Elementos de quimica_geral_vol2

99

Transcript of Elementos de quimica_geral_vol2

Page 1: Elementos de quimica_geral_vol2
Page 2: Elementos de quimica_geral_vol2
Page 3: Elementos de quimica_geral_vol2

Isabella Ribeiro Faria

Elementos de Química GeralVolume 2 - Aulas 15 a 22

Apoio:

Page 4: Elementos de quimica_geral_vol2

Material Didático

2008/1

ELABORAÇÃO DE CONTEÚDOIsabella Ribeiro Faria

COORDENAÇÃO DE DESENVOLVIMENTO INSTRUCIONALCristine Costa Barreto

DESENVOLVIMENTO INSTRUCIONALE REVISÃO Roberto Paes de CarvalhoZulmira Speridião

COORDENAÇÃO DE LINGUAGEM Cyana Leahy-DiosMaria Angélica Alves

COORDENAÇÃO DE AVALIAÇÃODO MATERIAL DIDÁTICODébora Barreiros

AVALIAÇÃO DO MATERIAL DIDÁTICOAna Paula Abreu FialhoAroaldo Veneu

Referências Bibliográfi cas e catalogação na fonte, de acordo com as normas da ABNT.

Copyright © 2005, Fundação Cecierj / Consórcio Cederj

Nenhuma parte deste material poderá ser reproduzida, transmitida e gravada, por qualquer meio eletrônico, mecânico, por fotocópia e outros, sem a prévia autorização, por escrito, da Fundação.

F224e

Faria, Isabella Ribeiro Elementos de química geral. v. 2 / Edilson Clemente. –Rio de Janeiro: Fundação CECIERJ, 2008. 95 p.; 21 x 29,7 cm.

ISBN: 85-7648-226-6

1. Química geral. 2. Reações químicas. 3. Pilhas.4. Relações numéricas. 5. Cálculos esquiométricos.

CDD: 540

EDITORATereza Queiroz

COPIDESQUECristina Maria Freixinho

REVISÃO TIPOGRÁFICAElaine BaymaPatrícia Paula

COORDENAÇÃO DE PRODUÇÃOJorge Moura

PROGRAMAÇÃO VISUALAlexandre d'OliveiraBruno GomesMarcelo CarneiroRenata Borges

ILUSTRAÇÃOFabiana Rocha

CAPAFabiana Rocha

PRODUÇÃO GRÁFICAAndréa Dias FiãesFábio Rapello Alencar

Departamento de Produção

Fundação Cecierj / Consórcio CederjRua Visconde de Niterói, 1364 – Mangueira – Rio de Janeiro, RJ – CEP 20943-001

Tel.: (21) 2299-4565 Fax: (21) 2568-0725

PresidenteMasako Oya Masuda

Vice-presidenteMirian Crapez

Coordenação do Curso de BiologiaUENF - Milton Kanashiro

UFRJ - Ricardo Iglesias RiosUERJ - Cibele Schwanke

Page 5: Elementos de quimica_geral_vol2

Universidades Consorciadas

UENF - UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIROReitor: Almy Junior Cordeiro de Carvalho

UERJ - UNIVERSIDADE DO ESTADO DO RIO DE JANEIROReitor: Nival Nunes de Almeida

UNIRIO - UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIROReitora: Malvina Tania Tuttman

UFRRJ - UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIROReitor: Ricardo Motta Miranda

UFRJ - UNIVERSIDADE FEDERAL DO RIO DE JANEIROReitor: Aloísio Teixeira

UFF - UNIVERSIDADE FEDERAL FLUMINENSEReitor: Roberto de Souza Salles

Governo do Estado do Rio de Janeiro

Secretário de Estado de Ciência e Tecnologia

Governador

Alexandre Cardoso

Sérgio Cabral Filho

Page 6: Elementos de quimica_geral_vol2
Page 7: Elementos de quimica_geral_vol2

Aula 15 – Reações de óxido-redução______________________________ 7

Aula 16 – Pilhas ____________________________________________ 25

Aula 17 – Relações numéricas__________________________________ 43

Aula 18 – Cálculos estequiométricos – Parte l: explorando o mol ________ 53

Aula 19 – Cálculos estequiométricos – Parte ll: reação com gases _______ 63

Aula 20 – Cálculos estequiométricos – Parte lll: o rendimento real da reação ___________________________ 73

Aula 21 – Cálculos estequiométricos – Parte lV: trabalhando com impurezas ___________________________ 81

Aula 22 – Cálculos estequiométricos – Parte V: trabalhando com excessos_____________________________ 89

Elementosde Química Geral

SUMÁRIO

Volume 2

Page 8: Elementos de quimica_geral_vol2
Page 9: Elementos de quimica_geral_vol2

15AU

LA

Meta da aulaConceituar os fenômenos de oxidação e redução.

Reações de óxido-redução

Ao final desta aula, você deve ser capaz de:

• Calcular número de oxidação (nox).

• Determinar semi-reação de oxidação e redução.

• Determinar oxidante e redutor.

• Balancear equação de óxido-redução.

objetivos

Page 10: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

8 CEDERJ CEDERJ 9

INTRODUÇÃO

Figura 15.1: Processo de oxidação em uma corrente de ferro.

Você já deve ter observado que objetos de prata, como faqueiros e bandejas,

escurecem após ficarem expostos à atmosfera. Os pregos e ferramentas também

enferrujam, ao serem usados freqüentemente, com o decorrer do tempo.

Estes fenômenos são exemplos de reações de óxido-redução. Estas reações

são processos químicos muito importantes, remetendo a dois fenômenos

simultâneos: OXIDAÇÃO e REDUÇÃO .

No passado, a palavra oxidação foi empregada para denominar

a reação com oxigênio, como nas reações de metais com oxigênio e

nas de queima de combustíveis. Atualmente este termo é empregado,

de modo mais genérico, para caracterizar a perda de elétrons por uma

espécie química (átomo, íon ou molécula). Entretanto, se uma espécie

perde elétrons, outra terá de recebê-los. Este processo foi denominado

redução.

Reações que ocorrem com transferência de elétrons são chamadas

óxido-redução. Para haver transferência de elétrons, tem de existir a

espécie que perde elétrons, ou seja, a que sofre oxidação; e a que ganha

elétrons, isto é, que sofre redução. Mas como é possível reconhecer essas

reações?

Vamos utilizar o exemplo da combustão do magnésio. Durante

sua queima, produz uma intensa luz branca e brilhante, por isto é muito

utilizado em fogos de artifício.

O magnésio, quando reage com o oxigênio, transforma-se no íon

Mg2+. Isto significa que os átomos de magnésio sofreram oxidação, ou

seja, perderam elétrons. O oxigênio, por sua vez, ao receber os elétrons,

transforma-se em íons O2–, reduzindo-se.

OX I D A Ç Ã O

Perda de elétrons.

RE D U Ç Ã O

Ganho de elétrons.

AU

LA

15

Page 11: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

8 CEDERJ CEDERJ 9

Figura 15.2: Fogos de artifício.

2 Mg + O2 à 2 MgO

2 Mg à 2 Mg2+ + 4 e– (semi-reação de oxidação)

O2 + 4 e– à 2 O2– (semi-reação de redução)

O oxigênio, substância que aceitou elétrons, é denominado agente

oxidante, pois facilitou a oxidação do magnésio e, assim, se reduziu. Já

o magnésio é o agente redutor, pois foi a substância que perdeu elétrons,

propiciando a redução do oxigênio.

Lembre-se: Agente Oxidante é a espécie que se reduz e Agente Redutor é a espécie que se oxida.

!

Mas como saber qual foi o elemento que perdeu e qual ganhou

elétrons? Para resolver esse problema, os químicos atribuem aos

elementos um número de oxidação (nox).

NÚMERO DE OXIDAÇÃO (NOX)

Número de oxidação é a carga que um átomo adquire quando

participa de uma ligação; representa o número de elétrons cedidos,

recebidos e compartilhados. A partir de agora, você verá o número de

oxidação referente aos compostos iônicos e aos covalentes.

AU

LA

15

Page 12: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

10 CEDERJ CEDERJ 11

Número de oxidação nos compostos iônicos

Na maioria dos estudos de Química, quando queremos trabalhar

com um composto iônico quase sempre exemplificamos com o NaCl

(cloreto de sódio). Devido a sua aplicabilidade imediata no nosso

cotidiano, este realmente é um excelente exemplo. Para enriquecer nossos

conhecimentos, vamos definir número de oxidação nos compostos iônicos

com um outro exemplo também interessante: o fluoreto de potássio,

utilizado em alguns países na prevenção da cárie dental.

Considerando uma ligação estabelecida entre o potássio (K) e o

flúor (F), temos:

• K, um metal alcalino (Grupo IA). Ele possui 1(um) elétron na

camada de valência e apresenta baixa afinidade eletrônica.

• F, um halogênio (Grupo VIIA). Ele possui 7 (sete) elétrons na

camada de valência e apresenta alta afinidade eletrônica.

doa 1elétron recebe

1 elétron

O potássio doa um elétron, originando um cátion potássio (K+);

passa, desta forma, a apresentar uma carga +1. Então, diz-se que o

número de oxidação (nox) do potássio é igual a +1. Por outro lado, o

flúor recebe 1 elétron, originando o ânion fluoreto (F–), que apresenta

uma carga –1. Logo, seu nox é igual a –1.

Número de oxidação nos compostos covalentes

Nos compostos covalentes, não ocorre transferência de elétrons,

e sim compartilhamento. Dessa maneira, pode-se dizer que não há

aparecimento de cargas. Porém, sabendo que o par eletrônico está

mais deslocado para o elemento mais eletronegativo, admite-se que

o par eletrônico “passa” a fazer parte da eletrosfera deste elemento

mais eletronegativo. Sendo assim, adota-se como negativo o número de

oxidação do elemento que “puxou” elétrons, e como positivo o elemento

que “perdeu” elétrons.

AU

LA

15

Page 13: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

10 CEDERJ CEDERJ 11

Considerando uma ligação estabelecida entre o hidrogênio (H) e

o Bromo (Br), temos:

• o H, que possui 1 (um) elétron na camada de valência e tem,

segundo a tabela de Linus Pauling, o valor de eletronegatividade

igual a 2,1.

• o Br, um halogênio (Grupo VII A). Ele possui 7 (sete) elétrons

na camada de valência e seu valor de eletronegatividade é 2,8,

segundo a mesma tabela de eletronegatividade.

Na molécula de HBr, um par de elétrons é compartilhado pelos

dois átomos. Sendo o átomo de bromo mais eletronegativo que o átomo

de hidrogênio, o par eletrônico se desloca no sentido do átomo de bromo.

Assim, admitimos que o bromo adquire carga negativa –1, enquanto o

hidrogênio apresenta carga positiva +1. Logo, o nox do bromo é –1, e

do hidrogênio é +1.

Regras práticas para determinação do número de oxidação

Para facilitar seus cálculos, observe o conjunto de normas práticas

para a obtenção do nox. Preparamos “dez mandamentos” que serão

úteis a você:

1º. O nox de cada átomo em uma substância simples é sempre igual

a zero.

Exemplo: Vejamos o acaso do O2. Como os dois átomos

apresentam a mesma eletronegatividade, não ocorre deslocamento do

par eletrônico e, conseqüentemente, não há formação de cargas. Então,

o nox do oxigênio é zero.

2º. O nox de um íon monoatômico é sempre igual à sua própria carga.

Exemplo: O2– nox = –2

AU

LA

15

Page 14: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

12 CEDERJ CEDERJ 13

3º. O somatório dos nox de todos os átomos constituintes de um

composto é sempre igual a zero.

Exemplo: Ca+2 F2-1

(+2 x 1) + (-1 x 2) = 0

4º. Nos íons formados por mais de um átomo, a soma algébrica dos nox

é igual à carga do íon.

Exemplo: MnO4–

(+7 x 1) + (-2 x 4) = -1

5º. Os metais alcalinos(grupo 1 da tabela periódica) sempre apresentam

nox = +1.

6º. Os metais alcalino-terrosos (grupo 2 da tabela periódica) sempre

apresentam nox = +2.

7º. Metais que apresentam sempre o mesmo nox: Zn nox = +2, Al nox

= +3, Ag nox= +1.

8º. O flúor, combinado com outro elemento, sempre apresenta nox = –1.

9º. O elemento hidrogênio pode assumir nox = +1 quando estiver ligado a

um elemento mais eletronegativo; e nox = –1, quando ele for o elemento

mais eletronegativo.

10º. O oxigênio tem, geralmente, nox = –2.

Acompanhe o exemplo para entender melhor. Separamos alguns

íons ou compostos e vamos mostrar, passo a passo, como determinar o

nox desses elementos:

a. SF6 S nox = x (?)

F nox = –1 x 6 = –6

Como x –6 = 0, logo x = +6

b. H2AsO4– H nox = +1 x 2 = +2

As nox = x (?)

O nox = –2 x 4 = –8

Como +2 +x –8 = –1, logo x = +5

AU

LA

15

Page 15: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

12 CEDERJ CEDERJ 13

c. C2H4O2 C nox = x (?)

H nox = +1 x 4 = +4

O nox = –2 x 2= –4

Como x + 4 – 4 = 0, logo x = 0

1. Determine o número de oxidação de cada elemento nos seguintes íons ou compostos:

a. BrO3- ( )

b. C2O42- ( )

c. F2 ( )d. CaH2 ( )

ATIVIDADE

Agora podemos identifi car uma reação de óxido-redução!

Observe a reação do ataque do ácido clorídrico a uma placa de zinco:

2 HCl + Zn à ZnCl2 + H2

Para caracterizar essa reação como um processo de óxido-redução,

é preciso primeiramente determinar o nox de todos os elementos presentes

na equação.

2 H+1Cl–1 + Zn0 à Zn+2Cl2–1 + H2

0

Zn0 à Zn+2 zinco (Zn) é o elemento oxidado porque perdeu 2

elétrons;

H+1 à H2 0 hidrogênio (H) é o elemento reduzido porque ganhou

1 elétron.

Observe que nada ocorreu com o cloro que apresentava nox

–1(no primeiro membro da equação), e continua com o mesmo nox,

no segundo membro.

Nessa reação, o Zn, por ter sofrido oxidação, é denominado agente

redutor, e o ácido clorídrico, por conter o elemento H que sofreu redução,

é chamado agente oxidante.

AU

LA

15

Page 16: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

14 CEDERJ CEDERJ 15

BALANCEAMENTO DAS EQUAÇÕES REDOX

Quando usamos talher de prata para comer alimentos que

contêm cebola, ou outra fonte de enxofre, com o tempo vai se formar

uma camada preta de sulfeto de prata sobre a superfície do talher. Um

método simples de limpeza consiste em colocar o talher em uma panela

de alumínio e cobri-lo com água e pequenos pedaços de sabão de coco,

aquecendo esse sistema por alguns minutos. Ao fi nal de um certo tempo,

a prata metálica se deposita sobre o talher. O fenômeno que observamos

é uma reação de óxido-redução e pode ser representado pela equação:

Ag2S + Al à Ag + Al2S3

Observe que a equação, da maneira que foi escrita anteriormente,

apresenta números diferentes de átomo de prata, de alumínio e de

enxofre, nos dois membros da equação. Nós dizemos que essa equação

não está balanceada.

