Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos...

46
Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas - Métodos cromatográficos - Análise de eficiência da purificação BIO10-329 Biofísica de Proteínas Regente: Célia R. Carlini Atenção ! Use o modo “apresentação de slides” para ativar as animações

Transcript of Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos...

Page 1: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Estratégias para purificação de uma proteína

Os assuntos abordados nessa aula são:

- Métodos de centrifugação e precipitação diferencial

- Dosagem de proteínas

- Métodos cromatográficos

- Análise de eficiência da purificação

BIO10-329 Biofísica de ProteínasRegente: Célia R. Carlini

Atenção ! Use o modo “apresentação de slides” para ativar as animações

Page 2: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Principais componentes moleculares da bactéria Principais componentes moleculares da bactéria E. coliE. coli

Componentes Nº de moléculas diferentes Componentes Nº de moléculas diferentes % peso total% peso total

H2O 1 70Proteínas 3.000 15Ac. Nucléico 1 - DNA e 1000-RNA 7Carbohidratos 50 3Lipídeos 40 2Outros Íons - 12 3 Mol. Monoméricas - 500

A tabela acima mostra a percentagem em peso dos principais tipos de moléculas presentes em uma célula simples, a bactéria Escherichia coli. Observe que as proteínas compõem o grupo mais diverso de moléculas.

Como são as proteínas que executam a maior parte das funções vitais de um organismo, uma grande parte das questões na Biologia envolve conhecer em detalhes a estrutura 3D e o funcionamento de uma proteína.

Para se obter uma proteína em particular, é necessário separá-la de todas as outras que estão presentes na mesma fonte biológica.

Page 3: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Métodos de Isolamento de BiomoléculasMétodos de Isolamento de Biomoléculas

O isolamento ou purificação de uma proteína é uma etapa que precede os estudos de suas características físico-químicas, de sua estrutura 3D

e a compreensão de suas propriedades biológicas.

Inicialmente, a estratégia de purificação de uma proteína é empírica, ou seja, baseada em tentativa-erro, e deve ser desenhada para cada

proteína individualmente. Não há como prever quais métodos serão os mais eficientes para se purificar uma proteína pela primeira vez.

Métodos de purificação

1 proteína isolada

Proteínas de uma célula

Page 4: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Métodos baseados em características físico-químicas das biomoléculas:

1. Tamanho – Massa – Densidade (ex: centrifugação, diálise, gel-filtração) 2. Carga elétrica (ex: cromatografia de troca iônica, eletroforese) 3. Solubilidade ou hidrofobicidade (ex: cromatografia em papel, fase reversa)

Métodos baseados em afinidade biológica, que exploram a interação entre duas moléculas: 4. Cromatografia de afinidade (pressupõe que uma das moléculas do par que interage é um “reagente” de fácil obtenção, disponível comercialmente)

Métodos de Isolamento de BiomoléculasMétodos de Isolamento de Biomoléculas

Existe uma grande variedade de métodos visando a separação de biomoléculas. Como na maioria das vezes o que se pretende purificar é uma proteína, o grupo de moléculas com maior diversidade, as metodologias de separação de proteínas tiveram um grande desenvolvimento, com muitas opções disponíveis.

Os métodos de separação de biomoléculas são agrupados em duas categorias:

Page 5: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

ORGANELAS

LisossomosLisossomos

MitocôndriaMitocôndria

GolgiGolgi

NúcleoNúcleo

SOBRENADANTE

F 1 F 2 F 3 F 4

F 2 .1F 2 .2 F 2 .3

F 2 .3.1F 2 .3.2 . . . . . . F 2. 3.N

Precipitação com Sal/Solvente

Precipitação com Sal/Solvente

Cromatografia Troca Iônica

Cromatografia Troca Iônica(pH ou resina diferente)

F 2 .3.N.X

1 Proteína apenas (0.001g) - 0.1 a 0.5% total

Gel Filtração

MATERIAL BIOLÓGICO DE PARTIDA: (100g)

O fluxograma ao lado representa a “marcha” de purificação de uma proteína, mostrando as etapas sucessivas, cada

uma consistindo de método, que levam ao isolamento de uma proteína presente

numa mistura complexa.Observe a quantidade de proteínas (100g) presente no material inicial e

quanto da proteína purificada se obtém no final (0,001g). Esses números são típicos

para a purificação da maioria das proteínas, em especial enzimas.

Em cada etapa, a proteína de interesse é separada das demais com base em uma

propriedade diferente. Consequente-mente, as proteínas ainda misturadas com aquela que está sendo isolada são cada

vez mais semelhantes em suas características físico-químicas, exigindo métodos cada mais sensíveis, capazes de explorar pequenas diferenças, para se

chegar à proteína pura.

Page 6: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

• Medida da atividade biológica - particular para cada proteína - deve ser quantitativa, para estimar quanto da proteína de interesse há em cada fração.

• Medidas do conteúdo proteico (diversos) - absorbância de luz UV de 280 nm - métodos colorimétricos (ex: Lowry, Bradford, BCA, etc)

Além dos métodos de purificação, análises complementares devem ser feitas ao longo da

purificação, para verificar se o processo de separação está sendo eficiente.

A medida da atividade biológica da proteína de interesse e do conteúdo de proteínas de

cada fração resultante do processo de separação devem ser feitas a cada passo.

Assim, apenas a fração que contém a proteína de interesse, marcada com um

círculo vermelho no fluxograma, é submetida à próxima etapa de purificação.

