ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil...

201
PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I Prof. AUGUSTO CANTUSIO NETO 0.1 ESTRUTURAS METÁLICAS I NOTAS DE AULA 2008 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS

Transcript of ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil...

Page 1: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

0.1

ESTRUTURAS METÁLICAS I

NOTAS DE AULA 2008

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS

Page 2: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

0.2

Page 3: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-1

01. Introdução

1.1. – Breve Histórico:

1 Desde a mais remota antigüidade, tem-se notícia do homem a utilizar-se de artefatos de ferro. Iniciando-se pela descoberta do cobre, que se mostrava demasiadamente ductil – capaz de deformar-se sob a ação de cargas -, o homem aprimorando as suas próprias realizações, através do empreendimento de sua capacidade de pensar e de realizar, estabeleceu os princípios da metalurgia, que na definição de alguns autores, é uma síntese; pressupõe o uso coerente de um conjunto de processos, e não a prática de um instrumento único. E esses processos foram-se somando ao longo das necessidades humanas, pois para a síntese da metalurgia ou da forja, juntam-se as percussões (martelo), o fogo (fornalha), a água (têmpera), o ar (fole) e os princípios da alavanca.

Imagina-se que, provavelmente, o cobre foi descoberto por acaso, quando alguma fogueira de acampamento tenha sido feita sobre pedras que continham minério cúprico. É presumível que algum observador mais arguto tenha notado algo “derretido” pelo calor do fogo, reproduzindo, mais tarde, o processo propositadamente. Mas, como já se observou, o cobre é por demais mole para que com ele se fabriquem instrumentos úteis, em especial nos primórdios das descobertas humanas, bastante caracterizadas pelas necessidades de coisas brutas.

As técnicas de modelagem e de fusão vão se sofisticando quando surge a primeira liga, o cobre arsênico, composto tão venenoso que logo teria que ser substituído. O passo seguinte foi a descoberta de que a adição ao cobre de apenas pequena proporção de estanho, formava uma liga muito mais dura e muito mais útil do que o cobre puro. Era a descoberta do bronze, que possibilitou ao homem modelar uma multidão de novos e melhores utensílios: vasos, serras, escudos, machados, trombetas, sinos e outros. Mais ou menos pelo mesmo período, o homem teria aprendido a fundir o ouro, a prata e o chumbo.

Como estabelecem alguns historiadores, uma brilhante descoberta conduz a outra e, dessa maneira, logo depois da descoberta do cobre e do bronze, também o ferro passou a ser utilizado. Esse novo metal já era conhecido há dois mil anos antes da era cristã, mas por longo tempo permaneceu raro e dispendioso, e seu uso somente foi amplamente estabelecido na Europa, por volta do ano 500 a.C.

Page 4: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-2

Todo o ferro primitivo seria hoje em dia classificado como ferro forjado. O método para obtê-lo consistia em abrir um buraco em uma encosta, forrá-lo com pedras, enchê-lo com minério de ferro e madeira ou carvão vegetal e atear fogo ao combustível. Uma vez queimado todo o combustível, era encontrada uma massa porosa, pedregosa e brilhante entre as cinzas. Essa massa era colhida e batida a martelo, o que tornava o ferro compacto e expulsava as impurezas em uma chuva de fagulhas,. O tarugo acabado, chamado ‘lupa’, tinha aproximadamente o tamanho de uma batata doce, das grandes.

Com o tempo, o homem aprendeu como tornar o fogo mais quente soprando-o com um fole e a construir fornos permanente de tijolos, em vez de meramente escavar um buraco no chão. Dessa maneira, o aço daí resultante, era feito pela fusão do minério de ferro com um grande excesso de carvão vegetal ou juntando ferro maleável com carvão vegetal e cozinhando o conjunto durante vários dias, até que o ferro absorvesse carvão suficiente para se transformar em aço. Como esse processo era dispendioso e incerto e os fundidores nada sabiam da química do metal com que trabalhavam, o aço permaneceu por muitos anos um metal escasso e dispendioso, e somente tinha emprego em coisas de importância vital, como as lâminas das espadas.

Do ponto de vista histórico, narram alguns especialistas, que, por volta do século IV d.C., os fundidores hindus foram capazes de fundir alguns pilares de ferro que se tornaram famosos. Um deles, ainda existente em Dheli, tem uma altura de mais de sete metros, com outro meio metro abaixo do solo e um diâmetro que varia de quarenta centímetros na base a pouco mais de trinta centímetros no topo. Pesa mais de seis toneladas, é feito de ferro forjado e sua fundição teria sido impossível, naquele tamanho, na Europa, até época relativamente recente. Mas, a coisa mais notável nesse e em outros pilares de sua espécie, é a ausência de deterioração ou de qualquer sinal de ferrugem.

Após a queda do império romano, desenvolveu-se na Espanha a Forja Catalã, que veio a dominar todo o processo de obtenção de ferro e aço durante a Idade Média, espalhando-se notadamente pela Alemanha, Inglaterra e França. Nesse período, o ferro era obtido como uma massa pastosa que podia ser moldada pelo uso do martelo e não como um líquido que corresse para um molde, como ocorre atualmente. O fim da Idade Média que prepara a Europa moderna pela extensão do maquinismo, é também testemunha das primeiras intervenções do capitalismo no esforço para a produção industrial.

Essa evolução é acompanhada por grandes progressos técnicos, especialmente no que se refere aos transportes marítimos e, um impulso semelhante se observa no progresso da metalurgia. A força hidráulica foi aplicada aos foles das forjas, assim obtendo uma temperatura mais elevada e regular, e com a carburação mais ativa deu-se a fundição, correndo na base do forno o ferro

Page 5: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-3

fundido susceptível de fornecer peças moldadas. O forno, que a partir de então se pôde ampliar, transformou-se em forno de fole e, em seguida, em alto-forno.

O alto-forno a carvão vegetal, segundo os historiadores, apareceu por volta de 1630; o primeiro laminador remonta aproximadamente ao ano de 1700. Entretanto, o grande impulso ao desenvolvimento da siderurgia ocorreu com o advento da tração a vapor e o surgimento das ferrovias, a primeira das quais inaugurada em 1827. Até o fim do século XVIII, a maior parte das máquinas industriais eram feitas de madeira. O rápido desenvolvimento dos métodos de refinação e de trabalho do ferro abriu caminho a novas utilizações do metal e à construção de máquinas industriais e, por conseqüência, à produção, em quantidade, de objetos metálicos de uso geral.

Entre as descobertas científicas, que gradativamente iam melhorando o processo de produção industrial, merece destaque a utilização do carvão de pedra para a redução do minério de ferro, que resultou na localização dos complexos siderúrgicos e que veio determinar, por privilégios geológicos, o pioneirismo de uma nação na siderurgia. A Grã-Bretanha foi, realmente, a maior beneficiária dessa conquista científica, em razão de possuir, em territórios economicamente próximos, jazidas de minério de ferro e de carvão de pedra.

Junta-se a isto toda uma estrutura comercial voltada para o exterior e já se pode vislumbrar o perfil de um país que, praticamente sozinho, foi capaz de deter o privilégio de domínio do mercado internacional de ferro, a ponto de ter sido considerada a oficina mecânica do mundo. Apesar de não ser o único país a produzir ferro, foi o primeiro a produzi-lo em escala comercial.

A expansão da Revolução Industrial modificou totalmente a metalurgia e o mundo. O uso de máquinas a vapor para injeção de ar no alto-forno, laminares, tornos mecânicos e o aumento da produção, transformaram o ferro e o aço no mais importante material de construção. Em 1779, construiu-se a primeira ponte de ferro, em Coalbrookdale, na Inglaterra; em 1787, o primeiro barco de chapas de ferro e outras inovações.

As ferrovias, como já mencionado anteriormente, certamente foram o maior contributo à expansão das atividades da metalurgia e, no ano de 1830, entra em operação a ferrovia Liverpool-Manchester. No auge da atividade da construção ferroviária, por volta de 1847, estava em andamento a execução de cerca de dez mil quilômetros de ferrovias. Quando a rede ferroviária britânica tinha sido completada, a indústria siderúrgica ampliada foi capaz de suprir matéria-prima para a construção de ferrovias em outros países, onde se destacam os Estados Unidos que, na década de 1870, construiu cinqüenta e uma mil milhas de estradas de ferro, o que representava, na época, tanto quanto se havia construído no restante do mundo.

Page 6: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-4

Na década de 1880-1890 a produção dos altos-fornos nos Estados Unidos tornou-se a maior do mundo e, antes de 1900, a produção de aço norte-americana ultrapassou a todas as demais no mundo. Para que se tenha uma idéia do nível de crescimento da produção de aço, pode se perceber nela, um aumento vertiginoso, tanto que por volta de 1876, essa produção era de um milhão de toneladas/ano, passando em 1926, cinqüenta anos depois, para a ordem de cem milhões de toneladas ano, atingindo, atualmente, algo em torno de setecentos milhões de toneladas de aços das mais diversas qualidades e propriedades mecânicas, sob a forma de perfis, chapas, barras, tubos, trilhos, etc.

Algumas obras notáveis em estruturas metálicas e que merecem ser citadas, demonstram, de maneira insofismável, essa grande conquista do homem moderno. Partindo-se da já mencionada ponte inglesa de Coalbrookdale em 1779, em ferro fundido com vão de 31 metros, passamos, logo depois ainda na Inglaterra, à Britannia Brigde, com dois vãos centrais de 140 metros cada; também pela Brooklyn Bridge em Nova Iorque, nos Estados Unidos, a primeira das grandes pontes pênseis, com 486 metros de vão livre e construída em 1883; a Torre Eiffel, em Paris, datada de 1889, com 312 metros de altura; o Empire State Building, também em Nova Iorque, com seus 380 metros de altura e datado de 1933; a Golden Gate Bridge, na cidade de São Francisco, com 1280 metros de vão livre, construída em 1937 até o World Trade Center, em Nova Iorque, com seus 410 metros de altura e seus 110 andares, construído em 1972, e isso para citarmos algumas.

No Brasil, a atividade metalúrgica, no início da colonização era exercida pelos artífices ferreiros, caldeireiros, funileiros, sempre presentes nos grupos de portugueses que desembarcavam nas recém-fundadas capitanias. A matéria-prima sempre foi importada e cara. As primeiras obras em estruturas metálicas no Brasil, têm sua origem, assim como nos demais países do mundo, a partir das estradas de ferro.

Narra-se que em outubro de 1888, chegou a Bananal, no Estado do Rio de Janeiro, a estação ferroviária que ali seria montada. A mais sensacional estação ferroviária é a Estação da Luz, no centro da cidade de São Paulo, pois com algumas modificações, feitas após um incêndio, a estação é, fundamentalmente, a mesma que se terminou de construir em 1901 e que, imponentemente, marcava e marca até hoje, a paisagem da capital paulista. De data anterior, provavelmente de 1875, encontra-se o Mercado de São José, no Recife; mas, também, o Mercado do Peixe, em Belém, por muito tempo conhecido como o Mercado de Ferro, que foi inaugurado em 1901.

2 Acredita-se que a primeira obra a utilizar-se de ferro pudlado – processo de refinação do ferro datado de 1781, na Inglaterra, patenteado por Henry Cort,

Page 7: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-5

descrita como a mais pesada forma de trabalho jamais empreendida pelo homem – fabricado no Brasil, deu-se por volta de 1857, que foi a Ponte de Paraíba do Sul, no Estado do Rio de Janeiro, com cinco vãos de trinta metros, estando em uso até a atualidade.

3 Mas, como marco de construção, não se poderia deixar de citar, em São Paulo, o Viaduto Santa Efigênia, que de acordo com o Eng.º Paulo Alcides Andrade, constituiu-se num marco de São Paulo. A história desse viaduto, segundo o engenheiro, se inicia por volta do ano de 1890, quando se obteve a licença do Conselho de Intendentes para a sua construção. A obra, porém, não foi iniciada e o contrato para sua construção foi cancelado. Para se resumir a história de uma obra repleta de vai-e-vém, de ordem burocrática, ela somente teve início no ano de 1911 e terminou em 1913. A estrutura, totalmente fabricada na Bélgica, foi apenas montada no local, pela união por rebitagem das peças numeradas – processo de ligações estruturais adota na época – e com as furações prontas, sendo inaugurada em 26 de setembro de 1913.

As características estruturais da obra nos chamam a atenção, em especial, por determinadas peculiaridades. A ponte é formada por um tabuleiro superior com 255 metros de extensão, apoiado sobre cinco tramos, sendo três centrais com 53,50 metros cada e mais dois vãos com 30,00 metros de vão nas extremidades. Os três vãos centrais, por sua vez, são formados por arcos com flecha de 7,50 metros, o que equivale a uma relação flecha/vão de 7 a 8, valores esses, até hoje utilizados em dimensionamento de estruturas em arco.

4 A primeira corrida de aço em uma usina siderúrgica integrada de grande porte, no Brasil, deu-se em 22 de junho de 1946, na Usina Presidente Vargas, da CSN – Companhia Siderúrgica Nacional, em Volta Redonda, no Estado do Rio de Janeiro.

O país importava praticamente todo o aço de que necessitava, tanto que as instalações industriais da própria CSN foram construídas por empresas estrangeiras. Por aquele período, à exceção dos produtos planos (chapas) que tinham a demanda garantida, os demais produtos, tais como trilhos e perfis laminados, encontravam dificuldades na sua comercialização, quando foi proposta pela USX – United States Steeel, empresa norte-americana fabricante de aço e fornecedora de estruturas metálicas, após pesquisa de mercado, que a CSN instalasse uma fábrica de estruturas com o objetivo de consumir a produção de laminados e de incentivar o seu uso4.

Nascia, dessa maneira, a partir de 1953, a FEM – Fábrica de Estruturas Metálicas, criando uma tecnologia brasileira da construção metálica. 4Roosevelt de Carvalho, na ocasião funcionário da CSN, foi uma pessoa de fundamental importância neste processo. Após breve estágio nos E.U.A.. voltou para

Page 8: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-6

organizar na fábrica recém-criada, um curso para detalhamento de estruturas metálicas. O trabalho desenvolvido possibilitou a formação de uma equipe de primeira linha e transformou-se em verdadeira escola. Com Paulo Fragoso a construção metálica conheceu um de seus momentos mais estimulantes. Com a implantação da CSN, ele começou a se preparar para colaborar no desenvolvimento da nova tecnologia que, acreditava, haveria de ganhar grande impulso no país. O vanguardarismo do escritório Paulo Fragoso não se limitou apenas ao arrojo, que propiciou a construção das primeiras grandes edificações de aço no Brasil.

Introduziu e aperfeiçoou nos seus projetos os conceitos de vigas mistas, trazido da Alemanha, um dos fatores mais importantes para a viabilização econômica da solução metálica para edifícios altos. Estava deflagrado o processo que daria início às edificações de aço no Brasil.

Dignos de nota, muito embora sejam muitas as edificações, mencionaremos apenas algumas dessas obras:

Nome Edifício Garagem América

Edifício Palácio do Comércio

Edifício Avenida Central

Edifício Santa Cruz

Área Construída

15.214 m2

17 Pavimentos

21.655 m2

21 Pavimentos

75.000 m2

36 Pavimentos

48.717 m2

33 Pavimentos

Projeto Arquitetônico

Rino Levi Lucjan Korngold

Henrique E. Mindlin

Jaime Luna dos Santos

Projeto Estrutural

Paulo R. Fragoso

Paulo R. Fragoso

Paulo R. Fragoso

Paulo R. Fragoso

Fabricante F.E.M. F.E.M. F.E.M. F.E.M.

Construtora Cavalcanti & Junqueira

Lucjan Korngold

Capua & Capua

Ernesto Wöebcke

Quantitativo de Aço

948 Ton. 1.360 Ton. 5.620 Ton. 4.011 Ton.

Local - Data S.P. - 1957 S.P. - 1959 R.J. - 1961 R.S. – 1964

1. Cronologia do Uso dos Metais – Organizada por Thomaz Mares Guia Braga

2. Edifícios Industriais em Aço – Ildony H. Belley – Editora Pini

3. Eng.º Paulo Andrade – material disponível na Internet

4. Edificações de Aço no Brasil – Luís Andrade de Mattos Dias – Zigurate Editora – 2002.

Page 9: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-7

1.2. – Vantagens e Desvantagens na utilização do Aço Estrutural:

Como todo material de utilização em construção, o aço estrutural é possuidor de características que trazem benefícios de toda ordem o que, certamente, proporciona vantagens em sua utilização. Muito embora não seja causador de malefícios quando utilizado em construções, é também necessário estabelecer algumas desvantagens com relação à sua utilização. Pois bem, vamos a elas1,2.

1.2.1. – Vantagens:

Como principais vantagens da utilização do aço estrutural, podemos citar:

a) Alta resistência do material nos diversos estados de solicitação – tração, compressão, flexão, etc., o que permite aos elementos estruturais suportarem grandes esforços apesar das dimensões relativamente pequenas dos perfis que os compõem.

b) Apesar da alta massa específica do aço, na ordem de 78,50 KN/m3, as estruturas metálicas são mais leves do que, por exemplo, as estruturas de concreto armado, proporcionado, assim, fundações menos onerosas.

c) As propriedades dos materiais oferecem grande margem de segurança, em vista do seu processo de fabricação que proporciona material único e homogêneo, com limites de escoamento, ruptura e módulo de elasticidade bem definidos.

d) As dimensões dos elementos estruturais oferecem grande margem de segurança, pois por terem sido fabricados em oficinas, são seriados e sua montagem é mecanizada, permitindo prazos mais curtos de execução de obras.

e) Apresenta possibilidade de desmontagem da estrutura e seu posterior reaproveitamento em outro local.

f) Apresenta possibilidade de substituição de perfis componentes da estrutura com facilidade, o que permite a realização de eventuais reforços de ordem estrutural, caso se necessite estruturas com maior capacidade de suporte de cargas.

g) Apresenta possibilidade de maior reaproveitamento de material em estoque, ou mesmo, sobras de obra, permitindo emendas devidamente dimensionadas, que diminuem as perdas de materiais, em geral corrente em obras.

Page 10: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-8

1.2.2. – Desvantagens:

Como principais desvantagens da utilização do aço estrutural, podemos citar:

a) Limitação de fabricação em função do transporte até o local da montagem final, assim como custo desse mesmo transporte, em geral bastante oneroso.

b) Necessidade de tratamento superficial das peças estruturais contra oxidação devido ao contato com o ar, sendo que esse ponto tem sido minorado através da utilização de perfis de alta resistência à corrosão atmosférica, cuja capacidade está na ordem de quatro vezes superior aos perfis de aço carbono convencionais.

c) Necessidade de mão-de-obra e equipamentos especializados para a fabricação e montagem.

d) Limitação, em algumas ocasiões, na disponibilidade de perfis estruturais, sendo sempre aconselhável antes do início de projetos estruturais, verificar junto ao mercado fornecedor, os perfis que possam estar em falta nesse mercado.

1. Estruturas Industriais em Aço – Ildony H. Belley – Editora Pini.

2. Estruturas Metálicas – Antonio Carlos F. Bragança Pinheiro – Editora Edgard Blücher Ltda.

Page 11: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-9

1.3. – Fatores que influenciam o custo de Estruturas Metálicas:

1 Tradicionalmente o aço tem sido vendido por tonelada e, conseqüentemente, discutindo-se o custo de uma estrutura de aço impõe-se que se formulem seus custos por tonelada de estrutura acabada. Na realidade, existe uma gama considerável de outros fatores que se somam na constituição desses valores e que têm influência no custo final dessa estrutura, que não somente o seu peso.

Como principais fatores que influenciam o custo de Estruturas Metálicas, podemos citar:

a) Seleção do sistema estrutural: ao se considerar qual o sistema estrutural que se propõe dimensionar, é necessário levar em conta os fatores de fabricação e posterior montagem, bem como sua utilização futura, no que diz respeito, por exemplo, à iluminação, ventilação e mesmo outros fatores que venham a ser causadores de problemas futuros e que possam demandar arranjos posteriores.

b) Projeto dos elementos estruturais: é sempre necessário um cuidado especial nesse requisito, em vista a imensa repetitividade dos elementos dimensionados. Uma vez que se dimensiona um componente estrutural, ele se repete por um numero grande de vezes, e caso esse elemento tenha sido dimensionado aquém de suas necessidades, os reflexos de ordem estrutural se farão notar em toda a obra; assim como, em caso contrário, de dimensionamento dos elementos estruturais além de suas necessidades reais, acarreta custo adicional, sem dúvida nenhuma, desnecessário.

c) Projeto e Detalhe das conexões: da mesma maneira que nos itens anteriores, as conexões, ou as ligações estruturais deverão levar em conta aspectos de fabricação. Por exemplo, as ligações de fábrica poderão ser soldadas, pois esse tipo de trabalho ao ser realizado em fábrica é feito de maneira relativamente simples, ao passo que, quando essas ligações são realizadas na obra, as condições locais já não são tão favoráveis a um bom processo de montagem, em vista de que, na fábrica, trabalha-se ao nível do chão ou mesmo em bancadas apropriadas, enquanto que no local da obra, as condições de trabalho são, em geral, executadas sobre andaimes ou outros elementos; o que nos leva a considerarmos para as ligações de obra a utilização de parafusos.

d) Processo de fabricação, especificações para fabricação e montagem: estão dentre os fatores que mais influenciam os custos da obra, pois processos de especificações mal delineadas causam atrasos ou mesmo necessidade de retrabalho de certas etapas de execução, assim como a montagem da estrutura deverá ser levada em conta mesmo antes de sua contratação, para

Page 12: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-10

que se verifiquem elementos limitadores dessa etapa da construção, tais como proximidade de vizinhos, linhas de energia, tubulações enterradas, movimentação dos equipamentos de montagem, etc.

e) Sistemas de proteção contra corrosão e incêndio: no primeiro caso, da corrosão, já se citou a existência, no mercado, de determinados produtos que minoram essa dificuldade, mas que se deve levar em conta, também, se a oferta desses produtos podem ou não onerar a obra, avaliando e comparando o custo de pinturas especiais em relação ao material aço. De uma maneira geral, principalmente em zonas litorâneas, de grande agressividade, a utilização desses perfis especiais é menos oneroso do que pinturas especiais. No caso de combate a incêndio, esse aspecto deve levar em consideração normas específicas delineadas pelo Corpo de Bombeiros, mas que de uma maneira geral, acrescentam, de forma significativa, ônus sobre o custo da obra.

Pintura Intumescente: Proteção passiva em Estruturas Metálicas com tintas intumescentes de acordo com Legislação do Corpo de Bombeiros.

No Brasil, a partir de 1995, esta tecnologia foi introduzida, tendo boa aceitação pelo mercado. O sistema compreende de um primer, tinta intumescente a tinta de acabamento. É necessário um prévio jateamento abrasivo e posteriormente a aplicação da tinta de fundo epoximastic vermelho óxido na espessura de película seca de 100 micrometros. O ideal para a execução dos serviços com a pintura intumescente, é que as estruturas já estejam montadas, com as eventuais alvenarias, ou lajes prontas, pois nas faces onde existem tais materiais, não será necessária a aplicação do material, porém, locais onde existam forros ou fechamentos em placas, os serviços de pintura deverão ser executados antes dessas colocações. A aplicação é feita com pessoal especializado pois é necessário rigoroso controle técnico nas demãos de material que não podem ultrapassar os limites estabelecidos por demão, devendo se observar os corretos espaços de tempo entre essas demãos. O acabamento é através de produto adequado, chamado ‘top seal’, aplicado com método convencional de pintura. A tecnologia utilizada nas tintas intumescentes, agem a partir da temperatura de 200.ºC, iniciando-se um processo de expansão volumétrica onde são liberados gases atóxicos e, formando-se uma camada espessa de espuma semi-rígida na superfície da estrutura metálica, protege a mesma, retardando a ação da temperatura sobre essas. Dependendo do tipo da estrutura (leve, média ou pesada) e da utilização (industrial, comercial, institucional) é aplicada uma espessura adequada de material intumescente que irá proteger a estrutura, conforme o caso requerido pela legislação, de 30 a 120 minutos.

1. Edifícios Industriais em Aço – Ildony H. Belley – Editora Pini

Page 13: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-11

1.4. – Principais fases na construção de uma obra:

As obras de construção, de maneira geral, estabelecem determinadas premissas para sua boa execução e que podem ser definidas assim:

a) Projeto Arquitetônico: nessa etapa são delineadas a finalidades da obra, o seu estudo, a sua composição, assim como os materiais que serão utilizados, características de ventilação, iluminação. Bem se vê tratar-se de etapa das mais importantes, em vista de que todos os demais projetos complementares – fundações, estrutura, instalações, etc – serão desenvolvidos a partir das premissas definidas nessa etapa, necessitando, portanto, de tempo adequado para sua boa confecção.

b) Projeto estrutural: na seqüência natural dos projetos, surge a etapa onde se dá vestimenta ao corpo da obra, ou seja, a estrutura, quando todos os componentes desse corpo devem ser devidamente trabalhados, de forma a estabelecer consonância com o projeto arquitetônico. É não menos importante do que o anterior, pois se o primeiro delineia as linhas básicas de uma obra, a estrutura vem dar conformação àquelas linhas.

1 Vale aqui a citação do Johnstom/Lim., em seu livro “Basic Steel Design”:

“Um bom projetista estrutural pensa de fato em sua estrutura tanto ou mais do que pensa no modelo matemático que usa para verificar os esforços internos, baseado nos quais ele deverá determinar o material necessário, tipo, dimensão e localização dos membros que conduzem as cargas. A ‘mentalidade da engenharia estrutural’ é aquela capaz de visualizar a estrutura real, as cargas sobre ela, enfim ‘sentir’ como estas cargas são transmitidas através dos vários elementos até as fundações. Os grandes projetistas são dotados daquilo que às vezes se tem chamado ‘intuição estrutural’. Para desenvolver a ‘intuição e sentir’, o engenheiro torna-se um observador arguto de outras estruturas. Pode até mesmo deter-se para contemplar o comportamento de uma árvore projetada pela natureza para suportar as tempestades violentas; sua flexibilidade é frágil nas folhas e nos galhos diminuídos, mas crescente em resiet6encia e nunca abandonando a continuidade, na medida em que os galhos se confundem com o tronco, que por sua vez se espalha sob sua base no sistema de raízes, que prevê sua fundação e conexão com o solo”.

c) Sondagens do Solo: é de fundamental importância para o bom delineamento, em especial, do sistema estrutural a ser adotado que, como já vimos, é um dos fatores preponderantes na análise de custos de uma obra em estrutura metálica. A partir da boa ou má qualidade do solo, o sistema estrutural proposto irá considerar as condições mais propícias para o apoio dessa estrutura sobre os elementos estruturais que compõe as fundações, podendo ou não, por exemplo, serem engastados nesses elementos.

Page 14: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-12

d) Detalhamento, Fabricação, Transporte e Montagem: nessas etapas os fatores que compõem a boa execução da obra devem ser bem delineados, a começar pelo detalhamento dos elementos estruturais, peça por peça, visando atender necessidades de cronogramas tanto de fabricação quanto de montagem. No caso da fabricação, devem ser observadas as premissas de projeto e detalhamento, assim como prever para as etapas de transporte e montagem, a confecção de estruturas que não exijam, em demasia, a contratação de equipamentos ainda mais especiais, tais como veículos especiais ou guindastes também especiais.

1. Edifícios Industriais em Aço – Ildony H. Belley – Editora Pini

Page 15: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-13

1.5. – Produtos Siderúrgicos e Produtos Metalúrgicos:

Os produtos siderúrgicos, via de regra, podem ser classificados de forma geral em perfis; chapas e barras. As indústrias siderúrgicas produzem cantoneiras de abas iguais ou desiguais, perfis H, I ou Tê, perfis tipo U, barras redondas, barras chatas, tubos circulares, quadrados ou retangulares, chapas em bobinas, finas ou grossas; enquanto os produtos metalúrgicos são os compostos por chapas dobradas tais como perfis tipo U enrijecido ou não, cantoneiras em geral de abas iguais, perfil cartola, perfil Z ou trapezoidais, ou ainda, compostos por chapas soldadas para perfis tipo Tê soldado ou I soldado.

1.5.1. – Designação dos perfis:

a) Perfis laminados ou conformados a quente:

A designação de perfis metálicos laminados segue determinada ordem

Código, altura (mm.), peso (Kg/m)

Como exemplo de códigos teremos:

L – Cantoneiras de abas iguais ou desiguais

I – Perfil de seção transversal na forma da letra ‘ I ‘

H – Perfil de seção transversal na forma da letra ‘H’

U – Perfil de seção transversal na forma da letra ‘U’

T – Perfil de seção transversal na forma da letra ‘Tê’

Como exemplo de designação de perfis teremos:

L 50 x 2,46 – Perfil L de abas iguais de 50mm e peso de 2,46 kg/ml

L 100 x 75 x 10,71 – Perfil L de abas desiguais de 100mm de altura por 75mm de largura e peso de 10,71 kg/ml

I 200 x 27 – Perfil ‘ I ‘ com altura de 200mm e peso de 27 Kg/ml

H 200 x 27 – Perfil ‘ H ‘ com altura de 200mm e peso de 27 Kg/ml

U 200 x 27 – Perfil ‘ U ‘ com altura de 200mm com peso de 27 Kg/ml

Page 16: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-14

b) Perfis de chapa dobrada ou perfis formados a frio (PFF):

A designação de perfis metálicos de chapa dobrada segue determinada ordem

Tipo, Altura, Aba, Dobra, Espessura (todas as medidas em mm)

L – Cantoneiras de abas iguais ou desiguais

U – Perfil de seção transversal na forma da letra ‘ U ‘ enrijecidos ou não

Como exemplo de designação de perfis teremos:

L 50 x 3 – Perfil L de abas iguais de 50mm e espessura de 3mm

L 50 x 30 x 3 – Perfil L de abas desiguais de 50mm por 30mm e espessura de 3mm

U 150 x 60 x 3 – Perfil U não enrijecido com altura de 150mm, aba de 60mm e espessura de 3mm

U 150 x 60 x 20 x 3 – Perfil U enrijecido com altura de 150mm, aba de 60mm, dobra de 20mm e espessura de 3mm

A designação de perfis soldados seguem especificações dos fabricantes sempre na forma de perfil tipo ‘ I ‘

CS – Perfil coluna soldada (altura e abas com a mesma dimensão)

VS – Perfil viga soldada

CVS – Perfil coluna-viga soldada

Como exemplo de designação de perfis teremos:

CS 250 x 52 – Perfil CS com altura de 250mm e peso de 52 Kg/ml

VS 600 x 95 – Perfil VS com altura de 600mm e peso de 95 kg/ml

CVS 450 x 116 – Perfil CVS com altura de 450mm e peso de 116 Kg/ml

Page 17: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-15

c) Outros produtos:

Chapas finas a frio – possuem espessuras padrão de 0,30mm a 2,65mm e fornecidas em larguras padronizadas de 1.000mm, 1.200mm e 1.500mm e nos comprimentos de 2.000mm e 3.000mm, e também sob a forma de bobinas

Chapas finas a quente – possuem espessuras padrão de 1,20mm a 5,00mm e fornecidas em larguras padronizadas de 1.000mm, 1.100mmn, 1.200mm, 1.500mm e 1.800mm e nos comprimentos de 2.000mm, 3.000mm e 6.000mm, e também sob a forma de bobinas

Chapas grossas – possuem espessuras padrão de 6,3mm a 102mm e fornecidas em diversas larguras padronizadas de 1.000mm a 3.800mm e em comprimentos de 6.000mm e 12.000mm

Barras redondas – apresentadas em amplo numero de bitolas que são utilizadas em chumbadores, parafusos e tirantes

Barras chatas – apresentadas nas dimensões de 38 x 4,8 a 304 x 50 (mm)

Barras quadradas – apresentadas nas dimensões de 50mm a 152mm

Tubos estruturais – apresentados em amplo numero de dimensões e fornecidos em comprimento padrão de 6.000mm

d) Nomenclatura S.A.E.