A utilização da semi-reação de oxidação e da semi-reação de

redução permite escrever corretamente as equações de óxido-redução,

e constitui-se em um ótimo método de balanceamento dos coefi cientes

da equação. Esse método baseia-se no princípio de conservação das

massas e das cargas elétricas.

2. Com relação a reações de óxido-redução, podemos identifi car cada afi rmativa a seguir como verdadeira ou falsa.

a. Oxidação signifi ca ganhar elétrons. ( )b. Oxidante é o elemento ou substância que se oxida. ( )c. Oxidar-se acarreta aumento do NOX. ( )d. Redução signifi ca perder elétrons. ( )e. Numa oxi-redução, o número de elétrons recebidos é igual ao

número de elétrons cedidos. ( )f. Redutor é o elemento ou substância que se reduz. ( )

3. Quando um íon potássio passa a potássio metálico, podemos afi rmar que ocorreu:

a. Redução do íon potássio. ( )b. Oxidação do íon potássio. ( )c. Oxi-redução do íon potássio. ( )d. Perda de um elétron no íon potássio. ( )

ATIVIDADES

AU

LA

15

Page 17: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

14 CEDERJ CEDERJ 15

Vamos exemplificar com a reação entre o sulfeto de prata e o

alumínio, fazendo juntos o balanceamento dessa equação. Primeiramente

devemos determinar o nox de cada espécie presente na equação:

Ag+12S

–2 + Al0 à Ag0 + Al+32S

–23

Observe que, na reação anterior,

• cada Al perde 3 elétrons ∴ variação (∆) =3. O alumínio (Al) sofre

oxidação, portanto é o agente redutor.

• cada íon prata (Ag+1) recebe 1 elétron. Como estão presentes inicialmente

2 íons Ag+1 ∴ variação (∆) =1 x 2 = 2 Ag+ sofre redução. Logo, Ag2S é

o agente oxidante.

Agora devemos igualar o número de elétrons perdidos com o

número de elétrons ganhos. Para tal, devemos colocar um coeficiente 2

no Al e um coeficiente 3 no Ag+1, ficando assim, 6 elétrons ganhos e 6

elétrons perdidos. Os coeficientes utilizados no balanceamento de uma

equação são chamados coeficientes estequiométricos.

Finalmente temos nossa equação devidamente balanceada:

3 Ag2S + Al à Al2S3 + 6 Ag

No estudo de reações de óxido-redução, é muito importante sabermos

representar as semi-reações envolvidas:

a. semi-reação de oxidação:

2 Al(s) à 2 Al+3(aq) + 6 e-

b. semi-reação de redução:

6 Ag+1 + 6 e- à 6 Ag

Somando as duas semi-reações:

2 Al 2 Al+3 + 6 e-

6 Ag+1 + 6 e- 6 Ag

2 Al + 6 Ag+1 2 Al+3 + 6 Ag (equação na representação

iônica)

AU

LA

15

Page 18: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

16 CEDERJ CEDERJ 17

A perda total de elétrons iguala o ganho total destes, e o somatório

das semi-reações de oxidação e redução, seguido do balanceamento do

número de elétrons trocados, leva ao acerto da equação de óxido-

redução. Esse método é chamado íon-elétron.

Vamos fazer mais um balanceamento? Observe a equação a seguir:

K2Cr2O7 + HCl à KCl + CrCl3 + Cl2 + H2O

Agora, colocaremos os nox das espécies:

K+12Cr+6

2O–2

7 + H+1Cl–1 à K+1Cl–1+ Cr+3Cl–13 + Clo

2 + H+12O

–2

Observe que, no caso do cloro, uma certa quantidade reagiu sem sofrer

variação de nox, enquanto uma outra quantidade sofreu oxidação.

Cl–1 perde 1 elétron ao passar a Cl0 ∴ ∆ =1

Cada Cr+6 recebe 3 elétrons ao passar a Cr+3. Como o composto apresenta

dois Cr+6, sua variação é ∆ = 2 x 3 = 6.

Iniciando o balanceamento, vamos igualar o número de elétrons perdidos

com o número de elétrons ganhos, multiplicando o Cl–1 por 6 e o Cr+6

por 1.

Semi–reação de oxidação

6 Cl-1 à 3Cl2 + 6 e-

Semi-reação de redução

2Cr+6 + 6 e- à 2 Cr+3

Colocando esses coeficientes na equação, temos:

1 K2Cr2O7 + 6 HCl à KCl + 2 CrCl3 + 3 Cl2 + H2O

Vamos agora igualar o número de átomos de cada espécie não envolvida

na reação de óxido-redução. Observe que no primeiro membro da

equação temos 2 K+1, logo precisamos igualar a quantidade de K+1 do

segundo membro multiplicando-o por 2.

∴ ∆

AU

LA

15

Page 19: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

16 CEDERJ CEDERJ 17

1 K2Cr2O7 + 6 HCl à 2 KCl + 2 CrCl3 + 3 Cl2 + H2O

Neste momento, devemos ajustar os cloros que não sofreram oxidação. No

segundo membro da equação, temos 8 cloros que não perderam elétrons.

Logo o total de cloros no primeiro membro é igual a 14 (6 que se oxidaram

e 8 que nada sofreram):

1 K2Cr2O7 + 14 HCl à 2 KCl + 2 CrCl3 + 3 Cl2 + H2O

Analisando os hidrogênios, vemos que temos 14 no primeiro membro.

Vamos então igualar essa quantidade no segundo membro:

1 K2Cr2O7 + 14 HCl à 2 KCl + 2 CrCl3 + 3 Cl2 + 7 H2O

Por último, fazemos o mesmo com os oxigênios (7 em cada lado da

equação). Temos, assim, nossa equação balanceada.

4. Para cada reação representada a seguir, indique a semi-reação de oxidação, a semi-reação de redução e faça seu balanceamento:a. HNO3 + Cu à Cu(NO3)2 + NO2 + H2Ob. KMnO4 + FeCl2 + HCl à KCl + MnCl2 + FeCl3 + H2O

ATIVIDADE

Vamos analisar mais alguns exemplos de reações de óxido-redução:

K2 Cr2 O7 (aq) + C2H6O(g) + H2SO4(aq) à Cr2(SO4)3 + C2H4O(g) + K2SO4(aq)

+ H2O(l)

Semi-reação de oxidação

C–22H6O à C–1

2H4O + 2 e – + 2 H+

Semi-reação de redução

14 H+ + Cr+62O7

2– + 6 e – à 2Cr 3+ + 7H2O

Igualando o número de elétrons, devemos multiplicar por 3 a primeira

equação:

C2H6O à C2H4O + 2 e – + 2 H+ (x 3)

AU

LA

15

Page 20: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

18 CEDERJ CEDERJ 19

Cr2O72– + 14 H+ + 6 e – à 2 Cr 3+ + 7 H2O

________________________________________________

3C2H6O + Cr2O7– – + 14 H+ à 3 C2H4O + 6 H+ + 2 Cr 3+ + 7 H2O (Equação

balanceada na forma iônica)

3 C2H6O(g) + K2Cr2O7 (aq) + 4 H2SO4 (aq) 3 C2H4O(g) + Cr2 (SO4)3 (Aq)

+ K2SO4 (aq) + 7 H2O(l) (Equação balanceada na forma completa)

Você agora poderia dizer quem é o agente oxidante e quem é o agente

redutor dessa reação?

Agente oxidante: K2Cr2O7 Agente redutor: C2H6O

Se você teve dúvidas para responder a essa pergunta, vale a pena

dar uma olhada no início desta nossa aula, pois esses conceitos são

importantes.

Voltando a nossa equação, ela é utilizada, por exemplo, através do

“bafômetro”, na medição do teor alcoólico dos motoristas. Quando uma

pessoa ingere bebida alcoólica, o etanol passa rapidamente para a corrente

sangüínea, sendo levado para todas as partes do corpo. A passagem do

álcool do estômago para o sangue demora, aproximadamente, 20 a 30

minutos, dependendo de fatores como gradação alcoólica de bebida,

peso corporal e capacidade de absorção do sistema digestivo. O etanol

é metabolizado por enzimas produzidas pelo fígado.

Pela legislação brasileira, uma pessoa está incapacitada para dirigir

com segurança se tiver uma concentração de álcool no sangue superior

a 0,8 g/L.

Uma pessoa de porte médio tem um volume sangüíneo de

aproximadamente 5L. Logo, para essa pessoa, o teor máximo de álcool

no sangue é de 4g. A seguir, temos uma tabela relacionando algumas

bebidas com a porcentagem de álcool nelas encontrado.

Bebida Teor Alcoólico (%)

Cerveja 5

Vinho 12

Whisky 45-55

Rum 45

Vodca 40-50

AU

LA

15

Page 21: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

18 CEDERJ CEDERJ 19

Considerando as concentrações citadas, não se pode beber nem

um copo de cerveja ou uma dose de Whisky antes de dirigir! Entretanto,

algumas bebidas podem ser ingeridas. Estudos têm mostrado que uma

pessoa de porte médio pode beber, em um período de aproximadamente

duas horas, uma garrafa de cerveja ou uma dose de Whisky, porque

existem mecanismos no sangue que eliminam a substância tóxica do

organismo.

Exemplos de mecanismos que eliminam o álcool do organismo:1. eliminação nos pulmões, pelo ar alveolar, onde o álcool é exalado (hálito ou “bafo” de bêbados);2. eliminação pelo sistema urinário;3. metabolização no fígado, que consiste em oxidação lenta do etanol.

O bafômetro permite a identificação da presença do etanol, no

“bafo” do motorista, pela visualização da mudança de coloração laranja

para verde (bafômetro tipo portátil).

Este bafômetro pré-descartável contém uma mistura sólida de

solução aquosa de dicromato de potássio de cor alaranjada, e sílica

umedecida com ácido sulfúrico. Após o sopro do motorista, ocorre a

reação redox formando a espécie Cr3+(aq), que se apresenta na coloração

verde. Assim, está identificada a oxidação do etanol a ácido etanóico e

a redução do dicromato a cromo III, conforme vimos na equação que

você acabou de ajustar.

CONCLUSÃO

Os processos de oxidação e redução, além de nos guiar no

balanceamento de equações, são de grande importância no nosso dia-a-

dia, como o estudo de pilhas que faremos na próxima aula.

AU

LA

15

Page 22: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

20 CEDERJ CEDERJ 21

ATIVIDADES FINAIS

1. Representa-se a obtenção de ferro-gusa pela equação a seguir:

2 Fe2O3(s) + 6 C(s) + 3 O2(g) à 4 Fe(s) + 6 CO2(g)

Identificando o estado de oxidação das substâncias envolvidas nessa reação, julgue

os itens que se seguem como verdadeiro ou falso.

a. Os átomos de ferro do Fe2O3 sofreram redução.

b. Na reação, o gás oxigênio (O2 ) atua como redutor.

c. O estado de oxidação +4 do átomo de carbono no CO2 indica que tal

substância é iônica.

d. Nesta reação, o número total de elétrons dos reagentes é igual ao

número total de elétrons dos produtos.

2. Em 1856, Berthelot preparou metano segundo a reação representada pela

equação não-balanceada a seguir:

CS2 + H2S + Cu → Cu2S + CH4

a. Acerte os coeficientes estequiométricos.

b. Indique o elemento que se oxida e o que se reduz, mostrando a

variação dos números de oxidação.

3. A análise do ferro em um minério pode ser realizada por método volumétrico,

utilizando-se dicromato de potássio. A reação envolvida nesse método, na sua

forma iônica, pode ser expressa pela equação a seguir:

___Fe2+ + Cr2O72– + ____H+ →____Fe3+ + ____Cr3+ + ____H2O

Faça o balanceamento correto da equação com os menores coeficientes

inteiros.

4. Completa-se corretamente a reação de oxi-redução MnO2 + 4 H+ + X à Mn2+ +

2 H2O + I2, quando X for substituído por:

a. I2O5. b. HIO3. c. 2 I–. d. 2 HI. e. 2 IO–3.

5. Determine os coeficientes de cada substância que tornam as reações de óxido-

redução a seguir corretamente balanceadas.

AU

LA

15

Page 23: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

20 CEDERJ CEDERJ 21

a. ____Bi2O3(s) + ____NaClO(aq) + ____NaOH(aq) à ____NaCl(aq) + ____H2O(l) +

____NaBiO3(aq)

b. ____HNO3(aq) + ____P4(s) + ____H2O(l) à ____H3PO4(aq) + ____NO(g)

c. ____CaC2O4(aq) + ____KMnO4(aq) + ____H2SO4(aq) à ____CaSO4(ppt) + ____K2SO4(aq) +

____MnSO4(aq) + ____H2O(l) + ____CO2(g)

d.____NaBr(aq) + ____MnO2(aq) + ____H2SO4(aq) à ____MnSO4(aq) + ____Br2 + ____H2O(l)

+ ____NaHSO4(aq)

• O processo de oxi-redução é uma reação de transferência de elétrons.

• Espécie doadora de elétrons é um agente redutor; espécie receptora de elétrons,

um agente oxidante.

• O agente oxidante e/ou agente redutor são átomos íons ou moléculas que contêm

em sua estrutura elementos que sofrem variação de número de oxidação.

• Em uma reação em que há variação do número de oxidação, o aumento do

nox de um átomo é contrabalançado pela diminuição do nox do outro átomo.

Portanto, a variação do nox é constante.

• Durante uma reação de óxido redução, há variação dos números de oxidação.

A variação resultante é zero.

• A combustão é uma reação de óxido-redução.

• A reação que representa o processo de formação de compostos iônicos é uma

reação redox( partindo das substâncias simples).

• Em uma reação devidamente balanceada, o número de elétrons ganhos é igual

ao número de elétrons perdidos.

R E S U M O

AU

LA

15

Page 24: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

22 CEDERJ CEDERJ 23

Atividade 1

a. +5 ; –2

b. +3 ; –2

c. zero

d. +2 ; –1

Atividade 2

a. F. A definição de oxidação é perda de elétrons em uma reação química.

b. F. Oxidante é o elemento que irá proporcionar a oxidação de outro. Logo,

oxidante é o elemento que se reduz.

c. V

d. F. A definição de redução é ganho de elétrons em uma reação química.

e. V

f. F. Redutor é o elemento que irá proporcionar a redução de outro. Logo, redutor

é o elemento que se oxida.