ORGANELAS

LisossomosLisossomos

MitocôndriaMitocôndria

GolgiGolgi

NúcleoNúcleo

SOBRENADANTE

F 1 F 2 F 3 F 4

F 2 .1F 2 .2 F 2 .3

F 2 .3.1F 2 .3.2 . . . . . . F 2. 3.N

Precipitação com Sal/Solvente

Precipitação com Sal/Solvente

Cromatografia Troca Iônica

Cromatografia Troca Iônica(pH ou resina diferente)

F 2 .3.N.X

1 Proteína apenas (0.001g) - 0.1 a 0.5% total

Gel Filtração

MATERIAL BIOLÓGICO DE PARTIDA: (100g)

Page 7: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Métodos para medida do conteúdo de proteína:

O gráfico mostra o espectro de absorção de luz UV dos aminoácidos aromáticos Trp, Tyr ou Phe.

A absorbância de uma solução de proteínas a 280 nm é diretamente proporcional ao seu conteúdo proteico, desde que essas contenham esses aminoácidos na sua composição, especialmente triptofano.

A vantagem desse método é que ele não é destrutivo para a proteína. Em geral, considera-se que uma leitura de 1,0 A280 equivale a uma concentração de 1 mg/mL.

Comprimento de onda

Ab

so

rtiv

ida

de

mo

lar,

Page 8: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

BCA = ácido 2,2'-Bicinchonínico ou 4,4'-Dicarboxy-2,2'-biquinoline

Reagente Bradford = Coomassie Brilliant Blue G-250

Método baseado em uma mudança espectral do reagente, em que dá absorção máxinma a 595 nm (cor azul), quando interage com proteínas.

Interação com proteínas se dá através de forças de Van der Waals e ligações iônicas, especialmente com arginina, mas também com resíduos de histidina, lisina, tirosina, triptofano e fenlialanina.

Ìons Cu2+ reduzidos a Cu+ em presença de proteínas reagem fortemente com o BCA formando um composto azul,

Reagente de Biureto: sulfato de Cu2+ em tartarato

Cu2+ reage com as ligações peptídicas e produz um complexo púrpura com absorção máxima em 540 nm 1. Cu2+ é quelado pela proteína [Cu2+-proteina]2. Reação redox Cu2+ + (ligações peptídicas) —> [Cu+ -proteína]

Ìons Cu2+ reduzidos a Cu+ em presença de proteínas e cadeias laterais de aminoácidos aromáticos, Tyr e Trp, e de Cys, reduzem o reagente de Folin-Ciocalteu (ácido fosfo- mobidênio-tungstênio), dando um composto de cor azul.

Método de Lowry

Métodos para medida do conteúdo de proteína:

Page 9: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Para iniciar a purificação, inicialmente é necessário extrair a proteína de interesse para um meio líquido, exceto se ela já estiver naturalmente presente em um meio líquido (sangue, suor, água do mar, meio de cultura, seiva de planta, etc).

tecidos

células

Homogeneização (para romper tecidos e células)

por pressão(prensa francesa)

liquefação(Potter)

Homogenadoou

Extrato bruto

Material de partida

Material na fonte

por ultra-som comdetergente

Vários métodos são possíveis para transformar células, órgãos, tecidos em um homogenado, ou extrato bruto, como mostra a figura.

Page 10: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Sendo a proteína de interesse uma proteína de membrana, é necessário solubilizá-la. Para

esse fim são utilizados detergentes, que dissolvem a

membrana plasmática e formam complexos solúveis

com as proteínas.Proteínas integrais da membrana

detergente micelas

Complexos não micelares

Dependendo da concentração

Detergentes podem ser iônicos e não iônicos

Detergentes não iônicos

Triton X-100(polyoxyethylene (9,5) p-t-octylphenol)

SDSDodecil sulfato de

sódio

CetabCetyltrimethylammonium

bromide

Deoxicolato de sódio

Detergentes iônicos

Octilglicosídeo(octyl-b-D-glucopyranoside)

Page 11: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

sangue centrifugado: separação de plasma e células

A centrifugação frequentemente é uma das primeiras etapas de purificação aplicado a um extrato bruto. Através do movimento de rotação do rotor da centrífuga, uma força centrífuga é aplicada à amostra, separando seus compo-nentes através de suas massas e/ou densidade, conforme a técnica.

Através de sucessivas etapas de centrifugação com velocidades (rotações por minuto, rpm) crescentes, pode-se obter diferentes frações de um homogenado de células ou tecidos.

centrifugação diferencial

homogenado

células intactaspedaços de membrananúcleos

mitocôndriaslisossomosribossomos

fraçãocitoplasmática

A centrífuga

Câmara blindadaAmostra sedimentando

refrigeração vácuo

rotorângulo

fixo

Page 12: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

R$ 3.000 US$ 70,000

CentrífugaClínica

Ultracentrífuga

Força centrífuga

1,200g por 15 minutos separa plasma de células sanguíneas

200,000 g por 24 horas para separar organelas menores

ou complexos proteicos

(necessitam vácuo para evitar atrito do ar, além de refrigeração)

Relação entre o raio do rotor, velocidade angular (rpm) e a força centrífuga (g)

Preço aproximado

Existem centrífugas para diferentes tipos de aplicações, dependendo da força centrífuga que são capazes de gerar.

Page 13: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Centrifugação em gradiente de densidade

Solucões de sacarose com densidades diferentes são colocadas no tubo, uma sobre a outra Amostra é colocada no

topo do gradiente

5% sacarose

20% sacarose

centrifugação

Baixa densidade

Média densidade

Alta densidade

A centrifugação em um meio com gradiente de

densidade melhora a eficiência da separação. As

partículas se deslocarão através do gradiente até encontrarem uma região

com densidade equivalente a sua, quando param de se mover, formando “bandas”.