Para os aços utilizados na indústria mecância e por vezes também em construções civis, emprega-se comfreqüência a nomenclatura S.A.E.

SAE 1020 – aço-carbono com 0,20% de carbono

1. Estruturas Metálicas – Antonio Carlos F. Bragança Pinheiro – Editora Edgard Blücher Ltda.

2. Edifícios Industriais em Aço- Ildony H. Belley – Editora Pini Ltda.

Page 18: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-16

PADRÃO COMERCIAL DE PERFIS METÁLICOS

Page 19: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-17

1.6. – Aplicações Gerais das Estruturas Metálicas:

Dentre as inúmeras aplicações das estruturas metálicas, podemos citar:

• Telhados

• Edifícios Industriais, Residenciais e Comerciais

• Residências

• Hangares

• Pontes e Viadutos

• Pontes Rolantes e Equipamentos de Transporte (Esteiras)

• Reservatórios

• Torres

• Guindastes

• Postes

• Passarelas

• Indústria Naval

• Escadas

• Mezaninos

• Silos

• Helipontos

1. Estruturas Metálicas – Antonio Carlos F. Bragança Pinheiro – Editora Edgard Blücher Ltda.

Page 20: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-18

1.7. – Principais Normas para Projeto e Obras em Estruturas Metálicas:

Entidades normativas são associações representativas de classe ou organismos oficiais que determinam os procedimentos a serem seguidos para a execução de uma determinada atividade.

Para projetos e execução de obras em Estruturas Metálicas, existem normas que prescrevem os materiais utilizados (aço, soldas, parafusos, etc), metodologia de projetos (cargas, dimensionamento, detalhamento) e execução da obra (fabricação, montagem, sistemas de combate a corrosão e incêndio).

As principais entidades responsáveis por esses diversos níveis de atividades são:

ABNT – Associação Brasileira de Normas Técnicas

AISC - American Institute of Steel Construction

ANSI – American National Standards Institute

ASTM – American Society for Testing and Materials

SAE – Society of Automotive Engineers

DIN – Deutsch Industrie Norm

Tendo em vista que no Brasil o órgão que atende às premissas de projeto, cálculo e execução é a ABNT, essa entidade estabelece como prerrogativas para as atividades na área de Estruturas Metálicas as seguintes normas:

NB 14 (NBR 8800) – Projeto e Execução de Estruturas de Aço de Edifícios

E que, por sua vez, estabelece como Normas Técnicas complementares:

NB 862 (NBR 8681) – Ações e Segurança nas estruturas

NB 5 (NBR 6120) – Cargas para o Cálculo de Estruturas de Edificações

NB 599 (NBR 6123) – Forças Devido ao Ventos em Edificações

NBR 14323 – Dimensionamento para Estruturas de Aço de Edifícios em Situação de Incêndio

NBR 14432 – Exigências de Resistência ao Fogo de Elementos Construtivos de Edificações

Page 21: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-19

CANTONEIRAS LAMINADAS DE ABAS IGUAIS

Perfil Altura Espessura Área Peso Ix = Iy Wx = Wy ix = iy i máx i min Xg = Yg

H x peso h (mm) to (mm) cm² kg/m cm4 cm³ cm cm cm cm

16 x 0,71 16 x 16 3,17 0.96 0,71 0,20 0,18 0,45 0,56 0,30 0,51

19 x 0,88 19 x 19 3,17 1,16 0,88 0,37 0,28 0,58 0,73 0,38 0,58

22 x 1,04 22 x 22 3,17 1,35 1,04 0,58 0,37 0,66 0,80 0,48 0,66

25 x 1,19 25 x 25 3,17 1,48 1,19 0,83 0,49 0,76 0,96 0,51 0,76

25 x 1,73 25 x 25 6,76 2,19 1,73 1,24 0,65 0,76 0,95 0,48 0,81

25 x 2,21 25 x 25 6,40 2,83 2,21 1,66 0,98 0,73 0,91 0,48 0,86

32 x 1,50 32 x 32 3,17 1,93 1,50 1,66 0,81 0,96 1,21 0,63 0,91

32 x 2,20 32 x 32 4,76 2,77 2,20 2,49 1,14 0,96 1,20 0,61 0,96

32 x 2,86 32 x 32 6,4 3,61 2,86 3,32 1,47 0,93 1,16 0,61 1,01

38 x 1,83 38 x 38 3,17 2,32 1,83 3,32 1,14 1,19 1,50 0,76 1,06

38 x 2,68 38 x 38 4,76 3,42 2,68 4,57 1,63 1,16 1,47 0,73 1,11

38 x 3,48 38 x 38 6,40 4.45 3,48 5,82 2,13 1,14 1,44 0,73 1,19

38 x 4,26 38 x 38 8,00 5,42 4,26 6,65 4,53 1,11 1,39 0,73 1,24

44 x 2,14 44 x 44 3,17 2,70 2,14 5,41 1,63 1,39 1,76 0,88 1,21

44 x 3,15 44 x 44 4,76 3,99 3,15 7,49 2,29 1,37 1,73 0,88 1,29

44 x 4,12 44 x 44 6,4 5,22 4,12 9,57 3,11 1,34 1,69 0,86 1,34

44 x 5,05 44 x 44 8,0 6,45 5,05 11,23 3,77 1,32 1,66 0,86 1,39

44 x 5,94 44 x 44 10,0 7,61 5,94 12,90 4,26 1,29 1,61 0,86 1,45

51 x 2,46 51 x 51 3,17 3,09 2,46 7,90 2,13 1,60 2,03 1,01 1,39

51 x 3,63 51 x 51 4,76 4,58 3,63 11,23 3,11 1,57 1,99 0,99 1,44

51 x 4,76 51 x 51 6,4 6,06 4,76 14,56 4,09 1,54 1,94 0,99 1,49

51 x 5,83 51 x 51 8,0 7,41 5,83 17,48 4,91 1,52 1,91 0,99 1,54

51 x 6,99 51 x 51 10,0 8,77 6,99 19,97 5,73 1,49 1,86 0,99 1,62

Page 22: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-20

CANTONEIRAS LAMINADAS DE ABAS IGUAIS

Perfil h to Peso Área Ix = Iy Wx = Wy ix = iy is min i máx Xg = Yg

H x peso mm mm kg/m cm² cm4 cm³ cm cm cm cm

64 x 6,10 64 6,4 6,10 7,68 29,1 6,4 1,95 1,24 2,45 1,83 64 x 7,4 64 8,0 7,40 9,48 35,4 7,8 1,93 1,24 2,43 1,88 64 x 8,8 64 10,0 8,80 11,16 40,8 9,1 1,91 1,22 2,41 1,93 76 x 7,3 76 6,4 7,30 9,30 50,0 9,50 2,36 1,50 2,94 2,13

76 x 9,1 76 8,0 9,10 11,48 62,4 11,6 2,33 1,50 2,94 2,21 76 x 10,7 76 10,0 10,70 13,61 74,9 14,0 2,35 1,47 2,92 2,26 76 x 14,0 76 12,5 14,00 17,74 91,6 17,5 2,27 1,47 2,86 2,36

102 x 12,2 102 8,0 12,20 15,50 154,0 21,00 3,15 2,00 3,96 2,84 102 x 14,6 102 10,0 14,60 18,45 183,1 25,1 3,15 2,00 3,96 2,90 102 x 19,1 102 12,5 19,10 24,19 233,1 32,4 3,10 1,98 3,91 3,00 102 x 23,4 102 16,0 23,40 29,74 278,9 39,4 3,06 1,96 3,86 3,12

127 x 18,3 127 10,0 18,30 23,3 362,0 39,0 3,94 2,51 4,92 3,53 127 x 24,1 127 12,5 24,10 30,65 470,3 51,9 3,92 2,49 4,95 3,63 127 x 29,8 127 16,0 29,80 37,81 566,1 63,3 3,87 2,46 4,89 3,76 127 x 35,1 127 20,0 35,10 44,77 653,5 73,9 3,82 2,46 4,82 3,86 152 x 22,2 152 10,0 22,20 28,13 641,0 58,1 4,77 3,02 6,05 4,17 152 x 29,2 152 12,5 29,20 37,10 828,3 75,8 4,73 3,00 5,97 4,27 152 x 36,0 152 16,0 36,00 45,87 1007,3 93,2 4,69 2,97 5,94 4,39 152 x 42,7 152 20,0 42,70 54,45 1173,8 109,9 4,64 2,97 5,84 4,52 152 x 49,3 152 22,0 49,30 62,77 1327,8 125,5 4,60 2,97 5,80 4,62

203 x 39,3 203 12,5 39,30 50,0 2022,0 138,0 6,38 4,01 - 5,56 203 x 48,7 203 16,0 48,70 62,0 2471,0 169,0 6,32 4,01 - 5,66 203 x 57,9 203 19,0 57,90 73,80 2899,0 200,0 6,27 3,99 - 5,79 203 x 67,0 203 22,0 67,0 85,30 3311,0 230,0 6,22 3,96 - 5,89

Page 23: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-21

CANTONEIRAS LAMINADAS DE ABAS DESIGUAIS

Dimensões to c Peso Área Ix Iy Wx Wy ix iy ix min Xg Yg tg

mm mm cm kg/m cm² cm4 cm4 cm³ cm³ cm cm cm cm cm

6,4 1,43 7,29 9,29 74,9 32,5 12,3 6,7 2,84 1,89 1,37 1,55 2,82 506

8,0 1,59 9,08 11,48 91,6 39,1 15,3 8,2 2,82 1,85 1,37 1,63 2,90 501

89

X

64 10,0 1,75 10,71 13,61 108,2 45,8 18,2 9,7 2,82 1,83 1,37 1,68 2,95 496

8,0 1,75 10,71 13,48 141,5 70,8 20,2 12,5 3,24 2,29 1,65 1,93 3,20 554

10,0 1,21 12,65 16,00 166,5 79,1 24,0 14,1 3,23 2,22 1,63 1,98 3,25 551

11,1 2,06 14,58 18,52 187,3 91,6 27,1 16,4 3,18 2,22 1,63 2,03 3,30

102

X

76

12,5 2,22 16,52 20,97 208,1 99,9 30,5 18,2 3,15 2,18 1,63 2,11 3,38 543

6,4 1,59 9,08 11,68 120,7 87,4 16,6 13,3 3,21 2,74 1,85 2,31 2,95 759

8,0 1,75 11,46 14,52 149,8 108,2 20,8 16,5 3,21 2,73 1,85 2,36 3,00 757

10,0 1,91 13,54 17,23 174,8 124,9 24,5 19,3 3,19 2,69 1,85 2,44 3,07 755

11,1 2,06 15,77 19,94 199,8 141,5 28,2 22,1 3,17 2,66 1,83 2,49 3,12 753

102

X

89

12,5 2,22 17,71 22,58 220,6 158,2 31,4 24,9 3,13 2,65 1,83 2,54 3,18 750

8,0 1,91 12,95 16,52 274,7 112,4 31,7 16,6 4,08 2,61 1,93 2,13 4,04 489

10,0 2,06 15,48 19,68 324,7 133,2 37,7 19,8 4,06 2,60 1,93 2,18 4,09 486

11,1 2,22 17,86 22,77 370,4 149,8 43,3 22,5 4,03 2,57 1,93 2,24 4,14 482

12,5 2,38 20,24 25,81 416,2 166,2 49,1 25,3 4,02 2,54 1,91 2,31 4,22 479

14,3 22,62 28,84 457,9 183,1 54,3 28,0 3,98 2,53 1,91 2,36 4,27

16,0 2,70 25,00 31,74 499,5 199,8 59,6 30,8 3,97 2,51 1,91 2,41 4,32 472

17,5 27,23 34,65 541,1 216,4 65,0 33,6 3,95 2,50 1,91 2,46 4,37

127

X

89

20,0 3,02 29,47 37,48 578,6 233,1 70,1 36,7 3,93 2,49 1,91 2,54 4,45 464

Page 24: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-22

CANTONEIRAS LAMINADAS DE ABAS DESIGUAIS

Dimensões to c Peso Área Ix Iy Wx Wy ix iy ix min Xg Yg tg

mm mm cm kg/m cm² cm4 cm4 cm³ cm³ cm cm cm cm cm

10,0 2,22 18,30 23,29 561,9 204,0 54,7 26,1 4,91 2,96 2,24 2,39 4,93 446

11,1 2,38 21,28 26,97 645,2 233,1 63,1 30,0 4,89 2,94 2,21 2,44 4,98

12,5 2,54 24,11 30,65 724,2 262,2 71,3 34,1 4,86 2,92 2,21 2,51 5,05 440

14,3 2,70 26,94 34,26 803,3 287,2 79,6 37,6 4,84 2,90 2,21 2,57 5,11

16,0 2,86 29,76 37,81 878,2 312,2 87,5 41,2 4,82 2,87 2,18 2,62 5,16 435

17,5 32,44 41,29 949,0 337,1 95,2 44,9 4,79 2,86 2,18 2,69 5,23

152

X

102

20,0 3,17 35,12 44,77 1019,8 362,1 102,8 48,5 4,77 2,84 2,18 2,74 5,28 428

12,5 2,54 26,64 33,87 1111,3 270,5 95,4 34,4 5,73 2,83 2,21 2,34 6,15 335

14,3 2,70 29,76 37,94 1232,0 299,7 106,2 38,4 5,70 2,81 2,21 2,39 6,20 .

16,0 2,86 32,89 41,87 1348,6 324,7 116,8 41,8 5,68 2,78 2,18 2,44 6,25 329

17,5 . 36,01 45,74 1461,0 353,8 127,3 46,0 5,65 2,78 2,18 2,51 6,32 .

178

X

102

20,0 3,17 38,99 49,61 1573,3 378,8 137,8 49,6 5,63 2,78 2,18 2,57 6,38 324

12,5 2,54 29,17 37,10 1602,5 278,9 122,9 34,8 6,57 2,74 2,18 2,18 7,26 267

14,3 2,70 32,59 41,48 1781,5 308,0 137,2 38,7 6,55 2,72 2,18 2,24 7,32 .

16,0 2,86 36,01 45,87 1952,1 337,1 151,2 42,7 6,52 2,71 2,18 2,31 7,39 262

17,5 . 39,44 50,19 2122,8 362,1 165,1 46,2 6,50 2,69 2,16 2,36 7,44 .

20,0 3,17 42,71 54,45 2285,1 391,3 178,4 50,2 6,48 2,68 2,16 2,41 7,49 258

21,0 . 46,13 58,65 2443,3 416,2 191,9 54,0 6,45 2,66 2,16 2,49 7,57 .

22,0 3,49 49,26 62,77 2597,3 437,0 204,8 57,0 6,43 2,64 2,16 2,54 7,62 253

23,8 . 52,53 66,90 2751,3 462,0 217,8 60,7 6,41 2,63 2,16 2,59 7,67 .

203

X

102

25,4 3,81 55,66 70,97 2897,0 482,8 230,8 64,1 6,39 2,61 2,16 2,67 7,75 247

Page 25: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-23

PERFIL U PADRÃO AMERICANO

h x peso h tf to b Área Ix Wx ix Iy Wy iy xg

mml X kg/m mm mm mm mm cm² cm4 cm3 cm cm4 cm³ cm cm

76 x 6,1 76,2 6,9 4,32 35,8 7,78 68,9 18,1 2,98 8,2 3,32 1,03 1,11

76 x 7,4 76,2 6,9 6,55 38,0 9,48 77,2 20,3 2,85 10,3 3,82 1,04 1,11

76 x 8,9 76,2 6,9 0,04 40,5 11,4 86,3 22,7 2,75 12,7 4,39 1,06 1,16

102 x 8,0 101,6 7,5 4,57 40,1 10,1 159,5 31,4 3,97 13,1 4,61 1,14 1,16

102 x 9,3 101,6 7,5 6,27 41,8 11,9 174,4 34,3 3,84 15,5 5,10 1,14 1,15

102 x 10,8 101,6 7,5 8,13 43,7 13,7 190,6 37,5 3,73 18,0 5,61 1,15 1,17

152 x 12,2 152,4 8,70 5,08 48,8 15,5 546 71,7 5,94 28,8 8,06 1,36 1,30

152 x 15,6 152,4 8,70 7,98 51,7 19,9 632 82,9 5,63 36,0 9,24 1,34 1,27

152 x 19,4 152,4 8,70 11,1 54,8 24,7 724 95,0 5,42 43,9 10,5 1,33 1,31

152 x 23,1 152,4 8,70 14,2 57,9 29,4 815 107,0 5,27 52,4 11,9 1,33 1,38

203 x 17,1 203,2 9,90 5,59 57,4 21,8 1356 133,4 7,89 54,9 12,8 1,59 1,45

203 x 20,5 203,2 9,90 7,70 59,5 26,1 1503 147,9 7,60 63,6 14,0 1,56 1,41

203 x 24,2 203,2 9,90 10,0 61,8 30,8 1667 164,0 7,35 72,9 15,3 1,54 1,40

203 x 27,9 203,2 9,90 12,4 64,2 35,6 1830 180,1 7,17 82,5 16,6 1,52 1,44

203 x 31,6 203,2 9,90 14,7 66,5 40,3 1990 196,2 7,03 92,6 17,9 1,52 1,49

254 x 22,7 254,0 11,10 6,10 66,0 29,0 2800 221 9,84 95,1 19,0 1,81 1,61

254 x 29,8 254,0 11,10 9,63 69,6 37,9 3290 259 9,31 117,0 21,6 1,76 1,54

254 x 37,2 254,0 11,10 13,4 73,3 47,4 3800 299 8,95 139,7 24,3 1,72 1,57

254 x 44,7 254,0 11,10 17,1 77,0 56,9 4310 339 8,70 164,2 27,1 1,70 1,65

254 x 52,1 254,0 11,10 20,8 80,8 66,4 4820 379 8,52 191,7 30,4 1,70 1,76

305 x 30,7 304,8 12,70 7,11 74,7 39,1 5370 352 11,7 161,1 28,3 2,03 1,77

305 x 37,2 304,8 12,70 9,83 77,4 47,4 6010 394 11,3 186,1 30,9 1,98 1,71

305 x 44,7 304,8 12,70 13,0 80,5 56,9 6750 443 10,9 214 33,7 1,94 1,71

305 x 52,1 304,8 12,70 16,1 83,6 66,4 7480 491 10,6 242 36,7 1,91 1,76

305 x 59,6 304,8 12,70 19,2 86,7 75,9 8210 539 10,4 273 39,8 1,90 1,83

381 x 50,4 381,0 16,50 10,2 86,4 64,2 13100 688 14,3 338 51,0 2,30 2,00

381 x 52,1 381,0 16,50 10,7 86,9 66,4 13360 701 14,2 347 51,8 2,29 1,99

381 x 59,5 381,0 16,50 13,2 89,4 75,8 14510 762 13,8 387 55,2 2,25 1,98

381 x 67,0 381,0 16,50 15,7 91,9 85,3 15650 822 13,5 421 58,5 2,22 1,99

381 x 74,4 381,0 16,50 18,2 94,4 94,8 16800 882 13,3 460 62,0 2,20 2,03

381 x 81,9 381,0 16,50 20,7 96,9 104,3 17950 942 13,1 498 66,5 2,18 2,21

Page 26: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-24

PERFIL I PADRÃO AMERICANO

bf

tw

tfh

tf

d

Dimensões (mm) A EIXO X-X EIXO Y-Y P

Perfil d bf tf tw h cm2 Ix Wx Rx Zx Iy Wy Ry Z Kg/m

76x8.5 76.2 59.2 6.6 4.32 63.0 10.8 105 27.6 3.12 32.0 18.9 6.41 1.33 10.7 8.5

76x9.7 76.2 61.2 6.6 6.38 63.0 12.3 112 29.6 3.02 . 21.3 6.95 1.31 . 9.7

76x11.2 76.2 63.7 6.6 8.86 63.0 14.2 121 32.0 2.93 38.7 24.4 7.67 1.31 13.5 11.2

102x11.4 101.6 67.6 7.4 4.83 86.8 14.5 252 49.7 4.17 . 31.7 9.37 1.48 . 11.4

102x12.7 101.6 69.2 7.4 6.43 86.6 16.1 266 52.4 4.06 . 34.3 9.91 1.46 . 12.7

102x14.1 101.6 71.0 7.4 8.28 86.8 18.0 283 55.6 3.96 . 37.6 10.6 1.45 . 14.1

102x15.6 101.6 72.9 7.4 10.20 86.8 19.9 299 58.9 3.87 . 41.2 11.3 1.44 . 15.6

127x14.8 127.0 76.2 8.3 5.33 110.4 18.8 511 80.4 5.21 92.9 50.2 13.2 1.63 22.5 14.8

127x18.2 127.0 79.7 8.3 8.81 110.4 23.2 570 89.8 4.95 . 58.6 14.7 1.59 . 18.2

127x22.0 127.0 83.4 8.3 12.50 110.4 28.0 634 99.8 4.76 122 69.1 16.6 1.57 30.8 22.0

152x18.5 152.4 84.6 9.1 5.84 134.2 23.6 919 120.6 6.24 139 75.7 17.9 1.79 30.3 18.5

152x22.0 152.4 87.5 9.1 8.71 134.2 28.0 1003 131.7 5.99 . 84.9 19.4 1.74 . 22.0

152x25.7 152.4 90.6 9.1 11.80 134.2 32.7 1095 143.7 5.79 174 96.2 21.2 1.72 38.7 25.7

203x27.3 203.2 101.6 10.8 6.86 181.6 34.8 2400 236.0 8.30 270 155.1 30.5 2.11 51.8 27.3

203x30.5 203.2 103.6 10.8 8.86 181.6 38.9 2540 250.0 8.08 . 165.9 32.0 2.07 . 30.5

203x34.3 203.2 105.9 10.8 11.20 181.6 43.7 2700 266.0 7.86 316 179.4 33.9 2.03 60.3 34.3

203x38.0 203.2 108.3 10.8 13.50 181.6 48.3 2860 282.0 7.69 . 194.0 35.8 2.00 . 38.0

254x37.7 254.0 118.4 12.5 7.87 229.0 48.1 5140 405.0 10.30 465 282 47.7 2.42 81.3 37.7

254x44.7 254.0 121.8 12.5 11.40 229.0 56.9 5610 442.0 9.93 . 312 51.3 2.34 . 44.7

254x52.1 254.0 125.6 12.5 15.10 229.0 66.4 6120 482.0 9.60 580 348 55.4 2.29 102 52.1

254x59.6 254.0 129.3 12.5 18.80 229.0 75.9 6630 522.0 9.35 . 389 60.1 2.26 . 59.6

305x60.6 304.8 133.4 16.7 11.70 271.4 77.3 11330 743.0 12.10 870 563 84.5 2.70 145 60.6

305x67.0 304.8 136.0 16.7 14.40 271.4 85.4 11960 785.0 11.80 . 603 88.7 2.66 . 67.0

305x74.4 304.8 139.1 16.7 17.40 271.4 94.8 12690 833.0 11.60 1003 654 94.0 2.63 169 74.4 305x81.9 304.8 142.2 16.7 20.60 271.4 104.3 13430 881.0 11.30 . 709 99.7 2.61 . 81.9

Page 27: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-25

PERFIL I PADRÃO AÇOMINAS

bf

tw

tfh

tf

d

PERFIS I

ESPESSURA EIXO X - X EIXO Y - Y

BITOLA Massa Linear d bf d' h tw tf Ix Wx Rx Iy Wy ry S

Kg/m mm mm mm mm mm mm cm4 cm3 cm cm4 cm3 cm cm2

W 150 x 13,0 13,0 148 100 118 138 4,3 4,9 635 85,8 6,18 82 16,4 2,22 16,6 W 150 x 18,0 18,0 153 102 119 139 5,8 7,1 939 122,8 6,34 126 24,7 2,32 23,4 W 200 x 15,0 15,0 200 100 170 190 4,3 5,2 1.305 130,5 8,20 87 17,4 2,12 19,4 W 200 x 19,3 19,3 203 102 170 190 5,8 6,5 1.686 166,1 8,19 116 22,7 2,14 25,1 W 200 x 22,5 22,5 206 102 170 190 6,2 8,0 2.029 197,0 8,37 142 27,9 2,22 29,0 W 200 x 26,6 26,6 207 133 170 190 5,8 8,4 2.611 252,3 8,73 330 49,6 3,10 34,2 W 200 x 31,3 31,3 210 134 170 190 6,4 10,2 3.168 301,7 8,86 410 61,2 3,19 40,3 W 250 x 17,9 17,9 251 101 220 240 4,8 5,3 2.291 182,6 9,96 91 18,1 1,99 23,1 W 250 x 22,3 22,3 254 102 220 240 5,8 6,9 2.939 231,4 10,09 123 24,1 2,06 28,9 W 250 x 25,3 25,3 257 102 220 240 6,1 8,4 3.473 270,2 10,31 149 29,3 2,14 32,6 W 250 x 28,4 28,4 260 102 220 240 6,4 10,0 4.046 311,2 10,51 178 34,8 2,20 36,6 W 250 x 32,7 32,7 258 146 220 240 6,1 9,1 4.937 382,7 10,83 473 64,8 3,35 42,1 W 250 x 38,5 38,5 262 147 220 240 6,6 11,2 6.057 462,4 11,05 594 80,8 3,46 49,6 W 250 x 44,8 44,8 266 148 220 240 7,6 13,0 7.158 538,2 11,15 704 95,1 3,50 57,6 W 310 x 21,0 21,0 303 101 272 292 5,1 5,7 3.776 249,2 11,77 98 19,5 1,90 27,2 W 310 x 23,8 23,8 305 101 272 292 5,6 6,7 4.346 285,0 11,89 116 22,9 1,94 30,7 W 310 x 28,3 28,3 309 102 271 291 6,0 8,9 5.500 356,0 12,28 158 31,0 2,08 36,5 W 310 x 32,7 32,7 313 102 271 291 6,6 10,8 6.570 419,8 12,49 192 37,6 2,13 42,1 W 310 x 38,7 38,7 310 165 271 291 5,8 9,7 8.581 553,6 13,14 727 88,1 3,82 49,7 W 310 x 44,5 44,5 313 166 271 291 6,6 11,2 9.997 638,8 13,22 855 103,0 3,87 57,2 W 310 x 52,0 52,0 317 167 271 291 7,6 13,2 11.909 751,4 13,33 1.026 122,9 3,91 67,0 W 360 x 32,9 32,9 349 127 308 332 5,8 8,5 8.358 479,0 14,09 291 45,9 2,63 42,1 W 360 x 39,0 39,0 353 128 308 332 6,5 10,7 10.331 585,3 14,35 375 58,6 2,73 50,2 W 360 x 44,0 44,0 352 171 308 332 6,9 9,8 12.258 696,5 14,58 818 95,7 3,77 57,7 W 360 x 51,0 51,0 355 171 308 332 7,2 11,6 14.222 801,2 14,81 968 113,3 3,87 64,8 W 360 x 57,8 57,8 358 172 308 332 7,9 13,1 16.143 901,8 14,92 1.113 129,4 3,92 72,5 W 360 x 64,0 64,0 347 203 288 320 7,7 13,5 17.890 1.031,1 14,80 1.885 185,7 4,80 81,7 W 360 x 72,0 72,0 350 204 288 320 8,6 15,1 20.169 1.152,5 14,86 2.140 209,8 4,84 91,3 W 360 x 79,0 79,0 354 205 288 320 9,4 16,8 22.713 1.283,2 14,98 2.416 235,7 4,89 101,2

Page 28: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-26

PERFIL I PADRÃO AÇOMINAS

bf

tw

tfh

tf

d

PERFIS I

ESPESSURA EIXO X - X EIXO Y - Y

BITOLA Massa Linear d bf d' h tw tf Ix Wx Rx Iy Wy ry S

W 410 x 38,8 38,8 399 140 357 381 6,4 8,8 12.777 640,5 15,94 404 57,7 2,83 50,3 W 410 x 46,1 46,1 403 140 357 381 7,0 11,2 15.690 778,7 16,27 514 73,4 2,95 59,2 W 410 x 53,0 53,0 403 177 357 381 7,5 10,9 18.734 929,7 16,55 1.009 114,0 3,84 68,4 W 410 x 60,0 60,0 407 178 357 381 7,7 12,8 21.707 1.066,7 16,88 1.205 135,4 3,98 76,2 W 410 x 67,0 67,0 410 179 357 381 8,8 14,4 24.678 1.203,8 16,91 1.379 154,1 4,00 86,3 W 410 x 75,0 75,0 413 180 357 381 9,7 16,0 27.616 1.337,3 16,98 1.559 173,2 4,03 95,8 W 460 x 52,0 52,0 450 152 404 428 7,6 10,8 21.370 949,8 17,91 634 83,5 3,09 66,6 W 460 x 60,0 60,0 455 153 404 428 8,0 13,3 25.652 1.127,6 18,35 796 104,1 3,23 76,2 W 460 x 68,0 68,0 459 154 404 428 9,1 15,4 29.851 1.300,7 18,46 941 122,2 3,28 87,6 W 460 x 74,0 74,0 457 190 404 428 9,0 14,5 33.415 1.462,4 18,77 1.661 174,8 4,18 94,9 W 460 x 82,0 82,0 460 191 404 428 9,9 16,0 37.157 1.615,5 18,84 1.862 195,0 4,22 104,7W 460 x 89,0 89,0 463 192 404 428 10,5 17,7 41.105 1.775,6 18,98 2.093 218,0 4,28 114,1W 530 x 66,0 66,0 525 165 478 502 8,9 11,4 34.971 1.332,2 20,46 857 103,9 3,20 83,6 W 530 x 72,0 72,0 524 207 478 502 9,0 10,9 39.969 1.525,5 20,89 1.615 156,0 4,20 91,6 W 530 x 74,0 74,0 529 166 478 502 9,7 13,6 40.969 1.548,9 20,76 1.041 125,5 3,31 95,1 W 530 x 82,0 82,0 528 209 477 501 9,5 13,3 47.569 1.801,8 21,34 2.028 194,1 4,41 104,5W 530 x 85,0 85,0 535 166 478 502 10,3 16,5 48.453 1.811,3 21,21 1.263 152,2 3,42 107,7W 530 x 92,0 92,0 533 209 478 502 10,2 15,6 55.157 2.069,7 21,65 2.379 227,6 4,50 117,6W 610 x 101,0 101,0 603 228 541 573 10,5 14,9 77.003 2.554,0 24,31 2.951 258,8 4,76 130,3W 610 x 113,0 113,0 608 228 541 573 11,2 17,3 88.196 2.901,2 24,64 3.426 300,5 4,86 145,3W 610 x 155,0 155,0 611 324 541 573 12,7 19,0 129.583 4.241,7 25,58 10.783 665,6 7,38 198,1W 610 x 174,0 174,0 616 325 541 573 14,0 21,6 147.754 4.797,2 25,75 12.374 761,5 7,45 222,8W 150 x 22,5 22,5 152 152 119 139 5,8 6,6 1.229 161,7 6,51 387 50,9 3,65 29,0 W 150 x 29,80 29,8 157 153 118 138 6,6 9,3 1.739 221,5 6,72 556 72,6 3,80 38,5 W 200 x 35,90 35,9 201 165 161 181 6,2 10,2 3.437 342,0 8,67 764 92,6 4,09 45,7 W 200 x 46,10 46,1 203 203 161 181 7,2 11,0 4.543 447,6 8,81 1.535 151,2 5,12 58,6 HP 200 x 53,0 53,0 204 207 161 181 11,3 11,3 4.977 488,0 8,55 1.673 161,7 4,96 68,1 HP 250 x 62,0 62,0 246 256 201 225 10,5 10,7 8.728 709,6 10,47 2.995 234,0 6,13 79,6 W 250 x 73,0 73,0 253 254 201 225 8,6 14,2 11.257 889,9 11,02 3.880 305,5 6,47 92,7 HP 310 x 79,0 79,0 299 306 245 277 11,0 11,0 16.316 1.091,3 12,77 5.258 343,7 7,25 100,0HP 310 x 93,0 93,0 303 308 245 277 13,1 13,1 19.682 1.299,1 12,85 6.387 414,7 7,32 119,2