Atividade 3

a

Atividade 4

a. 4HNO3 + Cu à Cu(NO3)2 + 2 NO2 + 2 H2O

b. KMnO4 + 5 FeCl2 + 8 HCl à KCl + MnCl2 + 5 FeCl3 + 4 H2O

Atividades Finais

1. a. V

b. V

c. F

d. V

RESPOSTAS

AU

LA

15

Page 25: Elementos de quimica_geral_vol2

Elementos de Química Geral | Reações de óxido-redução

22 CEDERJ CEDERJ 23

2. a. CS2 + 2 H2S + 8Cu à 4 Cu2S + CH4

b. Cuo à Cu+ (oxidação)

C+4 à C–4 (redução)

3. 6 Fe2+ + Cr2O72- + 14H+ à 6 Fe3+ + 2 Cr3+ + 7 H2O

4. c

5. a. Bi2O3(s) + 2 NaClO(aq) + 2 NaOH(aq) à 2NaCl(aq) + H2O(l) + 2 NaBiO3(aq)

b. 20 HNO3(aq) + 3 P4(s) + 8 H2O(l) à 12 H3PO4(aq) + 20 NO(g)

c. 5 CaC2O4(aq) + 2 KMnO4(aq) + 8 H2SO4(aq) à 5 CaSO4(ppt) + K2SO4(aq) + 2 MnSO4(aq) +

8 H2O(l) + 10 CO2(g)

d. 2 NaBr(aq) + MnO2(aq) + 3 H2SO4(aq) à MnSO4(aq) + Br2 + 2 H2O(l) + 2 NaHSO4(aq)

AU

LA

15

Page 26: Elementos de quimica_geral_vol2
Page 27: Elementos de quimica_geral_vol2

16AU

LA

Metas da aula

Pilhas

Conceituar pilhas ou células galvânicas.Reconhecer os componentes básicos

de uma pilha.

Ao fi nal desta aula, você deve ser capaz de:

• Determinar a espontaneidade de uma reaçãoeletroquímica.

• Calcular a diferença de potencial de uma pilha.

Pré-requisito

Para acompanhar melhor esta aula, você deverá rever os conceitos de oxidação e redução da Aula 15.

objetivos

Page 28: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

26 CEDERJ

INTRODUÇÃO Uma aplicação direta que encontramos para reações de óxido-redução é

a construção de pilhas ou células galvânicas, cuja transferência de elétrons

entre o redutor e o oxidante é aproveitada para diferentes fi ns. Em uma pilha,

temos a conversão da energia química para energia elétrica, em um processo

espontâneo.

PILHA DE DANIELL

Em 1836, o químico inglês John Frederic Daniell (1790-1845)

construiu uma pilha, constituída por um metal imerso em solução aquosa

de um sal formado por cátions desse mesmo metal. Este conecta-se a

outro metal, imerso também em solução aquosa de um sal contendo seu

cátion. Para entender o pensamento de Daniell, vamos estudar uma pilha

formada por zinco e cobre (Zn-Cu).

De início, vamos observar isoladamente o sistema formado por

uma placa de zinco (eletrodo de Zn) e uma solução de Zn2+.

Figura 16.1: Placa de Zn imersa numa solução de ZnSO4.

Figura 16.2: Placa de Cu imersa numa solução de CuSO4.

Observe agora o esquema para a placa de cobre (eletrodo de Cu)

imersa em uma solução de Cu2+.

Zno(s) Zn2+(aq) + 2e–oxidação

redução

Cuo(s) Cu2+(aq) + 2e–oxidação

redução

Zn2+

Zn2+

Zn0

Zn0

Cu0

Cu0

Cu2+

Cu2+

2e–

2e–

SO42−

SO42−

Page 29: Elementos de quimica_geral_vol2

CEDERJ 27

Daniell percebeu que, ao ligar os eletrodos por um fi o condutor, o

zinco, sendo um metal mais reativo (ou seja, que se oxida mais facilmente),

transferia seus elétrons para o cátion metálico menos reativo, no caso,

o Cu2+. Deste modo, estabelece-se uma passagem de corrente elétrica

pelo fi o condutor, como representada no desenho a seguir:

A Figura 16.3 ainda não representa uma pilha pronta para fun-

cionar. Se observarmos de novo a fi gura, podemos compreender que, com

o passar do tempo, a solução de Zn2+ fi caria mais concentrada, devido à

produção desse íon proveniente da oxidação do zinco. Por outro lado,

a concentração de Cu2+ iria diminuir, pois esse íon estaria se reduzindo

a Cuo. Como as concentrações do ânion são fi xas, as soluções de ambos

os eletrodos perderiam a neutralidade elétrica, e a pilha rapidamente iria

parar de funcionar. Para resolver esse problema, coloca-se na construção

de uma pilha um dispositivo denominado ponte salina.

Nessa parte do nosso estudo de conversão de energia química em energia elétrica (eletroquímica), alguns termos específi cos são utilizados:Ânodo (pólo negativo da pilha): é o eletrodo de onde saem os elétrons, ou seja, onde ocorre a reação de oxidação. Na pilha de Daniell apresentada, o ânodo é o eletrodo de Zn.Cátodo (pólo positivo da pilha): é o eletrodo para onde vão os elétrons, ou seja, onde ocorre a reação de redução. Na pilha de Daniell apresentada, o cátodo é o eletrodo de Cu.

!

Figura 16.3: Placas de Zn e Cu imersas em suas soluções unidas por um fi o condutor.

CuZn

Zn SOaq aq( ) ( )2

42+ − Cu SOaq aq( ) ( )

242+ −

AU

LA

16

Page 30: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

28 CEDERJ

A ponte salina é constituída de um tubo em forma de U, contendo

uma solução aquosa concentrada de um sal bastante solúvel, como o

cloreto de potássio (KCl). As extremidades do tubo são fechadas com

um material poroso, como o algodão.

Este tubo é colocado de forma invertida, com cada extremidade

emborcada em uma das soluções da pilha. A função da ponte salina é

permitir que os íons K+ e Cl– migrem para as soluções eletrolíticas da pilha,

de modo que estas retornem à neutralidade de carga. Assim sendo, para

o ânodo (no qual havia excesso de Zn2+) irão migrar os íons Cl–, e para

o cátodo irão os íons K+ . Com isso, ocorrerá neutralização das duas

soluções. O esquema completo da pilha de Daniell será, então:

Figura 16.4: K+(aq) Cl-(aq).

Figura 16.5: Esquema da pilha de Daniell.

Page 31: Elementos de quimica_geral_vol2

CEDERJ 29

NOTAÇÃO DE UMA CÉLULA GALVÂNICA

Para representar uma pilha como a descrita anteriormente,

utilizamos uma notação resumida que nos informa a estrutura básica

de uma célula. Os eletrodos da pilha de Daniell podem ser escritos da

seguinte maneira:

Zn(s) | Zn2+(aq) e Cu2+(aq) | Cu, em que cada barra vertical

representa uma interface entre as fases. Neste caso, o metal sólido e os

íons em solução.

Representamos a célula primeiro pelo ânodo, depois a ponte

salina representada por duas barras paralelas (||) e, por último, o cátodo.

A notação para a pilha de Daniell será:

Zn⏐Zn2+(aq) || Cu2+(aq)⏐Cu

POTENCIAL DE CÉLULA GALVÂNICA

Se em vez de adaptarmos uma lâmpada ao circuito adaptarmos um

aparelho chamado voltímetro, poderemos medir a diferença de voltagem

entre os dois eletrodos, chamada força eletromotriz (fem), ou variação

de potencial da pilha (∆). No caso da pilha de Zn-Cu, observaríamos

o valor 1,10 volts, nas CONDIÇÕES-PADRÃO.

CO N D I Ç Õ E S-P A D R Ã O

Uma pilha se encontra nas condições-padrão quando apresenta soluções de concentração inicial 1 mol/L, a uma temperatura de 298oK e pressão de 1 atm.O valor da fem pode ser previsto teoricamente por meio da consulta de uma tabela de potenciais-padrão. Esta tabela, apresentada a seguir, foi construída a partir do eletrodo padrão de hidrogênio, ao qual foi atribuído o valor 0,00 volt. Com o auxílio dessa tabela podemos prever a diferença de potencial entre os eletrodos, nas condições-padrão, para células de diversos metais.

AU

LA

16

Page 32: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

30 CEDERJ

Potenciais de redução

-3,045

-2,925

-2,924

-2,923

-2,92

-2,90

-2,89

-2,87

-2,71

-2,375

-1,87

-1,66

-1,18

-0,76

-0,74

-0,48

-0,44

-0,403

-0,28

-0,24

-0,14

-0,13

-0,036

-0,000

+0,15

+0,15

+0,337

+0,40

+0,54

+0,77

+0,80

+0,85

+0,88

+1,07

+1,36

+1,41

+1,50

+1,84

+2,87

Li

Rb

K

Cs

Ra

Ba

Sr

Ca

Na

Mg

Be

Al

Mn

Zn

Cr

S2-

Fe

Cd

Co

Ni

Sn

Pb

Fe

Cu

Sn2+

Cu

2 OH1-

2 I1-

Fe 2+

Ag

Hg

2 OH1-

2 Br1-

2 Cl1-

Au1+

Au

Co2+

2 F1-

Li1+ + 1 e–

Rb1+ + 1 e–

K1+ + 1 e–

Cs1+ + 2 e–

Ra2+ + 2 e–

Ba2+ + 2 e–

Sr2+ + 2 e–

Ca2+ + 2 e–

Na1+ + 1 e–

Mg2+ + 2 e–

Be2+ + 2 e–

Al3+ + 3 e–

Mn2+ + 2 e–

Zn2+ + 2 e–

Cr3+ + 3 e–

S + 3 e–

Fe2+ + 2 e–

Cd2+ + 2 e–

Co2+ + 2 e–

Ni2+ + 2 e–

Sn2+ + 2 e–

Pb2+ + 2 e–

Fe3+ + 3 e–

Cu1+ + 1 e–

Sn4+ + 4 e–

Cu2+ + 2 e–

1/2 O2 + H2O + 2 e–

I2 + 2 e–

Fe3+ + 1 e–

Ag1+ + 1 e–

Hg2+ + 2 e–

H2O2 + 2 e–

Br2 + 2 e–

Cl2 + 2 e–

Au3+ + 2 e–

Au3+ + 3 e–

Co3+ + 1 e–

F2 + 2 e–

+3,045

+2,925

+2,924

+2,923

+2,92

+2,90

+2,89

+2,87

+2,71

+2,375

+1,87

+1,66

+1,18

+0,76

+0,74

+0,48

+0,44

+0,403

+0,28

+0,24

+0,14

+0,13

+0,036

0,000

-0,15

-0,15

-0,337

-0,40

-0,54

-0,77

-0,80

-0,85

-0,88

-1,07

-1,36

-1,41

-1,50

-1,84

-2,87

Potenciais de oxidação

Potenciais-padrão de eletrodo (em Volts — 1 atm e 25 OC

forç

a o

xid

ante

cre

scen

te

aum

enta

o p

ote

nci

al d

e d

oar

elé

tro

ns

H2(g) + 2 H2O(1) 2 H3O1+ + 2 e–

aum

enta

o p

ote

nci

al d

e re

ceb

er e

létr

on

s

forç

a re

du

tora

cre

scen

te

Tabela 16.1:

Page 33: Elementos de quimica_geral_vol2

CEDERJ 31

Quanto menor o potencial-padrão de redução, menor a capacidade

da espécie de reduzir-se. Logo, maior será sua capacidade de oxidar-se

(perder elétrons).

Quanto menor o potencial-padrão de oxidação, menor a

capacidade da espécie de oxidar-se, e maior será sua capacidade de

reduzir-se (ganhar elétrons).

No exemplo da pilha de Daniell, teremos:

Zno Zn2+ + 2e– Eo oxidação = + 0,76 V

Cu2+ + 2 e– Cuo Eo redução = + 0,34 V

A soma do potencial de oxidação da espécie que se oxida com o

potencial de redução da espécie que se reduz dará a voltagem da pilha

(+ 0,76 + 0,34 = + 1,10 V). Logo, a equação global será:

Zno + Cu2+ Zn2+ + Cuo

Como prever a espécie que irá sofrer oxidação e a que irá sofrer

redução em uma pilha?

Vamos imaginar uma célula formada por alumínio e níquel.

Consultando a Tabela 16.1, teremos:

Eo redução Eo oxidação

– 1,66 V Alo Al3+ + 3e– + 1,66V

– 0,24 V Nio Ni2+ + 2 e– + 0,24 V

Observe que o potencial de oxidação do alumínio é maior, o que

indica que este metal tem uma capacidade de oxidar-se maior que a do

níquel. Então, na pilha, a reação de oxidação será Alo Al3+ + 3e–

E oxidação = +1,66 V.

Logo, o níquel irá reduzir-se e teremos a reação:

Ni2+ + 2 e– Nio E redução = – 0,24 E redução

A fem desta pilha será a soma destes dois valores +1,66 + (–0,24)

= 1,42 V.

Toda pilha, por ser um processo espontâneo, apresenta ∆E positivo.

!

AU

LA

16

Page 34: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

32 CEDERJ

Vejamos mais um exemplo. Qual seria a ∆Eo de uma pilha

representada na fi gura a seguir?

Primeiramente, iremos consultar a Tabela 16.1 de potenciais-

padrão para descobrir qual espécie irá oxidar-se e qual irá reduzir-se.

E redução E oxidação

–0,76 V Zno Zn2+ + 2e– +0,76V

+0,80 V Ago Ag+ + 1 e– –0,80 V

Com esses valores, observamos que a prata, por ter um maior

potencial de redução, irá reduzir-se. Logo, o cátodo desta pilha, é a

prata, com a reação:

Ag+ + e– Ag E redução = +0,80 V

No ânodo desta pilha, teremos a oxidação do zinco:

Zno Zn2+ + 2e– E oxidação = +0,76V

A reação global da pilha, devidamente balanceada (na forma

iônica), será :

2 Ag+ + Zno Zn2+ + 2 Ago

E na forma completa:

2 AgNO3 + Zn Zn(NO3)2 + 2 Ag

A fem (∆Eo) da pilha será +0,80+0,76 = + 1,56 V (medidos nas

condições-padrão).

Figura 16.6: Pilha de Zn/Zn(NO3)2 // Ag/AgNO3 com lâmpada.

Page 35: Elementos de quimica_geral_vol2

CEDERJ 33

Sabemos então que esta pilha terá uma corrente elétrica no sentido

do eletrodo de Zn para o eletrodo de Ag, com voltagem de 1,56 V.

Que tal fazermos uma atividade para colocar o conhecimento em

prática? Para a resolução das atividades a seguir, consulte a Tabela 16.1.

1. Considere uma pilha constituída pelas semipilhas Mg, Mg2+ e Au, Au3+, e indique:a. o pólo positivo e o negativo;b. o cátodo e o ânodo;c. o sentido do fl uxo de elétrons no fi o que liga os pólos;d. a fem da pilha em condições-padrão;e. a equação de oxidação, de redução e a equação global da pilha.

2. Consultando a Tabela 16.1, examine a possibilidade de serem espontâneos os processos abaixo equacionados. Caso sejam espontâneos, determine sua força eletromotriz (fem). Observação: processos espontâneos apresentam ∆Eo > 0.

a. Ag2S + Al Ag+ Al2S3;

b. I2 + Cl– I– + Cl2;

c. H2O2 + H+ + Fe2+ H2O + Fe3+;

d. Cd + Ni(OH)2 Ni + Cd(OH)2.