Gradientes podem ser utilizados para separar

diferentes tipos de células, organelas, ácidos

nucléicos, complexos proteicos, etc.

Gradiente separação de:

Ficoll-Hypaque leucócitosSacarose mitocôndriasCloreto de césio ácidos nucléicos

Page 14: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

As mais potentes ultracentrífugas atuais ainda não são capazes de sedimentar proteínas.

Processos que diminuem a solubilidade e provocam a precipitação fracionada de proteínas são utilizados como etapas preliminares de purificação. Uma das vantagens desses métodos é o baixo custo e capacidade de processar grandes volumes/massas.

A precipitação de proteínas pode ser induzida por:- adição de sais (Precipitação salina)- adição de solventes- variação de pH (Precipitação isoelétrica)

So

lub

ilid

ad

e d

a h

emo

glo

bin

a (S

/S’)

KCl

NaCl

MgSO4

(NH4)2SO4

K2SO4

Concentração do Sal,, Molar

Salting-in X Salting-out

O gráfico ao lado ilustra o efeito de diferentes sais sobre a solubilidade da hemoglobina.

Em baixa concentração salina, a solubilidade das proteínas aumenta, pois os íons do sal ajudam a reforçar a camada de solvatação.

Em alta concentração salina, a solubilidade das proteínas diminue pois os íons do sal competem pelas moléculas de água disponíveis para formar a sua própria camada de solvatação.

Sais com ânions divalentes são mais eficientes do que os monovalentes na precipitação de proteínas.

Page 15: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

So

lub

ilid

ad

e,

log

FibrinogênioPseudoglobulina

MioglobinaAlbumina

Hemoglobina

Concentração do Sal (NH4)2SO4,, Molar

Sais se dissociam em solução aquosa e competem com as proteínas pela água de solvatação.

Considere uma solução com fibrinogênio, albumina, hemoglobina, pseudoglobulina e mioglobina e observe o gráfico.

Usando o sal sulfato de amônio (NH4)2SO4, pode-se purificar completamente o fibrinogênio a partir de uma mistura das 5 proteínas, pois este precipita totalmente em uma saturação de 2,8 M do sal.

Neste ponto, centrifuga-se a solução e o fibrinogênio é coletado como um precipitado.

Numa próxima etapa, adicionando-se mais sal à solução até uma saturação de 7 M, pode-se obter um novo precipitado contendo albumina, hemoglobina e pseudoglobulina.

E teremos também purificada a mioglobina, ainda em solúvel na presença de 7M do sal, e que ficou sozinha no sobrenadante.

Proteínas apresentam diferente sensibilidade para a precipitação salina.

- precipitam primeiro: proteínas maiores proteínas mais hidrofóbicas

possuem camadas de solvatação maiores ou menos organizadas, mais fáceis de pertubar.

Page 16: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Solventes miscíveis com a água diminuem a constante dielétrica do meio e desorganizam a camada de solvatação

das proteínas.

Os mais utilizados são etanol e acetona.

Proteínas também podem ser precipitadas com adição de solventes ao meio ou quando colocadas em meio com pH próximo ao seu ponto isoelétrico.

Água

DimetilformamidaMetanol

Etanol

Acetona

Clorofórmio

Benzeno

78.5 1.85

48.9 3.96

32.6 1.66

24.3 1.68

20.7 2.72

4.8 1.15

2.3 0.00

Solvente ConstanteDielétrica

MomentoDipolar

Proteína P.I.

Pepsina <1,0

Ovalbumina galinha 4,6

Albumina sérica humana 4,9

Tropomiosina 5,1

Insulina bovina 5,4

Fibrinogênio humano 5,8

Gama-globulina 6,6

Colágeno 6,6

Mioglobina equina 7,0

Hemoglobina humana 7,1

Ribonuclease A bovina 7,8

Citocromo C equino 10,6

Histona bovina 10,8

Lisozima, galinha 11,0

Salmina, salmão 12,1

Ponto Isoelétrico de algumas Proteínas

Proteínas colocadas em meio com pH igual ao seu PI tendem a precipitar, pois tendo carga neutra, apresentam a camada de solvatação menos organizada.

Page 17: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Para remover o excesso de sal ou do solvente no precipitado, utiliza-se a diálise.

-amostra é colocada dentro de um saco feito com uma membrana de celofane com poros tratados, que permite a passagem de moléculas até 10,000 d.- o saco contendo a amostra é imerso em um recipiente contendo o solvente que se deseja- excesso de sal ou de solvente se difunde para o solvente- após várias trocas de solvente, todo o excesso de sal/solvente terá sido retirado.

Para obter as proteínas precipitadas em solução novamente, é necessário reverter as condições que levaram à precipitação.

Membrana de celofane

solvente

solução a ser dialisada

Aos precipitados obtidos com sal ou solvente, adiciona-se água.

Ao precipitado obtido com variação de pH, retornar ao pH original.

início finalt

Page 18: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

ORGANELAS

LisossomosLisossomos

MitocôndriaMitocôndria

GolgiGolgi

NúcleoNúcleo

SOBRENADANTE

F 1 F 2 F 3 F 4

F 2 .1F 2 .2 F 2 .3

F 2 .3.1F 2 .3.2 . . . . . . F 2. 3.N

Precipitação com Sal/Solvente

Precipitação com Sal/Solvente

Cromatografia Troca Iônica

Cromatografia Troca Iônica(pH ou resina diferente)

F 2 .3.N.X

1 Proteína apenas (0.001g) - 0.1 a 0.5% total

Gel Filtração

MATERIAL BIOLÓGICO DE PARTIDA: (100g) Até o momento, exploramos as etapas iniciais de purificação de proteínas, como a centrifugação diferencial e precipitação fracionada.