Page 29: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-27

PERFIL I SOLDADO - CVS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 300x 47 300 200 9,5 8,0 281 60 9499 633 12,5 710 1268 127 4,58 194,5 5,28 16,2 1,38 47,5

* 300x 57 300 200 12,5 8,0 275 72 11730 782 12,8 870 1668 167 4,81 254,4 5,39 30,7 1,38 56,5

* 300x 67 300 200 16,0 8,0 268 85 14200 947 12,9 1052 2134 213 5,00 324,3 5,48 59,2 1,38 67,1

* 300x 70 300 200 16,0 9,5 268 89 14440 963 12,7 1079 2135 214 4,89 326,0 5,43 62,3 1,38 70,2

* 300x 79 300 200 19,0 9,5 262 101 16450 1097 12,8 1231 2535 254 5,01 385,9 5,48 98,9 1,38 79,2

* 300x 85 300 200 19,0 12,5 262 109 16900 1127 12,5 1282 2538 254 4,83 390,2 5,40 109,0 1,38 85,4

300x 95 300 200 22,4 12,5 255 122 19030 1269 12,5 1447 2991 299 4,96 458,0 5,46 166,0 1,38 95,4

* 300x 55 300 250 9,5 8,0 281 70 11500 767 12,8 848 2475 198 5,95 301,4 6,71 19,1 1,58 54,9

* 300x 66 300 250 12,5 8,0 275 84 14310 954 13,0 1050 3256 261 6,21 395,0 6,83 37,2 1,58 66,3

* 300x 80 300 250 16,0 8,0 268 101 17430 1162 13,1 1280 4168 333 6,41 504,3 6,91 72,8 1,58 79,6

* 300x 83 300 250 16,0 9,5 268 105 17670 1178 12,9 1307 4169 333 6,29 506,0 6,86 75,9 1,58 82,8

* 300x 94 300 250 19,0 9,5 262 120 20210 1347 13,0 1500 4950 396 6,43 599,7 6,92 122,0 1,58 94,1

* 300x100 300 250 19,0 12,5 262 128 20660 1377 12,7 1549 4952 396 6,23 604,0 6,94 131,0 1,58 100,0

* 300x113 300 250 22,4 12,5 255 144 23360 1557 12,7 1758 5837 467 6,37 710,0 6,90 204,0 1,58 113,0

* 350x 73 350 250 12,5 9,5 325 93 20520 1173 14,8 1306 3258 261 5,91 398,0 6,69 41,8 1,68 73,3

* 350x 87 350 250 16,0 9,5 318 110 24870 1421 15,0 1576 4169 334 6,15 507,2 6,80 77,4 1,68 86,5

* 350x 98 350 250 19,0 9,5 312 125 28450 1626 15,1 1803 4950 396 6,30 600,8 6,87 123,0 1,68 97,8

* 350x105 350 250 19,0 12,5 312 134 29210 1669 14,8 1876 4953 396 6,08 605,9 6,77 135,0 1,68 105,0

* 350x118 350 250 22,4 12,5 305 150 33100 1889 14,8 2126 5838 467 6,24 711,0 6,84 207,0 1,68 118,0

* 350x128 350 250 25,0 12,5 300 163 35890 2051 14,9 2313 6515 521 6,33 793,0 6,88 280,0 1,68 128,0

* 350x136 350 250 25,0 16,0 300 173 36670 2026 14,6 2391 6521 522 6,14 800,5 6,80 301,0 1,67 136,0

* 400x 82 400 300 12,5 8,0 375 105 31680 1584 17,4 1734 5627 375 7,32 563,0 8,14 45,5 1,98 82,4

* 400x 87 400 300 12,5 9,5 375 111 32340 1617 17,1 1787 5628 375 7,13 571,0 8,05 49,8 1,98 68,8

* 400x103 400 300 16,0 9,5 368 131 39369 1968 17,3 2165 7203 480 7,42 728,3 8,18 92,4 1,98 103,0

* 400x116 400 300 19,0 9,5 362 148 45160 2258 17,4 2483 8553 570 7,59 863,2 8,26 148,0 1,98 116,0

* 400x125 400 300 19,0 12,5 362 159 46350 2317 17,1 2581 8556 570 7,33 869,1 8,14 161,0 1,98 125,0

* 400x140 400 300 22,4 12,5 355 179 52630 2632 17,2 2932 10090 672 7,51 1022,0 8,22 248,0 1,98 140,0

* 400x152 400 300 25,0 12,5 350 194 57280 2864 17,2 3195 11260 750 7,62 1139,0 8,27 335,0 1,98 152,0

* 400x162 400 300 25,0 16,0 350 206 58530 2926 16,9 3303 11260 751 7,39 1147,0 8,17 360,0 1,97 162,0

Page 30: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-28

PERFIL I SOLDADO - CVS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 450x116 450 300 16,0 12,5 418 148 52830 2348 18,9 2629 7207 480 6,97 736,3 7,97 109,0 2,08 116,0

* 450x130 450 300 19,0 12,5 412 166 60260 2678 19,1 2987 8557 570 7,19 871,1 8,07 164,0 2,08 130,0

* 450x141 450 300 19,0 16,0 412 180 62300 2769 18,6 3136 8564 570 6,90 881,4 7,93 193,0 2,07 141,0

* 450x156 450 300 22,4 16,0 405 199 70360 3127 18,8 3530 10090 673 7,12 1034,0 8,04 280,0 2,07 156,0

* 450x168 450 300 25,0 16,0 400 214 76350 3393 18,9 3828 11260 751 7,25 1151,0 8,10 367,0 2,07 168,0

* 450x177 450 300 25,0 19,0 400 226 77950 3464 18,6 3948 11270 752 7,06 1161,0 8.01 404,0 2,06 177,0

* 450x188 450 300 25,0 22,4 400 240 79760 3545 18,2 4084 11290 752 6,86 1175,0 7,91 462,0 2,06 188,0

* 450x206 450 300 31,5 19,0 387 263 92090 4093 18,7 4666 14200 946 7,35 1452,0 8,15 714,0 2,06 206,0

* 450x216 450 300 31,5 22,4 387 276 93730 4166 18,4 4794 14210 947 7,18 1466,0 8,07 770,0 2,06 216,0

500x123 500 350 16,0 9,5 468 156 73730 2949 21,7 3231 11440 654 8,55 980,0 9,50 109,0 2,38 123,0

* 500x134 500 350 16,0 12,5 468 171 76290 3052 21,2 3395 11440 654 8,19 998,3 9,33 126,0 2,38 134,0

* 500x150 500 350 19,0 12,5 462 191 87240 3490 21,4 3866 13580 776 8,44 1182,0 9,44 190,0 2,38 150,0

* 500x162 500 350 19,0 16,0 462 207 90120 3605 20,9 2052 13590 777 8,11 1193,0 9,28 223,0 2,37 162,0

* 500x180 500 350 22,4 16,0 455 230 102100 4082 21,1 4573 16020 916 8,35 1401,0 9,40 324,0 2,37 180,0

* 500x194 500 350 25,0 16,0 450 247 111000 4438 21,2 4966 17880 1022 8,51 1560,0 9,48 426,0 2,37 194,0

* 500x204 500 350 25,0 19,0 450 261 113200 4529 20,8 5118 17890 1022 8,29 1572,0 9,37 467,0 2,36 204,0

* 500x217 500 350 25,0 22,4 450 450 115800 4632 20,5 5290 17910 1023 8,06 1588,0 9,26 533,0 2,36 217,0

* 500x238 500 350 31,5 19,0 437 304 134400 5376 21,0 6072 22530 1288 8,62 1969,0 9,53 829,0 2,36 238,0

* 500x250 500 350 31,5 22,4 427 318 136800 5470 20,7 6235 22550 1289 8,42 1984,0 9,43 893,0 2,36 250,0

* 500x259 500 350 31,5 25,0 437 330 138600 5543 20,5 6359 22570 1290 8,27 1998,0 9,36 957,0 2,33 259,0

* 500x281 500 350 37,5 22,4 425 358 155000 6201 20,8 7082 26840 1534 9,55 1390,0 9,55 1390,0 2,36 281,0

* 500x314 500 350 44,0 22,4 412 400 173700 6946 20,8 7973 31480 1799 8,87 2747,0 9,64 2142,0 2,36 314,0

* 550x184 550 400 19,0 16,0 512 234 125100 4549 23,1 5084 20280 1014 9,31 1553,0 10,6 253,0 2,67 184,0

* 550x204 550 400 22,4 16,0 505 260 142000 5163 23,4 5748 23910 1196 9,59 1824,0 10,8 369,0 2,67 204,0

Page 31: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-29

PERFIL I SOLDADO - CVS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 550x220 550 400 25,0 16,0 500 280 154600 5621 23,5 6250 26680 1334 9,76 2032,0 10,8 485,0 2,67 220,0

* 550x232 550 400 25,0 19,0 500 295 157700 5735 23,1 6438 26700 1335 9,51 2045,0 10,7 531,0 2,66 232,0

* 550x245 550 400 25,0 22,4 500 312 161300 5864 22,7 6650 26710 1336 9,25 2063,0 10,6 604,0 2,66 245,0

* 550x270 550 400 31,5 19,0 487 345 187900 6832 23,4 7660 33630 1681 9,88 2564,0 10,9 945,0 2,66 270,0

* 550x283 550 400 31,5 22,4 487 361 191100 6951 23,0 7861 33650 1682 9,65 2581,0 10,8 1020,0 2,66 283,0

* 550x293 550 400 31,5 25,0 487 374 193600 7042 22,8 8015 33660 1683 9,49 2596,0 10,7 1090,0 2,65 293,0

* 550x319 550 400 37,5 22,4 475 406 217300 7904 23,1 8951 40000 2002 9,93 3060,0 10,9 1580,0 2,66 319,0

* 550x329 550 400 37,5 25,0 475 419 219700 7988 22,9 9098 40060 2003 9,78 3074,0 10,9 1650,0 2,65 329,0

550x357 550 400 44,0 22,4 462 455 244300 8883 23,2 10100 46980 2349 10,20 3578,0 11,0 2445,0 2,66 367,0

550x367 550 400 44,0 25,0 462 468 246400 8961 23,0 10240 46990 2350 10,00 3592,0 11,0 2512,0 2,65 367,0 600x156 600 400 16,0 12,5 568 199 128300 4275 25,4 4746 17080 854 9,26 1280,0 10,6 146,0 2,78 156,0

* 600x190 600 400 19,0 16,0 562 242 152000 5066 25,1 5679 20290 1014 9,16 1556,0 10,6 260,0 2,77 190,0 * 600x210 600 400 22,4 16,0 555 268 172400 5745 25,4 6408 23910 1196 9,45 1828,0 10,7 376,0 2,77 210,0

* 600x226 600 400 25,0 16,0 550 288 187600 6253 25,5 6960 26690 1334 9,63 2035,0 10,8 492,0 2,77 226,0 * 600x239 600 400 25,0 19,0 550 305 191800 6392 25,1 7187 26700 1335 9,36 2050,0 10,7 542,0 2,76 239,0

* 600x278 600 400 31,5 19,0 537 354 228300 7611 25,4 8533 33630 1682 9,75 2568,0 10,8 956,0 2,76 278,0

* 600x292 600 400 31,5 22,4 537 372 232700 7758 25,0 8778 33650 1683 9,51 2587,0 10,7 1030,0 2,76 292,0

* 600x328 600 400 37,5 22,4 525 418 264700 8822 25,2 9981 40050 2002 9,79 3066,0 10,9 1600,0 2,76 328,0

* 600x339 600 400 37,5 25,0 525 431 267800 8927 24,9 10160 40070 2003 9,64 3082,0 10,8 1680,0 2,75 339,0

600x367 600 400 44,0 22,4 512 467 297700 9922 25,3 11250 46980 2349 10,00 3584,0 11,0 2463,0 2,76 367,0

* 600x412 600 400 50,0 25,0 500 525 329400 10980 25,0 12560 53400 2670 10,10 4078,0 11,0 3600,0 2,75 412,0

* 600x211 650 450 19,0 16,0 612 269 200800 6179 27,3 6983 28880 1283 10,40 1283,0 11,9 289,0 3,07 211,0

* 650x234 650 450 22,4 16,0 605 298 228200 7020 27,6 7791 34040 1513 10,70 2307,0 12,1 420,0 3,07 234,0

* 650x252 650 450 25,0 16,0 600 321 248600 7651 27,8 8471 37990 1688 10,90 2570,0 12,2 551,0 3,07 252,0

* 650x266 650 450 25,0 19,0 600 339 254000 7817 27,4 8741 38000 1689 10,60 2585,0 12,0 606,0 3,06 266,0

* 650x282 650 450 25,0 22,4 600 359 260200 8005 26,9 9047 38030 1690 10,30 2607,0 11,9 694,0 3,06 282,0

* 650x310 650 450 31,5 19,0 587 395 303400 9335 27,7 10400 47870 2128 11,00 3242,0 12,2 1070,0 3,06 310,0

* 650x326 650 450 31,5 22,4 587 415 309100 9511 27,3 10700 47900 2129 10,70 3265,0 12,1 1160,0 3,06 326,0

* 650x351 650 450 37,5 19,0 575 447 347000 10680 27,9 11910 56990 2533 11,30 3849,0 12,3 1710,0 3,06 361,0

* 650x366 650 450 37,5 22,4 575 466 352400 10840 27,5 12190 57010 2534 11,10 3869,0 12,2 1800,0 3,06 366,0

650x410 650 450 44,0 22,4 562 522 397300 12230 27,6 13770 66880 2972 11,30 4520,0 12,4 2766,0 3,06 410,0

* 650x461 650 450 50,0 25,0 550 588 440600 13560 27,4 15390 76010 3378 11,40 5148,0 12,4 4040,0 3,05 461,0

Page 32: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-30

PERFIL I SOLDADO - CVS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

700x199 700 450 19,0 12,5 662 254 228500 6529 30,0 7192 28870 1283 10,70 1924,0 12,1 249,0 3,18 199,0

700x217 700 450 19,0 16,0 662 277 237000 6771 29,3 7576 28880 1284 10,20 1924,0 11,8 296,0 3,17 217,0

700x258 700 450 25,0 16,0 650 329 293000 8372 29,8 9284 37990 1688 10,70 2573,0 12,1 557,0 3,17 258,0

700x274 700 450 25,0 19,0 650 349 299900 8568 29,3 9601 38010 1689 10,40 2590,0 11,9 617,0 3,16 274,0

700x303 700 450 31,5 16,0 637 385 351400 10040 30,2 11100 47860 2127 11,10 3230,0 12,3 1020,0 3,17 303,0

700x318 700 450 31,5 19,0 637 405 357900 10230 29,7 11400 47880 2128 10,90 3247,0 12,2 1083,0 3,16 318,0

750x284 750 500 25,0 16,0 700 362 374400 9983 32,2 11020 52110 2084 12,00 3170,0 13,5 616,0 3,47 384,0

750x301 750 500 25,0 19,0 700 383 383000 10210 31,6 11390 52120 2085 11,70 3188,0 13,3 681,0 3,46 301,0

750x334 750 500 31,5 16,0 687 425 450000 12000 32,5 13200 65650 2626 12,40 3981,0 13,7 1136,0 3,47 334,0

750x350 750 500 31,5 19,0 687 446 458100 12220 32,1 13560 65660 2627 12,10 4000,0 13,5 1200,0 3,46 350,0

800x271 800 500 22,4 16,0 755 345 396100 9903 33,9 10990 46690 1868 11,60 2800,0 13,3 478,0 3,57 271,0

800x290 800 500 25,0 16,0 750 370 431800 10790 34,2 11940 52110 2084 11,90 3173,0 13,4 623,0 3,57 290,0

800x308 800 500 25,0 19,0 750 393 442300 11060 33,6 12360 52130 2085 11,50 3193,0 13,2 692,0 3,56 308,0 800x340 800 500 31,5 16,0 737 433 518700 12970 34,6 14280 65650 2626 12,30 3985,0 13,6 1140,0 3,57 340,0 800x357 800 500 31,5 19,0 737 455 528700 13220 34,1 14680 65670 2627 12,00 4004,0 13,5 1210,0 3,56 367,0

850x297 850 500 25,0 16,0 800 378 493800 11620 36,1 12870 52110 2084 11,70 3176,0 13,3 630,0 3,67 297,0

850x316 850 500 25,0 19,0 800 402 506600 11920 35,5 13350 52130 2085 11,40 3197,0 13,2 704,0 3,66 316,0

850x346 850 500 31,5 16,0 787 441 592800 13950 36,7 15370 65650 2626 12,20 3988,0 13,6 1150,0 3,67 346,0

850x365 850 500 31,5 19,0 787 465 605000 14240 36,1 15830 65670 2627 11,90 4009,0 13,4 1220,0 3,68 365,0

900x323 900 550 25,0 16,0 850 411 608400 13520 38,5 14920 69350 2522 13,00 3836,0 14,7 689,0 3,97 323,0

900x343 900 550 25,0 19,0 850 437 623700 13860 37,8 15460 69370 2523 12,60 3858,0 14,5 767,0 3,96 343,0

900x377 900 550 31,5 16,0 837 480 731900 16260 39,0 17850 87380 3177 13,50 4818,0 14,9 1260,0 3,97 377,0

900x397 900 550 31,5 19,0 837 506 746500 16590 38,4 18370 87390 3178 13,10 4840,0 14,8 1340,0 3,97 397,0

950x329 950 550 25,0 16,0 900 419 685600 14430 40,5 15960 60350 2522 12,90 3839,0 14,7 696,0 4,07 329,0

950x350 950 550 25,0 19,0 900 446 703800 14820 39,7 16570 69370 2523 12,50 3862,0 14,5 779,0 4,06 350,0

950x383 950 550 31,5 16,0 887 488 824100 17350 41,1 19060 87380 3177 13,40 4821,0 14,9 1270,0 4,07 383,0

950x404 950 550 31,5 19,0 887 515 841600 17720 40,4 19650 87400 3178 13,00 4844,0 14,7 1350,0 4,06 404,0

1000x355 1000 600 25,0 16,0 950 452 827400 16550 42,8 18240 90030 3001 14,10 4561,0 16,0 755,0 4,37 355,0

1000x414 1000 600 31,5 16,0 937 528 966400 19930 43,4 21820 113400 3781 14,70 5730,0 16,3 1380,0 4,37 414,0

Page 33: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-31

PERFIL I SOLDADO - VS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

200x19 200 120 6,3 4,75 187,4 24,0 1679 168 8,36 188 182 30,3 2,75 46,4 3,17 2,67 0,871 21,9

200x22 200 120 8,0 4,75 184,0 27,9 2017 202 8,49 225 231 38,4 2,87 58,6 3,23 4,75 0,871 21,9

200x25 200 120 9,5 4,75 181,0 31,4 2305 230 8,57 256 274 45,6 2,95 69,4 3,27 7,51 0,871 24,6

200x20 200 130 6,3 4,75 187,4 25,3 1797 180 8,43 200 231 35,5 3,02 54,3 3,45 2,84 0,911 19,8

200x23 200 130 8,0 4,75 184,0 29,5 2165 216 8,56 240 293 45,1 3,15 68,6 3,52 5,09 0,911 23,2

200x26 200 130 9,5 4,75 181,0 33,3 2477 248 8,63 274 348 53,5 3,23 81,3 3,55 8,08 0,911 26,1

200x21 200 140 6,3 4,75 187,4 26,5 1916 192 8,50 213 288 41,2 3,30 62,8 3,74 3,00 0,951 20,8

200x24 200 140 8,0 4,75 184,0 31,1 2312 231 8,62 255 366 52,3 3,43 79,4 3,80 5,44 0,951 24,4

200x28 200 140 9,5 4,75 181,0 35,2 2650 265 8,68 292 435 62,1 3,51 94,1 3,84 8,65 0,951 27,6

250x21 250 120 6,3 4,75 237,4 26,4 2775 222 10,30 251 182 30,3 2,62 46,7 3,10 2,85 0,971 20,7

250x24 250 120 8,0 4,75 234,0 30,3 3319 266 10,5 297 231 38,4 2,76 58,9 3,17 4,93 0,971 23,8

250x27 250 120 9,5 4,75 231,0 33,8 3787 303 10,6 338 274 45,6 2,85 69,7 3,22 7,68 9,971 26,5

250x23 250 140 6,3 4,75 237,4 28,9 3149 252 10,4 282 288 41,2 3,16 63,1 3,67 3,19 1.050 22,7

250x23 250 140 8,0 4,75 234,0 33,5 3788 303 10,6 336 366 52,3 3,31 79,7 3,74 5,61 1,050 26,3

250x30 250 140 9,5 4,75 231,0 37,6 4336 347 10,7 383 435 62,1 3,40 94,4 3,79 8,83 1,050 29,5

250x25 250 160 6,3 4,75 237,4 31,4 3524 282 10,6 313 430 53,8 3,70 82,0 4,24 3,52 1,130 24,7

250x29 250 160 8,0 4,75 234,0 36,7 4257 341 10,8 375 546 68,3 3,86 104,0 4,32 6,30 1,130 28,8

250x33 250 160 9,5 4,75 231,0 41,4 4886 391 10,9 391 649 81,1 3,96 123,0 4,36 9,97 1,130 32,5

300x23 300 120 6,3 4,75 287,4 28,8 4201 280 12,1 320 182 30,3 2,51 47,0 3,04 3,03 1,070 22,6

300x26 300 120 8,0 4,75 284,0 32,7 5000 333 12,4 376 231 38,4 2,66 59,2 3,12 5,11 1,070 25,7

300x29 300 120 9,5 4,75 281,0 36,1 5690 379 12,5 425 274 45,6 2,75 70,0 3,17 7,86 1,070 28,4

300x25 300 140 6,3 4,75 287,4 31,3 4744 316 12,3 357 288 41,2 3,04 63,4 3,60 3,36 1,150 24,6

300x28 300 140 8,0 4,75 284,0 35,9 5683 379 12,6 423 366 52,3 3,19 80,0 3,69 5,79 1,150 28,2

300x32 300 140 9,5 4,75 281,0 39,9 6492 233 12,7 480 435 62,1 3,30 94,7 3,74 9,01 1,150 31,4

300x27 300 160 6,3 4,75 287,4 33,8 5288 353 12,5 394 430 53,8 3,57 82,3 4,17 3,69 1,230 26,5

300x31 300 160 8,0 4,75 284,0 39,1 6365 424 12,8 470 546 68,3 3,74 104,0 4,26 6,48 1,230 30,7

300x34 300 160 9,5 4,75 281,0 43,7 7294 486 12,9 535 649 81,1 3,85 123,0 4,31 10,10 1,230 34,3

300x29 300 180 6,3 4,75 287,4 36,3 5831 389 12,7 431 613 68,1 4,11 104,0 4,74 4,03 1,310 28,5

300x33 300 180 8,0 4,75 284,0 42,3 7047 470 12,9 516 778 86,4 4,29 131,0 4,83 7,16 1,310 33,2

300x38 300 180 9,5 4,75 281,0 47,5 8096 540 13,0 591 924 103,0 4,41 155,0 4,89 11,30 1,310 37,3

Page 34: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-32

PERFIL I SOLDADO - VS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

350x26 350 140 6,3 4,75 337,4 33,7 6730 385 14,1 438 288 41,2 2,93 63,6 3,54 3,54 1,250 26,4 350x30 350 140 8,0 4,75 334,0 38,3 8026 459 14,5 516 366 52,3 3,09 80,3 3,64 5,97 1,250 30,0 350x34 350 140 9,5 4,75 331,0 42,3 9148 523 14,7 583 435 62,1 3,21 95,0 3,69 9,18 1,250 33,2 350x28 350 160 6,3 4,75 337,4 36,2 7475 427 14,4 482 482 53,8 3,45 82,5 4,11 3,87 1,330 28,4 350x33 350 160 8,0 4,75 334,0 41,5 8962 512 14,7 570 546 68,3 3,63 104,0 4,21 6,65 1,330 32,6

350x36 350 160 9,5 4,75 331,0 46,1 10248 586 14,9 648 649 81,1 3,75 123,0 4,27 10.30 1,330 36,2 350x31 350 180 6,3 4,75 337,4 38,7 8219 470 14,6 525 613 68,1 3,98 104,0 4,68 4,21 1,410 30,4 350x35 350 180 8,0 4,75 334,0 44,7 9898 566 14,9 625 778 86,4 4,17 131,0 4,78 7,34 1,410 35,1

350x39 350 180 9,5 4,75 331,0 49,9 11351 649 15,1 712 924 103,0 4,30 156,0 4,84 11,50 1,410 39,2

350x38 350 200 8,0 4,75 334,0 47,9 10834 619 15,0 680 1067 107,0 4,72 162,0 5,35 8,02 1,490 37,6

350x42 350 200 9,5 4,75 331,0 53,7 12453 712 15,2 777 1267 127,0 4,86 192,0 5,41 12,60 1,490 42,2

400x28 400 140 6,3 4,75 387,4 36,0 9137 457 15,9 525 288 41,2 2,83 63,9 3,48 3,72 1,350 28,3

400x32 400 140 8,0 4,75 384,0 40,6 10848 542 16,3 614 366 52,3 3,00 80,6 3,58 6,15 1,350 31,9

400x35 400 140 9,5 4,75 381,0 44,7 12332 617 16,6 692 435 62,1 3,12 95,2 3,65 9,36 1,350 35,1

400x30 400 160 6,3 4,75 387,4 38,6 10114 506 16,2 575 430 53,8 3,34 82,8 4,04 4,05 1,430 30,3

400x34 400 160 8,0 4,75 384,0 43,8 12077 604 16,6 677 546 68,3 3,53 105,0 4,15 6,83 1,430 34,4

400x38 400 160 9,5 4,75 381,0 48,5 13781 689 16,9 766 649 81,1 3,66 124,0 4,22 10,50 1,430 38,1

400x33 400 180 6,3 4,75 387,4 41,1 11091 555 16,4 625 613 68,1 3,86 104,0 4,61 4,38 1,510 32,2

400x37 400 180 8,0 4,75 384,0 47,0 13307 665 16,8 740 778 86,4 4,07 132,0 4,72 7,52 1,510 36,9

400x41 400 180 9,5 4,75 381,0 52,3 15230 761 17,1 840 924 103,0 4,20 156,0 4,79 11,60 1,510 41,1

400x40 400 200 8,0 4,75 384,0 50,2 14536 727 17,0 802 1067 107,0 4,61 162,0 5,29 8,20 1,590 39,4

400x44 400 200 9,5 4,75 381,0 56,1 16679 834 17,2 914 1267 127,0 4,75 192,0 5,36 12,80 1,590 44,0

* 400x 49 400 200 9,5 6,3 381 62,0 17390 870 16,7 971 1267 127,0 4,52 193,6 5,25 14,6 1,590 48,7

* 400x 58 400 200 12,5 6,3 375 73,6 21540 1077 17,1 1190 1667 167,0 4,76 253,7 5,37 29,2 1,590 57,8

* 400x 68 400 200 16,0 6,3 368 87,2 26220 1311 17,3 1442 2134 213,0 4,95 323,7 5,45 59,7 1,590 68,4

* 400x 78 400 200 19,0 6,3 362 98,8 30090 1505 17,5 1654 2534 253,0 5,06 383,6 5,51 94,5 1,590 77,6

* 450x 51 450 200 9,5 6,3 431 65,2 22640 1006 18,6 1130 1268 127,0 4,41 194,3 5,19 15,0 1,690 51,1

* 450x 60 450 200 12,5 6,3 425 76,8 27960 1243 19,1 1378 1668 167,0 4,66 254,2 5,32 29,6 1,690 60,3

* 450x 71 450 200 16,0 6,3 418 90,3 33980 1510 19,4 1664 2134 213,0 4,86 324,1 5,41 58,1 1,690 70,9

* 450x 80 450 200 19,0 6,3 412 102,0 38990 1733 19,6 1905 2534 253,0 4,99 384,1 5,47 94,9 1,690 80,0

Page 35: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-33

PERFIL I SOLDADO - VS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 500x 61 500 250 9,5 6,3 481 77,8 34420 1377 21,0 1529 2475 198,0 5,64 301,6 6,55 18,3 1,990 61,1

* 500x 73 500 250 12,5 6,3 475 92,4 42770 1711 21,5 1879 3256 260,0 5,94 395,3 6,70 36,5 1,990 72,6

* 500x 86 500 250 16,0 6,3 468 109,0 52250 2090 21,8 2281 4168 333,0 6,17 504,6 6,81 72,2 1,990 85,9

* 500x 97 500 250 19,0 6,3 462 124,0 60150 2406 22,0 2621 4949 396,0 6,31 598,3 6,87 118,0 1,990 97,4

* 550x 64 550 250 9,5 6,3 531 81,0 42560 1547 22,9 1728 2475 198,0 5,53 302,1 6,50 18,7 2,090 63,5

* 550x 75 550 250 12,5 6,3 525 95,6 52750 1918 23,5 2114 3256 261,0 5,84 395,8 6,65 36,9 2,090 75,0 * 550x 88 550 250 16,0 6,3 518 113,0 64350 2340 23,9 2559 4168 333,0 6,08 505,1 6,77 72,6 2,090 88,4 * 550x100 550 250 19,0 6,3 512 127,0 74040 2692 24,1 2935 4949 396,0 6,24 598,8 6,84 119,0 2,090 99,9 * 600x 95 600 300 12,5 8,0 575 121,0 77400 2580 25,3 2864 5627 375,0 6,82 571,7 7,89 48,9 2,380 95,0 * 600x111 600 300 16,0 8,0 568 141,0 94090 3136 25,8 3448 7202 480,0 7,14 729,1 8,05 91,6 2,380 111,0 * 600x125 600 300 19,0 8,0 562 159,0 108070 3602 26,1 3943 8552 570,0 7,33 864,0 8,14 147,0 2,380 125,0 * 600x140 600 300 22,4 8,0 555 179,0 123600 4119 26,3 4498 10180 672,0 7,51 1017,0 8,22 234,0 2,380 140,0 * 600x152 600 300 25,0 8,0 550 194,0 135200 4505 26,4 4916 11250 750,0 7,62 1134,0 8,27 322,0 2,380 152,0 * 650x 98 650 300 12,5 8,0 625 125,0 92490 2846 27,2 3172 5628 375,0 6,71 572,5 7,83 49,7 2,480 98,1 * 650x114 650 300 16,0 8,0 618 145,0 112200 3453 27,8 3807 7203 480,0 7,04 729,9 8,00 92,5 2,480 114,0 * 650x128 650 300 19,0 8,0 612 163,0 128800 3963 28,1 4346 8553 570,0 7,24 864,8 8,10 148,0 2,480 128,0 * 650x144 650 300 22,4 8,0 605 183,0 147200 4529 28,4 4950 10080 672,0 7,43 1018,0 8,18 135,0 2,480 144,0 * 650x155 650 300 25,0 8,0 600 198,0 161000 4953 28,5 5408 11250 750,0 7,54 1135,0 8,23 323,0 2,480 155,0 * 700x105 700 320 12,5 8,0 675 134,0 115000 3287 29,3 3651 6830 427,0 7,14 650,8 8,35 53,2 2,660 105,0 * 700x122 700 320 16,0 8,0 668 156,0 139700 3990 29,9 4395 8741 546,0 7,49 829,9 8,53 98,8 2,660 122,0