ATIVIDADES

Figura 16.7: Desenho da pilha da Figura 16.6 com indicação do sentido de elétrons.

AU

LA

16

Page 36: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

34 CEDERJ

PILHAS COMERCIAIS

As pilhas em solução aquosa, como estudado anteriormente, não

são cômodas e úteis para uso comercial. A pilha comum (usada em rádios,

brinquedos etc.) é, em geral, conhecida como pilha seca, desenvolvida

em 1866 pelo engenheiro francês Georges Leclanché (1839-1882).

O esquema a seguir ilustra sua composição:

3. A pilha utilizada nos marca-passos é constituída por um eletrodo de iodo e outro de lítio. Conhecidos os potenciais de redução-padrão para esses eletrodos,I2 + 2e– 2I– E° = + 0,536VLi+ + e– Li E° = – 3,045V

Pede-se:a. a equação da reação global da pilha;b. a força eletromotriz-padrão da mesma.

As reações que ocorrem nesta pilha são bastante complexas, mas

podemos simplifi cá-las da seguinte maneira:

a) No ânodo (pólo negativo), ocorre a oxidação do zinco metálico

contido no envoltório da pilha:

Zn(s) Zn2+(aq) + 2e–

Figura 16.8: Pilha seca de Leclanché.

Tampa de açoDisco de papelão

Selador de plásticoPiche

Disco de papelão

Envoltório de zinco

Blindagem de aço

Papel poroso

Disco isolante de papelãoFundo de aço

Substâncias que participam ativamente do fenômeno

Barra de grafi ta: pólo positivo

Envoltório de Zn(s): pólo negativo

Pasta externaZnCl2(aq) + NH4Cl(aq) + H2O + amido

Pasta internaMnO2(aq) + NH4Cl(aq) + H2O(l) + amido

Disco de papelão

Page 37: Elementos de quimica_geral_vol2

CEDERJ 35

b) No cátodo (pólo positivo), ocorre a redução do manganês na

pasta interna:

2 Mn O2(aq) + 2 NH4+ + 2e– Mn2O3(s) + 2 NH3(g) + H2O(l)

Os elétrons transferidos do zinco para o manganês são conduzidos

através da barra de grafi te que, por isso, é considerada o pólo positivo

do circuito. Após um tempo de uso contínuo, a amônia que se forma no

cátodo envolve a barra de grafi te, difi cultando a passagem de elétrons, o

que resulta na diminuição da voltagem da pilha. Se a pilha for deixada

em repouso por um certo tempo, voltará a funcionar com sua voltagem

normal, porque o Zn2+ formado no ânodo reage com a amônia, formando

um cátion complexo [Zn(NH3)4]2+ que deixará a barra livre para passagem

de elétrons. Esta pilha não é recarregável, e quando todo o MnO2 for

convertido a Mn2O3, a pilha deixará de funcionar defi nitivamente.

A pilha alcalina é semelhante à de Leclanché, porém com rendi-

mento de cinco a oito vezes maior. A diferença principal é que sua mistura

eletrolítica contém hidróxido de potássio (KOH), uma base fortemente

alcalina que substitui o cloreto de amônio (NH4Cl) das pilhas comuns.

Portanto, não apresenta o problema de formação de amônia ao redor

da barra de grafi te.

EQUAÇÃO DE NERST

Você já sabe que a voltagem de uma pilha depende da natureza dos

reagentes e produtos e de suas concentrações. Assim, se montarmos uma

pilha de Daniell (Zn, Zn2+//Cu2+, Cu) a 298°K (25°C), com concentração

das soluções igual a 1 mol/L, teremos uma voltagem de 1,10V. Entretanto,

à medida que for sendo usada, haverá uma aumento da concentração de

Zn2+ e uma diminuição da concentração dos íons Cu2+. Logo, à medida que

a pilha funciona, verifi ca-se uma queda de voltagem. Quando a diferença

de potencial chega a 0, temos uma situação de equilíbrio e dizemos que

a pilha está descarregada. A equação deduzida por Walther Hermann

Observe que a chamada pilha seca não é totalmente seca, pois os eletrodos estão envoltos em uma pasta úmida contendo íons.

!

4+ 3+ AU

LA

16

Page 38: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

36 CEDERJ

Nernst (1864 -1941) nos permite calcular a variação do potencial de

uma pilha em determinado instante a partir das concentrações molares

das soluções eletrolíticas.

Para a reação da pilha de Daniell, teremos:

Zno + Cu2+ Zn2+ + Cuo

E a equação de Nernst:

∆E = ∆Eo – 0,059n

log [Zn2+][Cu2+]

onde,

∆E é a variação do potencial da pilha para determinada concentração;

∆Eo é a variação do potencial da pilha nas condições-padrão;

n é o número de mols de elétrons transferidos (n = 2 na pilha de

Daniell).

Vamos então calcular a variação de potencial (∆E) de uma pilha

de cobre e zinco após certo tempo de funcionamento, quando a concen-

tração de Zn2+ medida for igual a 0,8 mol/L, e a concentração de Cu2+

for igual a 0,2 mol/L.

1 mol de elétrons corresponde a 6,02 x 1023 elétrons.

!

Aplicando a equação de Nernst, teremos:

∆E = 1,10 – 0,0592

log 0,80,2

∆E = 1,10 – 0,0295 log 4

∆E = 1,10 – 0,0295. 0,602

∆E = 1,08 V

Isso mostra que realmente há uma diminuição progressiva

da voltagem da pilha com o passar do tempo, até a reação atingir o

equilíbrio, ou seja, até a pilha se descarregar.

Vamos praticar? Leia atentamente o enunciado das atividades.

Page 39: Elementos de quimica_geral_vol2

CEDERJ 37

4. Determine o potencial da célula galvânica representada a seguir:Zn | Zn2+ (1,50mol/L) || Fe2+(0,10 mol/L) || Fe.

5. Escreva as semi-reações que ocorrem no cátodo e no ânodo e a equação balanceada para as reações representadas a seguir:

a. Ni2+(aq) + Zn(s) Ni(s) + Zn2+(aq).

b. Ce4+(aq) + I –(aq) I2(s) + Ce3+(aq).

c. Cl2(g) + H2(g) HCl(aq).

d. Au+(aq) Au(s) + Au3+(aq).

6. O potencial-padrão da célula Cu(s) | Cu2+(aq) || Pb2+(aq) | Pb é 0,47V. Se o potencial-padrão de redução do eletrodo de cobre é + 0,34V, determine o valor do potencial-padrão de redução do eletrodo de chumbo.

7. A corrosão do ferro, processo que se inicia pela formação de íons Fe2+, pode ser evitada colocando-se o ferro em contato com um metal que se oxide mais facilmente. Dada a tabela abaixo de potenciais de redução,

Semi-reação E° (V)

Fe2+ + 2e– Fe –0,44

Mg2+ + 2e– Mg –2,37

Zn2+ + 2e– Zn –0,76

Pb2+ + 2e– Pb –0,13

Cu2+ + 2e– Cu +0,15

Pergunta-se:a. Quais dos metais acima protegem o ferro da corrosão?b. Escreva a reação do ferro e um dos outros metais mencionados, indicando o potencial da célula formada.

ATIVIDADES

CONCLUSÃO

Quando conhecemos os componentes de uma pilha, podemos

prever sua voltagem e com isso utilizá-la de maneira mais racional. O

conhecimento dos potenciais de redução dos metais nos permite proteger

diversos objetos da corrosão.

AU

LA

16

Page 40: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

38 CEDERJ

ATIVIDADES FINAIS

1. A fi gura a seguir representa uma pilha de mercúrio usada em relógios e

cronômetros.

As reações que ocorrem nesta pilha são:

Zn(s) = Zn2+(aq) + 2e–

HgO(s) + H2O(l) + 2e– = Hg(l) + 20H–(aq)

a. De qual eletrodo partem os elétrons quando a pilha está fornecendo energia?

Justifi que.

b. Cite duas substâncias cujas quantidades diminuem com o funcionamento da

pilha. Justifi que.

2. A pilha de lítio-iodo é muito utilizada em marca-passo cardíaco devido a sua

longa duração (de 5 a 8 anos) e por não apresentar nenhuma emissão de gás,

o que permite fechá-la hermeticamente. A reação que ocorre nesta pilha está

representada na equação a seguir:

2 Li + I2 2 LiI

Consultando a tabela de potenciais, determine a voltagem dessa pilha.

3. As pilhas alcalinas entraram em moda recentemente e são usadas em quase tudo

que exige trabalho contínuo e duradouro, desde relógios de pulso até calculadoras

eletrônicas. Uma das pilhas mais usadas é a de níquel-cádmio, que chega a ter uma

duração maior do que a da bateria de automóvel e ainda pode ser recarregada

isolante

pasta de KOH e água

óxido de mercúrio (II)

aço inox

zincometálico

Page 41: Elementos de quimica_geral_vol2

CEDERJ 39

Vamos relembrar as principais características de uma célula galvânica:

1. Célula galvânica ou pilha é qualquer dispositivo no qual uma reação de óxido-

redução espontânea produz corrente elétrica.

2. Cátodo é o eletrodo no qual ocorre a reação de redução. É o pólo positivo da

pilha.

3. Ânodo é o eletrodo no qual ocorre a reação de oxidação. É o pólo negativo

da pilha.

4. Notação de uma pilha: ânodo/ solução anódica // solução catódica / cátodo.

5. Por convenção, o potencial-padrão de eletrodo de hidrogênio é igual a zero.

6. A voltagem de uma célula pode ser calculada pela soma do E°redução do cátodo

com o E° oxidação de ânodo.

7. Quanto maior for o E°redução, mais fácil será a redução da espécie.

R E S U M O

várias vezes. Ela é constituída pelo metal cádmio, por hidróxido de níquel III e

uma pasta de hidróxido de potássio. Considerando que os potenciais-padrão de

redução são

Cd2+ (s) + 2 e– Cd 0 (s) Eo = – 0,4V

Ni3+ (s) + 1 e– Ni2+ (s) Eo = + 1,0V,

Indique o sentido do fl uxo de elétrons e a força eletromotriz da pilha níquel-

cádmio.

AU

LA

16

Page 42: Elementos de quimica_geral_vol2

Elementos de Química Geral | Pilhas

40 CEDERJ

Atividade 1

a. pólo positivo = ouro, devido ao seu alto potencial de redução, esse metal irá

sofrer redução frente ao magnésio, sendo assim o pólo positivo.

pólo negativo = magnésio

b. cátodo = ouro por sofrer redução

ânodo = magnésio por sofrer oxidação

c. do Mg para o Au ( o fl uxo de elétronas é sempre do ânodo para o cátodo numa

pilha)

d. + 1,50 + 2,375 = + 3,875 V

e. oxidação: Mgo Mg2+ + 2e–

redução: Au3+ + 3 e– Auo

global: 3 Mgo + 2 Au3+ 3 Mg2+ + 2 Auo

Atividade 2

a. + 2,46 V

b. não espontânea

c. + 0,11 V

d. + 0,163 V

Atividade 3

a. I2 + 2 Li 2I– + 2 Li+

b. fem = + 3,581 V

Atividade 4

∆E = ∆Eo – 0 059,

n log

Zn

Fe

2

2

+

+

⎡⎣ ⎤⎦⎡⎣ ⎤⎦

∆E = 0,32 – 0 059,

2 log

01 50 1

,,

∆E = 0,32 – 0,0295 log 15

∆E = 0,32 – 0,0295. 1,176

∆E = 0,285 V

RESPOSTAS

Page 43: Elementos de quimica_geral_vol2

CEDERJ 41

Atividade 5

a. Ni2+(aq) + 2e– Ni(s)

Zn(s) Zn2+(aq) +2e–

Ni2+(aq) + Zn(s) Ni(s) + Zn2+(aq)

b. I –(aq) + 2e– I2(s)

Ce4+(aq) Ce3+(aq) + e–

2 Ce4+(aq) + I –(aq) I2(s) + 2 Ce3+(aq)

c. Cl2(g) + + 2e– 2 Cl–(aq)

H2(g) 2 H+(aq) +2e–

Cl2(g) + H2(g) 2 HCl(aq)

d. Au+(aq) + e– Au(s)

Au+(aq) --> Au3+(aq) + 3 e–

4 Au+(aq) --> 3 Au(s) + Au3+(aq)

Atividade 6

+0,81 V

Atividade 7

a. Mg e Zn por apresentarem menor potencial de redução que o ferro.

b. Mgo + Fe2+ Mg2+ + Feo ∆E = + 1,93 V

ou

Zno + Fe2+ Zn2+ + Feo ∆E = +0,32 V

Atividades Finais

1. a. Do eletrodo de zinco para o de mercúrio, pois o zinco sofre oxidação.

b. Zno e HgO, pois são reagentes da reação.

2. + 3,581 V

3. Cdo Ni3+ fem = 1,4 V

AU

LA

16

Page 44: Elementos de quimica_geral_vol2
Page 45: Elementos de quimica_geral_vol2

17AU

LA

Meta da aula

Relações numéricas

Apresentar as grandezas químicas que permitem estabelecer relações numéricas necessárias

ao cálculo estequiométrico.

Ao fi nal desta aula, você deve ser capaz de:

• Calcular o número de mol, volume, massa, moléculas e átomos de substâncias diversas.

• Converter unidades dos campos micro e macroscópicos.

objetivos

Page 46: Elementos de quimica_geral_vol2

Elementos de Química Geral | Relações numéricas

44 CEDERJ

INTRODUÇÃO Quando vamos a um supermercado comprar ovos, pegamos uma embalagem

contendo 12 unidades. Mas, se quisermos comprar arroz, vamos pegar um

saco com um quilograma. Deste modo, a escolha da maneira pela qual vamos

medir o produto a ser adquirido vai depender de suas características, tornando

mais fácil sua aquisição.

Os químicos utilizam normalmente a massa para mensurar a quantidade

de materiais que serão usados como reagentes. Entretanto, às vezes, é

necessário determinar a quantidade de átomos ou moléculas em uma

amostra. Nesta aula, desenvolveremos conceitos e relações numéricas que

possibilitam estes cálculos.

QUANTIDADE DE MATÉRIA – MOL

No nosso dia-a-dia, quando vamos comprar ovos pedimos em

“dúzias”; folhas de papel, pedimos em “resmas”. Essas são as quantidades

de matéria úteis para seus fi ns. Em se tratando de átomos e moléculas,

a quantidade de matéria útil que pode ser manipulada é o mol.

Observe os desenhos a seguir:

1 mol de alúminio 1 mol de ferro 1 mol de cálcio

27g 56g 40g

6,0 x 1023 átomos 6,0 x 1023 átomos 6,0 x 1023 átomos

Figura 17.1: Representação de 1 mol de substâncias, em gramas.

Page 47: Elementos de quimica_geral_vol2

CEDERJ 45

Veja que as massas são diferentes, porém em cada porção

sempre encontramos 6,02 x 1023 átomos.

Assim:

12 é uma dúzia

100 é um cento

500 é uma resma

6,02 x 1023 é um mol

Qual é a massa de um mol?