Esses métodos, apesar de terem baixo poder de resolução (exploram diferenças grosseiras entre as proteínas), permitem processar grandes volumes ou massas, típicos das etapas iniciais de isolamento.

Quando já houve redução significa-tiva dos montantes de proteínas a serem processados, iniciam-se as cromatografias, que irão explorar as diferenças mais sutis entre as moléculas.

Não esquecer que todas as frações obtidas devem ter o conteúdo de proteínas e de atividade biológica medidos, para se decidir qual/quais deverão passar para o passo seguinte da purificação.

Page 19: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

C

once

ntr

ação

Tempo ou volume

Coletor de frações

Funcionamento Básico de uma Coluna Cromatográfica

Uma coluna é um tubo cilindríco aberto nas duas extremidades e preenchido com a resina ou matriz ou gel cromatográfico. A coluna é constantemente alimentada com líquido (tampão), banhando a resina e forçando o contacto desta e as moléculas que estão sendo analisadas.

Abaixo está representado o esquema geral de uma cromatografia:

Tempo 1

Mais tampão é colocado na

coluna, forçando os

componentes da amostra a

interagirem com a resina

Componentes da amostra se

separam e saem da coluna com

diferentes volumes de

tampão

Tempo 2 Tempo n

Líquido que sae

da coluna é

recolhido em tubos

de um coletor de

frações

Os componentes da mistura são separados por interação diferenciada

com a resina, com base em propriedades moleculares como:

• massa molecular• carga elétrica• solubilidade• afinidade

Amostra com diferentes

componentes

Resina embebida

em tampão

Tempo zero

Um cromatograma, como o gráfico ao lado, é a maneira

usual de se representar o resultado de uma

cromatografia.

Page 20: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Que características devem ter as resina cromatográficas para possibilitar separações de moléculas baseadas em diferentes propriedades ?

Cromatografia de permeação em gel ou gel-filtração: separação de moléculas pela massa moleculargéis são porosos, funcionando como peneiras ou filtros

Cromatografia de troca iônica:separação de moléculas pela carga elétricagéis apresentam grupos carregados positiva- ou negativamente

Cromatografia de partição (fase reversa ou hidrofóbica):separação de moléculas pela solubilidade relativa em meio aquosogéis possuem carácter hidrofóbico

Cromatografia de afinidade:separação de moléculas pela capacidade de interagir com um

ligante géis possuem ligante específico ligado covalente à resina

Page 21: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Cromatografia de gel filtração ou peneira molecularCromatografia de gel filtração ou peneira molecular

grãos (beads) da resina com poros

grão da resina poroso

proteína grande

proteína pequena

Tampão “empurra” moléculas através da resina

tubos

Na gel-filtração, as proteínas que penetram nos poros da resina precisam diferentes volumes de tampão para saírem da coluna, conforme suas massas moleculares, percorrendo os canais internos dos grãos. Quanto maior o número de grãos que cada molécula entrar durante o percurso através da coluna, maior o volume necessário para sua saída. Proteínas maiores que o diâmetro dos poros não são separadas e saem da coluna com pouco tampão, correspondente apenas ao volume da coluna externo aos grãos, também chamado de volume morto (Vo). Proteínas menoresProteínas menores que o diâmetro dos poros não são separadasnão são separadas e saem da coluna com um volume de tampão correspondente ao volume interno (Vi, volume total menos o volume do próprio gel).

Moléculas com massas diferentes

Fluxo do tampão

Page 22: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Ab

sorb

ânci

a a

280

nm

volume

Med

ida

da

ativ

. bio

lógi

ca

Moléculas maiores

Moléculas menores

Kav

Mas

sa m

olec

ular

(kD

)

20 40 60 80 100 120 mL

25 50 75 100 125 mL volume de eluição

A cromatografia de gel-filtração possibilita estimar a massa molecular de uma proteína em seu estado nativo

Além de purificar, por ser realizada em condições de pH, força iônica e temperatura que preservam a atividade biológica da proteína, a

gel-filtração fornece a Mr do seu estado nativo.

Para isso, é necessário “calibrar” a coluna com proteínas de massa molecular conhecida, construindo-se uma curva de calibração.

O volume de saída (eluição) de uma proteína numa coluna de gel-filtração é proporcional ao logaritmo de sua massa molecular.

Curva de calibração

traçado da medida de atividade biológica nas frações

Medir o volume de eluição da fração mais ativa. Transportar para a curva de calibraçao.

Ler a massa correspondente

Observar a

escala log

Page 23: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Resinas para Gel-Filtração

Sephadex G-10 Dextrana 0.05 - 0.70Sephadex G-25 Dextrana 1 - 5Sephadex G-50 Dextrana 1 - 30Sephadex G-100 Dextrana 4 - 150Sephadex G-200 Dextrana 5 - 600

Bio-Gel P- 2 Policrilamida 0.1 - 1.8Bio-Gel P- 6 Policrilamida 1 - 6Bio-Gel P- 10 Policrilamida 1.5 - 20Bio-Gel P- 30 Policrilamida 2.4 - 40Bio-Gel P-100 Policrilamida 5 - 100Bio-Gel P-300 Policrilamida 60 - 400

Sepharose 6B Agarose 10 - 4.000Sepharose 4B Agarose 60 - 20.000Sepharose 2B Agarose 70 - 40.000

NOME TIPO FAIXA DE RESOLUÇÃO(kD)

*Sephadex e Sepharose: Amersham Pharmacia Biotech; Bio -Gel: Bio -Rad Laboratories

Moléculas pequenas

Moléculas pequenas

Proteínas

Proteínas

Células, partículas sub-celulares

Existem diferentes tipos de resinas para gel-filtração, conforme o tipo de moléculas ou partículas a serem separadas

indica quais os tamanhos das partículas que podem entrar nos poros da resina e serem fracionados. Acima ou abaixo da faixa, não há separação.