* 700x137 700 320 19,0 8,0 662 175,0 160360 4582 30,3 5017 10380 640,0 7,71 983,4 8,63 158,0 2,660 137,0 * 700x154 700 320 22,4 8,0 655 196,0 183400 5239 30,6 5716 12240 765,0 7,91 1157,0 8,72 251,0 2,660 154,0 * 700x166 700 320 25,0 8,0 650 212,0 200600 5733 30,8 6245 13660 854,0 8,03 1290,0 8,77 344,0 2,660 166,0 * 750x108 750 320 12,5 8,0 725 138,0 134200 3579 31,2 4001 6830 427,0 7,03 651,6 8,29 54,0 2,760 108,0

Page 36: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-34

PERFIL I SOLDADO - VS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm cm3 cm cm4 m2/

m kg/ m

* 750x125 750 320 16,0 8,0 718 160,0 162600 4337 31,9 4789 8741 546,0 7,40 830,7 8,48 99,6 2,760 125,0

* 750x140 750 320 19,0 8,0 712 179,0 186500 4975 32,3 5458 10380 649,0 7,62 984,2 8,59 158,0 2,760 140,0

* 750x157 750 320 22,4 8,0 705 200,0 213200 5685 32,7 6210 12240 765,0 7,83 1158,0 8,69 252,0 2,760 157,0

* 750x170 750 320 25,0 8,0 700 216,0 233200 6219 32,9 6780 13660 854,0 7,95 1291,0 8,74 345,0 2,760 170,0

* 800x111 800 320 12,5 8,0 775 142,0 155100 3877 33,0 4351 6830 427,0 6,94 652,4 8,24 54,9 2,860 111,0

* 800x129 800 320 16,0 8,0 766 164,0 187600 4689 33,8 5194 8741 546,0 7,30 831,5 8,43 100,0 2,860 129,0

* 800x143 800 320 19,0 8,0 762 183,0 215000 5374 34,3 5910 10380 649,0 7,54 985,0 8,55 159,0 2,850 143,0

* 800x160 800 320 22,4 8,0 755 204,0 245500 6137 34,7 6714 12240 765,0 7,75 1159,0 8,65 253,0 2,860 160,0

* 850x120 850 350 12,5 8,0 825 154,0 190900 4491 35,3 5025 8936 511,0 7,63 778,8 9,03 59,7 3,080 120,0

* 850x139 850 350 16,0 8,0 818 177,0 231300 5442 36,1 6009 11440 654,0 8,03 993,1 9,24 110,0 3,080 139,0

* 850x155 850 350 19,0 8,0 812 198,0 265300 6243 36,6 6845 13580 776,0 8,28 1177,0 9,37 174,0 3,080 155,0

* 850x174 850 350 19,0 8,0 805 221,0 303400 7138 37,0 7785 16010 915,0 8,51 1385,0 9,48 276,0 3,080 174,0

* 850x188 850 350 25,0 8,0 800 239,0 332000 7812 37,3 8499 17870 1021,0 8,65 1544,0 9,54 378,0 3,080 188,0

* 900x124 900 350 12,5 8,0 875 158,0 217000 4822 37,1 5414 8936 511,0 7,53 779,6 8,98 60,5 3,180 124,0

* 900x142 900 350 16,0 8,0 868 181,0 262400 5832 38,0 6457 11440 654,0 7,94 993,9 9,20 110,0 3,180 142,0

* 900x159 900 350 19,0 8,0 862 202,0 300800 6685 38,6 7345 13580 776,0 8,20 1178,0 9,33 175,0 3,180 159,0

* 900x177 900 350 22,4 8,0 855 225,0 343700 7637 39,1 8343 16010 915,0 8,43 1386,0 9,44 277,0 3,180 177,0

* 900x191 900 350 25,0 8,0 850 243,0 376000 8355 39,3 9101 17870 1021,0 8,58 1545,0 9,51 379,0 3,180 191,0

* 950x127 950 350 12,5 8,0 925 162,0 245000 5159 39,0 5813 8936 511,0 7,44 780,4 8,92 61,4 3,280 127,0

* 950x146 950 350 16,0 8,0 918 185,0 295900 6229 39,9 6916 11440 654,0 7,85 994,7 9,15 111,0 3,280 146,0

* 950x162 950 350 19,0 8,0 912 206,0 338800 7133 40,6 7855 13580 776,0 8,12 1178,0 9,29 176,0 3,280 162,0

* 950x180 950 350 22,4 8,0 905 229,0 386800 8143 41,1 8911 16010 915,0 8,36 1386,0 9,41 278,0 3,280 180,0

* 950x194 950 350 25,0 8,0 900 247,0 423000 8906 41,4 9714 17870 1021,0 8,51 1546,0 9,48 380,0 3,280 194,0

*1000x140 1000 400 12,5 8,0 975 178,0 305600 6112 41,4 6839 13340 667,0 8,66 1016,0 10,30 68,7 3,580 140,0

*1000x161 1000 400 16,0 8,0 968 205,0 370300 7407 42,5 8172 17070 854,0 9,12 1295,0 10,50 126,0 3,580 161,0

*1000x180 1000 400 19,0 8,0 962 229,0 425100 8502 43,1 9306 21270 1014,0 9,41 1535,0 10,70 199,0 3,580 180,0

*1000x201 1000 400 22,4 8,0 955 256,0 486300 9727 43,6 10580 23900 1195,0 9,67 1807,0 10,80 316,0 3,580 201,0

*1000x217 1000 400 25,0 8,0 950 276,0 532600 10650 43,9 11560 26670 1334,0 9,83 2015,0 10,90 433,0 3,580 217,0

Page 37: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-35

PERFIL I SOLDADO - CS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 250x 52 250 250 9,5 8,0 231 66,0 7694 616 10,8 678 2475 198 6,12 300,6 6,79 18,2 1,48 51,8

* 250x 63 250 250 12,5 8,0 225 80,5 9581 766 10,9 843 3256 260 6,36 394,2 6,89 36,4 1,48 63,2

* 250x 66 250 250 12,5 9,5 225 83,9 9723 778 10,8 862 3257 261 6,23 395,7 6,84 39,0 1,48 65,8

* 250x 76 250 250 16,0 8,0 218 97,4 11660 933 10,9 1031 4168 333 6,54 503,5 6,97 72,0 1,48 76,5

* 250x 79 250 250 16,0 9,5 218 101,0 11790 943 10,8 1049 4168 333 6,43 504,9 6,92 74,5 1,48 79,1

* 250x 84 250 250 16,0 12,5 218 107,0 12050 964 10,6 1085 4170 334 6,24 508,5 6,84 82,5 1,48 84,2

* 250x 90 250 250 19,0 9,5 212 115,0 13460 1076 10,8 1204 4949 396 6,56 598,5 6,98 120,0 1,48 90,4

* 250x 95 250 250 19,0 12,5 212 122,0 13690 1096 10,6 1238 4951 396 6,38 602,0 6,90 128,0 1,48 95,4

* 250x108 250 250 22,4 12,5 205 138,0 15450 1236 10,6 1406 5837 467 6,51 708,0 6,96 201,0 1,48 108,0

* 300x 62 300 300 9,5 8,0 281 79,5 13510 901 13,0 986 4276 285 7,33 432,0 8,14 21,9 1,78 62,4

* 300x 76 300 300 12,5 8,0 275 97,0 16890 1126 13,2 1229 5626 375 7,62 566,0 8,27 43,8 1,78 76,1

* 300x 95 300 300 16,0 9,5 268 121,0 20900 1393 13,1 1534 7202 480 7,70 726,0 8,30 89,6 1,78 95,3

* 300x102 300 300 16,0 12,5 268 130,0 21380 1426 12,8 1588 7204 480 7,46 730,5 8,20 99,4 1,78 102,0

* 300x109 300 300 19,0 9,5 262 139,0 23960 1597 13,1 1765 8552 570 7,85 860,9 8,36 145,0 1,78 109,0

* 300x115 300 300 19,0 12,5 262 147,0 24410 1627 12,9 1816 8554 570 7,63 865,2 8,27 154,0 1,78 115,0

* 300x122 300 300 19,0 16,0 262 156,0 24940 1662 12,6 1876 8559 571 7,41 871,8 8,18 173,0 1,77 122,0

* 300x131 300 300 22,4 12,5 255 166,0 27680 1845 12.9 2069 10080 672 7,78 1018,0 8,34 241,0 1,78 131,0

* 300x138 300 300 22,4 16,0 255 175,0 28170 1878 12,7 2126 10090 673 7,59 1024,0 8,25 260,0 1,77 138,0

* 300x149 300 300 25,0 16,0 250 190,0 30520 2035 12,7 2313 11260 751 7,70 1141,0 8,30 347,0 1,77 149,0

* 350x 93 350 350 12,5 9,5 325 118,0 27650 1580 15,3 1727 8935 511 8,69 773,0 9,56 54,9 2,08 92,9

* 350x112 350 350 16,0 9,5 318 142,0 33810 1932 15,4 2111 11430 653 8,96 987,2 9,68 105,0 2,08 112,0

* 350x119 350 350 16,0 12,5 318 152,0 34610 1978 15,1 2186 11440 654 8,68 992,4 9,55 116,0 2,08 119,0

* 350x128 350 350 19,0 9,5 312 163,0 38870 2221 15,5 2432 13580 776 9,14 1171,0 9,75 169,0 2,08 128,0

* 350x135 350 350 19,0 12,5 312 172,0 39630 2265 15,2 2502 13580 776 8,89 1176,0 9,64 180,0 2,08 135,0

* 350x144 350 350 19,0 16,0 312 183,0 40520 2315 14,9 2591 13590 776 8,62 1184,0 9,53 203,0 2,07 144,0

* 350x153 350 350 22,4 12,5 305 195,0 45100 2577 15,2 2859 16010 915 9,06 1384,0 9,72 282,0 2,08 153,0

* 350x161 350 350 22,4 16,0 305 206,0 45930 2624 14,9 2941 16020 915 8,83 1392,0 9,62 304,0 2,07 161,0

* 350x175 350 350 25,0 16,0 300 223,0 49900 2852 15,0 3204 17870 1021 8,95 1550,0 9,67 406,0 2,07 175,0

* 350x183 350 350 25,0 19,0 300 232,0 50580 2890 14,8 3271 17880 1022 8,78 1558,0 9,60 433,0 2,08 182,0

* 350x216 350 350 31,5 19,0 287 275,0 59850 3420 14,8 3903 22530 1287 9,05 1955,0 9,71 795,0 2,06 216,0

Page 38: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-36

PERFIL I SOLDADO - CS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 400x106 400 400 12,5 9,5 375 136,0 41730 2086 17,5 2271 13340 667 9,92 1008,0 10,90 62,8 2,38 106,0

* 400x128 400 400 16,0 9,5 368 163,0 51160 2558 17,7 2779 17070 853 10,20 1288,0 11,10 120,0 2,38 128,0

* 400x137 400 400 16,0 12,5 368 174,0 52400 2620 17,4 2881 17070 854 9,91 1294,0 10,90 133,0 2,38 137,0

* 400x146 400 400 19,0 9,5 362 186,0 58960 2948 17,8 3207 20270 1013 10,40 1528,0 11,10 193,0 2,38 146,0

* 400x155 400 400 19,0 12,5 362 197,0 60150 3007 17,5 3305 20270 1014 10,10 1534,0 11,00 206,0 2,38 155,0

* 400x165 400 400 19,0 16,0 362 210,0 61530 3077 17,1 3420 20280 1014 9,83 1543,0 10.90 232,0 2,37 165,0

* 400x176 400 400 22,4 12,5 355 224,0 68620 3431 17,5 3778 23900 1195 10,30 1806,0 11,10 323,0 2,38 176,0

* 400x185 400 400 22,4 16,0 355 236,0 69930 3496 17,2 3888 23910 1195 10,10 1815,0 11,00 348,0 2,37 185,0

* 400x201 400 400 25,0 16,0 350 256,0 76130 3807 17,2 4240 26680 1334 10,20 2022,0 11,00 404,0 2,37 201,0

* 400x209 400 400 25,0 19,0 350 267,0 77210 3860 17,0 4332 26690 1334 10,00 2032,0 11,00 497,0 2,36 209,0

* 400x248 400 400 31,5 19,0 337 316,0 91820 4591 17,0 5183 33620 1681 10,30 2550,0 11,10 911,0 2,36 248,0

* 450x154 450 450 16,0 12,5 418 196,0 75450 3353 19,6 3671 24310 1080 11,10 1636,0 12,30 150,0 2,68 154,0

* 450x175 450 450 19,0 12,5 412 223,0 86750 3856 19,7 4216 28860 1283 11,40 1940,0 12,40 233,0 2,68 175,0

* 450x186 450 450 19,0 16,0 412 237,0 88790 3946 19,4 4364 28870 1283 11,00 1950,0 12,20 262,0 2,67 186,0

* 450x198 450 450 22,4 12,5 405 252,0 99170 4407 19,8 4823 34030 1512 11,60 2284,0 12,50 364,0 2,68 198,0

* 450x209 450 450 22,4 16,0 405 266,0 101100 4494 19,5 4967 34030 1513 11,30 2294,0 12,30 393,0 2,67 209,0

* 450x227 450 450 25,0 16,0 400 289,0 110300 4900 19,5 5421 37980 1688 11,50 2557,0 12,40 523,0 2,67 227,0

* 450x236 450 450 25,0 19,0 400 301,0 111900 4971 19,3 5541 37990 1689 11,20 2567,0 12,30 560,0 2,67 236,0

* 450x280 450 450 31,5 19,0 387 357,0 133500 5935 19,3 6644 47860 2127 11,60 3224,0 12,50 1030,0 2,66 280,0

* 450x291 450 450 31,5 22,4 387 370,0 135200 6008 19,1 6771 47880 2128 11,40 3238,0 12,40 1080,0 2,66 291,0

* 450x321 450 450 37,5 19,0 375 409,0 152300 6770 19,3 7629 56970 2532 11,80 3832,0 12,60 1670,0 2,66 321,0

* 450x331 450 450 37,5 22,4 375 422,0 153800 6836 19,1 7748 56990 2533 11,60 3844,0 12,50 1720,0 2,66 331,0

* 500x172 500 500 16,0 12,5 468 219,0 104400 4177 21,9 4556 33340 1334 12,40 2018,0 13,60 167,0 2,98 172,0

* 500x194 500 500 19,0 12,5 462 248,0 120200 4809 22,0 5237 39590 1584 12,60 2393,0 13,80 259,0 2,98 194,0

* 500x207 500 500 19,0 16,0 462 264,0 123100 4924 21,6 5423 39600 1584 12,20 2405,0 13,60 292,0 2,97 207,0

* 500x221 500 500 22,4 12,5 455 281,0 137700 5506 22,1 5997 46670 1867 12,90 2818,0 13,90 404,0 2,98 221,0

* 500x233 500 500 22,4 16,0 455 297,0 140400 5616 21,7 6178 46680 1867 12,50 2829,0 13,70 437,0 2,97 233,0

* 500x253 500 500 25,0 16,0 450 322,0 153300 6132 21,8 6748 52100 2084 12,70 3154,0 13,80 582,0 2,97 253,0

* 500x283 500 500 25,0 19,0 450 336,0 155600 6223 21,5 6899 52110 2084 12,50 3166,0 13,70 624,0 2,96 263,0

Page 39: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-37

PERFIL I SOLDADO - CS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 500x312 500 500 31,5 19,0 437 398,0 186300 7453 21,6 8286 65650 2626 12,80 3977,0 13,80 1140,0 2,96 312,0

* 500x324 500 500 31,5 22,4 437 413,0 188700 7548 21,4 8448 65670 2627 12,60 3992,0 13,70 1210,0 2,96 324,0

* 500x333 500 500 31,5 25,0 437 424,0 190500 7620 21,2 8572 65680 2627 12,40 4006,0 13,70 1270,0 2,95 333,0

* 500x369 500 500 37,5 22,4 425 470,0 215300 8612 21,4 9683 78160 3127 12,90 4741,0 13,90 1920,0 2,96 369,0

* 500x378 500 500 37,5 25,0 425 481,0 217100 8679 21,2 9801 78180 3127 12,70 4754,0 13,80 1980,0 2,95 378,0

* 550x228 550 550 19,0 16,0 512 291,0 165300 6010 23,8 6598 52700 1916 13,50 2907,0 14,90 321,0 3,27 228,0

* 550x257 550 550 22,4 16,0 505 327,0 188800 6864 24,0 7521 62130 2259 13,80 3420,0 15,10 481,0 3,27 257,0

* 550x279 550 550 25,0 16,0 500 355,0 206300 7502 24,1 8219 69340 2521 14,00 3813,0 15,20 641,0 3,27 279,0

* 500x290 550 550 25,0 19,0 500 370,0 209400 7616 23,8 8406 69350 2522 13,70 3826,0 15,00 668,0 3,27 290,0

* 550x345 550 550 31,5 19,0 487 439,0 251500 9144 23,9 10110 87370 3177 14,10 4808,0 15,20 1260,0 3,26 345,0

* 550x358 550 550 31,5 22,4 487 456,0 254700 9263 23,6 10310 87390 3178 13,90 4825,0 15,10 1330,0 3,26 358,0

* 550x368 550 550 31,5 25,0 487 468,0 257200 9354 23,4 10460 87410 3179 13,70 4840,0 15,00 1400,0 3,25 368,0

* 550x395 550 550 37,5 19,0 475 503,0 288300 10480 23,9 11640 104000 3782 14,40 5715,0 15,30 2040,0 3,26 395,0

* 550x407 550 550 37,5 22,4 475 519,0 291400 10590 23,7 11830 104000 3783 14,20 5731,0 15,20 2110,0 3,26 407,0

* 550x417 550 550 37,5 25,0 475 531,0 293700 10680 23,5 11980 104000 3783 14,00 5746,0 15,20 2180,0 3,25 417,0

* 550x441 550 550 37,5 31,5 475 562,0 299500 10890 23,1 12350 104100 3786 13,60 5790,0 15,00 2430,0 3,24 441,0

* 550x495 550 550 44,0 31,5 462 630,0 336500 12240 23,1 13930 122100 4441 13,90 6770,0 15,10 3605,0 3,24 495,0

* 600x281 600 600 22,4 16,0 555 358,0 247100 8237 26,3 8996 80660 2689 15,00 4068,0 16,40 525,0 3,57 281,0

* 600x250 600 600 19,0 16,0 562 318,0 216100 7205 26,1 7887 68420 2281 14,70 3456,0 16,30 351,0 3,57 250,0

* 600x305 600 600 25,0 16,0 550 388,0 270300 9010 26,4 9835 90020 3001 15,20 4535,0 16,50 700,0 3,57 305,0

* 600x318 600 600 25,0 19,0 550 405,0 274500 9149 26,0 10060 90030 3001 14,90 4550,0 16,40 751,0 3,56 318,0

* 600x377 600 600 31,5 19,0 537 480,0 330200 11010 26,2 12110 113400 3781 15,40 5718,0 16,60 1370,0 3,56 377,0

* 600x391 600 600 31,5 22,4 537 498,0 334600 11150 25,9 12360 113500 3782 15,10 5737,0 16,50 1450,0 3,56 391,0

* 600x402 600 600 31,5 25,0 537 512,0 338000 11270 25,7 12550 113500 3782 14,90 5754,0 16,40 1530,0 3,55 402,0

* 600x432 600 600 37,5 19,0 525 550,0 379400 12650 26,3 13970 135000 4501 15,70 6797,0 16,70 2230,0 3,56 432,0

* 600x446 600 600 37,5 22,4 525 568,0 383500 12780 26,0 14200 135000 4502 15,40 6816,0 16,60 2310,0 3,56 446,0

* 600x456 600 600 37,5 25,0 525 581,0 386600 12890 25,8 14380 135100 4502 15,20 6832,0 16,50 2380,0 3,55 456,0

* 600x483 600 600 37,5 31,5 525 615,0 394500 13150 25,3 14830 135100 4505 14,80 6880,0 16,40 2660,0 3,54 483,0

* 600x541 600 600 44,0 31,5 512 689,0 444100 14800 25,4 16740 158500 5284 15,20 8047,0 16,50 3941,0 3,54 541,0

* 650x305 650 650 22,4 16,0 605 388,0 316400 9736 28,6 10600 102500 3155 16,30 4771,0 17,80 570,0 3,87 305,0

* 650x330 650 650 25,0 16,0 600 421,0 346400 10660 28,7 11600 114400 3521 16,50 5320,0 17,90 759,0 3,87 330,0

* 650x345 650 650 25,0 19,0 600 439,0 351800 10820 28,3 11870 114500 3522 16,10 5335,0 17,80 814,0 3,86 345,0

Page 40: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC- CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

1-38

PERFIL I SOLDADO - CS

bf

tw

tfh

tf

d

. DIMENSÕES (mm) A EIXO X - X EIXO Y - Y rT IT U P

perfil d bf tf tw h cm2 Ix Wx rx Z cm4 cm3 cm cm3

Iy Wy ry Z cm4 cm3 cm m3 cm cm4 m2/

m kg/ m

* 150x25 150 150 8,0 6,4 134 32,4 1337 178 6,42 199 450 60 3,73 91 4,10 6,0 0,89 25 * 150x29 150 150 9,5 6,4 131 36,8 1527 204 6,45 227 535 71 3,81 108 4,14 10,0 0,89 29

* 150x31 150 150 9,5 8,0 131 39,0 1559 208 6,32 235 535 71 3,70 109 4,09 11,0 0,88 31

* 150x37 150 150 12,5 8,0 125 47,5 1908 254 6,34 289 704 94 3,85 143 4,15 22,0 0,88 37

* 150x45 150 150 16,0 8,0 118 57,4 2274 303 6,26 349 901 120 3,96 182 4,20 43,0 0,88 45

* 200x29 200 200 6,4 6,4 187 37,0 2710 271 8,56 299 840 84 4,77 128 5,37 5,0 1,19 29

* 200x34 200 200 8,0 6,4 184 43,6 3278 328 8,67 361 1067 107 4,95 162 5,45 8,0 1,19 34

* 200x39 200 200 9,5 6,4 181 49,4 3762 376 8,73 414 1267 127 5,06 192 5,51 13,0 1,19 39

* 200x41 200 200 9,5 8,0 181 52,5 3846 385 8,56 427 1267 127 4,91 193 5,44 15,0 1,18 41

* 200x50 200 200 12,5 8,0 175 64,0 4758 476 8,62 530 1667 167 5,10 253 5,52 29,0 1,18 50

* 200x61 200 200 16,0 8,0 168 77,4 5747 575 8,61 645 2134 213 5,25 323 5,58 58,0 1,18 61

* 250x43 250 250 8,0 6,4 234 54,7 6531 522 10,92 570 2084 167 6,17 252 6,81 11,0 1,49 43

* 250x49 250 250 9,5 6,4 231 62,1 7519 602 11,01 655 2474 198 6,31 299 6,88 16,0 1,49 49

Page 41: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-1

02 - Aços Estruturais

2.1. – Processo de fabricação:

Vimos anteriormente que os processos de obtenção do aço passaram ao longo dos tempos por algumas diversificações, desde os primeiros fornos “cavados” nas encostas, pelos primeiros fornos de alvenaria até alcançarem mediante profundas conquistas tecnológicas os denominados altos-fornos. Na atualidade, 1 os metais ferrosos são obtidos por redução dos minérios de ferro nos altos-fornos. O método de fabricação consiste em se carregar, pela parte superior dos altos-fornos, o minério, o calcário e o carvão coque, materiais necessários no processo de fabricação.

Pela parte inferior desses mesmos altos-fornos, insufla-se ar quente; o carvão coque queima produzindo calor e monóxido de carbono, que reduzem o óxido de ferro a ferro liquefeito, com excesso de carbono. O calcário converte o pó de coque e a ganga – minerais ferrosos do minério – em escória fundida.

Na seqüência, pela parte inferior do forno, são drenados periodicamente a liga ferro-carbono e a escória. O forno funciona continuamente e o produto do alto-forno chama-se ferro gusa, uma liga de ferro ainda com alto teor de carbono e com diversas impurezas, cuja maior parte é transformada em aço. O refinamento do ferro fundido em aço consiste em reduzir-se a quantidade de impurezas a limites prefixados, quando, por exemplo, o excesso de carbono é eliminado com a aplicação de gás carbônico; os óxidos e outras impurezas se transformam em gases ou em escória que sobrenada o aço liquefeito.

Até há alguns anos atrás, basicamente existiam três processos de fabricação do aço: Conversor Besemer, Forno Siemens-Martin e Forno Elétrico. No primeiro caso, o processo era mais rápido, quando se coloca no Conversor – um recipiente forrado com tijolos com perfurações no fundo – o gusa derretido e injeta-se ar pelas perfurações ao fundo; o ar injetado queima o carbono e algumas impurezas, produzindo calor necessário para a operação que dura de dez a quinze minutos. O metal assim purificado pela injeção de ar é lançado em uma panela e em seguida transferido para os moldes de lingotes, as denominadas lingoteiras e, em seguida, enviado para a laminação.

No segundo caso, do Forno Siemens-Martin, o processo é mais demorado, demandando cerca de dez horas. No forno se coloca gusa e sucata de ferro, que são fundidos por chamas provocadas por injeções laterais de ar quente e óleo combustível. Adiciona-se minério de ferro e calcário, processando-se uma série de reações entre o óxido de ferro e as impurezas do metal e estas são queimadas ou se transformam em escória. O aço líquido é analisado, podendo

Page 42: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-2

modificar-se a mistura até se obter a composição desejadas e quando as reações estão encerradas, o produto é lançado em uma panela, onde a escória transborda, quando o aço fundido é lançado em lingoteiras e encaminhado para a laminação.

ESQUEMÁTICO DOS ALTOS-FORNOS

No caso do Forno Elétrico, ainda hoje utilizado, a energia térmica é fornecida por arcos voltaicos entre eletrodos e o aço fundido e esse processo é utilizado para refinar aços provenientes do Conversor Bessemer ou do Forno Siemens-Martin. O aço líquido superaquecido absorve gases da atmosfera e oxigênio da escória. O gás é expelido lentamente pelo resfriamento da massa líquida, porém, ao se aproximar a temperatura de solidificação, o aço ferve e os gases escapam rapidamente, que tem como conseqüência a formação de diversos vazios no aço, que deve ser solucionada através da adição de ferro-manganês na panela.

Na atualidade, nas fabricações mais modernas, é utilizado em larga escala o Conversor de Oxigênio, denominado Conversor BOF (Sopro de Oxigênio), que como o próprio nome indica, baseia-se na injeção de oxigênio dentro da massa liquida do ferro fundido (gusa). O ar injetado queima o carbono, em um processo de 15 a 20 minutos, ou seja, de ata eficiência.

COQ

UE

- M

INÉR

IO D

E FE

RRO

- C

ALCÁ

RIO

ALIMENTADOR

SAÍDA DE ESCÓRIASAÍDA DE FERRO GUSA

INJEÇÃO DE AR

TRANSPORTADOR

INJEÇÃO DE AR

500°C

1250°C

1650°C

Page 43: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-3

O aço líquido, como percebemos, absorve e perde gases no processo de fabricação. Devido a essa desgasificação, os aços são classificados em: efervescentes, capeados, semi-acalmados e acalmados. Os aços efervescentes, assim chamados por provocarem certa efervescência nas lingoteiras, são utilizados em chapas finas; os aços capeados, por sua vez, são análogos aos efervescentes.

Os aços semi-acalmados, parcialmente desoxidados, são os mais utilizados nos produtos siderúrgicos correntes – perfis, barras, chapas grossas; enquanto que os aços acalmados, que têm todos os gases eliminados, apresentam melhor uniformidade de estrutura e destinados aos aços-ligas, aos aços de alto-carbono, ou mesmo de baixo-carbono destinados à estampagem.

A laminação, como processo seguinte, promove o aquecimento dos lingotes obtidos nos processos descritos acima, e são sucessivamente prensados em rolos – laminadores – até adquirirem as formas desejadas: barras, perfis, trilhos, chapas, etc.

Importante, também, é conhecermos os tratamentos térmicos, cuja finalidade é a de melhorar as propriedades dos aços e que se dividem em dois tipos principais:

• Tratamentos destinados a reduzir tensões internas provocadas por laminação, solda, etc.

• Tratamentos destinados a modificar a estrutura cristalina com alterações da resistência e outras propriedades

As principais metodologias adotadas são:

♦ Normalização – o aço é aquecido a uma temperatura da ordem de 800ºC e mantido nessa temperatura por quinze minutos e depois deixado resfriar lentamente no ar e através desse processo refina-se a granulometria, removendo-se as tensões internas de laminação, fundição ou forja

♦ Recozimento – o aço é aquecido a uma temperatura apropriada, dependendo do efeito desejado, mantido nessa temperatura por algumas horas ou dias e depois, deixado para resfriar lentamente, em geral no forno e, através desse processo, se obtém a remoção das tensões internas e redução da dureza

♦ Têmpera – o aço é aquecido a uma temperatura de cerca de 900ºC e resfriado rapidamente em óleo ou água para cerca de 200ºC, cuja finalidade é aumentar a dureza e a resistência diminuindo a ductibilidade e a tenacidade

Page 44: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-4

2.2. – Classificação:

Após processo de fabricação e segundo sua composição química, os aços sofrem determinadas classificações a partir dessas composições, pois percebemos que 1 o aço é um composto que consiste quase totalmente de ferro (98%), com pequenas quantidades de carbono, silício, enxofre, fósforo, manganês, etc., sendo que o carbono é o material que exerce o maior efeito nas propriedades do aço, resultando daí, as classificações mencionadas. Os aços utilizados em estruturas metálicas são divididos em dois grupos: aço-carbono e aço de baixa-liga.

2.2.1. – Aço-Carbono:

O aço-carbono é o tipo mais usual, quando o acréscimo de resistência em relação ao ferro é produzido pelo carbono. Em estruturas correntes, os aços utilizados possuem um teor de carbono que não deve ultrapassar determinados valores, pois caso esses valores sejam superiores aos limites estabelecidos, haverá um decréscimo na soldabilidade – capacidade de se utilizar processo de soldas – criando algumas dificuldades de fabricação e montagem das estruturas, mesmo embora o resultado dessa maior adição de carbono resulte em um aço de maior resistência e de maior dureza.

Nesse tipo de aço 2 as máximas porcentagens de elementos adicionais são:

Carbono (1,7%) – Manganês (1,65%) – Silício (0,60%) e Cobre (0,60%)

A recomendação básica é que não se ultrapasse o percentual de 0,40 a 0,45%, pois até esses valores, existe patamar definido de escoamento, que estaremos estudando logo mais.