Esta pergunta só pode ter uma resposta se especifi carmos a

substância à qual estamos nos referindo. A massa de um mol de átomos

de alumínio é 27g, e a de um mol de moléculas de H2O é 18g. Estas massas

correspondem à MA (massa atômica), ou à MM (massa molecular),

expressas em gramas.

Outro exemplo:

1 mol de ácido acético (C2H4O2) é:

MA do C = 12 , MA do H = 1 e MA do O = 16

MM = 2 x 12 + 4 x 1 + 2 x 16 = 60

Logo, 1 mol de ácido acético corresponde a 60 gramas. Podemos

então dizer que a massa molar do álcool etílico é 60g/mol.

Massa molar é a massa em gramas de 1 mol de

uma substância, e corresponde a 6,02 x 1023 unidades

dessa substância.

AU

LA

17

Page 48: Elementos de quimica_geral_vol2

Elementos de Química Geral | Relações numéricas

46 CEDERJ

Vamos determinar a massa de 2 mols de ácido sulfúrico (H2SO4):

MA do H = 1; MA do S = 32 e MA do O = 16

MM = 2 x 1 + 1 x 32 + 4 x 16 = 98

1 mol de ácido sulfúrico = 98 gramas

2 mols de ácido sulfúrico = 196 gramas

Vejamos agora o cálculo da massa de 0,25 mol de carbonato de

cálcio (CaCO3):

MA do Ca = 40; MA do C = 12 e MA do O = 16

MM = 1 x 40 + 1 x 12 + 3 x 16 = 100

1 mol de carbonato de cálcio = 100 gramas

0,25 mol de carbonato de cálcio = x gramas

x = 0,25 x 100 1

= 25 gramas

Para determinar o número de moléculas existente em 0,5 mol de

éter etílico (C4H10O), basta estabelecer a relação:

1 mol de éter etílico = 6,02 x 1023 moléculas

0,5 mol de éter etílico = x moléculas

x = 0,5 x 6,02 x 1023 1

= 3,01 x 1023 moléculas

1. Considere o óxido de cálcio (CaO) utilizado na caiação de muros. Para este óxido, determine:a. a quantidade de matéria presente em 0,25 mol de CaO;b. a massa, em gramas, correspondente a esta quantidade de matéria de CaO._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

Page 49: Elementos de quimica_geral_vol2

CEDERJ 47

2. O ferro é essencial à vida do homem porque está presente, sob a forma iônica, no glóbulo vermelho do sangue que transporta oxigênio para os tecidos. No sangue de Paulo, por exemplo, há 2,8 gramas de ferro. Determine o número aproximado de átomos de ferro presente no seu sangue.Obs: Se você tiver alguma dúvida para resolver estas atividades, dê uma olhada nos

exemplos anteriores.

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. O perigo oculto das embalagens

“Alumínio, chumbo e materiais plásticos, como o polipropileno, são

substâncias que estão sob suspeita de provocar intoxicações no

organismo humano.”

Determine o no de mol de átomos de chumbo presente em uma embalagem de creme dental que contenha 0,207g deste elemento:_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

4. A aspirina é amplamente usada na medicina como antipirético e analgésico. Calcule o número de moléculas de ácido acetilsalicílico (C9H8O4) existente em uma dose oral de 0,60g:_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. Uma concentração de 0,9g de glicose por litro de sangue é considerada normal em indivíduos adultos. A que valor corresponde esta concentração quando expressa em mol por litro? Dado: massa molar da glicose = 180g/mol._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

AU

LA

17

Page 50: Elementos de quimica_geral_vol2

Elementos de Química Geral | Relações numéricas

48 CEDERJ

VOLUME MOLAR

Você já deve ter observado que um balão de aniversário cheio,

colocado ao sol em um dia de verão, em pouco tempo irá estourar; pois,

com o aumento da temperatura, o volume que o gás ocupa também

irá aumentar. Como é possível então calcular o volume ocupado por

um mol?

Para respondermos a esta questão, precisamos agora conhecer a

temperatura e a pressão em que será medido o volume, pois esses fatores

infl uenciam em sua determinação.

Utilizando uma norma, os cientistas defi niram as Condições

Normais de Temperatura e Pressão (CNTP) como aquelas em que a

temperatura é fi xada a 0°C (273K) e a pressão vale 1 atm (760mmHg).

Vale lembrar que este valor corresponde à pressão atmosférica ao nível

do mar.

Nessas condições, o volume ocupado por um mol de qualquer gás,

considerando seu comportamento ideal, é de 22,4 litros.

Volume molar é o volume ocupado por um mol de gás

ideal, que nas CNTP é de 22,4 litros.

Vejamos como podemos calcular o volume, medido nas CNTP,

de um balão que contém 220g de gás carbônico.

Vamos inicialmente calcular o número total de mols contido

no balão:

1 mol de CO2 = 44g (1x12 + 2x16 = 44),

x mol = 220g

x = 220 x 1 44

= 5 mols de CO2

Page 51: Elementos de quimica_geral_vol2

CEDERJ 49

Como o volume não depende do tipo de substância, mas apenas da quantidade de matéria,

podemos relacionar diretamente:

1 mol de qualquer gás nas CNTP = 22,4 litros, logo

5 mols = x litros

x = 5 x 22,4 1

= 112

Temos, então, que o volume do balão é 112 L.

Em síntese:

1 mol – 6,02 x 1023 unidades – MA ou

MM em gramas – 22,4 L nas CNTP

6. Em um laboratório, uma substância gasosa foi isolada e purificada. Verificou-se experimentalmente que 70g desta substância ocupam 56 L nas CNTP. Indique a alternativa que apresenta a massa molar desse composto:

(a) 56g(b) 28g(c) 35g(d) 112g

ATIVIDADE

CONCLUSÃO

Conhecendo algumas relações numéricas, podemos relacionar

o nosso mundo macroscópico (massa e volume) com o mundo

microscópico (átomos e moléculas). Desta forma, na prática química

torna-se essencial o domínio dos cálculos que são estabelecidos pelas

relações numéricas.

AU

LA

17

Page 52: Elementos de quimica_geral_vol2

Elementos de Química Geral | Relações numéricas

50 CEDERJ

ATIVIDADES FINAIS

1. Quando bebemos água, normalmente a tomamos na forma de goles. Sabe-se que

1 gole de água ocupa em média o volume de 18 cm3, e que a densidade da água

é de 1g/cm3. Qual é o número de moléculas de água ingeridas em cada gole?

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

2. O carbonato de sódio, Na2CO3, é um produto industrial muito importante e

usado na manufatura do vidro. Quantos mols de Na2CO3 existem em 132 gramas

de carbonato de sódio?

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

µ

µ

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

4. Um extintor de incêndio contém cerca de 4,4 kg de gás carbônico. Determine

o volume de gás liberado na atmosfera, a 0oC de 1 atm:

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

Page 53: Elementos de quimica_geral_vol2

CEDERJ 51

As relações numéricas mais importantes – portanto necessárias para o nosso

próximo estudo de cálculo estequiométrico – são:

• A unidade de massa atômica (u) corresponde a 1/12 da massa do carbono – 12.

• A quantidade de substância que está relacionada ao número de partículas

existente na amostra é o mol.

• 1 mol de partículas possui 6,02 x 1023 partículas, e esse valor corresponde à

constante de Avogadro.

• Massa molar é a massa em gramas de 1 mol de uma substância, e corresponde

a 6,02 x 1023 unidades dessa substância.

• 1 mol de qualquer gás, nas CNTP, ocupa o volume de 22,4 litros.

R E S U M O

RESPOSTAS

Atividade 1

a. 1,505 x 1023 agregados iônicos

b. 14 gramas

Atividade 2

3,01 x 1022 átomos

Atividade 3

0,001 mol

AU

LA

17

Page 54: Elementos de quimica_geral_vol2

Elementos de Química Geral | Relações numéricas

52 CEDERJ

Atividade 4

2 x 1021 moléculas

Atividade 5

5 x 10–3 mol/L

Atividade 6

Para determinarmos a massa molar, precisamos relacioná-la ao volume molar nas

CNTP, ou seja, 22,4 litros. Assim temos:

70 g -------- 56 L

x g -------- 22,4 L x = 28 gramas

Resposta: alternativa b

Atividades Finais

1. 18 cm3 de água, com densidade 1g/cm3, correspondem a 18 gramas de água.

Como a massa molar da água é exatamente 18 gramas, teremos então que, em

cada gole uma pessoa ingere 1 mol de água. Portanto, são ingeridas 6,02 x 1023

moléculas de água por gole.

2. 1 mol de Na2CO3 apresenta massa molar de 106 gramas; então, 132 gramas

corresponderão a 1,24 mol.

3. 1,64 x 10–3 mol

4. 2240 litros

Page 55: Elementos de quimica_geral_vol2

18AU

LA

Meta da aulaAplicar as Leis Ponderais na solução

dos problemas.

Cálculos estequiométricos –Parte l: explorando o mol

Ao final desta aula, você deve ser capaz de:

• Reconhecer a importância de uma equação química balanceada para a solução de problemas que envolvem cálculos.

• Aplicar o conceito de mol, como princípio unificador, para resolução dos diferentes problemas que envolvem este-quiometria.

• Resolver situações-problema envolvendo as relações mol-mol, mol-massa, massa-massa.

Pré-requisito

Para que você encontre mais facilidade na compreensão desta aula, recorde o conceito de

mol visto na Aula 17.

objetivos

Page 56: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

54 CEDERJ CEDERJ 55

INTRODUÇÃO Na aula anterior, você foi apresentado às Relações Numéricas que o/a possi-

bilitam dizer a quantidade de uma espécie química presente em determinada

amostra. Utilizamos, para isso, diversas linguagens quantitativas aceitas pela

Química, tais como massa, número de mol, número de moléculas e número

de átomos. Nesta aula, trataremos das relações envolvendo DUAS OU MAIS

espécies químicas que participam de uma mesma reação. Usaremos o exemplo

de uma receita culinária para mostrar o que ocorre.

AS LEIS PONDERAIS

Uma receita completa informa os ingredientes necessários

(as espécies químicas) e as quantidades que serão usadas (a quantidade

de cada reagente), podendo fazê-lo de várias formas: número de colheres

ou xícaras, pitadas e número de unidades ou múltiplos, como dúzias

(as grandezas químicas de quantidade). A receita também apresenta o

modo de preparo (o passo a passo). Termina, então, definindo o número

de porções (a quantidade do que se quer produzir). Repare que há uma

completa analogia entre os procedimentos efetuados em uma cozinha e

os desenvolvidos em um laboratório.

Este procedimento é fundamentado pela Lei da Conservação da

Massa ou Lei de Lavoisier, já descrita na unidade anterior, que ressalta

a importância do balanceamento das equações químicas.

Vale ressaltar, também, que uma receita pode ser aumentada

ou diminuída no seu número de porções, bastando para isto que as

quantidades dos ingredientes sejam proporcionalmente aumentadas

ou diminuídas. O mesmo ocorre em uma reação química, quando

mudamos as quantidades das espécies envolvidas, sempre em proporções

idênticas; conseguimos, com isso, quantidades proporcionalmente iguais

de produtos.

A lei química que traduz tal proporcionalidade é a Lei das Propor-

ções Fixas e Definidas ou Lei de Proust, enunciada a seguir:

Os processos químicos ocorrem segundo proporções fixas e definidas de todos os seus componentes.

!

AU

LA

18

Page 57: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

54 CEDERJ CEDERJ 55

CÁLCULOS ESTEQUIOMÉTRICOS

Procuraremos, com os exemplos a seguir, mostrar o passo a passo

de vários procedimentos envolvendo Cálculos Estequiométricos. A inten-

ção é ilustrar todas as possíveis situações nas quais estejam envolvidas as

grandezas quantitativas da Química. Vejamos alguns exemplos:

Estequiometria envolvendo mol-mol

Exemplo 1

A água oxigenada (H2O2) é usada para a limpeza de ferimentos,

pois sua decomposição produz gás oxigênio, um importante bactericida.

Veja a equação balanceada que representa a decomposição da água

oxigenada.

2 H2O2 2 H2O + O2

Qual seria o número de mol de gás oxigênio produzido quando

6 mols de água oxigenada são totalmente decompostos?

Para chegarmos ao resultado, devemos, como 1o passo, obter a

proporção molar entre as espécies O2 e H2O2, usando, para tal objetivo,

os coeficientes das espécies anteriormente definidas. Temos então:

2 mol (H2O2) –––– 1 mol (O2) (proporção molar entre água

oxigenada e gás oxigênio)

O 2o passo é completar a relação de proporcionalidade,

posicionando sob cada espécie o valor dado no enunciado e a incógnita

X, que representa o que se quer obter, como segue:

2 mol (H2O2) –––––––– 1 mol (O2)

6 mol (H2O2) –––––––– X mol (O2)

Observe que as colunas do O2 e do H2O2 apresentam, cada uma,

unidades compatíveis, permitindo, assim, que cheguemos à resposta:

X = 6 x 1 / 2 = 3 mol de O2

AU

LA

18

Page 58: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

56 CEDERJ CEDERJ 57

Você acabou de ver um cálculo básico cuja fi nalidade foi a de obter

o número de mol de O2 produzido na reação de decomposição da água

oxigenada. Para efetuar este cálculo, utilizamos a Lei de Proust, que nos

diz que as substâncias, em uma reação química, mantêm uma relação de

proporcionalidade. Isto é, triplicando a quantidade de água oxigenada

(H2O2), vamos produzir o triplo de gás oxigênio (O2).

Vamos ver se você entendeu. Agora, você irá percorrer o caminho

contrário ao exemplo anterior para resolver a Atividade 1. Desta forma,

você poderá ver se realmente compreendeu este caso.

1. Quando aquecemos carbonato de alumínio, presente na composição dos solos calcáreos e na areia, ocorre sua decomposição térmica, representada pela seguinte equação química:

Al2(CO3)3 Al2O3 + 3 CO2

Determine o no de mol de carbonato de alumínio decomposto, de modo a obtermos 15 mol de gás carbônico.

ATIVIDADE

A seguir, explicaremos casos nos quais não ocorre coerência nas

unidades usadas pelo enunciado das questões. Os casos a seguir mos-

trarão algumas possíveis situações em que a conversão anteriormente

citada é fundamental à solução das questões.

Estequiometria envolvendo mol-massa

Exemplo 2

Um químico junta, em um mesmo recipiente, 1 mol de alumínio

em pó e ácido clorídrico sufi ciente para ocorrer uma reação completa.

A seguinte equação representa a reação ocorrida:

2 Al + 6 HCl à 2 AlCl3 + 3 H2

Vejamos como isto ocorre, a partir da seguinte questão: qual é a

massa, em gramas, de gás hidrogênio produzido?