Page 24: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Para comparar calibrações com a mesma resina cromatográfica em colunas de dimensões diferentes utiliza-se o Kav, que é proporcional ao log de Mr.

Kav = Ve-Vo Vt-Vo

Ve – volume de eluição de uma certa proteínaVt – volume total da colunaVo – volume morto da coluna, em que saem moléculas com massa acima da resolução da resina

onde:

O gel nessa coluna é o Sephadex G-200, cuja faixa de resolução de proteínas é de 5.000 a 600.000 d.Observe como proteínas nos extremos da faixa de resolução tendem a “sair” da parte linear da curva.

Esta é uma outra forma de representar a calibração de uma coluna de gel-filtração.

Page 25: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Cromatografia de troca iônicaCromatografia de troca iônica

A resina para cromatografia de troca iônica apresenta carga elétrica, positiva ou negativa, em uma ampla faixa de pH.

Trocadora de ânions Trocadora de cátions

DEAE CM

Existem dois tipos básicos: resinas trocadoras de ânions (possuem carga positiva), como o dietilaminoetil (DEAE)-celulose e resinas trocadoras de cátions (possuem carga negativa), como o carboxi-metil (CM)-celulose

Page 26: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

--

-

----

O gráfico mostra que essas resinas mantém suas cargas em uma ampla faixa de pH. Assim, o DEAE-celulose pode ser utilizado em pH abaixo de 10, enquanto que o CM-celulose é utilizado em pH acima de 4, condições

em que pelo menos 50% dos grupos dessas resinas estão carregados.

Cromatografia de troca iônicaCromatografia de troca iônica

Page 27: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Como funciona a Cromatografia de Troca IônicaComo funciona a Cromatografia de Troca Iônica

Adsorção

Eluição

+++

+

++

+

+

Moléculas com a mesma carga, ou sem carga, não interagem com a resina, sendo as primeiras a sair da coluna

Adição de sal ao tampão resulta em competição entre os íons em solução e as moléculas adsorvidas na resina.

Na+Cl- +

A cromatografia de troca iônica compreende duas etapas:

1) adsorção das proteínas com carga contrária à resina, e saída da coluna das proteínas com a mesma carga;

2) eluição das proteínas adsorvidas.

+++

+

++

+

+

+

+ +

No exemplo ao lado, como funciona uma resina catiônica ou trocadora de ânions, como o DEAE-celulose):

Para a eluição, as condições de adsorção da coluna (pH ou força iônica) são alteradas para neutralizar a interação entre as proteínas e a resina.

Mais frequentemente utiliza-se um aumento da concentração do sal no tampão, pois alterações de pH podem desnaturar proteínas, levando-as a precipitar dentro da coluna.

Page 28: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

PIácido

+

básico

-neutro

-COOH -COO

-NH3

H+

+

-

H+

-NH2

Como funciona a Cromatografia de Troca IônicaComo funciona a Cromatografia de Troca Iônica

O processo da cromatografia de troca iônica depende da diferença de ponto isoelétrico das proteínas na amostra e das condições escolhidas de pH e de força iônica.

Proteína P.I.

Pepsina <1,0

Ovalbumina galinha 4,6

Albumina sérica humana 4,9

Tropomiosina 5,1

Insulina bovina 5,4

Fibrinogênio humano 5,8

Gama-globulina 6,6

Colágeno 6,6

Mioglobina equina 7,0

Hemoglobina humana 7,1

Ribonuclease A bovina 7,8

Citocromo C equino 10,6

Histona bovina 10,8

Lisozima, galinha 11,0

Salmina, salmão 12,1

Ponto Isoelétrico de algumas ProteínasProteínas apresentam carga positiva quando em meio ácido em relação ao seu PI, e carga negativa, quando em meio alcalino em relação ao seu pI.Nesse caso, a referência para se dizer que o meio é ácido ou básico é o PI da proteína, e não o pH do meio.

A carga das proteínas varia em função do pH do meio, pois o pH influencia o estado de dissociação das cadeias laterais dos aminoácidos ácidos e básicos.

Responda: em pH 7,0, qual será a carga elétrica da albumina, da mioglobina e do

citocromo C ?

Page 29: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Carboximetil~celulose(trocadora de cátions)

Dietilaminoetil~celulose(trocadora de ânions)

Duas Modalidades de Cromatografia de Troca IônicaDuas Modalidades de Cromatografia de Troca Iônica

Gradientes de sal podem fracionar as proteínas adsorvidas na resina de acordo com a intensidade de suas cargas, que é dada pela diferença entre seus PIs e o pH do tampão de eluição. As proteínas não retidas (com a mesma carga da resina) não são separadas, sendo simplesmente “arrastadas” pelo tampão (ou seja, não são repelidas pela resina).

_

=

=_

+++

++

(+)

(+)

(+)

(+)

0. 10 M

0. 15 M

0. 20 M

Eluição NaCl

Não retidas

DEAEDEAE++

0. 10 M

0. 15 M

0. 20 M

Eluição NaCl

+

(-)

(-)

(-)+

++

_ =

=_(-)

Não retidas

CMCM

Page 30: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Tipos de Resina de troca Iônica

Tipos de Resina de troca Iônica

Existem vários tipos de resinas de troca iônica disponíveis no mercado.