Dentre os perfis mais usuais de aço-carbono podemos citar:

ASTM A-36: É considerado o tipo mais comum de aço-carbono e que contém de 0,25 a 0,29% de carbono, sendo utilizado em perfis, barras e chapas para os mais diversos tipos de construção, desde pontes, edifícios, etc.

ASTM A570: É empregado principalmente para perfis de chapas dobradas, devido à sua maleabilidade

ASTM A307: Aço de baixo carbono utilizado em parafusos comuns

ASTM A325: Aço de médio carbono utilizado em parafusos de alta resistência.

Page 45: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-5

2.2.2. – Aço de Baixa-Liga:

Esse tipo de aço é obtido pelo mesmo aço-carbono acrescido de elementos de liga em proporções diminutas – cobre, manganês, silício, etc. A adição desses elementos promovem alterações na micro estrutura original, ampliando a resistência desse tipo de aço.

Na pequena variação de ordem química somada à adição de outros componentes, também pode ser aumentada a resistência à oxidação, fator que como vimos anteriormente, impõe acréscimo de custos nas estruturas.

Dessa maneira, os aços de baixa-liga podem ser sub-divididos em:

• Aços de Alta Resistência Mecânica

ASTM A441: Utilizado em estruturas que necessitem de alta resistência mecânica

ASTM A572: Utilizado em estruturas que necessitem de alta resistência mecânica têm, atualmente, aumentado consideravelmente seu uso no mercado de perfis, em especial, vigas tipo ‘ I ‘ ou ‘ U ’

• Aços de Alta Resistência Mecânica e Corrosão Atmosférica

ASTM A242: Possuem o dobro da resistência à corrosão do aço-carbono, o que permite sua utilização plena em situações de exposições às intempéries, cujos produtos mais conhecidos respondem pelos nomes comerciais de:

NIOCOR, produzido pela CSN; SAC, produzido pela Usiminas e COS-AR-COR, produzido pela Cosipa

1. Estruturas Industriais em Aço – Ildony H. Belley – Editora Pini.

2. Estruturas de Aço – Walter Pfeil – Livros Técnicos e Científicos Editora S.A.

3. Estruturas Metálicas – Antonio Carlos F. Bragança Pinheiro – Editora Edgard Blücher Ltda.

Page 46: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-6

2.2.3. – Elementos de Composição Química do Aço:

Uma vez verificada a classificação dos aços estruturais, é relevante se conhecer um pouco mais sobre a influência da composição química nas propriedades do aço.

1 A composição química determina muitas das características do aços, sendo que alguns elementos químicos presentes nos aços comerciais são conseqüência dos métodos de obtenção; outros são adicionados a fim de se atingir determinados objetivos. A influência de alguns desses elementos, pode ser descrita resumidamente:

• Carbono – como já vimos, é o principal elemento para aumento da resistência

• Cobre – aumenta de forma muito eficaz a resistência à corrosão atmosférica e a resistência à fadiga

• Cromo – aumenta a resistência mecânica à abrasão e à corrosão atmosférica reduzindo, porém, a soldabilidade

• Enxofre – entra no processo de obtenção, mas pode causar retração à quente ou mesmo ruptura frágil, assim como, teores elevados podem causar porosidade e fissuração na soldagem

• Silício – aumenta a resistência e a tenacidade e reduz a soldabilidade

• Titânio – aumenta o limite de resistência, a resistência à abrasão e a resistência à deformação lenta, sendo muito importante a fim de se evitar o envelhecimento

• Vanádio – aumenta o limite da resistência, a resistência à abrasão e a resistência à deformação lenta sem prejudicar a soldabilidade e a tenacidade

1. Estruturas Industriais em Aço – Ildony H. Belley – Editora Pini.

Page 47: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-7

2.3. – Propriedades dos Aços Estruturais:

Para melhor se compreender o comportamento das estruturas de aço, se faz necessário conhecer, de forma satisfatória, as principais propriedades dos aços estruturais.

O primeiro ponto a ser analisado deve ser o diagrama de tensão-deformação, para se analisar e entender o comportamento estrutural. 1 Quando solicitamos um corpo de prova ao esforço normal de tração, podemos obter valores importantes para a determinação das propriedades mecânicas dos aços.

As primeiras propriedades mecânicas que devem ser salientadas são:

Fy : Tensão limite de resistência à tração (variável para os tipos de aço)

Fu : Tensão última de resistência à tração (variável para os tipos de aço)

E : Módulo de Elasticidade = 205 Gpa

Elasticidade vem a ser a capacidade que certos elementos estruturais têm de voltar à sua forma original após sucessivos ciclos de carregamento e descarregamento. Se recorrermos à Resistência dos Materiais – o ramo da Mecânica Aplicada que, utilizando os conhecimentos da Teoria Matemática da Elasticidade, bem como da Mecânica Racional, estabelece fórmulas onde são considerados os efeitos internos nos corpos, produzidos pela ação de forças externas – é necessário recordar-se da Lei de Hook.

Essa lei muito antiga, segundo alguns autores, data de 1676 e enunciada por Hook, estabelece que através de numerosas observações do comportamento dos sólidos, demonstra-se que, na imensa maioria dos casos, os deslocamentos, dentro de certos limites, são proporcionais às cargas que atuam, ou seja, segundo seja a força, assim será a deformação.

1 Partindo da condição de que as tensões são produzidas pelos esforços atuantes, elas aumentarão com o aumento das forças aplicadas. Daí, os aumentos das tensões serão acompanhados por aumentos das deformações, passando por uma série de estados em que sejam de efeito desde desprezível até a condição de desagregação das moléculas no ponto de ruptura. Para a avaliação desses estados se realizam provas do material (ensaios), por meio de “corpos de prova”, devidamente proporcionados, submetidos à experiência de laboratório com máquinas especiais.

No caso dos aços estruturais, os ensaios de laboratório são realizados para esforços de tração. Como vimos acima, a elasticidade é a propriedade que

Page 48: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-8

certos corpos têm de retornarem, depois de deformados – sujeitos à ação de uma carga – à sua forma inicial, quando desaparecem as causas que motivaram a deformação. Assim, no ensaio de tração simples, sob a ação de uma carga P, o corpo de comprimento L, é aumentado da grandeza δ. À medida que se aumenta P, δ também aumenta, e se não for ultrapassado o “limite de elasticidade” do material, quando se retira a carga P, o corpo volta às condições primitivas. Por isso, devido à elasticidade, a energia potencial interna, armazenada durante o desenvolvimento da deformação δ, é capaz de devolver ao corpo, em forma de trabalho mecânico, o necessário para restaurar as condições primitivas.

ν : Coeficiente de Poisson = 0,30

Coeficiente de Poisson é o coeficiente de proporcionalidade entre as deformações longitudinal e transversal de uma peça. Quando se realiza estudos das deformações ao longo do eixo longitudinal de uma peça, observa-se uma propriedade em todos os sólidos relativas às deformações conseqüentes transversais. Por exemplo, uma tração, que conduz ao aumento do comprimento, corresponderá a uma contração transversal; enquanto que uma compressão, que conduz à redução do comprimento, corresponderá a uma expansão transversal. Portanto, o coeficiente de Poisson equivale o mesmo que coeficiente de deformação transversal.

β : Coeficiente de Dilatação Térmica = 12 x 10-6 C

Quando se eleva ou se abaixa a temperatura de um corpo, o material se dilata ou se contrai, a não ser que seja impedido por circunstâncias locais e, havendo a mudança de temperatura de uma barra livre, o Coeficiente de Dilatação Térmica do material é a variação por unidade de comprimento e por grau de temperatura

G : Módulo de Elasticidade Transversal = 0,385 E

Módulo de Elasticidade Transversal ou simplesmente Módulo de Elasticidade de Cisalhamento, é utilizado quando ocorre a extensão ou encurtamento motivada por cisalhamento, ou seja, por corte no plano perpendicular. Essas deformações por corte, ocorrem com as de tração-compressão na flexão e torção

γ : Peso Específico = 78,50 KN/m3

Page 49: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-9

Uma vez conhecidas as principais propriedades mecânicas dos aços estruturais, já se pode analisar o Diagrama de Tensão-Deformação, representado a seguir.

Fy = 345 MPa

Fy = 250 MPa

O

A'

TEN

O

A

C'

C

B

B'

DEFORMAÇÃO

D

D'

(A36)

(A572)

ZONA PLÁSTICA

ZONA ELÁSTICA

ESTRICÇÃO

Fu = 480 MPa

Fu = 400 MPa

DIAGRAMA TENSÃO - DEFORMAÇÃO

Em O-A há proporcionalidade entre a tensão e a deformação, cujo ponto A define o Limite de Proporcionalidade (Lei de Hook – Força e Deformação). Além do ponto A, a linha descreve um raio curto até o ponto B. Se até esse ponto a carga atuante fosse retirada lentamente, haveria o desaparecimento da deformação. Nesse período chamado Período Elástico, o material se comportou elasticamente e o ponto B será o Limite de Elasticidade do Material. Esse ponto B separa duas condições importantes do material, pois após esse limite, o material, como que cansado, perde bruscamente grande poder de resistência.

Chegado ao ponto B, ocorre um fenômeno interessante no material, pois o corpo apresenta uma deformação apreciável, sem ter aumento apreciável de tensão e sem que se note qualquer lesão no material, mas se verifica uma queda brusca no caminho do ponto B ao ponto C, onde se observa um desarranjo molecular do material e, por isso mesmo, esse ponto denomina-se Limite de Escoamento (Fy).

Page 50: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-10

Prosseguindo-se com a análise do diagrama prossegue-se pelo caminho do ponto C ao ponto D, onde as deformações são cada vez maiores, onde no último ponto (D) ocorre o Limite de Tensão Máxima (Fu), também chamado tensão de ruptura. Esse período onde as deformações são permanentes, denomina-se Período Plástico, pois ao ser retirada a carga lentamente, o material não mais retorna ao estado primitivo e permanece em estado de deformação permanente.

Ao atingir o ponto D, a seção do material começa a se estrangular, significando uma alteração molecular e, neste período denominado de estricção, a área da seção transversal do material vai diminuindo e começam a aparecer fissuras, de fora para dentro, até que a ruptura se complete. Para efeito de classificação, diz-se que o material está no Regime Elástico quando obedece ao período entre os pontos O e B e no Regime Plástico quando ultrapassa o ponto B.

Page 51: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-11

Outras propriedades que devem ser estudadas são2:

Dureza – É a resistência ao risco ou abrasão e pode ser medida pela resistência com que a superfície do material se opõe à introdução de uma peça de maior dureza. Os ensaios de dureza são bastante utilizados para verificar a homogeneidade do material.

Ductilidade – É a capacidade do material de se deformar sob a ação de cargas e as estruturas dotadas de maior ductilidade sofrem grandes deformações antes de se romperem, o que na prática constitui um aviso da existência de tensões elevadas, ou seja, o aço vai além do seu limite elástico.

Tenacidade – É a energia mecânica total que o material pode absorver em deformações elásticas e plásticas até a sua ruptura.

Resiliência – É a energia mecânica total que o material pode absorver em deformações elásticas até sua ruptura.

Efeito de Alta e Baixa Temperaturas – As altas temperaturas modificam as propriedades mecânicas dos aços estruturais, pois acima de 100ºC, a uma tendência a se eliminar a definição linear do limite de escoamento, surgindo reduções acentuadas das resistências de escoamento bem como do módulo de elasticidade. As baixas temperaturas, por sua vez, estabelecem a perda de ductibilidade e de tenacidade, o que constitui uma fato indesejável, podendo conduzir à ruptura frágil.

Ruptura Frágil – São muito perigosas, pois são bruscas e não apresentam avisos pelas deformações exageradas das peças estruturais. O comportamento da fragilidade pode ser abordado sob dois aspectos: iniciação da fratura e propagação. A iniciação ocorre quando uma tensão ou deformação elevada se desenvolve num ponto onde o material perdeu ductibilidade e uma vez iniciada a ruptura, ela se propaga pelo material mesmo sob tensões moderadas.

Fadiga – É a ruptura de uma peça sob esforços repetidos em geral determinantes em peças de máquinas e estruturas sob efeito de cargas móveis.

1. Curso de Resistência dos Materiais – Evaristo Valladares Costa – Cia. Editora Nacional

2. Estruturas de Aço – Walter Pfeil – Livros Técnicos e Científicos Editora S.A.

Page 52: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

2-12

TABELA DOS PRINCIPAIS AÇOS ESTRUTURAIS

CLASSIFICAÇÃO TIPO DE AÇO PRODUTOS Fy (KN/cm2) Fu (KN/cm2)

ASTM A36

PERFIS CHAPAS BARRAS

25,00

40,00

ASTM A570 CHAPAS 23,00 36,00

ASTM A307 PARAFUSOS 24,00 40,00

AÇO-CARBONO

ASTM A325 PARAFUSOS 57,00 74,00

AÇO DE BAIXA-LIGA E ALTA RESISTÊNCIA MECÂNICA

ASTM A572

PERFIS CHAPAS BARRAS

34,50

48,00

AÇO DE BAIXA-LIGA, ALTA RESISTÊNCIA MECÂNICA E

À CORROSÃO ATMOSFÉRICA

ASTM A588

PERFIS CHAPAS BARRAS

34,50

48,00

COMPOSIÇÃO QUÍMICA MÁXIMA DOS PRINCIPAIS AÇOS ESTRUTURAIS

ELEMENTO QUÍMICO ASTM A36 (Perfis)

ASTM A572 (Grau 50)

ASTM A588 (Grau B)

ASTM A242 (Chapas)

% C 0,26 0,23 0,20 0,15

% Mn ---- 1,35 0,75 – 1,35 1,00

% P max 0,04 0,04 0,04 0,15

% S max 0,05 0,05 0,05 0,05

% Si 0,40 0,40 0,15 – 0,50 ----

% Ni ---- ---- 0,50 ----

% Cr ---- ---- 0,40 – 0,70 ----

% Mo ---- ---- ---- ----

% Cu 0,202 ---- 0,20 – 0,40 0,20

% V ---- ---- 0,01 – 0,10 ----

(% Nb+%V) ---- 0,02 – 0,15 ---- ----

Page 53: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-1

03 - Caraterísticas Geométricas

1 Para o dimensionamento de peças estruturais, é imprescindível a determinação das ‘características geométricas’ das seções transversais das mesmas. Sem esse mecanismo determinante da capacidade portante das estruturas, não se consegue dimensionar os componentes da estrutura, tão pouco se verificar a estabilidade individual e global das estruturas analisadas. Dessa maneira, temos como ‘características geométricas’ principais os seguintes tópicos:

a) Área b) Centro de Gravidade c) Momento de Inércia d) Raio de Giração e) Momento Resistente Elástico f) Momento Resistente Plástico

3.1. – Figuras Planas:

Convencionalmente, a primeira etapa para determinação das características geométricas de Figuras Planas, é a cálculo do Momento Estático ou Momento de 1.ª Ordem – sempre a análise da seção transversal de um determinado componente estrutural será efetuado através da figura plana equivalente a essa seção, seja um perfil tipo ‘I’, ‘U’, ‘L’, etc. A definição da Resistência dos Materiais para esse Momento Estático de uma figura em relação a um eixo de seu plano, é uma grandeza definida como a somatória dos produtos de cada elemento de área da figura pela respectiva distância ao eixo. A utilidade do Momento Estático é determinar o Centro de Gravidade das figuras planas e, se a figura for constituída de várias outras, o Momento Estático total é a soma dos Momentos Estáticos das várias figuras.

Entretanto, para chegar-se ao cálculo desse Momento Estático, é necessário antes, determinar-se outras características geométricas, pois a equação matemática desse Momento é: Msx = A x Yg ou Msy = A x Xg, onde:

A = Área da Seção Transversal; Yg = distância do Centro de Gravidade da seção em relação ao eixo X e Xg = distância do Centro de Gravidade da seção em relação ao eixo Y.

Page 54: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-2

3.1.1. – Cálculo da Área:

As equações determinantes para o cálculo de áreas pertencem à Resistência dos Materiais, cabendo no presente curso, apenas as suas deduções principais. Assim, para facilitar o cálculo de área de figuras planas, o melhor meio é o de se desmembrar a figura plana em estudo em figuras geométricas cujas áreas são conhecidas.

a) Cálculo de Área de um perfil ‘ I ‘ Soldado

Área Total = Ai + AII + AIII

A = (18x150) + (270x5) + (12x150)

A = 5.850 mm2 ou 58,50 cm2

3.1.2. – Cálculo do Centro de Gravidade:

Uma vez determinada a área de uma certa seção transversal, tal qual a que vimos acima, a próxima etapa deverá ser a determinação do Centro de Gravidade dessa seção ou figura plana. Considerando que todo corpo é atraído pela ‘gravidade’ para o centro da Terra, e que o peso de um corpo é uma força cuja intensidade é a medida do produto da massa pela aceleração provocada pela gravidade, os pesos de todas as moléculas de um corpo formam um sistema de foças verticais, cuja resultante é o peso do corpo e cujo centro de forças é o centro de gravidade. No caso de figuras planas, para se determinar o centro de gravidade da seção, assim como se trabalhou com o cálculo de área, divide-se a mesma figura em outras tantas figuras conhecidas para que se possa determinar o centro de gravidade de cada figura inicialmente e, posteriormente, o cálculo do centro de gravidade da figura integral.

Page 55: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-3

Se tomarmos a figura acima, um trapézio ABCD, a fim de se obter, pelo método mais simples o centro de gravidade da seção, prolonga-se na direção da base menor (AB) o comprimento maior (CD) até E, e na direção da base maior (CB) o comprimento menor (AB) até F. Unindo-se EF, esta intercepta a linha mediana traçada entre AB e CD exatamente no ponto do C.G. (Centro de Gravidade). A medida Yg, equivale à formulação matemática:

Quando, por exemplo, nos detivermos diante de uma figura plana de forma quadrada, supondo seus lados iguais com medida de 90 cm., ao aplicarmos a equação acima, obteremos o resultado de:

o que equivale exatamente ao ponto desejado do Centro de Gravidade.

Entretanto, quando se trata de figura plana composta, como no caso do exemplo do cálculo de área, a determinação do Centro de Gravidade torna-se um pouco mais complexa, sem com isso tornar-se difícil. Uma vez compreendido o caminhamento lógico do cálculo, podemos determinar o C.G. da figura em questão, em relação aos seus dois eixos de figura plana, ou seja, nas direções X e Y.

Vamos voltar à figura original, agora em desenho de maiores proporções, e com o traçado dos eixos de referência ou eixos de auxilio (Xa e Ya) e, com isso, as medidas auxiliares iniciais, y1 a y3 e x1 a x3. Devemos, quando possível, tomarmos o canto inferior esquerdo das peças compostas como referencial 0,0.

150

Xg

3

Y 312

5

2

1

18

Xa

YaX1, X2, X3

Y 1

Yg

Y 2

300

)Bb()Bb2(

3dyg

++

×=

cm45)9090(

)90902(3

90yg =++×

×=

Page 56: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-4

TABELA 1 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA ÁREA (cm2)

Ygi (cm)

Msxi (cm3)

Xgi (cm)

Msyi (cm3)

1 1,8x15 = 27 30-0,9 = 29,1

785,70 15/2 = 7,5 202,50

2 0,5x27 = 13,5

27/2+1,2 = 14,70

198,45 15/2 = 7,5 101,25

3 1,2x15 = 18 1,2/2 = 0,6 10,8 15/2 = 7,5 135

Total 58,50 994,95 438,75

Onde Ygi e Xgi, são as distancias entre os centro de gravidade das figuras individuais conhecidas (1 a 3) até os eixos auxiliares Ya e Xa.

Uma vez calculados os valores auxiliares, já nos é possível determinarmos os valores finais relativos ao centro de gravidade da seção transversal, à partir das equações determinadas anteriormente, onde:

Portanto:

O que equivale, em nossa figura, ao seguinte resultado:

X

Y

1

2

3

AMxe

AMy syi

gsxi

g∑∑

=∑∑

=

cm00,1750,5895,994yg == cm50,7

50,5875,438xg ==

Page 57: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-5

3.1.3. – Cálculo do Momento de Inércia:

Momento de Inércia ou de 2.ª Ordem de uma figura plana em relação a um eixo do seu plano, é a somatória dos produtos da área de cada elemento da superfície, pelo quadrado de sua distância, somado ao momento de inércia da peça isolada (Teorema de Steiner). O momento de inércia tem sempre valores positivos, pelo fato de termos o efeito, na equação, do valor da distância elevado ao quadrado, e sua representação pode ser feita através de duas letras, sem que se altere seu significado: J ou I.

De acordo com o enunciado acima, os valores de J ou I serão:

Jx ou Ix = Jxi + A x Yg2 e Jy ou Iy = Jyi + A x Yg

2

Onde I = Momento de Inércia da figura; Ii = Momento de Inércia em relação ao um eixo i, que passa pelo C.G. e Yi = Distância entre o centro de gravidade da figura em relação ao eixo i. i = eixos X ou Y.

Pois bem, retomando nossa figura tradicional, vamos determinar os valores do Momento de Inércia ou de 2.ª Ordem, agora com os eixos X e Y posicionados em sua situação real, ou seja, passando pelo C.G. da peça.

Mantendo a proposta inicial de se desmembrar a figura plana em figuras geométricas conhecidas, teremos os mesmos retângulos 1, 2 e 3. Dessa maneira podemos, nos utilizando de tabelas auxiliares, calcularmos inicialmente os momentos de inércia de cada um desses retângulos, em relação aos eixos X e Y, agora os eixos tradicionais, traçados a partir do C.G. da seção transversal.

Page 58: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-6

TABELA 2 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA A (cm2)

Ixi (cm4)

Ygi (cm)

Iyi (cm4)

Xgi (cm)

1 1,8x15 = 27 15x1,83 = 7,29 12

12,10 1,8x153 = 506,3 12

0

2 0,5x27 = 13,5

0,5x273 = 820,12 12

2,30 27x0,53 = 0,28 12

0

3 1,2x15 = 18 15x1,23 = 2,16 12

16,40 1,2x153 = 337,5 12

0

Onde Ygi e Xgi, são as distancias entre os centros de gravidade das seções individuais (1 a 3) em relação aos eixos reais Y e X.

A partir dos valores enumerados na tabela acima, já podemos definir os valores dos Momentos de Inércia.

Ix = (7,29 + 27x12,102)+(820,12 + 13,5x2,302)+(2,16 + 18x16,402) = 9.695 cm4

Iy = (506,3 + 27x02)+(0,28 + 13,5x02)+(337,5 + 18x02) = 844 cm4

3.1.4. – Cálculo do Raio de Giração:

Uma vez determinados os Momentos de Inércia, a próxima etapa é a determinação dos raios de giração, também em relação aos eixos X e Y. Essa característica geométrica das figuras planas é definida por operações matemáticas bastante simples, pois o raio de giração, denominado pela letra r adicionada do seu eixo de direção X ou Y, ou seja rx = raio de giração no sentido X e ry = raio de giração no sentido Y, será igual à raiz quadrada do momento de inércia do eixo correspondente, dividido pela área da seção transversal. Assim sendo,

Onde Ii = Momento de Inércia e A = Área da figura plana

Portanto, em nossa figura de estudos, teremos como resultados:

AIr i

i =

cm80,35,58

844recm87,125,58

695.9r yx ====

Page 59: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-7

3.1.5. – Cálculo do Momento Resistente:

Finalizando o cálculo das características geométricas de figuras planas, resta o Momento Resistente, uma característica geométrica importante nos elementos estruturais. Para efeito de nossos estudos, somente consideraremos o Momento Resistente Elástico, muito embora como vimos no enunciado, existe, também, o Momento Resistente Plástico.

Para o cálculo desse Momento Resistente, basta aplicarmos, assim como para o cálculo do raio de giração, simples equação matemática, pois:

Onde:

Wxs = Momento Resistente Superior em torno do eixo x

Wxi = Momento Resistente Inferior em torno do eixo x

Wye = Momento Resistente Esquerdo em torno do eixo y

Wyd = Momento Resistente Direito em torno do eixo y

Para o nosso caso em questão:

gd

yyd

ge

yye

gi

xxi

gs

xxs

xIW;

xIW;

yIW;

yIW ====

3xs cm76,745

13695.9W == 3

xi cm29,57017695.9W ==

3ye cm53,112

50,7844W ==

3yd cm53,112

50,7844W ==

Page 60: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-8

3.1.6. – Características Geométricas de Seções Conhecidas:

SEÇÕES PLANAS

FIGURA ÁREA C.G. MOMENTO INÉRCIA

RAIO DE GIRAÇÃO

MOMENTO RESISTENTE

Xg

b

Yg

h

hbA ×= 2hy

2bx

g

g

=

=

12bhI

12hbI

3y

3x

×=

×=

12br

12hr

y

x

=

=

6bhW

6hbW

2y

2x

×=

×=

Yg

Xg

d

4dA

2×=π

2dy

2dx

g

g

=

=

64dI

4×=π

4dr

4dr

y

x

=

=

32dW

3×=π

Xg

Yg

b

h

2hbA ×

= 3hy

2bx

g

g

=

=

36bhI

36hbI

3y

3x

×=

×=

b23,0r

h23,0r

y

x

×=

×=

24bhW

24hbW

2y

2x

×=

×=

Page 61: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-9

3.1.7. – Exemplos diversos:

Determinar as características geométricas das figuras planas abaixo (medidas em cm):

Exemplo 01: Exemplo 02:

Determinar as características geométricas das figuras planas abaixo (medidas em mm):

Exemplo 03: Exemplo 04:

2 U 304,8 x 30,7 kg/ml 2 L 76 x 10,70 kg/ml

304,

8

74,7

520

xgxg

7610

22,6 22,6

67.576 67.5

10

Page 62: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-10

Resolução dos exemplos apresentados:

Exemplo 01

Considerando-se o retângulo (1) à esquerda com medidas h=40, b=12, y1=20 e x1=6, e o retângulo (2) o da direita inferior com medidas h=12, b=28, y2=6 e x2=26, teremos:

Msx1 = 40 x 12 x 20 = 9.600 cm3 e Msx2 = 12 x 28 x 6 = 2.016 cm3

Msx = 9.600 + 2.016 = 11.616 cm3 e A = (40 x 12 ) + (12 x 28) = 816 cm2

Yg = 11.616 / 816 = 14.23 cm. e por simetria Xg = 14,23 cm.

Portanto Yg1 = 5,8 cm e Yg2 = 8,2 cm

Por simetria Iy = 106.772 cm4

Exemplo 02

TABELA 1 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA ÁREA (cm2)

Ygi (cm)

Msxi (cm3)

Xgi (cm)

Msyi (cm3)

1 20x2 = 40 32 -1 = 31 1240 20 / 2 = 10 400

2 30x2 = 60 30 / 2 = 15 900 20 / 2 = 10 600

Total 100,00 2140 1000

Portanto:

423

23

x cm772.1062,8122812

12288,5124012

4012I =××+×

+××+×

=

cm44,11816

772.106rr yx ===

3yexi

3ydxs cm30,503.7

23,14772.106WWcm143.4

)23,1440(772.106WW ===⇔=

−==

cm10100

1000xecm40,211002140y gg ====

Page 63: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-11

TABELA 2 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA A (cm2)

Ixi (cm4)

Ygi (cm)

Iyi (cm4)

Xgi (cm)

1 20x2 = 40 20 x23 = 13,33 12

9,6 2x203 = 1.333 12

0

2 30x2 = 60 2x303 = 4.500 12

6,4 30x23 = 20 12

0

Momento de Inércia:

Momento Resistente: teremos ygi=21,40 cm e ygs=32-21,40=10,60 cm

Raio de Giração:

Exemplo 03

Devemos tomar os dados geométricos dos perfis a partir das tabelas anexas. Assim, para cada perfil teremos:

A = 39,10 cm2; Ixo = 5.370 cm4; Iyo = 161,10 cm4; Wxo = 352 cm3 e Wyo = 28,30 cm3

Xgo = 1,77 cm

Resolução:

Momento de Inércia:

422x cm658.104,6302500.46,922033,13I =××++××+=

422y cm353.10302200220333.1I =××++××+=

3xs cm47,005.1

60,10658.10W ==

3xi cm04,498

40,21658.10W ==

3ye cm3,135

10353.1W ==

3yd cm3,135

10353.1W ==

cm68,3100353.1recm32,10

100658.10r yx ====

[ ] 42x cm740.102010,39370.5I =××+=

[ ] 42y cm233.462)77,126(10,3910,161I =×−×+=

Page 64: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-12

Momento Resistente:

Raio de Giração:

Exemplo 04

Devemos tomar os dados geométricos dos perfis a partir das tabelas anexas. Assim, para cada perfil teremos:

A = 13,61 cm2; Ixo = Iyo = 74,90 cm4; Wxo = Wyo = 14,00 cm3 e Xgo = Ygo = 2,26 cm

Resolução:

Momento de Inércia:

Momento Resistente:

Raio de Giração:

3x cm72,704

248,30740.10W ==

3y cm19,778.1

257233.46W ==

cm31,2410,392

233.46recm72,1110,392

740.10r yx =×

==×

=

[ ] 42x cm80,1492061,1390,74I =××+= [ ] 42

y cm52,359.22)26,275,6(61,1390,74I =×+×+=

3xs cm05,28

)26,26,7(80,149W =

−= 3

y cm88,261)26,275,6(

52,359.2W =+

=

cm31,2410,392

233.46recm72,1110,392

740.10r yx =×

==×

=

Page 65: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-13

3.1.8 – Exemplos diversos:

Determinar as características geométricas (C.G., Momento de Inércia e Momento Resistente) das figuras planas abaixo:

Exemplo 05 (medidas em milímetros)

Considerar a figura 1 composta pela mesa superior do perfil e figura 2 pela alma

Cálculo do Momento Estático:

TABELA 1 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA ÁREA (cm2)

Ygi (cm)

Msxi (cm3)

Xgi (cm)

Msyi (cm3)

1 9x2 = 18 4+1 = 5 90 81

2 4x3 = 12 24 54

Total 30 114 135

Cálculo do Centro de Gravidade:

Cálculo do Momento de Inércia:

TABELA 2 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA A (cm2)

Ixi (cm4)

Ygi (cm)

Iyi (cm4)

Xgi (cm)

1 9x2 = 18 2,2-1 = 1,2 0

2 4x3 = 12 3,8-2 = 1,8 0

90

30

4020

224=

5,429=

5,429=

cm50,430

135xecm80,330

114y gg ====

612

29 3=

×

1612

43 3=

×

5,12112

92 3=

×

912

34 3=

×

Page 66: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-14

Cálculo do Momento Resistente:

Exemplo 06 (medidas em milímetros)

Considerar a figura 1 composta pela mesa superior do perfil, a figura 2 pela alma e a figura 3 pela mesa inferior

Cálculo do Momento Estático:

TABELA 1 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA ÁREA (cm2)

Ygi (cm)

Msxi (cm3)

Xgi (cm)

Msyi (cm3)

1 20x2,5 = 50 23,75 1187,5 10 500

2 20x2,5 = 50 12,5 625 10 500

2 10x2,5 = 25 1,25 31,25 10 250

Total 125 1843,75 1250

4y

422x

cm50,13095,121I

cm80,86)8,11216()2,1186(I

=+=

=×++×+=

3ydye

3xi

3xs

cm295,450,130WW

cm84,228,380,86Wcm45,39

2,280,86W

===

====

200

100

2520

025

25

Page 67: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-15

Cálculo do Centro de Gravidade:

Cálculo do Momento de Inércia:

TABELA 2 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA A (cm2)

Ixi (cm4)

Ygi (cm)

Iyi (cm4)

Xgi (cm)

1 20x2,5=50 9 0

2 20x2,5=50 2,25 0

3 10x2,5=25 13,5 0

Cálculo do Momento Resistente:

Exemplo 07 (medidas em milímetros)

cm10125250.1xecm75,14

12575,843.1y gg ====

04,2612

5,220 3=

×

67,666.112

205,2 3=

×

67,666.112

205,2 3=

×

04,2612

5,220 3=

×

02,1312

5,210 3=

× 33,20812

105,2 3=

×

4y

4222x

cm04,901.133,20804,2667,666.1I

cm566.10)5,132502,13()25,25067,666.1()95004,26(I

=++=

=×++×++×+=

3ydye

3xi

3xs

cm1,19010

04,901.1WW

cm34,71675,14566.10Wcm83,030.1

25,10566.10W

===

====

100

100

30

198

150

2424

Page 68: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-16

Considerar a figura 1 composta pela mesa superior do perfil, a figura 2 pela alma e a figura 3 pela mesa inferior

Cálculo do Momento Estático:

TABELA 1 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA ÁREA (cm2)

Ygi (cm)

Msxi (cm3)

Xgi (cm)

Msyi (cm3)

1 10x2,4 = 24 18,6 446,4 5 120

2 15x3 = 45 9,9 445,5 1,5 67,5

2 10x2,4 = 24 1,2 28,8 5 120

Total 93 920,7 307,5

Cálculo do Centro de Gravidade:

Cálculo do Momento de Inércia:

TABELA 2 PARA CÁLCULO DE FIGURAS PLANAS

FIGURA A (cm2)

Ixi (cm4)

Ygi (cm)

Iyi (cm4)

Xgi (cm)

1 10x2,4 = 24 8,7 1,69

2 15x3 = 45 0

1,81

2 10x2,4 = 24 8,7 1,69

cm31,393

5,307xecm9,993

7,920y gg ====

52,1112

4,210 3=

×200

12104,2 3

422y

422x

cm26,718)81,14575,33()69,124200(2I

cm500.4)04575,843()7,82452,11(2I

=×++×+×=

=×++×+×=

75,84312153 3

52,1112

4,210 3=

×

75,3312

315 3

20012

104,2 3=

×

Page 69: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-17

Cálculo do Momento Resistente:

Exemplo 08

A partir das características geométricas da seção do exercício anterior, determinar as características para as condições compostas propostas nas figuras abaixo.