Para chegar ao resultado, temos de, como 1o passo, obter a

proporção molar entre as espécies:

2 mol (Al) –––––––– 3 mol (H2)

AU

LA

18

Page 59: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

56 CEDERJ CEDERJ 57

Completando a proporção (2º passo) com as informações do

enunciado, temos:

2 mol (Al) –––––––– 3 mol (H2)

1 mol (Al) –––––––– X g (H2)

Repare que na coluna do gás hidrogênio há diferentes unidades

(no de mol e massa em gramas), o que nos leva a converter 3 mol de H2

para o valor correspondente em massa, como se segue:

2 mol (Al) –––––––– 3 mol (H2) x 2g (massa molar do H2)

1 mol (Al) –––––––– X g (H2)

X = 1 x 6 / 2 = 3g de H2

Este é um exemplo de casos em que as quantidades de reagentes

e/ou produtos não são expressas nas mesmas unidades, no enunciado do

problema. Que tal uma atividade para você verifi car se entendeu como

se desenvolvem questões destes tipos?

2. A equação balanceada da reação entre sulfato de amônio e hidróxido de níquel III está representada a seguir:

3 (NH4)2SO4 + 2 Ni(OH)3 à Ni2(SO4)3 + 6 NH3 + 6 H2O

Com base nisto, determine a massa de NH3 produzida quando são consumidos 6 mol de (NH4)2SO4.

3. Observe a equação da reação entre carbonato de amônio e cloreto de níquel III:

3 (NH4)2CO3 + 2NiCl3 à Ni2(CO3)3 + 6NH4Cl

Calcule a massa de Ni2(CO3)3 produzida quando são consumidos 4 mol de NiCl3.

ATIVIDADES

AU

LA

18

Page 60: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

58 CEDERJ CEDERJ 59

Estequiometria envolvendo massa-massa

Exemplo 3

Metais fortemente eletropositivos têm a capacidade de deslocar os

átomos de hidrogênio ionizáveis dos ácidos, como mostra o modelo:

Me + HX à MX + 1⁄2 H2

O gás hidrogênio produzido se manifesta em forma de bolhas,

que possibilitam confirmar a ocorrência da reação. Ao observarmos

o magnésio, vemos que uma certa massa de magnésio consome

completamente 24,5g de ácido sulfúrico(H2SO4), conforme a equação

a seguir:

Mg + H2SO4 à MgSO4 + H2

A partir do exemplo proposto, vejamos a solução, passo a passo,

para cada caso apresentado:

a. Determinação da massa do metal utilizado:

SOLUÇÃO: 1o passo – 1 mol (Mg) ––––––– 1 mol (H2SO4)

2o passo – 1 mol (Mg) ––––––– 1 mol (H2SO4)

Xg (Mg) ––––––– 24,5g (H2SO4)

Convertendo as duas colunas, temos:

(massa molar do Mg) 24g x 1mol (Mg) ––––––– 1 mol x 98g (massa

molar do H2SO4)

Xg (Mg) ––––––– 24,5g (H2SO4)

X = 24 x 24,5 / 98 = 6g de Mg

b. Cálculo do número de mol do produto iônico formado:

SOLUÇÃO: 1o passo – 1 mol (H2SO4) ––––––– 1 mol (MgSO4)

2o passo – 1 mol (H2SO4) ––––––– 1 mol (MgSO4)

24,5g (H2SO4) ––––––– X mol (MgSO4)

Convertendo apenas a coluna do H2SO4, vemos:

(massa molar do H2SO4) 98g x 1mol (H2SO4) ––––––– 1 mol (MgSO4)

24,5g (H2SO4) ––––––– X mol (MgSO4)

X = 1 x 24,5 / 98 = 0,25 mol (MgSO4)

AU

LA

18

Page 61: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

58 CEDERJ CEDERJ 59

4. Analise a reação a seguir:H2SO4 + 2 NH3 à (NH4)2SO4

Calcule a massa de sulfato de amônio obtida quando reagimos 68g de amônia com excesso de ácido sulfúrico.

5. Amônia gasosa pode ser produzida pela seguinte reação:CaO + 2 NH4Cl à 2 NH3 + CaCl2 + H2OSe 168g de óxido de cálcio reagirem segundo a equação, determine a quantidade máxima de amônia produzida.

ATIVIDADES

ATIVIDADES FINAIS

1. Pelo processo de fotossíntese, as plantas convertem CO2 e H2O em açúcar,

segundo a reação:

11 H2O + 12 CO2 à C12H22O11 + 12 O2

Quantos gramas, aproximadamente, de C12H22O11 serão produzidos pela conversão

de 220g de CO2, em presença de suprimento adequado de água?

2. Na poluição atmosférica, um dos principais irritantes para os olhos é o

formaldeído, CH2O, o qual é formado pela reação do ozônio (O3) com o etileno

(C2H4) :

O3(g) + C2H4(g) à 2 CH2O(g) + O(g)

Num ambiente com excesso de ozônio, quantos mols de etileno são necessários

para formar 10 mols de formaldeído?

3. Um ser humano adulto sedentário libera, ao respirar, em média, 0,880 mol de

CO2 por hora. A massa de CO2 pode ser calculada, medindo-se a quantidade de

BaCO3(s) produzida pela reação:

Ba(OH)2(aq) + CO2(g) à BaCO3(s) + H2O(l)

Suponha que a liberação de CO2 seja uniforme nos períodos de sono e de vigília,

determine a massa de carbonato de bário que seria formada pela reação do

hidróxido de bário com o CO2, produzido durante 30 minutos.

AU

LA

18

Page 62: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

60 CEDERJ CEDERJ 61

CONCLUSÃO

Nesta aula, nós começamos a prever a quantidade de matéria neces-

sária para que uma reação ocorra e também a quantidade de matéria que

poderá ser produzida em uma reação química.

Atividade 1

5 mols

Atividade 2

Na resolução desta atividade é necessário fazer a conversão de número de mol

de NH3 para massa. Resposta: 204 g

Atividade 3

594,8 g

• A quantidade de matéria se mantém constante em uma reação química.

• As substâncias reagem sempre em uma mesma proporção.

• A proporção em que as substâncias reagem é obtida pelos coeficientes numéricos

expressos na equação química balanceada.

• O estudo quantitativo das reações químicas pode envolver grandezas diferentes,

sendo necessário o uso de fatores de conversão.

R E S U M O

RESPOSTAS

INFORMAÇÃO SOBRE A PRÓXIMA AULA

Na nossa próxima aula, vamos trabalhar com substâncias em fase gasosa e seus

respectivos volumes.

AU

LA

18

Page 63: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte l: explorando o mol

60 CEDERJ CEDERJ 61

Atividade 4

Primeiro você deve calcular a massa molar do (NH4)2SO4 que corresponde a 132

gramas. Relacione a massa de 2 mol de NH3 (2x17g = 34g) com a massa molar do

sulfato de amônio. 34 g –––– 132 g

68g –––– x x = 264 g

Atividade 5

102 g

Atividades Finais

1. 142,5g

2. 5 mols

3. Se a respiração libera 0,880 mol de CO2 por hora, irá liberar a metade (0,440

mol) em 30 minutos. Daí temos:

1mol de CO2 –––– 197g (MM do BaCO3)

0,440 mol –––– x x = 86,680 g

AU

LA

18

Page 64: Elementos de quimica_geral_vol2
Page 65: Elementos de quimica_geral_vol2

Pré-requisitos

Para você atingir todos os objetivos desta aula, é necessário que tenha dominado os

conteúdos das Aulas 17 e 18.

objetivos

Metas da aula

Aplicar as Leis Ponderais e Volumétricas na solução dos problemas.

Reconhecer a importância de uma equação química balanceada para a solução de

problemas que envolvem cálculos.

Ao fi nal desta aula, você deve ser capaz de:

• Aplicar a equação geral dos gases na resolução de situações-problema, utilizando as unidades: atmosfera, torr, litro, grau Celsius e Kelvin.

• Resolver problemas simples de cálculos envolvendo as relações mol e volume, em diferentes temperaturas e pressões.

• Resolver problemas simples de cálculos envolvendo as relações massa e volume, em diferentes temperaturas e pressões.

Cálculos estequiométricos – Parte ll: reação com gases19A

UL

A

Page 66: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte ll: reação com gases

64 C E D E R J

Muitas reações ocorrem com formação de substâncias no estado gasoso.

Portanto, precisamos abordar o cálculo estequiométrico envolvendo gases.

Como o volume de um gás varia de forma signifi cativa quando a temperatura

e/ou a pressão são alteradas, é fundamental que saibamos a temperatura e a

pressão em que os gases se encontram.

ESTEQUIOMETRIA ENVOLVENDO MOL-VOLUME NAS CNTP

Primeiramente vamos trabalhar com gases medidos a uma

temperatura de 273 K e pressão de 1atm, ou seja, vamos trabalhar nas

CNTP (Condições Normais de Temperatura e Pressão). Como vimos na Aula

17, o volume molar de um gás, considerando seu comportamento ideal, é

de 22,4 litros. Que tal começarmos a aula resolvendo um exercício?

Exemplo 1

Em uma churrasqueira, são colocados 20 mols de carvão(C), que

queimam segundo a reação representada:

C + O2 → CO2

Considerando a combustão completa (queima total), determine

o volume de CO2 produzido, consoante as CNTP.

1º passo – 1 mol (C) 1 mol (CO2)

2º passo – 1 mol (C) 1 mol (CO2)

20 mol (C) X litros(CO2)

Repare que a segunda coluna apresenta uma unidade distinta. Por

isso, é necessário convertê-la, ou seja, passar de n° de mol para volume

em litros. Temos, então:

1 mol (C) 1 mol (CO2) x 22,4L (volume molar, nas CNTP)

20 mol (C) X litros (CO2)

X = 20 x 22,4 = 448L de CO2.

Verifi que se você está compreendendo como converter as unidades,

ao realizar a atividade a seguir.

INTRODUÇÃO

Page 67: Elementos de quimica_geral_vol2

AU

LA 1

9

C E D E R J 65

1. O gás cianídrico (HCN) é um gás tóxico que mata por asfi xia. É conhecido o uso desta substância em câmara de gás. Uma reação de obtenção desse gás está representada a seguir:

H2SO4 + 2 KCN → K2SO4 + 2 HCN

Partindo-se de 0,5 mol de ácido sulfúrico, calcule o volume obtido de gás cianídrico nas CNTP: ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Na reação de síntese da amônia, temos a seguinte equação:

N2(g) + 3 H2(g) → 2 NH3(g)

Que volume de gás hidrogênio, medido nas CNTP, é necessário para a produção de 0,25 mol de amônia, mantidas fi xas a temperatura e a pressão?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Quando se explode o trinitrato de glicerina (dinamite), cuja fórmula molecular é C3H5(NO3)3, só resultam produtos gasosos, segundo a equação não balanceada a seguir:

2 C3H5(NO3)3(s) (g) + 3 N (g)+ 1/2 O2(g) + 5 H2O(g)

Se explodíssemos 227g de dinamite, recolhêssemos os gases produzidos e medíssemos seus volumes, nas CNTP, qual seria o volume total encontrado, considerando a aditividade destes volumes? Dado: MM (dinamite) = 227uObs.: Lembre-se de primeiro fazer a relação com número de mol e depois entrar com a variável volume.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

Page 68: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte ll: reação com gases

66 C E D E R J

ESTEQUIOMETRIA ENVOLVENDO MOL-VOLUME FORA DAS CNTP

Para situações em que a temperatura é diferente de 273 K e/ ou a

pressão é diferente de 1atm (ou 760 torr), iremos calcular o volume de

uma gás baseado nas leis a seguir:

Unidades utilizadas para temperatura: A unidade SI (Sistema Internacional) de temperatura é o Kelvin (K). Esta unidade deve ser utilizada sempre que tivermos expressões nas quais a temperatura entra diretamente nos cálculos. No caso da escala Kelvin, o zero é denominado zero absoluto e corresponde à temperatura mais baixa que poderia ser atingida. Ela equivale a –273,15°C (ou, com uma aproximação razoável, – 273 graus) na escala Celsius. Os termômetros nunca são graduados na escala Kelvin. Assim, quando queremos exprimir o resultado de uma medida de temperatura em Kelvin, temos de efetuar uma conversão simples entre a temperatura Kelvin K e a temperatura Celsius (°C): K = °C + 273.

Unidades utilizadas para pressão: De acordo com o Sistema Internacional, a unidade de pressão é o pascal, cujo símbolo é Pa. A pressão correspondente a 1 Pa é muito pequena; equivale, aproximadamente, à pressão exercida pelo peso de um limão sobre uma área de 1 m2. A pressão atmosférica média ao nível do mar é chamada pressão atmosférica padrão, e é abreviada como atm. Relacionando essas duas unidades, temos que 1atm = 101325 Pa .Para trabalhar em laboratório, a unidade atm é muito alta e os químicos geralmente utilizam uma unidade menor, o torr. O torr (mmHg) é definido como 1/760 de 1atm: 1atm = 760 torr.

a) Lei de Gay-Lussac: “Sob pressão constante, os volumes dos

gases são diretamente proporcionais às temperaturas absolutas”.

V α T

b) Lei de Boyle-Mariotte: “Sob temperatura constante, os volumes

dos gases são inversamente proporcionais às pressões que suportam”.

V α 1P

Associando as Leis de Gay-Lussac e Boyle-Mariotte, temos

a equação dos gases perfeitos, em que o volume do gás varia

simultaneamente com a temperatura e a pressão.

Lei do gás ideal PV = nRT

P = pressão da experiência (atm ou Torr).

V = volume em litros.

n = número de mols do gás (massa do gás em gramas / massa

molar do gás).

Page 69: Elementos de quimica_geral_vol2

AU

LA 1

9

C E D E R J 67

R = constante dos gases que assume os valores de 0,082

atm.LK –1mol–1(quando trabalhamos com pressão em atm), ou 62,3

torr.L K–1mol–1(quando trabalhamos com pressão em torr).

T = temperatura em Kelvin (lembrando que a temperatura em

Kelvin K = 273+°C).

Vamos, primeiramente, aplicar a equação para gás ideal fora de

uma reação química:

Exemplo 2

Qual é a pressão dentro de um tubo de imagem de televisão,

sabendo que esse tubo tem um volume de 5,0 litros e contém 0,001 mg

de nitrogênio gasoso sob a temperatura de 23°C?