NOME TIPO GRUPO IONIZÁVEL OBSERVAÇÕES

Dowex 1 Fortemente básica Ø - CH2N+(CH3)3 Troca aniônicaresina de polistireno

Dowex 50 Fortemente básica Ø - SO3-H Troca Catiônica

resina de polistireno DEAE-celulose Básica Dietilaminoetil Fracionamento de proteínas

- CH2CH2N+(C2H5)2 ácidas e neutras CM-celulose Ácida Carboximetil Fracionamento de proteínas

- CH2COOH básicas e neutras DEAE -Sephadex Gel de dextrano Dietilaminoetil Combinação de gel filtração

básico - CH2CH2N+(C2H5)2 e troca iônica de proteínas ácidas e neutras

CM - Sephadex Gel de dextrano Carboximetil Combinação de gel filtraçãoácido - CH2COOH e troca iônica de proteínas

básicas e neutras

* Dowex: Dow Chemical Co.; Sephadex: Amersham Pharmacia Biotech; Bio- Gel: Bio Rad Laboratories

Page 31: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Cromatografia de afinidade:

Eluição: condições que interferem na ligação da proteína ao ligante, como mudanças no pH e/ou força iônica, ou por competição com o ligante livre

Desprezar proteínas não

retidas

Lavagem

Eluição

pH 2,0 ou sal

Antígeno A puro

Anti-A interage apenas com a

proteína A

-

Mistura de proteínas

Coluna empacotada com esse gel

Partículas de gel recobertas de anticorpos anti-A

Adsorção

Complexo Ag-AC é desfeito

Um dos métodos mais eficientes para a

purificação de proteínas, possibilitando um alto

rendimento com número reduzido de etapas.

A separação de moléculas tem como

base a interação específica do analito

(molécula-alvo) com um ligante imobilizado na

matriz. Forças envolvidas nessa

interação podem ser não covalentes

(eletrostáticas, hidrofóbica, pontes de H)

ou covalentes (p.e., ponte dissulfeto).

Ex: cromatografia de imunoafinidade

Page 32: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Ligante

grupo-específico

Especificidade

Proteína A Região Fc de IgG

Proteína G Região Fc de IgG

Concanavalina A Grupos glicosil- ou manosil-

Cibacron Blue Várias enzimas, albumina

lisina Plasminogênio, RNA ribossomal

arginina proteinases tipo tripsina

benzamidina proteinases tipo tripsina

calmodulina Proteínas reguladas por calmodulina

heparina Fatores de coagulação, lipases, hormônios, receptores estoróides, etc

Metais de transição Proteínas e peptídeos com resíduos de His expostos

1. Mono-específicos - ligação específica da molécula-alvo- análogos de substratos ou inibidores de enzimas- agonistas ou antagonistas de receptores- haptenos ou determinantes antigênicos de anticorpos- ligantes com “tag” ou “marcação”

- glutationa-S-transferase- poli-Histidina

2. Grupo-específico: ligantes para separação de grupos:

Tipo de ligantes em cromatografia de afinidade

8-AEA-cAMP

8-(2-aminoethyl)aminoadenosine-3',5'-cyclic monophosphate

(ligante para proteínas com afinidade por cAMP ou cGMP)

Sítios de ligação das proteínas A, G e L à

imunoglobulina, que permitem a purificação de anticorpos por

cromatografia de afinidade

Page 33: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Para ligantes pequenos (Mr < 1.000) há o risco de impedimento estérico entre a matriz e a molécula-alvo, que causa dificuldade ou impede sua ligação à resina.

A introdução de um braço espaçador (alguns C) diminue o risco.

Estratégias para acoplamento de ligantes à resina Reagente Alvo no ligante

Braço espaçador covalente entre a resina e o ligante

Ligação reversível não covalente

ligante

Molécula-alvo (analito)

Preparo da resina de afinidade:

Passo 1. Ativação da resina

Passo 2. Acoplar o ligante

Page 34: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Cromatografia de Partição

Princípio: Explora diferenças de solubilidade dos compostos em solventes com grau de hidrofobicidade diferentes, um polar e outro apolar.

Aplicável especialmente á moléculas pequenas, como compostos orgânicos, aminoácidos, peptídeos, açúcares, lipídeos, etc.

Apresenta limitações para uso com proteínas acima de 20-30kda, que são desnaturadas em presença de solvente orgânico.

AMOSTRAS

Fase estacionária (suporte sólido) X

Fase móvel(líquido ou gás)

- Amostra se deslocará (é mais solúvel) acompanhando a Fase Móvel

Duas Possibilidades

- Amostra não se deslocará (é mais solúvel) na Fase Estacionária

Consiste de 2 sistemas:

Suporte: PAPEL

Fase Estacionária: Aquosa (H20 na celulose)

Fase Móvel: Solvente orgânico (hidrofóbico)

CROMATOGRAFIA DE PARTIÇÃO

Suporte: GEL DE SÍLICA (camada delgada ou TLC)

CROMATOGRAFIA DE FASE REVERSA

Fase Estacionária: sílica (mineral apolar)

Fase Móvel: Solvente aquoso ou água

Dois tipos de montagem:

Page 35: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Para um dado sistema de solvente e tipo de suporte, cada substância apresenta um valor de Rf característico.

Assim, além de um método de purificação, as cromatografias de partição permitem identificar e quantificar (pela intensidade das manchas obtidas após a separação) diferentes compostos.