Cálculo das carateristicas geometricas do perfil à esquerda:

Cálculo do Momento de Inércia:

Cálculo do Momento Resistente:

3yd

3ye

3xixs

cm90,10469,680,701Wcm02,212

31,380,701W

cm55,4549,9

500.4WW

====

===

100

100

100

100

33.133.1

100

100

198

100

100

198

300

300

33.1 33.1

198

198

300

42y

4x

cm908.88)31,31015(9380,701[2I

cm000.9500.42I

=−+×+×=

=×=

3ydye

3xixs

cm32,556.3)1015(

908.88WW

cm10,9099,9

000.9WW

=+

==

===

Page 70: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-18

Cálculo das carateristicas geometricas do perfil à direita:

Cálculo do Momento de Inércia:

Cálculo do Momento Resistente:

Exemplo 09

Calcular as características geométricas da peça estrutural abaixo, sabendo-se que ela deverá ser composta por perfis I CS 350x119.

Dados de cada pefil:

Tabela pág. 1-35 da apostila

A = 152 cm2

Ix = 34.610 cm4

Iy = 11.440 cm4

bf = 350 cm e d = 350 cm

Resolução:

Momento de Inércia

3ydye

3xixs

cm44,550.2)1015(

761.63WW

cm10,9099,9

000.9WW

=+

==

===

42y

4x

cm761.63])31,315(9380,701[2I

cm000.9500.42I

=+×+×=

=×=

Y

X

Y0

650

Y0

325325

42y

4x

cm980.343)5,32152440.11(2I

cm220.69610.342I

=×+×=

=×=

Page 71: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-19

Cálculo do Momento Resistente:

Cálculo do Raio de Giração:

Exercicio 10

Dado o esquema de uma treliça de banzos paralelos conforme a figura abaixo, sabendo tratar-se de duas cantoneiras de abas iguais de 64x6,1 (aba x peso), pede-se determinar as características geométricas (Momento de Inércia, Momento Resistente e Raio de giração) uma vez que a chapa de separação das cantoneiras deverá ter espessura de 10 mm.

Dados de cada cantoneira:

Tabela pág. 1-20 da apostila

A = 7,68 cm2

Ix = 29,10 cm4

Iy = 29,10 cm4

xg = yg = 1,83 cm

3ydye

3xixs

cm60,879.6)5,175,32(

980.343WW

cm43,955.3

235220.69WW

=+

==

===

cm64,33)2152(

980.343r

cm09,15)2152(

220.69r

y

x

=

=

64

6,35

y

x400

Page 72: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

3-20

Resolução:

Momento de Inércia

Cálculo do Momento Resistente:

Cálculo do Raio de Giração:

42y

42x

cm18,283)33,268,710,29(4I

cm57,258.10)17,1868,710,29(4I

=×+×=

=×+×=

3ydye

3xixs

cm04,41)5,04,6(

18,283WW

cm93,512

220

57,258.10WW

=+

==

===

cm04,3)468,7(

18,283r

cm27,18)468,7(

57,258.10r

y

x

=

=

Page 73: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-1

04 - Sistemas Estruturais

4.1. – Elementos Estruturais:

Uma vez especificados os tipos de aço comumente utilizados em estruturas metálicas, determinadas as características geométricas de figuras planas que correspondem às seções transversais das peças estruturais, é preciso estudar-se os efeitos das forças atuantes nessas peças estruturais que compõem um sistema estrutural. De uma maneira geral, essas peças estruturais podem ser classificadas em:

1) Hastes ou Barras são peças cujas dimensões transversais são pequenas em relação ao seu comprimento. Dependendo da solicitação predominante, essas hastes ou barras podem ser denominadas: Tirantes – sujeitos à tração axial; Colunas ou Pilares – sujeitos à compressão axial; Vigas – sujeitas à cargas transversais que produzem momentos fletores e esforços cortantes; Componentes de Treliças ou Tesouras – sujeitas à tração e compressão axiais.

2) Placas ou Chapas são peças cujas dimensões de superfície são grandes em relação à sua espessura.

As peças estruturais denominadas hastes ou barras quando sujeitas às solicitações de tração ou compressão aplicadas segundo o eixo de si mesma – ver figuras do item 4.3.2 nas situações (a) e (b) – apresentam tensões internas de tração ou compressão uniformes na seção transversal – σt e σc – enquanto que nas hastes ou barras sujeitas às solicitações de cargas transversais – situação (c) e (d) – os esforços predominantes são de momentos fletores e cizalhamento.

4.2 – Sistemas Lineares:

Os sistemas lineares são formados por combinações dos principais elementos lineares constituindo estruturas portantes em geral. Na treliça, por exemplo, as barras trabalham predominantemente à tração ou compressão simples; as grelhas planas são formadas por feixes de barras que trabalham predominantemente à flexão; enquanto pórticos são sistemas formados por associações de barras retilíneas ou curvelíneas com ligações rígidas entre si que trabalham à tração e compressão simples ou mesmo à flexão.

Page 74: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-2

4.3 – Classificação dos Esforços:

Cargas são as forças externas que atuam sobre um determinado sistema estrutural.

Esforços são as forças desenvolvidas internamente no corpo e que tendem a resistir às cargas.

Deformações são as mudanças das dimensões geométricas e da forma do corpo solicitado pelos esforços.

4.3.1 – Cargas Atuantes:

Os sistemas lineares são formados por combinações dos principais elementos que compõem a estrutura. A estrutura, por sua vez, para que possa ser analisada e dimensionada, necessita da determinação das cargas ou ações atuantes sobre essa mesma estrutura, para que uma vez determinadas essas cargas ou ações, se possa verificar os esforços resultantes das aplicações das cargas, assim como as deformações provocadas por elas. A estrutura deverá ter resistência suficiente para suportar essas cargas e suas combinações e manter as deformações plásticas dentro de padrões determinados.

Essas cargas ou ações atuantes sobre as estruturas, definidas por Normas específicas (pág.18), de maneira geral, podem ser classificadas em:

Page 75: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-3

Permanentes – CP ou G:

• Peso próprio dos elementos constituintes da estrutura.

• Peso próprio de todos os elementos de construção permanentemente suportados pela estrutura – pisos, paredes fixas, coberturas, forros, revestimentos e acabamentos.

• Peso próprio de instalações, acessórios e equipamentos permanentes.

Para determinação das cargas permanentes apresentadas no ultimo tópico, essas dependem de informações fornecidas por fabricantes. Entretanto, nos dos primeiros tópicos, as cargas permanentes podem ser determinadas a partir dos pesos reais dos materiais mais usuais e indicados abaixo:

MATERIAL PESO ESPECÍFICO (KN/m3)

CONCRETO SIMPLES 24,00

CONCRETO ARMADO 25,00

ARGAMASSA DE CIMENTO E AREIA 21,00

TIJOLOS FURADOS 13,00

TIJOLOS MACIÇOS 18,00

ROCHA GRANITO – MÁRMORE 28,00

MADEIRA – PEROBA 0,80

MADEIRA – PINHO 0,50

VIDRO 26,00

ASFALTO 13,00

AÇO 78,50

Page 76: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-4

Acidentais ou Variáveis– CA ou Q:

• Sobrecargas de utilização devidas ao peso das pessoas.

• Sobrecargas de utilização devidas ao peso de objetos e materiais estocados.

• Sobrecargas provenientes de cargas de equipamentos específicos – ar condicionado, elevadores.

• Sobrecargas provenientes de empuxos de terra e de água e de variação de temperatura.

As cargas acidentais são definidas em função de valores estatísticos estabelecidos pelas normas pertinentes, seus valores são geralmente considerados como uniformemente distribuídos, e podem ser adotadas conforme se segue, nos casos especificados:

TIPO LOCAL VALORES MÍNIMOS (KN/m2)

DORMITÓRIOS, SALA, COPA, COZINHA E BANHEIRO

1,50 EDIFÍCIOS RESIDENCIAIS

DESPENSA, ÁREA DE SERVIÇO E LAVANDERIA

2,00

COM ACESSO AO PÚBLICO 3,00 ESCADAS

SEM ACESSO AO PÚBLICO 2,50

GALERIA DE LOJAS 3,00 LOJAS

COM MEZANINO 5,00

ESCRITÓRIOS SALAS DE USO GERAL E BANHEIROS

2,00

RESTAURANTES VALOR MÍNIMO 3,00

SALAS DE AULA, CORREDOR 3,00 ESCOLAS

OUTRAS SALAS 2,00

SALAS DE LEITURA 2,50 BIBLIOTECAS

DEPÓSITO DE LIVROS 4,00

SEM ACESSO AO PÚBLICO 2,00 TERRAÇOS

COM ACESSO AO PÚBLICO 3,00

ESTACIONAMENTO VEÍCULOS DE PASSAGEIROS 3,00

FORROS SEM ACESSO AO PÚBLICO 0,50

Page 77: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-5

Vento – CV:

As cargas provenientes da ação dos ventos nas estruturas são das mais importantes e, suas considerações e aplicações, estão contidas em norma específica – NBR 6123 - Forças Devidas ao Vento em Edificações.

Para se determinar as componentes das cargas de vento, é necessário o conhecimento de três parâmetros iniciais. Em primeiro lugar, determina-se a denominada pressão dinâmica, que depende da velocidade do vento, estipulada através de gráfico especifico, chamado isopletas, que determina a velocidade básica do vento medida sob condições analisadas.

Outros fatores determinantes no calculo da pressão dinâmica, são os fator topográfico – leva em conta as variações do terreno; fator rugosidade – considera como o próprio nome define, a rugosidade do terreno, assim como a variação da velocidade do vento com a altura do terreno e das dimensões da edificação e fator estatístico – leva em conta o grau de segurança requerido e a vida útil da edificação.

O segundo parâmetro a ser considerado é o dos coeficientes de pressão (Cpe) e de forma (Ce) externos, para edificações das mais variadas formas e como terceiro parâmetro, considera-se o coeficiente de pressão interna (Cpi), que considera as condições de atuação do vento nas partes internas de uma edificação, sob as mais variadas condições.

Outras cargas ou Excepcionais - CE:

As edificações costumam sofre, além das cargas já delineadas, outras tantas cargas ou ações, provenientes de outros tantos fatores. Dentre essas, poderíamos considerar as cargas provenientes de pontes rolantes, que além das cargas verticais provenientes dos pesos que transportam, também provocam cargas horizontais, decorrentes de frenagens ou acelerações da ponte ou mesmo choque com os anteparos (para-choque) ou ainda esforços provenientes de impacto vertical.

Não menos importantes são as considerações sobre as vibrações, em especial, nos pisos. A resposta humana a vibrações é um fenômeno muito complexo e envolve a magnitude do movimento, as características do ambiente e da sensibilidade do próprio ser humano. Os principais tipos de vibrações são: ressonância ou vibração senoidal contínua e transientes ou vibração passageira.

O parâmetro mais importante para prevenir vibrações em pisos é o amortecimento e o seu calculo dependente de fatores dos mais interessantes, encontrados nas bibliografias enunciadas.

Page 78: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-6

4.3.2 – Esforços Atuantes:

Esforços, como já definido, são as forças desenvolvidas internamente no corpo e que tendem a resistir às cargas. Entretanto, cargas também são forças, porem, desenvolvidas externamente. Assim sendo, os esforços estruturais podem ser caracterizados como esforços externos atuantes ativos e reativos – ativos são produzidos por forças atuantes, ou seja, cargas aplicadas à estrutura, enquanto que reativo são produzidos pelas reações, ou seja, são as equilibrantes do sistema de cargas; ou esforços internos solicitantes e resistentes – solicitantes são os esforços normais de tração ou compressão, cortantes, flexão e torção, enquanto que os resistentes são as tensões normais e tensões de cizalhamento.

Os esforços solicitantes internos podem, portanto, ser classificados da seguinte forma:

a) Força Normal (N) – é a componente perpendicular à seção transversal das peças, que podem ser de tração (+) se é dirigida para fora da peça ou de compressão (-) se é dirigida para dentro da peça. Essa força será equilibrada por esforços internos (esforços resistentes) e se manifestam sob a forma de tensões normais, que serão de tração ou compressão segundo a força N seja de tração ou de compressão.

b) Força Cortante (Q) – é a componente que tende a fazer deslizar uma porção da peça em relação à outra e por isso mesmo provocar corte. Essa força será equilibrada por esforços internos e é denominada tensão de cizalhamento.

c) Momento Fletor (Mf ou M) – é a componente que tende a curvar o eixo longitudinal da peça e será equilibrada por esforços internos que são tensões normais.

d) Momento Torsor (Mt) – é a componente que tende a fazer girar a seção da peça em torno do seu eixo longitudinal e será equilibrada por esforços internos denominadas tensões de cizalhamento.

Na figura representativa abaixo, estão mostrados esforços solicitantes e esforços resistentes em peças estruturais.

Page 79: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-7

Page 80: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-8

4.3.3 – Deslocamentos:

Uma vez sujeita às cargas atuantes, as peças estruturais respondem, como vimos, através de esforços resistentes. Mas, também sobre o influxo das cargas ou esforços atuantes, surge deslocamentos em torno dos eixos transversais da seção da peça. Como também já se estabeleceu, as peças estruturais devem ter capacidade de se manter em condições estáveis plásticas em relação a estas deformações e, por conseguinte, existem valores pré-determinados que estipulam limitações para essas deformações.

De uma maneira geral, os valores máximos recomendados para as deformações ou deslocamentos das estruturas são:

CARGAS A CONSIDERAR

DESCRIÇÃO

TOTAL SÓ VARIÁVEIS

COMBINAÇÕES DE CARGAS

TERÇAS E VIGAS DE TAPAMENTO EM GERAL

L/180 CP + CA

VIGAS DE TAPAMENTO EM GERAL L/120 CV

TERÇAS EM GERAL L/180 CP+CA+0,2CV

L/250 CP+CA+0,2CV CP+0,3CA+O,2C

V

TRELIÇAS E VIGAS DE COBERTURA EM GERAL

L/180 CV

L/300 CP+CA VIGAS DE PISO EM GERAL

L/350 CA

L/350 CP + CA VIGAS DE PISO SUPORTANTO ACABAMENTOS SUJEITOS A FISSURAÇÃO L/400 CA

L/400 CP + CA VIGAS DE PISO SUPORTANTO PILARES (TRANSIÇÃO) L/500 CA

EDIFÍCIOS DE UM PAVIMENTO – DESLOCAMENTO HORIZONTAL DO TOPO À BASE

H/300 CV + 0,3CA

0,2CV + CA

H/400 CV + 0,3CA

EDIFÍCIOS DE DOIS OU MAIS PAVIMENTOS: DESLOC. HORIZONTAL DO TOPO À BASE DESLOC. HORIZONTAL ENTRE PISOS

h/300 CV + 0,3CA

Page 81: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-9

Peças sujeitas a cargas uniformemente distribuídas ou mesmo pontuais sofrem como conseqüência dessas cargas, deformações em torno do eixo solicitado. Dessa maneira, é sempre necessário verificar-se as deformações ocasionadas nessas peças estruturais, de forma que elas não ultrapassem valores anteriormente anotados – ver tabela de deformações permissíveis.

Nas peças tradicionais sujeitas a esses tipos de carregamentos, podemos adotar os modelos abaixo, como os mais tradicionais:

Onde:

M max = Momento Fletor máximo aplicado

V max = Reação de apoio ou esforço cortante

E = Módulo de deformação

I = Momento de Inércia da peça no sentido da aplicação da carga

IE384Lq5f

2LqV

8LqM

4max

max

2máx

××××

=

×=

×=

IE48LPf

2PV

4LPM

3max

max

máx

×××

=

=

×=

Page 82: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-10

4.3.3.1 – Exercícios resolvidos:

a) Dado o perfil VS 750 x 108 em aço ASTM A36, simplesmente apoiado sob a forma de viga com vão livre de 11,00 m, verificar a deformação máxima desse perfil sujeito a:

1 – Carga uniformemente distribuída de 16,5 kN / ml ou 0,165 kN / cm

2 – Carga pontual P = 125 kN

Dados: Ix = 134.197 cm4

Resolução:

⇒ 1 –

⇒ 2 -

.cm40,1.cm15,3350

1100350Lf

.cm14,1197.134500.20384

1100165,05f

IE384Lq5f

adm

4max

4max

<==≤

=××××

=

××××

=

.cm26,1.cm15,3350

1100350Lf

.cm26,1197.134500.2048

1100125f

IE48LPf

adm

3max

3max

<==≤

=××

×=

×××

=

Page 83: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-11

4.3.4 – Método de Dimensionamento:

O método a ser adotado neste trabalho será o Método das Tensões Admissíveis. Quando o dimensionamento se efetua com base no Método das Tensões Admissíveis, considera-se que a estrutura, submetida às cargas previstas em normas, funcione nas condições normais de projeto. Uma estrutura tem a resistência necessária se as tensões causadas em seus elementos pelas cargas estabelecidas (por normas) não ultrapassam as tensões admissíveis estabelecidas, que são iguais a uma determinada parte da tensão limite do material, que é considerada como sendo igual ao limite de escoamento, no caso do aço (Fu). A relação entre a tensão de escoamento e a tensão admissível chama-se fator de segurança ou coeficiente de ponderação.

Esse fator de segurança tem por objetivo absorver:

• Aproximação e incertezas no método das análises

• Qualidade de fabricação

• Presença de tensões residuais e concentração de tensões

• Alteração do para menor nas propriedades do material

• Alteração para menor na seção transversal das peças estruturais

• Incerteza dos carregamentos

O fator de segurança ou coeficiente de ponderação não implica maior segurança para cargas maiores e sim para fatores diversos envolvidos e, em geral, o fator de segurança FS é definido por:

As limitações desse método estão em se utilizar um único coeficiente de segurança para todas as incertezas de obra, conforme enumeradas acima, e as combinações de cargas podem ser efetuadas da seguinte maneira, para obras em geral:

1ª. Combinação – CP + CA

2ª. Combinação – (CP + CV) x 0,80

3ª. Combinação – (CP + CA + CE)

4ª. Combinação – (CP + CA + CE + CV) x 0,80

Onde: CP (C. Permanente), CA (C. Acidental), CV (C. Vento) e CE (C. Excepcional)

TrabalhodeAdmissívelaargCPALimiteaargCPLFS

==

=

Page 84: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-12

FATOR DE SEGURANÇA PARA ELEMENTOS ESTRUTURAIS

ELEMENTO ESTRUTURAL

CRITÉRIO DE DIMENSIONAMENTO

CARGA LIMITE

CARGA ADMISSÍVEL

FATOR DE SEGURANÇA

REGIME ELÁSTICO Fy x A 0,6 Fy x A 1,67 MEMBROS TRACIONADOS

RESISTÊNCIA À RUPTURA

Fu x A 0,5 Fu x A 2,00

REGIME ELÁSTICO

PERFIS NÃO COMPACTOS

My = Fy x W

Ma = 0,6 Fy x W

1,67

VIGAS

REGIME ELÁSTICO

PERFIS COMPACTOS

Mp = Fy x Z

Ma = 0,66 Fy x W

1,70

COLUNAS OU PILARES

CARGA MÁXIMA

CRC

DEPENDE DE

λ= L/r

L/r = O

FS = 1,67

L/r = 130

FS = 1,92

PARAFUSOS DE ALTA

RESISTÊNCIA

RESISTÊNCIA À RUPTURA POR

CISALHAMENTO

MÁXIMO = 3,30

MÍNIMO = 2,10

Page 85: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-13

4.3.5 – Concepção Estrutural:

Os sistemas estruturais principais, assim como os secundários, devem ter disposição ou concepção estrutural tal que se possa garantir que essas barras – em geral vigas e pilares – absorvam os esforços a que forem dimensionados sustentando a estrutura que se pretenda projetar.

Nos sistemas estruturais comuns que dão sustentação a edifícios de uma maneira geral, deve-se observar os fatores que venham a proporcionar uma estabilidade adequada entre os diversos elementos componentes da estrutura, tais como a prevenção contra flambagem das peças, tanto local quanto global.

As cargas verticais dos edifícios metálicos, à semelhança dos edifícios em concreto armado, devem ser absorvidas pelas lajes, que por sua vez transmitem esses esforços às vigas que, por sua vez, as transmitem a outras vigas ou a pilares, finalizando a transmissão dessas cargas nas bases dos pilares e às fundações do edifício.

No caso das cargas horizontais, provenientes da ação do vento nas estruturas, essas também devem ser transferidas ao sistema principal de contraventamento da estrutura ou aos núcleos ou paredes de cisalhamento dos edifícios, através das lajes, que nesses casos trabalham à exemplo de um diafragma horizontal.

A fim de suportar os efeitos horizontais das ações do vento, as estruturas metálicas podem ser concebidas de variadas maneiras a fim de se estabelecer o sistema de contraventamento vertical: sistema contraventado, sistema rígido, sistema misto e sistema com núcleo rígido.

O primeiro caso, de sistema contraventado, considera-se nas duas direções do edifício, quadros que possam absorver as cargas horizontais tendo como modelo, treliças verticais, formadas pelos pilares e vigas do sistema principal associados a peças diagonais dispostas de maneira tal possam a vir a absorver os efeitos das cargas horizontais.

O segundo caso, de sistema rígido, considera-se nas duas direções do edifício, estruturas que absorvam os esforços horizontais através da concepção aporticada, ou seja, as peças estruturais absorvem os esforços aplicados através da rigidez de um pórtico. Esse segundo sistema, em função da complexidade das ligações entre as diversas peças estruturais, tende a te um custo superior ao sistema contraventado.

O terceiro caso, de sistema misto, considera-se que as estruturas podem ter em uma direção um sistema contraventado e na outra direção um sistema rígido.

Page 86: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-14

Finalizando, temos o sistema de núcleo rígido, quando adota-se a execução de uma área central ao prédio, em geral em concreto armado nas áreas correspondentes às caixas de escada e elevadores, capaz de absorver os esforços horizontal, à exemplo de uma haste engastada em sua base e livre no topo, cuja rigidez ou inércia, seja capaz de absorver todos os esforços, e cuja deformação esteja dentro de padrões adequados ao bom comportamento estrutural.

1 – SISTEMA CONTRAVENTADO

PLANTA

SEÇÃO LONGITUDINAL SEÇÃO TRANSVERSAL

CONTRAVENTAMENTO CONTRAVENTAMENTO

CONTRAVENTAMENTO CONTRAVENTAMENTO

CO

NTR

AVE

NTA

ME

NTO

CO

NTR

AVE

NTA

ME

NTO

Page 87: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-15

2 – SISTEMA RÍGIDO

PLANTA

SEÇÃO LONGITUDINAL SEÇÃO TRANSVERSAL

Page 88: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-16

3 – SISTEMA MISTO

PLANTA

SEÇÃO LONGITUDINAL SEÇÃO TRANSVERSAL

CONTRAVENTAMENTO CONTRAVENTAMENTO

CONTRAVENTAMENTO CONTRAVENTAMENTO

Page 89: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-17

4 – SISTEMA COM NUCELO RIGIDO DE CONCRETO

PLANTA

SEÇÃO LONGITUDINAL SEÇÃO TRANSVERSAL

Page 90: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-18

Uma vez determinado o sistema estrutural vertical que se pretenda adotar, é importante estabelecer-se, também, os princípios do sistema horizontal de contraventamento que se pretenda utilizar.

Como vimos anteriormente, as lajes são os componentes estruturais que exercerem função estrutural de diafragma horizontal rígido, a fim de transmitir as cargas horizontais aos demais elementos estruturais. Assim sendo, torna-se importante definir-se o tipo de laje a ser utilizado.

Os sistemas mais comuns de lajes são as lajes maciças de concreto armado, as lajes pré-moldadas de concreto (treliçadas e protendidas), as lajes alveolares protendidas, as pré-lajes (maciças ou treliçadas) e as lajes tipo steel deck.

As lajes maciças de concreto moldadas no local são o tipo mais comum de execução de lajes, sendo, inclusive, o sistema de laje mais eficiente do ponto de vista de rigidez estrutural, uma vez que suas armaduras são definidas nos dois sentidos de apoio das mesmas, ou seja, são consideradas bi-direcionais, mesmo quando armadas em uma única direção.

As lajes pré-moldadas, caracterizam-se pela utilização de vigotas de concreto armado ou protendido que, associadas à colocação de lajotas de concreto, cerâmicas ou mesmo EPS, transmitem as cargas às estruturas subjacentes, sendo a sua eficácia diminuída em relação às lajes maciças, uma vez que são uni-direcionais, ou seja, transmitem a carga somente em uma direção, dificultando a rigidez da estrutura no sentido perpendicular às vigotas.

As lajes alveolares protendidas, embora tratar-se de sistema excelente para execução rápida de obras, necessita de equipamentos específicos para sua colocação, assim como, a exemplo das lajes pré-moldadas, são uni-direcionais.

Finalizando, temos as lajes steel deck, ou seja, são lajes com forma metálica que já serve como armadura servindo também como plataforma de trabalho para a obra sendo, no entanto, a exemplo das pré-moldadas e alveolares, uni-direcional.

A fim de se obter o correto contraventamento ou rigidez horizontal da estrutura, independente do sistema de lajes adotado, é preciso adotar-se alguns paramentros. Um deles é através da disposição, a exemplo dos contraventamentos verticais, de sistemas treliçados, cuja finalidade será a de transmitir os esforços horizontais. O segundo parâmetro que se pode considerar, sem que haja necessidade de treliçamento horizontal, é adotar-se a colocação de conectores de cisalhamento, que são peças dispostas sobre a zona de compressão das vigas fletidas, a fim de proporcionar a adequada ligação entre o diafragma horizontal e o sistema metálico.

Page 91: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

4-19

PLANTA COM SISTEMA CONTRAVENTADO

PLANTA COM SISTEMA DE CONECTORES

LAJE LAJE LAJE LAJE

LAJE LAJE LAJE LAJE

LAJE LAJE LAJE LAJE

Page 92: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-1

05 - Elementos Sujeitos à Flexão Simples

Conforme já mencionado anteriormente, peças sujeitas à flexão simples, são aquelas em que as cargas atuantes tendem a curvar o eixo longitudinal dessas peças, e que serão equilibrados mediante tensões de flexão admissíveis, desenvolvidas pelas mesmas.

Na maioria dos casos de flexão simples, elas ocorrem em vigas cujas cargas são aplicadas no plano da alma do perfil, produzindo, assim, uma flexão em relação ao eixo de maior momento de inércia do perfil. Nesses casos ocorrem uma combinação de esforços de tração e de compressão, pois nas vigas quando a mesa superior é comprimida, a inferior é tracionada e vice-versa.

Por conseguinte, por se tratar de elemento sujeito a esforços de compressão, a flambagem local assim como a flambagem lateral desses elementos estruturais deverão ser levados em conta como os dois fatores que comandam a resistência dessas peças estruturais.

05.01 – Flambagem Lateral das peças:

As seções das peças estruturais quanto a sua condição de resistência à flambagem lateral, podem ser classificadas como compacta, não-compacta e esbelta.

A seção é dita compacta quando pode atingir a plastificação total antes de qualquer outra instabilidade e os limites das relações entre as dimensões e as larguras das peças que definem a sua classificação, são determinadas pela tabela abaixo.

TIPO DE SEÇÃO DESCRIÇÃO DO ELEMENTO

RELAÇÃO

COMPACTA NÃO COMPACTA

MESAS DE PERFIS I e U LAMINADOS

NA FLEXÃO

ALMAS DE PERFIS I e U NA FLEXÃO

As seções que não atenderem a esses limites são denominadas esbeltas.

≤ft

b

≤wth

yF54

yF80

yF540

yF632

Page 93: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-2

Apoio Lateral das Vigas: os elementos flexionados estão sujeitos a sofrer flambagem lateral por compressão oriunda da flexão, conforme já vimos e, a fim de evitar essa ocorrência, torna-se necessária a criação de apoios laterais nessas peças a fim de evitar ou diminuir essa influência.

Uma viga pode ser considerada totalmente contida quando, por exemplo, a sua mesa de compressão estiver embutida numa laje de concreto armado. Além disso, podemos determinar essa contenção lateral verificando se a viga pode ser considerada com apoio lateral completo e, a fim de atender essa especificação, devemos considerar Lb, a distância entre apoios laterais e cujos valores não deverão exceder os seguintes limites:

onde Af é a área da mesa comprimida ⇒ Af = bf x tf

Não atendendo essas condições, a peça será admitida sem apoio lateral completo.

05.02 – Tensão Admissível à Flexão – Fbx:

Dependendo do tipo de seção a se dimensionar (compacta, não-compacta ou esbelta) e da existência ou não de apoio lateral completo, os valores para as tensões admissíveis à flexão serão variáveis. Assim sendo:

a) Elementos com seção compacta e apoio lateral completo

b) Elementos com seção não-compacta e apoio lateral completo

c) Elementos com seção compacta ou não-compacta e sem apoio lateral

yf

2

y

f1

FAd

060.14Lb

Fb63Lb

×⎟⎠⎞

⎜⎝⎛

×≤

Fy60,0Ftb0024,079,0FFb yf

yx ×≤⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛×−×=

yxyt

F60,0'FbF

Cb710.71r

Lb×=⇒

×<

yx F66,0Fb ×=

Page 94: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-3

Para qualquer valor de

O valor a ser utilizado como tensão admissível à flexão será o maior entre Fb’x e Fb”x

E sendo rt = raio de giração da seção T compreendida pela flange comprimida mais 1/3 da área comprimida da alma. Assim sendo:

Onde:

Af = Área da mesa comprimida ⇒ Af = bf x tf

Aw = Área da alma da peça ⇒ Aw = h x tw

Cb = Coeficiente de flexão a ser considerado de acordo com o resultado do diagrama de momentos fletores da peça em questão.