Organizando os dados, teremos:

V = 5,0 L

A massa molar do N2 = 28g.mol–1

Massa do gás = 0,01 mg ou 1x 10–5 gramas, logo n = 1 x 10–5

28R = 0,082 (calcularemos a pressão em atm)

T= 273 + 23 = 296 K

Aplicando a equação para gás ideal PV = nRT, teremos:

P.5 = 1x10–5

280,082 . 296 ⇒ P = 1,7 x 10–6 atm

Vamos agora aplicar a equação em um exercício de cálculo

estequiométrico:

Exemplo 3

As máscaras de oxigênio utilizadas em aviões contêm superóxido

de potássio que, em contato com o CO2 exalado pela pessoa, libera gás

oxigênio, segundo a reação:

4 KO2(s) + 2 CO2(g) → 2 K2CO3(s) + 3 O2(g)

Calcule o volume liberado de O2 a 27°C e 0,82 atm, quando 0,4

mol de KO2 reage com gás carbônico:

4 mol (KO2) 3 mol (O2)

0,4 mol (KO2) x mol

x = 0,3 mol de O2

Page 70: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte ll: reação com gases

68 C E D E R J

4. Um metal reagiu com excesso de solução de ácido clorídrico em uma aparelhagem adequada, produzindo gás hidrogênio, segundo a reação descrita a seguir:

Zn(s) + 2 HCl(aq) → ZnCl2(aq) + H2(g)

Este gás, depois de seco, ocupou um volume de 300 mL sob pressão de 0,9 atm e 300K. Determine o número de mols do metal consumido nessa reação: ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

5. O ar atmosférico é uma mistura de gases contendo cerca de 20% em volume de O2. Qual o volume de ar, em litros, que deve ser utilizado para combustão completa de 10 mols de monóxido de carbono, a 25°C e 760 torr?Equação: CO(g) + ½ O2(g) → CO2(g) ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

Aplicando a equação para gás ideal PV = nRT, em que T = 27 +

273 = 300 K, chegamos a:

0,82 V = 0,3. 0,082. 300 ⇒ V = 9 litros.

ESTEQUIOMETRIA ENVOLVENDO MASSA-VOLUME

Vejamos situações em que teremos de fazer conversões de mol

para massa e mol para volume.

Exemplo 4

Considerando a decomposição térmica de 604g de bromato de

sódio, pede-se o volume de gás oxigênio liberado a 27ºC e 1,5 atm.

Page 71: Elementos de quimica_geral_vol2

AU

LA 1

9

C E D E R J 69

2 NaBrO3 → 2 NaBr + 3 O2

1º passo – 2mol (NaBrO3) 3 mol (O2)

2º passo – 2 mol (NaBrO3) 3 mol (O2)

604g (Mg) X mol (O2)

Repare que a primeira coluna apresenta unidades distintas. Por

isso, é necessário convertê-la, ou seja, passar de nº de mol para massa

em gramas. Temos, então:

(massa molar do NaBrO3) 151g x 2mol (NaBrO3) 3 mol (O2)

604 g (NaBrO3) X mol (O2)

X = 3x 604 / 302 = 6 mol(O2)

Aplicando a equação dos gases ideais, teremos PV = nRT, em que

T = 27 + 273 = 300 K, 1,5 V = 6. 0,082. 300 ⇒ V = 98,4 litros.

6. A decomposição térmica do carbonato de amônio ocorre segundo a reação não balanceada a seguir:

(NH4)2CO3(s) → NH3(g) + CO2(g) + H2O(g)

Considerando 1 atm e 27ºC, determine o volume de amônia produzido durante a decomposição de 192g deste sal:________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADE

CONCLUSÃO

Nesta aula, nós trabalhamos com substâncias em estado gasoso,

calculando volumes em diversas condições de temperatura e pressão.

Page 72: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte ll: reação com gases

70 C E D E R J

ATIVIDADES FINAIS

1. Determine a massa de ácido clorídrico necessário para produzir 82 litros, medidos

a 10°C e 760 torr de pressão, ao reagir com magnésio em pó:

Equação: Mg(s) + 2 HCl(aq) → MgCl2(aq) + H2(g)

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

2. A produção de alumínio, a partir do Al2O3 presente na bauxita, pode ser descrita

pela reação não balanceada: Al2O3 + C → Al + CO:

a. Faça o balanceamento desta equação.

b. Determine a massa de alumínio que será obtida a partir de 510 toneladas de

Al2O3. Dado: 1 tonelada = 106 gramas.

c. Determine o volume de CO, um gás muito tóxico, que será produzido a partir

de 10 mols de Al2O3 nas CNTP:

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

Page 73: Elementos de quimica_geral_vol2

AU

LA 1

9

C E D E R J 71

• O volume de 1 mol de qualquer substância nas CNTP corresponde a 22,4 litros.

• Quando trabalhamos com temperatura e pressão fora das CNTP, faz-se necessário

utilizar a Lei dos Gases Ideais: PV = nRT.

• A proporção em que as substâncias reagem é obtida pelos coefi cientes numéricos

expressos na equação química balanceada.

• O estudo quantitativo das reações químicas pode envolver grandezas diferentes,

sendo necessário o uso de fatores de conversão.

R E S U M O

INFORMAÇÃO SOBRE A PRÓXIMA AULA

Na nossa próxima aula, vamos trabalhar com reações com rendimento diferente

do ideal, ou seja, rendimentos diferentes de 100%.

Atividade 1

A relação estequiométrica indica que para 1 mol de H2SO4 são obtidos 2 mols de

HCN. Logo, para 0,5 mol de H2SO4, será produzido 1 mol de HCN. Nas CNTP, o

volume de 1 mol corresponde a 22,4 litros. Resposta V = 22,4 litros.

Atividade 2

8,4 litros

Atividade 3

324,8 litros

RESPOSTAS

Page 74: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte ll: reação com gases

72 C E D E R J

Atividade 4

Vamos inicialmente determinar o número de mols de gás hidrogênio (H2) produzido

na reação, aplicando para isso a equação para gás ideal PV = nRT.

0,9 x 0,3 = n 0,082 x 300, temos que n = 0,01 mol de H2. Como a relação

estequiométrica entre o metal (Zn) e o gás H2 é de 1:1, o número de mols consumido

de Zn será também igual a 0,01.

Resposta 0,01 mol

Atividade 5

610,8 litros

Atividade 6

98,4 litros

Atividades Finais

1. 257,69 gramas

2. a. Al2O3 + 3 C → 2 Al + 3CO

b. 270 toneladas

c. 672 L

Page 75: Elementos de quimica_geral_vol2

20AU

LA

Meta da aula

Cálculos estequiométricos –Parte III: o rendimento

real da reação

Aplicar as Leis Ponderais e Volumétricas na solução dos problemas de reações

de diferentes rendimentos.

Ao fi nal desta aula, você deve ser capaz de:

• Balancear equações químicas para a solução de problemas que envolvem cálculos.

• Resolver problemas de cálculos envolvendo reações de rendimento diferente de 100%.

Pré-requisito

Para você atingir todos os objetivos desta aula, é necessário que tenha dominado os conteúdos

das Aulas 17, 18 e 19.

objetivos

Page 76: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte III: o rendimento real da reação

74 CEDERJ

INTRODUÇÃO Até este ponto, estamos encarando as reações químicas como processos em

que as massas dos reagentes – desde que misturadas na proporção correta

– transformam-se totalmente em produtos. Na prática, é muito pouco provável

que isso ocorra, pois, muitas vezes, uma parte de um dos reagentes (ou de

ambos os reagentes) é consumida em reações paralelas. Nesta aula, iremos

trabalhar com situações em que o rendimento de uma reação não é total.

RENDIMENTO

Em toda operação química, há certa perda na separação e na

purifi cação dos produtos. Quando a massa total dos reagentes, em

quantidades estequiométricas, é convertida em produtos, dizemos que

a reação teve 100% de rendimento. Este valor é o rendimento teórico,

mas, em geral, o que observamos na prática é um rendimento menor

que o teórico, chamado rendimento real da reação.

Vamos estudar juntos alguns exemplos de reações com rendimento

diferente de 100%:

Exemplo 1

Uma usina termoelétrica queima 24 toneladas de carvão por dia.

Considerando um rendimento de 80% para a reação

C(s) + O2(g) → CO2(g),

calcule o volume de CO2 produzido em litros nas CNTP:

Obs.: Lembre-se de que 1 tonelada = 106 gramas. Logo 24 toneladas = 24x106

gramas.

a) Primeiro vamos calcular o volume produzido se o rendimento

fosse de 100%:

1 mol (C) 1 mol (CO2)

24x106 g X litros

Convertendo as unidades para termos uma coerência no nosso

cálculo, teremos:

Page 77: Elementos de quimica_geral_vol2

CEDERJ 75

(massa molar do C) 12x1 mol (C) 1 mol (CO2)x 22,4 L (volume

molar nas CNTP)

24x106 g X litros

Resolvendo, teremos

b) Este volume corresponde a um rendimento de 100%. Mas, pelo

enunciado do problema, o rendimento alcançado foi de apenas 80%.

Podemos calcular qual seria o volume para um rendimento de 80% da

seguinte maneira:

4,48 x 107100%

X 80% Logo, o volume obtido será 3,58 x 107 litros.

Exemplo 2

O etanol (C2H5OH) pode ser produzido por fermentação da

glicose(C6H12O6), conforme a reação

C6H12O6 2 C2H5OH + 2 CO2

Se 360g de glicose produzem 92g de etanol, qual é o rendimento

deste processo?

a) Vamos primeiramente calcular a massa do produto (no caso,

o etanol) para um rendimento de 100%. Assim sendo, teríamos:

1 mol (C6H12O6 ) 2 mol (C2H5OH)

360g (C6H12O6 ) X g (C2H5OH)

Repare que as duas colunas apresentam unidades distintas.

Por isso, é necessário convertê-las, ou seja, passar de nº de mol para

massa em gramas.

(massa molar C6H12O6)180g x 1 mol 2 mol x 46g (massa

molar C2H5OH)

360g (C6H12O6) X g (C2H5OH)

24x106 x 22,412

= 4,48 x 107 litros.

FERMENTAÇÃO

360 x 92180

= 184 gramasX =

AU

LA

20

Page 78: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte III: o rendimento real da reação

76 CEDERJ

b) Temos então que a massa de etanol produzida seria de 184

gramas para um rendimento de 100%. Como a massa real foi de 92

gramas, podemos calcular o rendimento desta reação:

184 g 100%

92g X % X = 50%

1. O sulfeto de cádmio (CdS) é um pigmento amarelo que pode ser obtido segundo a reação

Na2S + Cd(NO3)2 → CdS + 2 NaNO3

Supondo um rendimento de 75%, calcule a massa de CdS obtida pela reação de 39g de Na2S._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. O tetracloreto de carbono (CCl4) foi, por algum tempo, usado em extintores de incêndio e como fl uido de lavagem a seco. Entretanto, reage com o ar a altas temperaturas para formar fosgênio (COCl2), gás venenoso que já foi usado em tempos de guerra. Este gás é venenoso porque, quando inalado, reage com a água dos pulmões para produzir ácido clorídrico (HCl), que causa graves danos pulmonares, levando à morte. A equação química deste processo é

COCl2 (g) + H2O(l) → CO2(g) + 2HCl(aq)

Se uma pessoa inalar 0,990mg de fosgênio, determine:a. o nº de mol do composto inalado;b. a massa, em gramas, de ácido clorídrico formada nos pulmões, admitindo 50% de efi cácia._______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

Page 79: Elementos de quimica_geral_vol2

CEDERJ 77

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

3. Qual a massa de gás carbônico obtida na decomposição térmica do CaCO3, sabendo que 90 gramas deste composto sofreram reação com um rendimento de 80%?________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

CONCLUSÃO

Nesta aula, pudemos prever a quantidade de matéria necessária

para que uma reação ocorra. Ainda, a quantidade de matéria que poderá

ser produzida em uma reação química para casos de rendimento diferente

de 100%.

ATIVIDADES FINAIS

1. 65 kg de zinco em pó foram atacados por ácido clorídrico, produzindo cloreto

de zinco e liberando gás hidrogênio, conforme a reação

Zn(s) + 2 HCl(aq) ZnCl2(aq) + H2(g)

Determine o rendimento desta reação, sabendo que a massa de hidrogênio obtida

foi de 1,5 kg:

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

AU

LA

20

Page 80: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte III: o rendimento real da reação

78 CEDERJ

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

2. A obtenção do mercúrio, cujo minério mais importante é o cinábrio (HgS),

pode ser resumida pela equação HgS + O2 Hg + SO2. Determine a massa de

HgS necessária para produção de 9,5 gramas de mercúrio em um processo de

rendimento igual a 60%.

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

• As reações, normalmente, não se processam com rendimento de 100%.

• No estudo quantitativo das reações, faz-se necessário aplicar o rendimento real

para determinarmos a quantidade de produto formada.

• A aplicação do rendimento real é feita através da correção do cálculo realizado

para um rendimento teórico.

R E S U M O

INFORMAÇÃO SOBRE A PRÓXIMA AULA

Na nossa próxima aula, vamos trabalhar com reagentes que não se encontram

100% puros e veremos como eliminar as impurezas presentes.

Page 81: Elementos de quimica_geral_vol2

CEDERJ 79

Atividade 1

1. Calculando a massa de CdS para o rendimento teórico (100%), acharemos 72

gramas. Aplicando o rendimento de 75%, chegaremos à resposta do problema:

54 gramas de CdS.

Atividade 2

a. 10–5 mol

b. 0,365 mg

Atividade 3

A equação que corresponde a esse processo é CaCO3 CaO + CO2. Calculando

a massa de CO2 para o rendimento teórico (100%), acharemos 39,6 gramas.

Aplicando o rendimento de 80%, chegaremos à resposta do problema: 31,68

gramas de CO2.

Atividades Finais

1. 75%

2. Vamos calcular a massa de Hg que seria obtida se o rendimento fosse de 100%:

9,5 g ---- 60%

X g ----- 100% X = 15,83 gramas

Aplicando a relação estequiométrica, teremos:

(HgS)232g x1 mol HgS -----1 mol x 200g (Hg)

Xg de HgS------15,83 g(Hg)

Resposta. massa de HgS = 18,36 gramas

RESPOSTAS

AU

LA

20

Page 82: Elementos de quimica_geral_vol2
Page 83: Elementos de quimica_geral_vol2

21AU

LA

Meta da aula

Cálculos estequiométricos – Parte IV: trabalhando

com impurezas

Aplicar as Leis Ponderais e Volumétricas na solução de problemas envolvendo substâncias impuras.

Ao fi nal desta aula, você deve ser capaz de:

• Balancear equações químicas para a solução de problemas que envolvem cálculos.

• Calcular porcentagem de impureza e pureza.

objetivos

Page 84: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte IV: trabalhando com impurezas

82 CEDERJ

INTRODUÇÃO Em todos os cálculos estequiométricos que fi zemos até esta aula, trabalhamos

admitindo que as substâncias fossem puras. Na prática, raramente isso acontece,

apenas em alguns tipos de análises químicas ou em produção farmacêutica. Por

isso, é importante sabermos trabalhar com substâncias que não se encontram

100% puras.

PUREZA

Em geral, trabalhamos com substâncias que apresentam uma

certa porcentagem de impurezas. Tomemos como exemplo a pirita

(FeS2), minério que permite a obtenção de ferro e de gás sulfídrico.

A pirita usada em indústrias apresenta 92% de pureza. O restante (8%)

é considerado impureza, como pequenas quantidades de níquel, cobalto,

ouro e cobre.

A pirita apresenta coloração amarelada. É conhecida como “ouro dos tolos”, devido à sua semelhança com o ouro que, por diversas vezes, enganou compradores inexperientes.

Quando realizamos um cálculo estequiométrico envolvendo um

material impuro, temos de descontar da massa fornecida no problema

a parcela relativa às impurezas, antes de efetuarmos nosso cálculo. Isto

porque a relação estequiométrica só é obedecida para um material puro.