Pode-se ainda recortar a mancha de interesse do papel ou da sílica e recuperar o composto isolado.

Cromatografia de Partição

distância de migração da substância

distância de migração do solventeRf =

Papelou placa de sílica

Amostra na origem

tempo 0 t 1 t2 tn

direção do fluxo do solvente

Compostos separados

Cuba com solvente (fluxo por capilaridade)

Page 36: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

HPLC: high performance (pressure) liquid chromatography

Inicialmente desenvolvida para cromatografia de fase reversa em coluna, hoje em dia abrange aplicações para todos os tipos de cromatografias.

Característica diferencial da cromatografia convencional: • partículas de resina com diâmetro muito pequeno (poucos microns) • aumento da eficiência da separação em função do número maior de grãos de resina em um mesmo volume da coluna • fase móvel - necessita bomba de alta pressão para ter fluxo através da coluna

Desenho básico de um HPLC

bombas Injetor de amostra

Coluna e forno

Coletor de frações

Detector

Controle e análise dos dados

Duas bombas permitem eluição em gradiente

Detector: índice de refração, absorbância UV ou Vis, fluorescência, etc.

Coluna pode ser aquecida para melhorar a eluição diferencial na fase reversa

Page 37: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

CN Fenil NH2 C4 C8 C18

Retenção na coluna: aumenta com o tamanho da cadeia

Condição de equilíbrio: em meio ácido (0.1% de ácido trifluoroacético) para aumentar hidrofobicidade (protonar as carboxilas)

Eluição com gradiente crescente de solvente orgânico miscível com água

- acetonitrila, metanol, propanol

Fase reversa: resinas de sílica derivatizadas com hidrocarbonetos de 2 C a 18 C

Fase estacionária Função

C18 –Si (CH3)2 C18 H37 C8 –Si (CH3)2 C8 H17 tC2 –Si C2 H5

Aminopropyl –Si (CH2)3 NH2 Cyanopropyl –Si (CH3)2 (CH2)3CN Diol –Si (CH2)3 OCH2CH(OH)CH2OH

Abs

orbâ

ncia

a 2

14 n

m

Tempo ou volume de retenção

% d

e ac

eton

itri

la

100Moléculas não retidas

Moléculas retidas

Cromatograma de uma coluna de fase reversa, com eluição por um gradiente de acetonitrila

Page 38: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Cromatografia de interação hidrofóbica

É um processo de partição que explora a interação entre aminoácidos apolares de uma proteína e uma matriz de carácter hidrofóbico.

Proteínas em solução salina concentrada “perdem” parte da camada de solvatação para os sais, expondo na superfície regiões ricas em aminoácidos apolares, que interagem com uma matriz hidrofóbica

Eficiência dos sais em provocar “salting-out” varia com a série de Hofmeister:

Ânions: PO4-2> SO4-3>CH3COO->Cl->Br->NO3->ClO4->I->SCN-

Cátions:NH4+>Rb+>K+>Na+>Cs+>Li+>Mg+>Ca+>Ba+

Três estratégias para eluição:

1. diminuir a concentração de sal2. diminuir a polaridade da fase móvel3. adicionar detergente

Força da interação hidrofóbica aumenta com o tamanho da cadeia de C na resina:

Fenil (C6-OH) > Butil (C4) > Octil (C8)

PProteína altamente hidrofílica

PProteína menos hidrofílica

camada de H2O

solvatação

Hmatriz hidrofóbica

volume

[Pro

teín

a]

[sal]

Page 39: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Como se avalia se o processo de purificação de uma proteína foi eficiente ?

Três parâmetros permitem avaliar a eficiência do processo de purificação de uma proteína:

- Atividade específica (AE): é a razão entre a quantidade da proteína de interesse, medida através de sua atividade biológica, e a quantidade total de proteínas presentes em cada etapa de purificação. Esse índice aumenta ao longo da purificação.

- Índice de purificação: indica quantas vezes em relação ao material de partida a proteína de interesse foi “concentrada”. Calcula-se como a razão entre as atividades específicas inicial (material de partida) e final (proteína pura).

- Rendimento: indica quanto (em %) da proteína de interesse ativa presente no material de partida foi recuperado ao final da purificação. Um certo grau de perda é

inerente do processo de purificação (em cada etapa só devem ser proces- sadas as frações mais ricas em atividade biológica, desprezando-se aquelas

que apresentam pouca atividade). Também podem ocorrer perdas por desnaturação das proteínas devido às diferentes condições (pH, sais, etc) a que são submetidas nas diferentes etapas de purificação. Espera-se recuperar o máximo possível da proteína de interesse.

Page 40: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Purificação da Glicoquinase hepática de Rato

EtapaEtapa Atividade Atividade EspecíficaEspecíficabb( U ( U.mg-1) .. - a

Rendimentoc( % )( % )

100 12.0 85 1223 45 140

44 33 26080 15 480

Marcha A: somente cromatografias convencionais

1. Sobrenadantede pâncreas2. (NH4)2 SO4, precipitado 25-55%

3. troca iônica, coluna DEAE-Sephadex, pH 7.0, eluiçãoKCl4. troca iônica, coluna CM-cellulose, pH 5.5, eluiçãoNaCl6. interação hidrofóbica, coluna Butyl~Sepharose

7. gel-filtração, coluna SephacrylS-300 130

15 780Marcha B: com cromatografia de afinidade

1. Sobrenadantede pâncreas 100 12. troca iônica, coluna DEAE-Sephadex, pH 7.0, eluiçãoKCl 18 84 1953. Afinidade cromatográfica ( benzamidina~agarose ) 420 83 4.500

ÍndiceÍndicebb

PurificaçãoPurificação

aUnidade de enzima (1 unidade de atividade enzimática é definida como a quantidade de enzima que catalizaa transformação de 1 micromol de substrato em produto, em condições pre-estabelecidas

bAtividade específica: medida da atividade biológica (em U) expressa por miligramas de proteínac Rendimento: percentual da atividade biológica inicial (100%) recuperada em cada etapa de purificaçãod Índice de Purificação : razão entre a atividade específica inicial e aquela determinada em cada etapa.