Onde M1 é o menor momento fletor e M2 é o maior momento fletor nas extremidades do intervalo sem contenção (Lb), e onde M1 / M2 é positivo quando M1 e M2 têm o mesmo sinal e negativo quando tem sinais opostos. Quando o momento fletor em qualquer ponto dentro do intervalo sem contenção é maior do

y2

t

yt

yy

2

ty

x

yty

F60,0

rLb

Cb520.119x'FbF

Cb580.358r

Lb

F60,0FCb670.075.1

rLbF

67,0'Fb

FCb580.358

rLb

FCb710.71

×≤

⎟⎠⎞

⎜⎝⎛

×=⇒

×>

×≤×

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

×

⎟⎠⎞

⎜⎝⎛×

−=

×≤≤

×

y

f

xt

F60,0

AdLbCb430.8"Fb

rLb

×≤⎟⎠⎞

⎜⎝⎛ ×

×=⇒

⎟⎠⎞

⎜⎝⎛ +×

=

6AA2

Irw

f

yt

30,2MM3,0

MM05,175,1Cb

2

2

1

2

1≤⎟

⎠⎞

⎜⎝⎛×+⎟

⎠⎞

⎜⎝⎛×+=

Page 95: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-4

que nas extremidades, ou seja, no caso de vigas bi-apoiadas, o valor de Cb = 1,00. Esse valor tomado é a favor da segurança.

05.03 – Flambagem Local - Q:

Além da flambagem global, as peças estruturais sujeitas à flexão, assim como as comprimidas podem sofrer efeitos da flambagem local. Para assegurar que a flambagem local não ocorra antes da flambagem global da peça estrutural, existem limitações que devem ser obedecidas, ou então, os valores de Fb (tensão de flexão admissível) deverão sofrer coeficientes de minoração, representados por Qa ou Qs.

As limitações que devem ser observadas para os casos de flambagem local são:

Para elementos enrijecidos – são os elementos que têm as duas bordas, paralelas às tensões de compresão, apoiadas em toda a sua extensão

Alma de perfis I, H ou U, teremos Qa:

⎪⎩

⎪⎨⎧

−→

−→=

×

⎪⎩

⎪⎨⎧

−→

−→=

×

=

572AASTM102

36AASTM120

FCb580.358

572AASTM46

36AASTM54

FCb710.71

00,1CbPara

y

y

b b

h h

00,1QparaFfe6

t)hh(WW

WWQ

fth

371f

t210hF

540th

00,1Q92572AASTM

10836AASTM

F540

th

yw

2ef

xef

x

efa

w

wef

yw

ayw

==⎥⎦

⎤⎢⎣

⎡ ×−−=

=⇒

⎥⎥⎥⎥

⎢⎢⎢⎢

×⎟⎠⎞

⎜⎝⎛

−××

=⇒>

⎪⎩

⎪⎨⎧

=⇒→

→≤

Page 96: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-5

Para elementos não enrijecidos – são os elementos que têm uma borda livre, paralela às tensões de compressão.

Mesas de perfis I, H ou U e abas de perfis L

Onde:

h = altura da alma da peça tw = espessura da alma da peça Fy = Tensão Limite de Resistência à Tração do Aço b = largura da mesa para perfis L e U e 1 / 2 bf para perfis I tf = espessura da mesa

Para o calculo da influência da flambagem local nas peças estruturais, dependemos do cálculo de valores auxiliares. O primeiro desses valores é o indice Kc.

Uma vez determinados os valores de Kc, é possível determinarmos os fatores de minoração Qs, devido à flambagem local.

Quando:

O coeficiente Q = Qa x Qs será sempre de minoração, portanto, sempre Q<= 1,00

bb b

⎪⎩

⎪⎨⎧

=→

=→≤

)00,1K(14572AASTM

)00,1K(1636AASTM

KF

80tb

c

c

c

yf

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛×

×=⇒>

⎥⎦

⎤⎢⎣

⎡××−=⇒≤⇒>

=⇒≤

2

fy

cs

c

yf

c

y

fs

c

yf

c

yf

s

c

yf

tbF

K842,1Q

KF

168tb

KF

tb0036,0293,1Q

KF

168tbe

KF

80tb

00,1Q

KF

80tb

46,0

w

cw

cw

th

05,4K70th

00,1K70th

⎟⎠⎞

⎜⎝⎛

=⇒>

=⇒≤

Page 97: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-6

05.04 – Peças Esbeltas - Qe:

Nas peças estruturais sujeitas aos efeitos de flexão, quando os valores dos limites impostos de seção não-compacta não forem atendidos, ou seja, quando:

É necessário verificar um outro coeficiente de minoração das tensões admissíveis à compressão, cuja denominação será dada pelas iniciais Qe.

Onde:

Aw = área da alma da peça

Af = área da mesa da peça

Fbx = Tensão á flexão calculada em torno do eixo x

05.05 – Tensão de cálculo – fbx:

Onde:

Mx = Momento Fletor em relação ao eixo x

Wx = Momento Resistente da peça em relação ao eixo x

xw Fb632

th>

00,1Fb632

th

AA0005,01Q

Fb632

th

00,1QFb

632th

xwf

we

xw

exw

≤⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −×⎟

⎠⎞

⎜⎝⎛×−=⇒>

=⇒≤

QeQFbWMfb x

x

xx ××≤=

Page 98: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-7

05.06 - Exercícios Resolvidos:

a) Dado o perfil VS 750 x 108 em aço ASTM A36, verificar o máximo momento fletor suportado pela viga em torno do eixo x, sabendo-se que seu vão máximo Lb = 11,00 m.

Dados:

Ix = 134.197 cm4

Iy = 6.830 cm4

Fy = 25 kN / cm2

Af = 32 x 1,25 = 40 cm2

Aw = 72,5 x 0,8 = 58 cm2

Resolução:

Flambagem local:

Flambagem global: → Lb = 1100 cm. – verificar apoio lateral

bf = 320

d =

750

tw=8

tf =

12,5

y

x

( )

97,097,000,1Q97,051,0

2580,120036,0293,1Q

2480,1243,1124

KF

168

43,11

KF

80

80,125,12

160tb

51,063,9005,4K7063,90

th

00,1Q108F

54063,908

725th

s

c

y

c

y

f

46,0cw

ayw

=×=⇒=⎥⎦

⎤⎢⎣

⎡××−=

<<⇒

⎪⎪⎪

⎪⎪⎪

=

=

==

==⇒>=

=⇒=≤==

apoiosemcm1100cm30025

4075

060.14

FAd

060.14Lb

apoiosemcm1100cm40325

3263F

b63Lb

yf

2

y

f1

→<=×

→<=×

Page 99: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-8

Tipo de seção:

Elementos de seção não-compacta e sem apoio lateral:

viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb’x = 6,79 kN / cm2

Verificação da esbeltez:

Assim sendo:

Para determinar-se o momento máximo aplicado, temos que:

compactanãoseção80,1216F

8080,128,10F

54

80,125,12

160tb10863,90

8725

th

yy

fw

−→>=⇔<=

==⇔≤==

69,13229,8

1100r

Lb

cm29,8

658402

830.6

6AA2

Ir

t

wf

yt

==

=⎟⎠⎞

⎜⎝⎛ +×

=⎟⎠⎞

⎜⎝⎛ +×

=

2y

2

f

x

2y

222

t

x

t

y

y

cm/kN15F60,0cm/kN09,4

40751100

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN79,669,132

00,1520.119

rLb

Cb520.119'Fb

69,132r

Lb

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

=<

00,1Q24279,6

63263,90th

ew

=⇒=<=

2exx cm/kN59,600,197,079,6QQ'FbFb =××=××=

Page 100: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-9

b) Dado o perfil VS 500 x 61 em aço ASTM A36, sob a condição de viga bi-apoiada de vão de 6,00 m, com contenção lateral apenas nos apoios, determinar a máxima carga concentrada que pode ser aplicada no meio do vão dessa viga, desprezando-se o peso próprio.

Dados:

hw = 481 mm

Wx = 1.377 cm3

Lb = 600 cm. Af = 23,75 cm2

rt = 6,55 cm. Aw = 30,30 cm2

Resolução:

Flambagem local:

cm.kN586.23579.359,6M

cm579.375

2197.134

2dIW

WFbMFbWMfb

x

3xx

xxxxx

xx

=×=

==

×=⇒≤=

bf = 250

d =

500

tw=6,3

tf =

9,5

y

x

( )

98,098,000,1Q98,055,0

25130036,0293,1Q

92,241386,1192,24

KF

168

86,11

KF

80

135,9

125tb

55,035,7605,4Kc7035,76

th

00,1Q108F

54035,763,6

481th

s

c

y

c

y

f

46,0w

ayw

=×=⇒=⎥⎦

⎤⎢⎣

⎡××−=

<<⇒

⎪⎪⎪

⎪⎪⎪

=

=

==

==⇒>=

=⇒=≤==

Page 101: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-10

Flambagem global: → Lb = 600 cm. – verificar apoio lateral

Tipo de seção:

Elementos de seção não-compacta e sem apoio lateral:

rt = 6,55 cm e Viga bi-apoiada – Cb=1,00

Adotamos o maior valor → Fb’x = 11,88 kN / cm2

Verificação da esbeltez:

Assim sendo:

Para determinar-se o momento máximo aplicado, temos que:

apoiosemcm600cm26725

4050

060.14

FAd

060.14Lb

apoiosemcm600cm31525

2563F

b63Lb

yf

2

y

f1

→<=×

→<=×

compactanãoseção1316F

80138,10F

54

135,9

125tb10835,76

3,6481

th

yy

fw

−→>=⇔<=

==⇔≤==

2y

2

f

x

2y

22

x

t

y

y

cm/kN15F60,0cm/kN67,6

75,2350600

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN88,112500,1670.075.1

60,912567,0'Fb

12060,9155,6

600r

Lb54

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

−=

<==<

00,1Q18388,11

63235,76th

ew

=⇒=<=

2exx cm/kN64,1100,198,088,11QQ'FbFb =××=××=

Page 102: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-11

c) Determinar a máxima carga uniformemente distribuída sobre uma viga VS 400 x 49, bi-apoiada com 9,00 m. de vão livre, em aço ASTM A36, nas seguintes condições:

1 – contenção lateral contínua por uma laje;

2 – contenção lateral nos terços médios; e

3 – sem contenção lateral, ou seja, apenas contida nos apoios.

Dados:

hw = 381 mm

Wx = 870 cm3

Lx = 900 cm. Af = 19,00 cm2

rt = 5,25 cm. Aw = 24,00 cm2

Resolução:

Flambagem local:

kN107P6

4100

028.16

L4MP

4LPM

:vãodomeionoaplicadaaargcPara

cm.kN028.16377.164,11M

cm377.1W

WFbMFbWMfb

máxx

x

x

3x

xxxxx

xx

=⇒×

=⇒×

=

=×=

=

×=⇒≤=

bf = 200

d =

400

tw=6,3

tf =

9,5

y

x

00,1Q

00,1Q16

KF

8053,105,9

100tb

00,1K7048,60th

00,1Q108F

54048,603,6

381th

s

c

yf

cw

ayw

=

=⇒=≤==

=⇒<=

=⇒=≤==

Page 103: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-12

Flambagem global: → Lx = 900 cm. – verificar apoio lateral

Tipo de seção:

1 – contenção lateral continua: Lb = 0,00 cm

252 cm > Lb e 267 cm > Lb → apoio lateral completo

Elementos de seção compacta e com apoio lateral:

Fbx = 0,66 x Fy x Q = 0,66 x 25 x 1,00 = 16,50 kN / cm2

cm26725

1940

060.14

FAd

060.14Lb

cm25225

2063F

b63Lb

yf

2

y

f1

compactaseção53,108,10F

54

53,105,9

100tb10848,60

3,6381

th

y

fw

→>=

==⇔≤==

m/kN20,14cm/kN142,0p900

8355.14L

8Mp8LpM

:adistribuídaargcPara

cm.kN355.1487050,16M

cm870W

WFbMFbWMfb

máx22x

2x

x

3x

xxxxx

xx

==⇒×

=⇒×

=

=×=

=

×=⇒≤=

Page 104: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-13

2 – contenção lateral nos terços médios: Lb = 900 / 3 = 300 cm

Lb > 252 cm e Lb > 267 cm → sem apoio lateral completo

Elementos compactos sem apoio lateral completo

rt = 5,25 cm e viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb’x = 14,85 kN / cm2

Verificação da esbeltez:

Assim sendo: Fbx = Fb’x x Q x Qe

Fbx = 14,85 x 1,00 x 1,00 = 14,85 kN / cm2

3 – sem contenção lateral: Lb = 900 cm.

Lb > 252 cm e Lb > 267 cm → sem apoio lateral completo

Elementos compactos sem apoio lateral completo

rt = 5,25 cm e viga bi-apoiada Cb = 1,00

2y

2

f

x

2y

22

x

t

y

y

cm/kN15F60,0cm/kN35,13

1940300

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN85,142500,1670.075.1

14,572567,0'Fb

12014,5725,5

300r

Lb54

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

−=

<==<

00,1Q16485,14

63248,60th

ew

=⇒=<=

m/kN80,12cm/kN128,0p900

8928.12L

8Mp8LpM

:adistribuídaargcPara

cm.kN928.1287085,14WFbMFbWMfb

máx22x

2x

xxxxx

xx

==⇒×

=⇒×

=

=×=×=⇒≤=

Page 105: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-14

Adotamos o maior valor → Fb”x = 4,45 kN / cm2

Verificação da esbeltez:

Assim sendo:

Fbx = Fb”x x Q x Qe

Fbx = 4,45 x 1,00 x 1,00 = 4,45 kN / cm2

2y

2

f

x

2y

222

t

x

t

y

y

cm/kN15F60,0cm/kN45,4

1940900

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN07,442,171

00,1520.119

rLb

Cb520.119'Fb

12042,17125,5

900r

Lb54

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

>==<

00,1Q30045,4

63248,60th

ew

=⇒=<=

m/kN80,3cm/kN038,0p900

8880.3L

8Mp8LpM

:adistribuídaargcPara

cm.kN880.387045,4WFbMFbWMfb

máx22x

2x

xxxxx

xx

==⇒×

=⇒×

=

=×=×=⇒≤=

Page 106: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-15

d) Dado o perfil I 381x 63,3 em aço ASTM A572 e sabendo-se que há uma carga concentrada aplicada no meio do vão, cujo valor é de 100 kN e o vão do perfil bi-apoiada é de 7,50 m, contido apenas nos apoios, verificar se a viga suporta tal carga.

Dados:

Fy = 34,50 kN/cm2 hw = 349,4 mm

Ix = 18.580 cm3 Iy = 598 cm3

Lx = 750 cm. P = 100 kN

Af = 22,07 cm2 Aw = 36,34 cm2

Resolução:

Momento máximo aplicado →

Flambagem local:

Flambagem global: → Lb = 750 cm. – verificar apoio lateral

Tipo de seção:

bf=139,7

d=38

1

tf=15

,8tw=10,4

y

x

m.kN2324

5,71008

5,733,64

LP8LpM

22x =

×+

×=

×+

×=

00,1Q

00,1Q14

KF

8042,480,1585,69

tb

00,1Kc7060,33th

00,1Q92F

54060,334,104,349

th

s

c

yf

w

ayw

=

=⇒=≤==

=⇒<=

=⇒=≤==

apoiosemcm750cm23650,34

07,2210,38

060.14

FAd

060.14Lb

apoiosemcm750cm15050,34

97,1363F

b63Lb

yf

2

y

f1

→<=×

→<=×

compactaseção42,420,9F

54

42,48,1585,69

tb9260,33

40,104,349

th

y

fw

→>=

==⇔≤==

Page 107: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-16

Elementos de seção compacta e sem apoio lateral:

viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb”x = 6,51 kN / cm2

Verificação da esbeltez:

Assim sendo: Fbx = Fb”x x Q x Qe

Fbx = 6,51 x 1,00 x 1,00 = 6,51 kN / cm2

A viga não suporta a carga aplicada.

23026,3

750r

Lb

cm26,3

634,3607,222

598

6AA2

Ir

t

wf

yt

==

=⎟⎠⎞

⎜⎝⎛ +×

=⎟⎠⎞

⎜⎝⎛ +×

=

2y

2

f

x

2y

222

t

x

t

y

y

cm/kN21F60,0cm/kN51,6

07,2210,38750

430.8

AdLb

430.8"Fb

cm/kN21F60,0cm/kN26,2230

00,1520.119

rLb

Cb520.119'Fb

102230r

Lb

102F

Cb580.358

46F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

>=

00,1Q25051,6

63260,33th

ew

=⇒=<=

m.kN232m.kN47,63cm.kN347.697551,6M

cm97510,38

2580.18

2dIW

WFbMFbWMfb

x

3xx

xxxxx

xx

<==×=

==

×=⇒≤=

Page 108: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-17

e) Dado o perfil U 254 x 22,7 em aço ASTM A36, na condição estrutural de viga bi-apoiada com vão livre de 6,00 m., verificar a maxima carga uniformemente distribuída atuante sobre essa viga em questão, nas seguintes condições:

1 – contida nos apoios e

2 – contida no meio do vão

Dados:

Ix = 2.800 cm4

Iy = 95,10 cm4

Af = 7,33 cm2

h = 231,8 mm

Resolução:

Flambagem local:

Flambagem global: → Lx = 600 cm. – verificar apoio lateral

Tipo de seção:

y

x

66

254

11,1

6,1

00,1Q

00,1Q16

KF

8095,510,11

66tb

00,1K7038th

00,1Q108F

5403810,6

8,231th

s

c

yf

cw

ayw

=

=⇒=≤==

=⇒<=

=⇒=≤==

cm16225

33,718,23

060.14

FAd

060.14Lb

cm8325

60,663F

b63Lb

yf

2

y

f1

compactaseção95,580,10F

54

95,510,11

66tb10838

10,68,231

th

y

fw

→>=

==⇔≤==

Page 109: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-18

1 – contenção lateral nos apoios: Lb = 600 cm

83 cm < Lb e 162 cm < Lb → sem apoio lateral completo

Elementos de seção compacta e sem apoio lateral:

viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb”x = 4,05 kN / cm2

Verificação da esbeltez:

Assim sendo:

Fbx = Fb”x x Q x Qe ⇒ Fbx = 4,05 x 1,00 x 1,00 = 4,05 kN / cm2

27022,2

600r

Lb

cm22,2

614,1433,72

10,95

6AA2

Ir

t

wf

yt

==

=⎟⎠⎞

⎜⎝⎛ +×

=⎟⎠⎞

⎜⎝⎛ +×

=

2y

2

f

x

2y

222

t

x

t

y

y

cm/kN15F60,0cm/kN05,4

33,740,25600

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN64,1270

00,1520.119

rLb

Cb520.119'Fb

120270r

Lb

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

>=

00,1Q31405,4

63238th

ew

=⇒=<=

m/kN98,1cm/kN0198,0600

8891L

8Mp8LpM

cm.kN89122005,4WFbMFbWMfb

22x

2x

xxxxx

xx

==×

=⇒×

=

=×=×=⇒≤=

Page 110: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-19

2 – contenção lateral no meio do vão: Lb = 600 / 2 = 300 cm

83 cm < Lb e 162 cm < Lb → sem apoio lateral completo

Elementos compactos sem apoio lateral completo

rt = 2,22 cm e viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb”x = 8,10 kN / cm2

Verificação da esbeltez:

Assim sendo:

Fbx = Fb”x x Q x Qe

Fbx = 8,10 x 1,00 x 1,00 = 8,10 kN / cm2

2y

2

f

x

2y

222

t

x

y

y

cm/kN15F60,0cm/kN10,8

33,740,25300

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN56,6135

00,1520.119

rLb

Cb520.119'Fb

12013522,2

300

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

>=

00,1Q22210,8

63238th

ew

=⇒=<=

m/kN00,4cm/kN040,0600

8782.1L

8Mp8LpM

cm.kN782.122010,8WFbMFbWMfb

22x

2x

xxxxx

xx

==×

=⇒×

=

=×=×=⇒≤=

Page 111: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-20

f) Dois perfis VS 450 x 60, constituindo uma viga, estão dispostos lado a lado, devidamente vinculados e constituídos de aço ASTM A572. O vão admissível para a viga é de 10,00 m e sabendo-se que o perfil está contido somente nos apoios, determinar a máxima carga P aplicada no meio do vão.

Dados de cada perfil:

Ix = 27.962 cm4

Wx = 1.243 cm3

Ag = 76,80 cm2

Iy = 1.668 cm4

Af = 25,00 cm2 e Aw = 26,78 cm2

Resolução:

Flambagem local (para cada perfil isoladamente):

Flambagem global: → Lb = 1000 cm. – verificar apoio lateral

Tipo de seção:

450

200

6,3

12,5

200

425

y

x

00,1Q

00,1Q14

KF

8042,85,12

100tb

00,1K7047,67th

00,1Q92F

54047,673,6

425th

s

c

yf

cw

ayw

=

=⇒=≤==

=⇒<=

=⇒=≤==

apoiosemcm1000cm45350,34

22545

060.14

FAd

060.14Lb

apoiosemcm1000cm42950,344063

Fb63Lb

yf

2

y

f1

→<=×

×

→<=×

compactaseção42,820,9F

54

85,12

100tb9247,67

3,6425

th

y

fw

→>=

==⇔≤==

Page 112: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-21

Elementos de seção compacta e sem apoio lateral:

Iy = 2 x (1.668 + 76,8 x 102) = 18.696 cm4

Viga bi-apoiada Cb = 1,00

Adotamos o maior valor → Fb’x = 16,15 kN / cm2

Verificação da esbeltez:

Assim sendo:

Fbx = Fb’x x Q x Qe

Fbx = 16,15 x 1,00 x 1,00 = 16,15 kN / cm2

36,7960,12

1000r

Lb

cm60,12

676,2622522

696.18

6AA2

Ir

t

wf

yt

==

=⎟⎠⎞

⎜⎝⎛ ×+××

=⎟⎠⎞

⎜⎝⎛ +×

=

2y

2

f

x

2y

22

x

t

y

y

cm/kN21F60,0cm/kN37,9

225451000

430.8

AdLb

430.8"Fb

cm/kN21F60,0cm/kN15,165,3400,1670.075.1

36,795,3467.0'Fb

10236,79r

Lb46

102F

Cb580.358

46F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛

××

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

−=

<=<

00,1Q15715,16

63246,67th

ew

=⇒=<=

kN60,154P1550,401P5,2

410P

8102,150,401

4LP

8LpM

m.kN50,401cm.kN150.40486.215,16WFbMFbWMfb

22x

xxxxx

xx

=⇒−=×

×+

×=⇒

×+

×=

==×=×=⇒≤=

Page 113: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-22

g) Dois perfis U 305 x 30,7 em aço ASTM A36, dispostos lateralmente um ao outro, bi-apoiados em um vão de 8,00 m, contidos lateralmente nos apoios, recebem uma carga uniformemente distribuída ou uma carga pontual no meio do vão. Determinar essas cargas desprezando-se o peso próprio.

Dados por perfil:

Xg = 14,5 mm

Ix = 5.370 cm4 e Iy = 161,10 cm4

A = 39,10 cm2

Af = 9,49 cm2 Aw = 19,81 cm2

Resolução:

Flambagem local:

Flambagem global: → Lb = 800 cm. – verificar apoio lateral

Tipo de seção:

74,7

305

12,7

7,11

y

x

14,5

00,1Q

00,1Q16

KF

8088,57,127,74

tb

00,1K7030,39th

00,1Q108F

54030,3911,7

4,279th

s

c

yf

cw

ayw

=

=⇒=≤==

=⇒<=

=⇒=≤==

apoiosemcm800cm38225

249,994,27

060.14

FAd

060.14Lb

apoiosemcm800cm18825

247,763F

b63Lb

yf

2

y

f1

→<=×

×

→<=××

compactaseção88,580,10F

54

88,57,127,74

tb10830,39

11,74,279

th

y

fw

→>=

==⇔≤==

Page 114: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

5-23

Elementos de seção compacta e sem apoio lateral: viga bi-apoiada Cb = 1,00

Iy = 2 x ( 161,10 + 39,10 x 1,452) = 486,62 cm4

Adotamos o maior valor → Fb’x = 6,56 kN / cm2

Verificação da esbeltez:

Assim sendo:

Fbx = Fb’x x Q x Qe = 6,56 x 1,00 x 1,00 = 6,56 kN / cm2

26008,3

800r

Lb

cm08,3

681,19249,922

62,486

6AA2

Ir

t

wf

yt

==

=⎟⎠⎞

⎜⎝⎛ ×

+××=

⎟⎠⎞

⎜⎝⎛ +×

=

2y

2

f

x

2y

222

t

x

y

y

cm/kN15F60,0cm/kN56,6

249,95,30800

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN77,1260

00,1520.119

rLb

Cb520.119'Fb

12026008,3

800

120F

Cb580.358

54F

Cb710.71

=×<=⎟⎠⎞

⎜⎝⎛

××

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

⎟⎠⎞

⎜⎝⎛

×=

>=

00,1Q47577,1

63230,39th

ew

=⇒=<=

kN55,11800

4310.2L

4MP4

LPM:aconcentradaargc

m/kN90,2cm/kN029,0800

8310.2L

8Mp8LpM:uniformeaargc

cm.kN310.213,35256,6WFbMFbWMfb

xx

22x

2

x

xxxxx

xx

=⇒×

=

==×

=⇒×

=

=×=×=⇒≤=

Page 115: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-1

06 – Elementos Sujeitos ao Cisalhamento Peças sujeitas ao cisalhamento, são aquelas em que as cargas atuantes tendem a fazer deslizar uma porção da peça em relação à outra porção da mesma peça e, por isso mesmo, causar corte e que serão equilibrados mediante tensões de cisalhamento admissíveis, desenvolvidas pelas mesmas.

06.01 – Resistência ao Cisalhamento – fv:

Onde:

V = força cortante atuante na seção considerada

Aw = área da alma da seção analisada

06.02 – Tensão Admissível ao Cisalhamento – Fv:

Onde:

Para:

a = distância entre enrijecedores transversais

Kv = 5,34 quando não houver enrijecedores transversais

vw

v FAVf ≤=

ywyv

yv

ywyv

F316

thF40,0C

89,2FF

F316

thF40,0F

>⇔×≤×⎟⎠⎞

⎜⎝⎛=

≤⇔×=

80,0CquandoFK

th

158C

80,0Cquando

thF

K640.31C

vy

v

w

v

v2

wy

vv

>×⎟⎠⎞

⎜⎝⎛

=

⎟⎠⎞

⎜⎝⎛×

×=

00,1haquando

ha00,434,5K

00,1haquando

ha34,500,4K

2v

2v

>

⎟⎠⎞

⎜⎝⎛

+=

⎟⎠⎞

⎜⎝⎛

+=

Page 116: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-2

06.03 – Enrijecedores:

Os enrijecedores, também denominados de nervuras, têm a finalidade de, em vigas com altas solicitações à flexão e/ou cisalhamento, impedir a flambagem da alma das vigas, por essas serem em geral, fabricadas com pequena espessura. A fim de se garantir a não ocorrência dessa flambagem local da alma desses perfis, colocam-se nervuras ou enrijecedores, também chapas de pequena espessura, nas posições verticais, horizontais ou ambas.

Os enrijecedores verticais são empregados em situação de grandes esforços de cisalhamento, enquanto que os enrijecedores horizontais são empregados em vigas de grande altura.

Nos apoios de vigas com alta solicitação de cargas, em especial as vigas de rolamento – de suporte de pontes rolantes – aconselha-se a colocação de enrijecedores verticais nas regiões dos apoios, assim como em vigas em que não haja qualquer conexão entre a alma dessas e os seus apoios.

bf

d

be

tw

te

apoio

A A be

te

tw

bf

Recomendações básicas para inserção de enrijecedores de apoio deverão seguir as especificações mínimas:

Quanto a colocação de enrijecedores intermediários, esses devem ser aplicados nas mesmas vigas de rolamento, sob altas solicitações estruturais, a fim de combater possíveis excentricidades dos trilhos, que geram empenos da alma e da mesa dessas vigas. De qualquer maneira, é sempre necessária a sua adoção quando:

137572AASTM

16136AASTM

F805

th

F25

tb

tt

ywye

e

we

→→>

açoqualquerpara260thw

→>

Page 117: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-3

te

apoio apoio

d a

Recomendações básicas para a determinação do espaçamento a entre enrijecedores:

Quanto ao dimensionamento dos enrijecedores, esse deve ser efetuado como se tratasse de uma peça sujeita a um esforço de compressão, cuja carga atuante deve ser o esforço cortante nesse local, da mesma forma já vista anteriormente no capítulo de elementos sujeitos à compressão, com o coeficiente de flambagem K = 1,00 e os comprimentos de flambagem KLx = KLy = h.

( )

mm500.1a

ht260

ha

00,3ha

283572AASTM

33236AASTM

F660.1

th5,1

ha

252572AASTM

32236AASTM

27FF620.11

th5,1

ha

2w

yw

yyw

<

⎟⎠⎞

⎜⎝⎛ ×

⎪⎩

⎪⎨⎧

→≤→≤

⎪⎩

⎪⎨⎧

+×≤→>

Page 118: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-4

06.04 – Exercícios resolvidos:

a) Verificar o máximo esforço cortante absorvido em um perfil VS 750 x 108 utilizando-se aço ASTM A36

Ver figura do exercício a) de flexão simples, onde:

Aw = 72,5 x 0,8 = 58 cm2

Não há enrijecedor lateral: Kv = 5,34 → comparar Cv

Adotamos Cv = 0,806

b) Idem para o perfil soldado VS 500 x 61 em aço ASTM A36

Ver figura do exercício b) de flexão simples, onde:

Aw = 48,1 x 0,63 = 30,30 cm2

vy

v

w

y

C89,2

FF

6363,908

725th

63F

316

×⎟⎠⎞

⎜⎝⎛=

>==

=

80,0806,02534,5

63,90158

FK

th

158C

80,082,063,9025

34,5640.31

thFy

K640.31C

y

v

w

v

22

w

vv

>=×=×⎟⎠⎞

⎜⎝⎛

=

>=×

×=

⎟⎠⎞

⎜⎝⎛×

×=

kN30,4045897,6AFVAVf

cm/kN10F4,0cm/kN97,6806,089,2

25C89,2

FF

wvmáxw

v

2y

2v

yv

=×=×=⇒=

=×<=×=×=

vy

v

w

C89,2

FF

6335,763,6

481th

63Fy

316

×⎟⎠⎞

⎜⎝⎛=

>==

=

Page 119: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-5

Não há enrijecedor lateral: Kv = 5,34 → comparar Cv

Adotamos Cv = 0,956

c) Dado o perfil I 381 x 63.3, verificar o máximo esforço cortante suportado pelo mesmo em aço ASTM A572.