Vamos agora estudar um exemplo de reação envolvendo substâncias

impuras.

Exemplo 1

100g de carbonato de cálcio, com 80% de pureza, são tratados

com ácido clorídrico. O gás obtido é recolhido e pesado. Admitindo

que as impurezas não reajam com o ácido, determine a massa de gás

carbônico produzido, com base na equação:

CaCO3(s) CaO(s) + CO2(g)

a. Primeiramente, vamos calcular a massa real de carbonato de cálcio,

descontando as impurezas.

100 gramas x 80% = 100 x 0,8 = 80 gramas. Isto signifi ca que, dos 100

gramas originais, apenas 80 gramas são realmente de CaCO3.

Page 85: Elementos de quimica_geral_vol2

CEDERJ 83

b. Agora podemos efetuar nosso cálculo: 1 mol (CaCO3) –––– 1 mol (CO2)

80g (CaCO3) –––– X mol (CO2)

Convertendo as unidades, teremos:

(massa molar do CaCO3) 100g x 1 mol –––– 1 mol x 44g (massa molar

do CO2)

80g –––– X gramas de CO2

X = 80 44

100x

= 35,2 gramas de CO2

Tente agora resolver as atividades propostas a seguir!

1. O acetileno, gás utilizado em maçaricos, pode ser obtido a partir do carbeto de cálcio (carbureto), de acordo com a equação:CaC2 + 2 H2O Ca(OH)2 + C2H2

Utilizando-se 1 kg de carbureto com 64% de pureza, calcule o volume de acetileno obtido em litros, nas CNTP:_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. Qual é a porcentagem de impureza que existe em uma amostra de 150 gramas de soda cáustica, contendo 120 gramas de NaOH puro? Obs: Soda cáustica é o nome comercial do hidróxido de sódio.

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

Exemplo 2

O gás hilariante (N2O) pode ser obtido pela decomposição térmica

do nitrato de amônio (NH4NO3):

NH4NO3 ∆

N2O + 2 H2O

Se de 4,0 g do sal obtivermos 2,0 g de gás hilariante, qual é a porcentagem

de pureza do sal?

AU

LA

21

Page 86: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte IV: trabalhando com impurezas

84 CEDERJ

a. Neste exemplo, nós temos de descobrir a massa de NH4NO3 que

realmente reagiu para produzir 2,0 gramas de N2O:

1 mol (NH4NO3) –––– 1 mol (N2O)

X g (NH4NO3) –––– 2,0 g (N2O)

Convertendo as unidades, teremos:

(massa molar do NH4NO3) 80g x 1 mol –––– 1 mol x 44g (massa molar

do N2O)

X gramas –––– 2,0 gramas de N2O

X =

80 2 044x ,

= 3,636 gramas

Observe que essa massa de NH4NO3 calculada refere-se à massa do sal que

efetivamente reagiu, ou seja, 3,636 gramas é a massa do NH4NO3 puro.

b. Para calcularmos a porcentagem de pureza deste sal, faremos o

seguinte cálculo:

4,0 g –––– 100%

3,636 g –––– x % x = 90,6 %

CONCLUSÃO

Nesta aula, nós pudemos prever a quantidade de matéria que

poderá ser produzida em uma reação química com reagentes contendo

determinadas porcentagens de impurezas.

A designação “gás hilariante” nos remete a um produto que pode fazer com que as pessoas se divirtam, sem riscos. Mas essa imagem é incorreta. O chamado gás hilariante é na verdade um composto químico que tem o nome técnico de óxido de dinitrogênio, cuja inalação provoca efeitos anestésicos e ainda um estado de euforia, em geral seguido de náuseas e perturbações motoras.

Page 87: Elementos de quimica_geral_vol2

CEDERJ 85

ATIVIDADES FINAIS

Agora é a sua vez de tentar resolver as questões a seguir. Mãos à obra!

1. O Leite de Magnésia é uma suspensão de hidróxido de magnésio. Este

medicamento é utilizado para combater a acidez estomacal, provocada pelo

ácido clorídrico encontrado no estômago. Sabe-se que, quando utilizamos 12,2

gramas desse medicamento, neutraliza-se certa quantidade de ácido clorídrico,

produzindo 16,0 gramas de cloreto de magnésio.

Determine a porcentagem de pureza desse medicamento em relação ao hidróxido

de magnésio:

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

2. Na reação de 5 g de sódio com 60% de pureza com água, houve desprendimento

de gás hidrogênio, recolhido a 27oC e 1 atm. Determine o volume de H2 obtido

nessas condições:

Obs.: A reação descrita é Na(s) + H2O(l) NaOH(aq) + 1/2 H2(g)

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

3. O fósforo branco (P4), usado na produção dos ácidos fosfórico(H3PO4) e

fosforoso(H3PO3), é muito tóxico e emite luz quando em contato com o ar ou

atmosfera de oxigênio. Este fósforo é obtido em forno especial com eletrodos de

grafi te, segundo a equação não balanceada:

Ca3(PO4)2 + SiO2 + C CaSiO3 + CO + P4

Faça o balanceamento dos coefi cientes da equação química e calcule a quantidade,

em gramas, de fosfato de cálcio 80% puro, necessária para obter-se 620 gramas

de fósforo branco:

AU

LA

21

Page 88: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte IV: trabalhando com impurezas

86 CEDERJ

INFORMAÇÃO SOBRE A PRÓXIMA AULA

Na nossa próxima aula, vamos trabalhar com situações em que há excesso de um

dos reagentes utilizados.

O fósforo branco é constituído de agrupamentos P4 ligados por forças de Van Der Waals. Submetido à temperatura e pressão específi cas, ele pode ser transformado em sua outra forma alotrópica, chamada fósforo vermelho. Este é formado por cadeias poliméricas Pn, e difere no aspecto e propriedades do anterior. O maior emprego do fósforo é nas indústrias de fósforos de segurança. O fósforo de segurança é feito a partir de um oxidante, tal como: clorato de potássio ou bióxido de manganês; fósforo vermelho ou sulfetos de fósforo (que iniciam a combustão); areia silícica (para aumentar o calor desenvolvido pelo atrito); e madeira (ou outro material combustível). Oxidante e fósforo podem estar juntos nos fósforos (aqueles que acendem esfregando-se sobre qualquer superfície rígida). Ou o oxidante pode encontrar-se sobre o palito de fósforo, e o fósforo sobre uma superfície separada (fósforos de segurança).

• Os reagentes normalmente utilizados não se apresentam 100% puros.

• No estudo quantitativo das reações, faz-se necessário determinar a massa do

reagente, descontando todas as impurezas, para determinarmos a quantidade

de produto formada.

R E S U M O

RESPOSTAS

Atividade 1

1.000 g x 0,64 = 640g de acetileno puro

64g x 1 mol (CaC2) –––– 1 mol x 22,4 L (C2H2)

640 g –––– X litros Resposta: 224 litros

Page 89: Elementos de quimica_geral_vol2

CEDERJ 87

Atividade 2

150g –––– 100%

120g –––– X X = 80% de pureza Resposta : 20% de impureza

Atividades Finais

1. A reação descrita no enunciado é: Mg(OH)2 + 2 HCl MgCl2 + 2 H2O. Como a

proporção estequiométrica é de 1:1 entre o hidróxido de magnésio e o cloreto

de magnésio, teremos: 58g de Mg(OH)2 –––– 95g de MgCl2

X g –––– 16,0g X = 9,77g de Mg(OH)2 puros

Cálculo da porcentagem de pureza: 12,2g –––– 100%

9,77g –––– x Resposta: 80%

2. 1,6 litro

3. 3875 gramas

AU

LA

21

Page 90: Elementos de quimica_geral_vol2
Page 91: Elementos de quimica_geral_vol2

22AU

LA

Meta da aula

Cálculos estequiométricos – Parte V: trabalhando

com excessos

Aplicar as Leis Ponderais e Volumétricas na solução de problemas envolvendo

reagentes em excesso.

Ao final desta aula, você deve ser capaz de:

• Balancear uma equação química para a solução de problemas que envolvem cálculos.

• Determinar o reagente em excesso de determinadas condições reacionais.

• Resolver problemas que envolvem reagente limitante.

objetivos

Page 92: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

90 CEDERJ CEDERJ 91

INTRODUÇÃO Quando fazemos uma reação química, raramente usamos quantidades

estequiométricas dos reagentes. Em geral, o reagente mais barato é usado

em quantidade maior que aquela determinada pelos coeficientes da equação,

para que se tenha melhor aproveitamento do outro reagente e maior velocidade

de reação.

REAGENTE LIMITANTE

Para resolver problemas que envolvem reagentes em excesso,

temos de, primeiramente, identificar o reagente limitante, ou seja, aquele

que, por estar em menor quantidade, vai determinar a quantidade de

produto formado.

Suponha uma reação entre os reagentes A e B, que se passa segundo

a equação balanceada:

aA + bB à cC.

O fator estequiométrico desta reação é dado pela razão molar a/b.

Ao resolver um problema com reagente limitante, devemos calcular o

número de mols disponíveis de cada um dos reagentes e comparar com

o fator estequiométrico:

• se a razão [número de mols de A (dado no problema) / número

de mols de B (dado no problema)] for maior que o fator estequiométrico,

então A está em excesso e B é o reagente limitante;

• se a razão [número de mols de A (dado no problema) / número

de mols de B (dado no problema)] for menor que o fator estequiométrico,

então B está em excesso e A é o reagente limitante.

Uma vez identificado o reagente limitante, continuamos o cálculo

normalmente, lembrando sempre que a quantidade do produto depende

apenas da quantidade do reagente limitante. Vamos resolver alguns

exemplos para melhor ilustrar essa situação.

Exemplo 1

Calcule a massa de água obtida quando 3 mol de Fe3O4 e 13 mol

de H2 são colocados em condições de reagir, de acordo com a reação de

rendimento 100%:

Fe3O4 + 4 H2 → 3 Fe + 4 H2O

AU

LA

22

Page 93: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

90 CEDERJ CEDERJ 91

1º passo: determinar o fator estequiométrico com base no ajuste

da equação:

Fator estequiométrico = 1/4 = 0,25.

2º passo: calcular a razão molar dos reagentes Fe3O4 e H2:

Razão molar = 3/13 = 0,23. Como essa razão molar é menor que

o fator estequiométrico, temos que o H2 é o reagente em excesso. Logo,

Fe3O4 é o nosso regente limitante, e é a partir dele que iremos prosseguir

nosso cálculo.

1 mol de Fe3O4 4 mol de H2O x 18g (massa molar da água)

3 mol de Fe3O4 X gramas de H2O

X = 4x 18 x 3 = 216 gramas.

Exemplo 2

Amônia gasosa pode ser produzida pela seguinte reação:

2NH4Cl + CaO → 2NH3 + CaCl2 + H2O

Se 112g de óxido de cálcio e 241g de cloreto de amônio forem

misturados, qual é quantidade máxima de amônia produzida?

1º passo: determinar o fator estequiométrico com base no ajuste

da equação:

Fator estequiométrico = 2/1 = 2.

2º passo: calcular a razão molar dos reagentes CaO e NH4Cl:

Como os dados do problema são referentes à massa dos reagentes,

temos de calcular o número de mol de cada uma dessas substâncias.

O cálculo de número de mol pode ser realizado através da expressão

n = massa/ massa molar.

Para o NH4Cl, temos n = 241/53,5 = 4,5.

Para o CaO, temos n = 112/ 56 = 2 mols.

Assim sendo, a razão molar será 4,5/2 = 2,25. Como esta razão

é maior que o fator estequiométrico, temos que o NH4Cl é o reagente

AU

LA

22

Page 94: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

92 CEDERJ CEDERJ 93

em excesso. Logo, CaO é o nosso reagente limitante, e é a partir dele

que iremos prosseguir nosso cálculo:

1 mol CaO 2 mol x 17gramas (massa molar do NH3)

2 mol CaO X gramas de NH3

X = 2 x 2 x 17 = 68 gramas de NH3,

Resolva agora as atividades propostas a seguir.

1. Nas indústrias petroquímicas, o enxofre pode ser obtido pela equação

2 H2S + SO2 à 3 S + 2 H2O

Qual é a quantidade máxima de enxofre, em gramas, que pode ser obtida partindo-se de 5,0 mol de H2S e 2,0 mol de SO2 ?______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

2. 400 gramas de NaOH são adicionados a 700 gramas de HNO3 para reagirem, segundo a equação

NaOH + HNO3 à NaNO3 + H2O

Calcule:a. A massa do sal obtida.b. A massa do reagente em excesso.______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ATIVIDADES

AU

LA

22

Page 95: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

92 CEDERJ CEDERJ 93

CONCLUSÃO

Nesta aula, nós pudemos prever a quantidade de matéria que

poderá ser produzida em uma reação química com reagentes em

quantidades diferentes das estequiométricas.

ATIVIDADES FINAIS

1. Duas soluções aquosas são misturadas conforme o esquema abaixo:

Analise a solução final e identifique a afirmativa correta:

I– A solução final é neutra, pois não há reagente em excesso.

II– A solução final é ácida, devido a um excesso de 0,6 g de HNO3.

III– A solução final é ácida, devido a um excesso de 0,3 g de HNO3.

IV– A solução final é básica, devido a um excesso de 0,3 g de Ca(OH)2.

2. O metanol, CH3OH, é um combustível utilizado em alguns tipos de carros

de corrida e pode ser obtido pela reação entre o monóxido de carbono e o

hidrogênio:

CO(g) + 2 H2(g) à CH3OH (l)

Suponhamos que se misturem 336g de CO com 64g de H2. Qual é o reagente

limitante?

4,0g de Ca(OH)2

6,3g de HNO3

AU

LA

22

Page 96: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

94 CEDERJ CEDERJ 95

Que massa máxima de metanol pode ser formada?

___________________________________________________________________________

____________________________________________________________________________

____________________________________________________________________________

__________________________________________________________________________

• Os reagentes utilizados podem ser colocados em quantidades maiores que as

quantidades estequiométricas, para melhor eficiência da reação.

• No estudo quantitativo das reações, faz-se necessário determinar a massa do reagente

limitante, pois somente através dele podemos efetuar o cálculo estequiométrico.

R E S U M O

Atividade 1

1. Reagente em excesso: H2S. Logo, o cálculo deve ser feito pela reagente limitante

SO2.

1 mol de SO2 --------3 mols de S x 32g

2 mols de SO2 -------x gramas de S

Resposta: 192g

Atividade 2

a) 850g NaNO3

b) 70g de HNO3 em excesso

RESPOSTAS

AU

LA

22

Page 97: Elementos de quimica_geral_vol2

Elementos de Química Geral | Cálculos estequiométricos – Parte V: trabalhando com excessos

94 CEDERJ CEDERJ 95

Respostas das Atividades Finais

1) IV é a única afirmativa correta .

2) Reagente limitante é o CO, pois há excesso de 16 gramas de H2.

A massa máxima de metanol que poderá ser obtida será 384 gramas.

AU

LA

22

Page 98: Elementos de quimica_geral_vol2
Page 99: Elementos de quimica_geral_vol2