Uma tabela como a vista acima é a maneira usual de se descrever o resultado de uma purificação. No exemplo acima, a mesma proteína foi isolada por duas “marchas” diferentes de

purificação (A e B). Observe os parâmetros de purificação. Se você fosse repetir essa purificação, qual esquema de purificação escolheria ?

EU TERIA ESCOLHIDO A MARCHA B.

Page 41: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Como se avalia se o processo de purificação de uma proteína foi eficiente ?

A eletroforese em gel de poliacrilamida (PAGE) permite visualizar a composição de proteínas de uma amostra. É um método complementar para a purificação de proteínas.

Fornece informações sobre a massa molecular e composição de subunidades da proteína em meio desnaturante e redutor.

A poliacrilamida é um polímero que um gel de malha porosa.

A poliacrilamida funciona como uma peneira, deixando passar através de seus

poros as moléculas pequenas e retendo as grandes

poliacrilamida

Catalisador (persulfato de amônio)

+

acrilamida N,N´-metilenobisacrilamida

• É formado a partir da reação de acrilamida e bisacrilamida.

• concentração de acrilamida variando de 5 a 20% determina o diâmetro dos poros

• uso de gradiente de acrilamida aumenta o poder de resolução

• o gel é polimerizado com tampão pH 8.9, na presença do detergente Na+ dodecil sulfato (SDS)

Page 42: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2- Sódio dodecil sulfato

Desnaturação de proteínas por SDS

Efeito do SDS

• desnaturação uniformiza a forma das proteínas, que poderia influenciar na migração através dos poros da poliacrilamida;

• mascara a carga natural das proteínas no pH da corrida, fazendo com que todas moléculas migrem para o anôdo;

• facilita o efeito de redutores, rompendo pontes dissulfeto intra- e inter-cadeias

A porção hidrocarboneto do detergente interage com as

regiões hidrofóbicas da proteína, dispondo o grupo sulfato

carregado na superfície, em contacto com o meio aquoso. A

repulsão entre os grupos fosfato desestabiliza os laços não covalentes que mantém a estrutura 3D da proteína,

desnaturando-a.

Page 43: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Eletroforese em Gel de Poliacrilamida (PAGE)

cuba vertical para mini-gel (10 X 8 cm)

O desenho ao lado mostra o tipo mais comum de cuba para PAGE. Na cuba, o gel é polimerizado entre duas placas de vidro ou plástico, afastadas 1 mm uma da outra.

Antes da polimerização, um pente é colocado na parte superior do gel para formar os poços onde serão colocados de 5 a 20 microlitros de cada amostra, misturadas com azul de bromofenol, um indicador da corrida.

As partes superior e inferior do gel fazem contacto com recipientes de tampão, onde estão os eletrodos que estabelecerão o campo elétrico (~100V) durante a corrida (1 a 2h).

Terminada a corrida, as placas são retiradas da cuba, e o gel entre elas é cuidadosamente retirado e corado para revelar as bandas de proteína. Como corantes utiliza-se Coomassie Blue ou nitrato de prata.

catodo

anodo

tampão

Poços para as amostras

amostra

Placas de vidro

1 mm

tampão

gel

Page 44: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Adição do redutor 2-mercaptoetanol rompe pontes dissulfeto nas proteínas, possibilitando a determinação do número de cadeias e tipo de

ligação entre cadeias de proteínas oligoméricas

Padrões

ABAB

AA

BB

Sem Com

2 - Mercaptoetanol2 - Mercaptoetanol

2 - Mercaptoetanol

BB

s s

SH SH

AA

BB

AA

Eletroforese em Meio RedutorSDS-PAGE das proteínas da bactéria Salmonella tiphymurium

Direção da

migração

Cada linha (banda) corada no gel representa uma proteína

Page 45: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

SDS-PAGE permite determinar a massa molecular de proteínas

Mobilidade relativa

Mas

sa m

olec

ular

(kD

)

Mobilidade relativa =

distância percorrida pela banda Xdistância percorrida pelo marcador da corrida

97.4

87.0

45.0

29.0

21.012.5 6.5

(-)

(+)Curva de calibração de SDS-PAGE

A migração eletroforética, expressa como mobilidade relativa, é proporcional ao logaritmo da massa molecular. Utiliza-se proteínas padrões com Mr conhecida para se fazer uma curva de calibração do gel em cada corrida. Interpolando-se a mobilidade relativa de uma proteína desconhecida na curva, pode-se estimar a sua massa molecular.

Proteínas padrões em um SDS-PAGE

Mr

Page 46: Estratégias para purificação de uma proteína Os assuntos abordados nessa aula são: - Métodos de centrifugação e precipitação diferencial - Dosagem de proteínas.

Terminamos aqui a 4ª.aula online do curso de Biofísica de Proteínas.

Os assuntos abordados nessa aula são:

- Métodos de centrifugação e precipitação diferencial

- Dosagem de proteínas

- Métodos cromatográficos

- Análise de eficiência da purificação

Na aula prática, vocês terão oportunidade de ver alguns tipos de cromatografia funcionando.