deseja em funcionamento. Este sis-tema, que usa duas bombas, visa garantir o suprimento de água ao prédio, no caso de manutenção de uma delas.

Vejamos como interpretar os diagramas.

14.6.1.5 – Diagrama unifilar da motobomba trifásica com chave magnética.

No diagrama unifilar observamos a composição dos componentes, da tubulação e a quantidade de condutores do circuito principal.

M3 ~

M3 ~

Page 231: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ23114 Eletrobomba

14.6.1.6 – Diagrama multifilar da motobomba trifásica, com chave magnética e chaves de bóia.

Estudou-se anteriormente o funcionamento do circuito auxiliar ou de comando e do principal. Neste diagrama será estudado o funcionamento dos dois circuitos integrados.

(a) - Chave de faca tripolar com porta-fusíveis(b) - Chave unipolar de reversão(c) - Chave magnética(d) - Chave tripolar de reversão(e) - Motor trifásico(f) - Chave de bóia

Uma vez que esteja ligada a chave de faca tripolar, o circuito auxiliar poderá ser acionado pelas chaves de bóia que, estando fechadas, energizarão a bobina da chave magnética, que fechará o circuito principal fazendo funcionar a motobomba.

220V 3~60Hz

R

S

T(f)

3

2(a)

(b)

31 13 5 3 1

32 M 6 4 2

M3 ~

M3 ~

A(d)

(a)

(b)

(c)

Page 232: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ232 14 Eletrobomba

A motobomba desligará quando uma das chaves de bóia abrir o seu con-tato, ou seja, quando o nível da caixa superior atingir o máximo ou quando a caixa inferior atingir o nível mínimo.

220V 3~ 60HzR

S

T

3

2

31 13 5 3 1

32 14 6 4 2

M3 ~

A

M3 ~

B

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com

Page 233: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

15Ventiladorde teto

Page 234: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 235: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

SENAI - RJ23515 Ventiladorde teto

chave de reversão

redeM

VENTILADOR SEM LUSTRE

CHAVE DE VELOCIDADE

CHAVE DE REVERSÃO C/LUZ

MONTAGEM TULIPA

01 - Suporte

02 - Porca 1/4

03 - Parafuso 1/4” x 1 1/4”

04 - Canopla maior

05 - Cano 30mm

06 - Canopla menor

07 - Parafuso 1/4” x 1

08 - Porca 1/4

09 - Porca 3/8

10 - Parafuso 3/16”

11 - Pás

12 - Plafonier

13 - Soquete

14 - Niple

15 - Porca M-10

16 - Globo

17 - Porca M-10

18 - Canopla acabamento

19 - Canopla

20 - Niple

21 - Suporte tulipa

22 - Acabamento

23 - Porca cega

PR - preto AM - amarelo AZ - azul M - marrom

V - verde VR - vermelho BR - branco

VR - Para ligação da lâmpada

01 VR da lâmpada + PR motor - ligar na rede

01 VR da lâmpada ligar chave de velocidade AZ

V ou AM da chave ligar V ou AM motor

V ou AM da chave ligar V ou AM motor

M da chave positivo rede

BR só em caso de ligação paralela

Obs.: potência máxima da lâmpada

lustres de vidro 100W

lustres de plástico 60W

rede

Observe, nas figuras abaixo, as partes constituintes e os esquemas de montagem de um ventilador de teto.

Page 236: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 237: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01
Page 238: Ebookelementosdeinstalaeseltricasprediais 130801105032-phpapp01

FIRJANFederação das Indústrias

do Estado do Rio de Janeiro

SENAIServiço Nacional de Aprendizagem

Industrial do Rio de Janeiro

Av. Graça Aranha, 1 – Centro Rio de Janeiro – RJ

CEP: 20030-002Tel.: (0xx21) 2563-4526

Central de Atendimento: 0800-231231

*** GUIA GRATUITO *** NÃO PODE SER VENDIDO!

http://comprovadores.blogspot.com