Ver figura do exercício d) de flexão simples, onde:

Aw = 34,94 x 1,04 = 36,34 cm2

d) Dado o perfil U 254 x 22,7, verificar o máximo esforço cortante suportado pelo mesmo em aço ASTM A36

Ver figura do exercício e) de flexão simples, onde:

Aw = 23,18 x 0,61 = 14,14 cm2

80,0956,02534,5

35,76158

FK

th

158C

80,015,135,7625

34,5640.31

thF

K640.31C

y

v

w

v

22

wy

vv

>=×=×⎟⎠⎞

⎜⎝⎛

=

>=×

×=

⎟⎠⎞

⎜⎝⎛×

×=

kN60,2503,3027,8AFVAVf

cm/kN10F4,0cm/kN27,8956,089,2

25C89,2

FF

wvmáxw

v

2y

2v

yv

=×=×=⇒=

=×<=×=×=

kN50,50134,3680,13AFVAVf

cm/kN80,135,3440,0F40,0F

5460,334,104,349

th

54F

316

wvmáxw

v

2yv

w

y

=×=×=⇒=

=×=×=

<==

=

kN40,14114,1410AFVAVf

cm/kN102540,0F40,0F

63381,68,231

th63

F316

wvmáxw

v

2yv

wy

=×=×=⇒=

=×=×=

<==→=

Page 120: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

6-6

e) Para o perfil dado abaixo, em aço ASTM A572, verificar a necessidade de enrijecedores de apoio e intermediários, assim como o espaçamento adotado.

apoio

1.90

0 955

9,5

Resolução:

Verificação do espaçamento entre enrijecedores, mesmo não havendo necessidade dos mesmos:

Portanto, as condições apresentadas atendem à necessidade estrutural do perfil.

ermediáriointrenrijecedonecessárioénão2602005,9

900.1th

apoioderenrijecedonecessárioé1372005,9

900.1th

w

w

→<==

→>==

mm500.1a

mm211.3cm1,32119069,1a69,1190

95,0260ha

mm700.53900.1a00,3ha

283200th5,1502,0

900.1955

ha

2

w

<

==×=→=⎟⎠⎞

⎜⎝⎛ ×

=×=→≤

<=→<==

Page 121: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-1

07 - Elementos Tracionados

Conforme já tivemos a oportunidade de verificar, os elementos tracionados são aqueles onde atua força normal perpendicular ao plano da seção transversal. No caso de aplicação dessa força no centro de gravidade da peça (C.G.) denominamos Tração Simples.

O método de dimensionamento será o Método das Tensões Admissíveis. A única maneira de ruína das peças sujeitas à tração simples pode ocorrer pelo escoamento da seção bruta da peça (área bruta) ou pela ruptura da seção liquida (área líquida).

07.01 – Tensão Admissível de Tração – Ft:

As condições de resistência de uma peça estrutural aos esforços de tração serão determinadas pela tensão máxima admissível de tração, obtida da seguinte maneira:

Para o escoamento da seção bruta ↔ Ftg = 0,60 x Fy

Para a ruptura na seção liquida efetiva ↔ Fte = 0,50 x Fu

07. 02 – Área bruta – Ag:

A área bruta será denominada por Ag, que é o somatório da seção transversal da peça em dimensionamento ou analise, ou seja, é o produto da espessura da peça pela sua largura. Portanto, Ag = d x t

N N

dd

t

d

ft=constante

Page 122: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-2

07. 03 – Área líquida – An:

Numa barra com furos causados pela existência de conectores ou parafusos, surge a necessidade de se descontar a área desses furos, passando-se a considerar a existência da área líquida. A área liquida será, portanto, obtida através da subtração da área bruta (Ag) as áreas dos furos contidos nessa seção. An = (d x t) – Aøf

N N

dd

t

d

fmax=3fmed

fmed Ø fØ

f

Entretanto, existem algumas considerações que devem ser levadas em conta a fim de se determinar a area líquida (An)

Ao diâmetro nominal do parafuso (∅p - diâmetro do parafuso) devemos somar 2 mm a mais e, no caso de furos padrão, acrescenta-se mais 1,5 mm ao diâmetro nominal, ou seja, o diâmetro do furo (Øf) será 3,5 mm maior do que o diâmetro do parafuso.

No caso da existência de furos distribuidos transversalmente ao eixo da peça (diagonal ou zigue-zague), obtemos a largura da seção para o menor valor de seção líquida.

A área líquida An de barras com furos pode ser representada pela equação:

s

d

1

1

2

2

3

3 gg

s

( )

espessuratealturad

:Onde

tg4

s5,3dA2

pn

==

×⎥⎦

⎤⎢⎣

×∑++∑−= φ

Page 123: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-3

07. 04 – Área líquida efetiva – Ane:

Nas ligações de barras tracionadas, em que a solicitação for transmitida apenas em um ou algum dos elementos da seção, utiliza-se uma seção liquida efetiva (Ane), para levar em conta que, na região da ligação, as tensões se concentram no elemento ligado e não mais se distribuem uniformemente em toda a seção. No caso, Ane = Ct x An

Onde o valor de Ct (coeficiente de tração) é determinado pelos seguintes critérios:

Quando a força de tração é transmitida a todos os elementos da seção, por ligações parafusadas – Ct = 1,00

Quando a força de tração não é transmitida a todos os elementos da seção:

Ct = 0,90 em perfis I ou H, cujas mesas tenham uma largura não inferior a 2/3 da altura, e em perfis T cortados desses perfis, com ligações nas mesas, tendo no mínimo três conectores por linha de furação na direção do esforço.

Ct = 0,85 em todos os demais perfis, tendo no mínimo três conectores por linha de furação na direção do esforço

Ct = 0,75 em todas as barras cujas ligações tenham no mínimo dois conectores por linha de furação na direção do esforço

b

h

N

h32bse85,0C

h32bse90,0C

t

t

<=

≥=

N75,0Ct =

Page 124: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-4

Para chapas ligadas nas extremidades por soldas longitudinais, o valor de Ct será obtido de acordo com a relação entre l e d (comprimento de solda e largura da chapa respectivamente)

07. 05 – Índices de Esbeltez:

Nas peças tracionadas o índice de esbeltez (λ) não possui fundamental importância, uma vez que o esforço de tração tende a corrigir excentricidades construtivas. Entretanto, a fim de se evitar deformações excessivas, efeitos danosos de impactos ou vibrações indesejáveis, fixaram-se valores máximos para esse índice. Assim sendo o índice de esbeltez λ = Lfl / r, ou seja, a relação entre o comprimento da haste ou barra em relação ao seu raio de giração, deve permanecer dentro dos seguintes valores:

Peças de vigamentos principais – λ <= 240

Peças de vigamentos secundários e contraventamentos - λ <= 300

d <= l <= 1,5 d Ct = 0,75

1,5 d <= l <= 2d Ct = 0,87 L >= 2d Ct = 1,00

N

d

l

Page 125: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-5

07.06 - Exercícios Resolvidos

a) Calcular a espessura necessária de uma chapa com altura de 120 mm, sujeita a um esforço axial de tração de 200 kN, para utilização do aço ASTM A36

N=200kN N=200kN

120

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

b) Duas chapas com espessura de 10 mm e altura de 300 mm, estão emendadas com seis parafusos de 25 mm. Verificar se as dimensões da chapa são suficientes para atender um esforço de 270 kN, sendo o aço utilizado o ASTM A36

N=270kN

300N=270kN

10

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

.cm11,112

33,13ttdAnecessáriaEspessura

cm33,1315200

FNAnecessáriabrutaÁrea

g

2

tgg

=≥⇔×=→

===→

Page 126: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-6

Área Bruta: Ag = 30 x 1,0 = 30 cm2

Diâmetro das furações: Øt = 25 + 3,5 = 28,5 mm = 2,85 cm

Área liquida: An = (30 – 3 x 2,85) x 1,0 = 21,45 cm2

Ligação transmitida a todos os elementos ↔ Ct = 1,00

Esforço máximo na seção bruta:

Ng max = 15 x 30 = 450 kN > 270 kN

Esforço máximo resistente na seção liquida:

Ne max = 1,00 x 20 x 21,45 = 429 kN > 270 kN. Portanto a seção resiste ao esforço aplicado.

c) Determinar a força máxima de tração que uma chapa de 300 mm de largura e 12,5 mm de largura poderá suportar, sendo a sua ligação de extremidade composta por 3 linhas de 3 parafusos cada, com diâmetro de 20 mm, utilizando-se do aço ASTM A572

N N30

0

12.5

1

1

Resolução

Aço ASTM A572 – Fy = 34,5 kN/cm2 e Fu = 48 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 34,5 = 20,70 kN/cm2 e Fte = 0,50 x 48 = 24 kN/cm2

Área Bruta: Ag = 30 x 1,25= 37,50 cm2

Diâmetro das furações: Øt = 20 + 3,5 = 23,5 mm = 2,35 cm

Área liquida: An = (30 – 3 x 2,35) x 1,25 = 28,69 cm2

Ligação transmitida a todos os elementos ↔ Ct = 1,00

Esforço máximo na seção bruta:

Page 127: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-7

Ng max = 20,70 x 37,50 = 776,25 kN

Esforço máximo resistente na seção liquida:

Ne max = 1,00 x 24 x 28,69 = 688,56 kN ↔ Esforço máximo N

d) Adotando-se as mesmas características anteriores, verificar a força máxima de tração para o seguinte esquema de ligação de extremidades:

N N

300

12.5

100

100

75

1

22

22

1

Resolução

Aço ASTM A572 – Fy = 34,5 kN/cm2 e Fu = 48 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 34,5 = 20,70 kN/cm2 e Fte = 0,50 x 48 = 24 kN/cm2

Área Bruta: Ag = 30 x 1,25= 37,50 cm2

Diâmetro das furações: Øt = 20 + 3,5 = 23,5 mm = 2,35 cm

Ligação transmitida a todos os elementos ↔ Ct = 1,00

Esforço máximo na seção bruta:

Ng max = 20,70 x 37,50 = 776,25 kN

Esforço máximo resistente na seção liquida:

Ne1 max = 1,00 x 24 x 31,62 = 758,88 kN ↔ Esforço máximo N

Ne2 max = 1,00 x 24 x 32,20 = 772,88 kN

( )[ ]

( ) 22

2n

21n

cm62,3125,11045,7235,2330A:LíquidaÁrea

cm62,3125,135,2230A:LíquidaÁrea

=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

+×−=

=××−=

Page 128: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-8

e) Para a mesma seção, verificar a força máxima de tração sendo a ligação executada através de um cordão de solda de 500 mm.

N N

300

12.5

500

500

Resolução

Aço ASTM A572 – Fy = 34,5 kN/cm2 e Fu = 48 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 34,5 = 20,70 kN/cm2 e Fte = 0,50 x 48 = 24 kN/cm2

Área Bruta: Ag = 30 x 1,25= 37,50 cm2

Área Líquida: L = 500 mm e d = 300 mm.

Portanto, Ane = 0,87 x 37,50 = 32,63 cm2

Ng max = 20,70 x 37,50 = 776,25 kN ↔ Esforço máximo N

Ne max = 24 x 32,63 = 783,12 kN

87,0Ctb2Ld5,14.págdaTabela

66,1300500

dL:Então

=↔≤≤⇔

==

Page 129: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-9

f) Duas chapas de dimensões 280 x 20 mm são emendadas por traspasse com parafusos de 20 mm. Seguindo-se esquema abaixo, calcular o esforço resistente das chapas submetidas ‘a tração axial, adotando-se o aço ASTM A36.

75

N N

280

20

1

1

2

2

3

3

3

3

5050

5050

75 7575

5050

5050

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

Área Bruta: Ag = 28 x 2,0 = 56 cm2

Diâmetro das furações: Øt = 20 + 3,5 = 23,5 mm = 2,35 cm

Áreas líquidas:

Ligação transmitida a todos os elementos ↔ Ct = 1,00

Portanto:

Ng max = 15 x 56 = 840 kN ↔ Esforço máximo N

Ne max = 1,00 x 46,60 x 20 = 932 kN

( )[ ]

( )

( ) 22

3n

22

2n

21n

cm00,552545,7435,2528A

cm50,482545,7235,2428A

cm60,46235,2228A

=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

+×−=

=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

+×−=

=××−=

Page 130: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-10

g) Dado o perfil U 381 x 50,4 em aço ASTM A36, calcular o esforço de tração resistente do perfil sabendo que as ligações de extremidade são compostas de:

1 – 2 linhas verticais de 4 parafusos de 22 mm de diâmetro cada;

2 – um cordão de solda com 500 mm. de extensão e

3 – 2 linhas verticais de 4 parafusos e uma terceira linha de 2 parafusos de 22 mm de diâmetro e sabendo-se que s = 75 mm e g = 85 mm

Resolução 1

Dados de Tabela:

Ag = 64,20 cm2

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

Área Bruta: Ag = 64,20 cm2

Diâmetro das furações: Øt = 22 + 3,5 = 25,5 mm = 2,55 cm

Área liquida:

An = 64,20 – (4 x 2,55 x 1,0) = 54 cm2

Coeficiente de redução – Ct = 0,75 (dois conectores por linha na direção do esforço)

Ng max = 15 x 64,20 = 963 kN

Ne max = 20 x 54 x 0,75 = 810 kN ↔ Esforço máximo N

Resolução 2

N

38110

500

38110N

Page 131: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-11

Área Líquida: L = 500 mm e d = 381 mm. Então L / d = 500 / 381 = 1,31

Tabela da pág. 4 ↔ d <= L <= 1,5d ↔ Ct = 0,75

Portanto, Ane = 0,75 x 64,20 = 48,15 cm2

Ng max = 15 x 64,20 = 963 kN ↔ Esforço máximo N

Ne max = 20 x 48,15 = 963 kN ↔ Esforço máximo N

Resolução 3

N

38110

75 75

8585

85

Área Bruta: Ag = 64,20 cm2

Diâmetro das furações: Øt = 22 + 3,5 = 25,5 mm = 2,55 cm

Áreas liquidas:

Coeficiente de reduçao – Ct = 0,75 (força não é transmitida a todos os elementos e com dois conectores por linha na direção do esforço)

Ng max = 15 x 64,20 = 963 kN

Ne1 max = 20 x 54 x 0,75 = 810 kN ↔ Esforço máximo N

Ne2 max = 20 x 57,31 x 0,75 = 860 kN

h) Dado o esquema abaixo, a partir da força máxima de tração de 420 kN, determinar as espessuras t1 e t2 das chapas de ligação, utilizando-se do aço ASTM A572 e parafusos com diâmetro de 25 mm.

( )

( ) 22

2n

21n

cm31,5715,845,72155,2420,64A

cm00,540,155,2420,64A

=×⎟⎟⎠

⎞⎜⎜⎝

××

+××−=

=××−=

Page 132: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-12

N=420kN

300

t2

6060

6060

90

6060

6060

90

t1

N=420kN

Aço ASTM A572 – Fy = 34,5 kN/cm2 e Fu = 48 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 34,5 = 20,70 kN/cm2 e Fte = 0,50 x 48 = 24 kN/cm2

Cálculo da espessura t1 para a área bruta:

Ag = b x t1 = 30 x t1 ⇒ sabemos que Ftg = Nmax / Ag, portanto

Ag x Ftg = Nmax ⇒ 30 x t1 x 20,7 = 420 ⇒ t1 >= 420 / 30 x 20,7 = 0,68 cm

Cálculo da espessura t1 para a área líquida:

Admitindo-se parafusos de 25 mm ⇒ ∅f = 25 + 3,5 = 28,5 mm = 2,85 cm

( )

( )

( )

.cm70,000,12435,25

420t

42000,124t35,25CAFNA

NF

t35,25t6492t85,24t30t

00,124t35,25420CFANA

NF

t35,25t6492t85,24t30A

.cm72,02430,24

420t42024t30,24NFA:totanPor

ANFt24t85,22t30A

1

1t2ntemax2n

maxte

112

111

1tte2nmax2n

maxte

112

112n

11maxte1n

1n

maxte1111n

=××

=×××⇒××=⇔=

×=×⎟⎟⎠

⎞⎜⎜⎝

××

+××−×≥

⇔×××=⇒××=⇒=

×=⎥⎥⎦

⎢⎢⎣

⎡×⎟⎟⎠

⎞⎜⎜⎝

××

+××−×=

≥⇔=××⇒=×

=⇒×=××−×=

Page 133: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-13

Assim sendo, a espessura mínima t1 >= 0,70 cm, a fim de atender a área liquida na seção 1.

Para a espessura t2, basta adotarmos metade da espessura calculada para t1, em vista do esforço ser, também, dividido pela metade, ou seja, cada chapa absorve um esforço máximo de 210 kN., ou seja, t2 >= t1 / 2 = 0,35 cm.

i) Determinar a capacidade máxima estrutural de uma ligação composta por duas chapas com dimensões de 220 mm x 8 mm ligadas a uma terceira chapa de um nó de treliça de espessura 12,5 mm, por parafusos de 12,5 mm, utilizando-se o Aço ASTM A36.

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2 Método das Tensões Admissíveis Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2 Área Bruta: Ag1 = 22 x 0,8 x 2 = 35,20 cm2

Área Bruta: Ag2 = 26 x 1,25 = 32,50 cm2

Para efeito de cálculo, tomamos o mais nocivo dos valores, no caso, Ag2. Diâmetro das furações: Øt = 12,5 + 3,5 = 16 mm = 1,60 cm Áreas líquidas:

Para Ct = 1,00↔ esforço transmitido a todos os elementos

Ng max = 15 x 32,50 = 487,50 kN ↔ Esforço máximo N

Ne1 max = 20 x 26,50 = 530 kN

( )[ ]

( )

( ) 22

3n

22

2n

21n

cm75,3425,1547425,160,1550,32A

cm63,3025,1547225,160,1450,32A

cm50,2625,16,1350,32A

=×⎟⎟⎠

⎞⎜⎜⎝

××

+××−=

=×⎟⎟⎠

⎞⎜⎜⎝

××

+××−=

=××−=

N5050

5050

70 70

220

88

12.5

260

Page 134: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-14

j) Para a ligação tracionada representada no desenho abaixo (medidas em mm), desprezando-se a esbeltez, determinar usando aço ASTM A36:

1 – Carga máxima de tração para cantoneiras de abas iguais 102 x 19,1 (aba x peso), sabendo que os diâmetro dos parafusos será de 12,5 mm;

2 – Determinar a espessura (t) da chapa de ligação a fim de suportar a máxima carga de tração calculada em 1.

102

60

200

t

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

1 - Dados geométricos das cantoneiras:

Ag = 24,19 cm2

t0 = 12,5 mm (espessura da aba)

Ct – quando a força de tração não é transmitida a todos os elementos da seção com mais de três conectores = 0,85

Ane = 0,85 x 44,38 = 37,73 cm2

Ne = Fte x Ane = 20 x 37,73 = 754,56 kN

Portanto, a carga máxima admissível de tração será de 725,70 kN.

2 – Cálculo da espessura da chapa de ligação

kN70,72538,4815NAFNadmissívelmáximaaargC

cm38,4819,242AbrutaÁrea

ggtgg

2g

=×=⇔×=→

=×=→

2fgn

fp

cm38,442]25,16,119,24[]tA[ALíquidaÁrea

mm165,35,12mm5,12

LíquidaÁrea

=××−→∑−=→

=+=→=

×φ

φφ

Page 135: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-15

Portanto, a espessura mínima da chapa deverá ser de 2,42 cm.

b) Para a ligação abaixo, determinar a máxima carga de tração admissível com parafusos de 16 mm, perfis U 152 x 12,2, chapa de espessura 12,5 mm e para aço ASTM A36

6060

60 12,5

152

200

Resolução

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

1 - Dados geométricos dos perfis U:

Ag = 15,50 cm2

t0 = 5,08 mm (espessura da alma)

cm30,22064,15

70,725tt64,15

70,725ANF

t64,15A85,0CACAefetivalíquidaÁrea

t4,18)t6,1t20(AlíquidaÁrea

cm42,2201570,725t

t2070,725

ANFt20AbrutaÁrea

nete

netntne

n

gtgg

=⇒×

==

×=→=→×=→

×=×−×=→

=⇒×

==→×=→

kN4653115NAFNadmissívelmáximaaargC

cm00,3150,152AbrutaÁrea

ggtgg

2g

=×=⇔×=→

=×=→

2fgn

fp

cm06,262]508,095,135,15[]tA[ALíquidaÁrea

mm5,195,316mm16

LíquidaÁrea

=×××−→∑−=→

=+=→=

×φ

φφ

Page 136: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-16

Ct – quando a força de tração não é transmitida a todos os elementos da seção com dois conectores por linha = 0,75

Ane = 0,75 x 26,06 = 19,55 cm2

Ne = Fte x Ane = 20 x 19,55 = 391 kN

2 – Carga máxima na chapa de ligação:

Portanto, a carga máxima admissível de tração será de 265,35 kN.

c) Para a diagonal principal de uma treliça de banzos paralelos em aço ASTM A36, solicitada por uma carga de 45 kN, com comprimento de 3.600 mm e cujas ligações deverão ser com parafusos de 8 mm dispostos em 4 linhas de 2 parafusos cada, utilizando o perfil mais econômico (mais leve), pede-se:

1 – dimensionar a diagonal usando uma única cantoneira de abas iguais;

2 – dimensionar a diagonal usando duas cantoneiras de abas iguais, ligadas por chapa de espessura de 8 mm e sabendo que, nesse caso, deverá haver uma diagonal secundaria impedindo o deslocamento da principal em torno do seu eixo x.

Resolução – 1a. Parte

Aço ASTM A36 – Fy = 25 kN/cm2 e Fu = 40 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 25 = 15 kN/cm2 e Fte = 0,50 x 40 = 20 kN/cm2

3600

VER DETALHE DETALHE

kN35,26527,1320AFN

cm27,13A75,0CACAefetivalíquidaÁrea

cm69,17)25,195,1325,120(AlíquidaÁrea

kN3752515AFNcm2525,120AbrutaÁrea

netee

2netntne

2n

gtgg2

g

=×=×=

=→=→×=→

=××−×=→

=×=×=→=×=→

Page 137: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-17

1a. Tentativa:

Limitação de flambagem

Perfil adotado L 51 x 2,46

Dados geométricos do perfil:

Ag = 3,09 cm2

t0 = 1/8” = 1/8 x 2,54 = 3,18 mm (espessura da aba) e rx = ry = 1,60 cm

Tendo em vista que o perfil adotado não absorve a carga aplicada é necessário efetuar-se uma segunda tentativa. O próximo perfil mais econômico na tabela é o imediatamente seguinte ao adotado anteriormente. Assim, adotamos L 51 x 3,63.

2a. Tentativa:

Dados geométricos do perfil:

Ag = 4,58 cm2

t0 = 3/16” = 3/16 x 2,54 = 4,76 mm (espessura da aba) e rx = ry = 1,57 cm

Nesse caso somente verificamos a capacidade estrutural do perfil para a Área Liquida Efetiva, uma vez que o perfil anterior, com menor área bruta já absorvia o esforço aplicado. Assim:

cm50,1240360

240Lflr240

rLflprincipalDiagonal ==≥→≤→ =λ

24022560,1

360

cm/kN15cm/kN56,1409,3

45FFANFbrutaÁrea 22

ttgg

t

<==

<==⇒≤=→

λ

22te

net

2netntne

2fgn

fp

cm/kN20cm/kN39,2201,2

45FANF

cm01,2A85,0CACAEfetivaLíquidaÁrea

cm36,2]318,015,1209,3[]tA[ALíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

>==≤=

=⇒=→×=→

=××−→∑−=→

=+=→=

×φ

φφ

24022957,1

360240r

LflprincipalDiagonal <=→≤→ =λ=λ

Page 138: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-18

Portanto, perfil adotado será L 51 x 3,63

Resolução – 2a. Parte

VER DETALHEDETALHE

1800

1800

diagonal secundária

y

x

8

Nesse caso, teremos de analisar as condições de esbeltez em torno dos eixos x e y. No entanto, a condição mais desfavorável será em torno do eixo x, razão pela qual devemos verificar a esbeltez em torno desse eixo. Assim:

1a. Tentativa:

Limitação de flambagem

Perfil adotado L 25 x 1,19

Dados geométricos do perfil:

Ag = 1,48 cm2

t0 = 1/8” = 1/8 x 2,54 = 3,18 mm (espessura da aba) e rx = 0,76 cm

22te

net

2netntne

2fgn

fp

cm/kN20cm/kN20,1596,2

45FANF

cm96,2A85,0CACAEfetivaLíquidaÁrea

cm49,3]476,015,1258,4[]tA[ALíquidaÁrea

mm5,115,38mm8

<==≤=

=⇒=→×=→

=××−→∑−=→

=+=→=

×φ

φφ

cm75,0240180

240Lflr240

rLflprincipalDiagonal ==≥→≤→ =λ

22ttg

gt cm/kN15cm/kN20,15

48,1245FF

ANFbrutaÁrea >=

×=⇒≤=→

Page 139: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-19

2a. Tentativa:

Perfil adotado L 25 x 1,73

Dados geométricos do perfil:

Ag = 2,19 cm2

t0 = 3/16” = 3/16 x 2,54 = 4,76 mm (espessura da aba) e rx = 0,76 cm

3a. Tentativa:

Perfil adotado L 32 x 2,20

Dados geométricos do perfil:

Ag = 2,77 cm2

t0 = 3/16” = 3/16 x 2,54 = 4,76 mm (espessura da aba) e rx = 0,96 cm

Verificação da esbeltez:

22te

net

2netntne

2fgn

fp

cm/kN20cm/kN20,2486,145F

ANF

cm86,1A85,0CACAEfetivaLíquidaÁrea

cm19,22]476,015,1219,2[]tA[ALíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

>==≤=

=⇒=→×=→

=×××−→∑−=→

=+=→=

×φ

φφ

22ttg

gt cm/kN15cm/kN27,10

19,2245FF

ANFbrutaÁrea <=

×=⇒≤=→

22te

net

2netntne

2fgn

fp

cm/kN20cm/kN80,1585,2

45FANF

cm85,2A85,0CACAEfetivaLíquidaÁrea

cm35,32]476,015,1277,2[]tA[ALíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

<==≤=

=⇒=→×=→

=×××−→∑−=→

=+=→=

×φ

φφ

22ttg

gt cm/kN15cm/kN12,8

77,2245FF

ANFbrutaÁrea <=

×=⇒≤=→

Page 140: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-20

Portanto, perfil adotado será 2 L 32 X 2,20

d) O tirante principal de um sistema estrutural é composto de perfil I 150 x 18 (Padrão Açominas) e por duas chapas com espessura de 8 mm cada com largura de 110 mm e ligados por duas linhas de 2 parafusos de 12,5 mm. sabendo que o perfil I tem 4.600 mm de comprimento e as chapas 2.600 mm de comprimento, verificar se o conjunto suporta uma carga de tração de 250 kN para o aço ASTM A572.

2600 4600 110

2 # 110 x 8 I 150 X 18 102

153

Resolução – 1a. Parte

Aço ASTM A572 – Fy = 34,5 kN/cm2 e Fu = 48 kN/cm2

Método das Tensões Admissíveis

Ftg = 0,60 x 34,5 = 20,70 kN/cm2 e Fte = 0,50 x 48 = 24 kN/cm2

Dados geométricos do perfil:

Ag = 23,40 cm2

tf = 7,10 mm (espessura da mesa) e ry = 2,32 cm

24021766,1

360cm66,177,22

23,15AIr

cm23,1528,096,077,249,22

2txd)dAI(2I

2405,18796,0

180

yy

y

42

g2

0yy

x

<==⇔=×

==

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +×+×=+=→×+×=

<==

λ

λ

24028,19832,2

460

cm/kN70,20cm/kN70,1040,23

250FFANFbrutaÁrea 22

ttgg

t

<==

<==⇒≤=→

λ

Page 141: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

7-21

Portanto, o perfil I 150 x18 absorve o esforço de tração aplicado.

Resolução – 2a. Parte

Cálculo das características geométricas das chapas

Atendidas as condições de esbeltez, prossegue-se com o cálculo das chapas

Portanto, as chapas absorvem o esforço de tração aplicado.

Assim sendo, o conjunto absorve o esforço aplicado.

22te

net

2netntne

2fgn

fp

cm/kN24cm/kN77,1585,15

250FANF

cm85,15A75,0CACAEfetivaLíquidaÁrea

cm13,21]71,06,1240,23[]tA[ALíquidaÁrea

mm165,35,12mm5,12

LíquidaÁrea

<==≤=

=⇒=→×=→

=××−→∑−=→

=+=→=

×φ

φφ

110

161

88

110

22ttg

gt cm/kN70,20cm/kN10,7

60,172250FF

ANFbrutaÁrea <=

×=⇒≤=→

22te

net

2netntne

2fgn

fp

cm/kN24cm/kN09,1156,22

250FANF

cm56,22A75,0CACAEfetivaLíquidaÁrea

cm08,302]8,06,1260,17[]tA[ALíquidaÁrea

mm165,35,12mm5,12

LíquidaÁrea

<==≤=

=⇒=→×=→

=×××−→∑−=→

=+=→=

×φ

φφ

24076,8118,3

260cm18,360,1747,177r

cm47,17712

8,0112I

cm46,141.1210,168,011

128,0112I

cm60,17118,02AbrutaÁrea

yy

43

y

423

x

2g

<==⇔==

=⎟⎟⎠

⎞⎜⎜⎝

⎛ ××=

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛××+

××=

=××=→

λ

Page 142: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-1

08 - Elementos Comprimidos

Assim como nos elementos tracionados, nos elementos comprimidos há a atuação de uma força normal perpendicular ao plano da seção transversal. No caso de aplicação dessa força no centro de gravidade da peça (C.G.) denominamos Compressão Simples. Entretanto, ao contrário do esforço de tração que tende a retificar a peça, diminuindo os efeitos de curvatura nas peças estruturais, o esforço de compressão tende a acentuar essas curvaturas.

Somente peças muito curtas podem sofrer cargas de compressão até o escoamento do aço, porquanto a situação mais comum é a ocorrência dos efeitos de flambagem ou flexão súbita, antes mesmo que o material atinja sua resistência ultima. Nas peças comprimidas, além da flambagem global, também deve-se considerar a flambagem local.

Os primeiros estudos sobre instabilidade foram realizados por Leonhard Euler, em meados do século XVIII, cuja formula comanda a carga crítica de flambagem para peças estruturais esbeltas.

08.01 – Coeficientes de Flambagem – k:

A determinação do coeficiente de flambagem k pode ser feito através do conhecimento das fixações da peça estrutural que se analisa ou se dimensiona, assim como a deslocabilidade dessa mesma peça estrutural. As condições de fixação de extremidade de peças estruturais são determinadas por:

CONDIÇÕES DE FIXAÇÃO DE EXTREMIDADES

ROTAÇÃO FIXA E TRANSLAÇÃO FIXA

ROTAÇÃO LIVRE E TRANSLAÇÃO FIXA

ROTAÇÃO FIXA E TRANSLAÇÃO LIVRE

ROTAÇÃO LIVRE E TRANSLAÇÃO LIVRE

Page 143: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-2

CO

MP

RIM

ENTO

DA

PEÇ

CA

0,50

0,65

0,70

0,80

1,00

1,20

2,00

2,10

2,00

2,00

1,00

1,00

VALORTEÓRICOVALOR

RECOMENDADO

K

L

VALORES DO COEFICIENTE DE FLAMBAGEM (K)

08.02 – Comprimento de Flambagem – kL:

Uma vez determinados os coeficientes de flambagem (K) de uma peça estrutural, pode-se determinar o seu comprimento de flambagem, que será determinado multiplicando-se o valor k pelo comprimento da peça estrutural (L). Portanto, o comprimento de flambagem será kL.

08.03 – Tensão Admissível de Compressão – Fa:

As condições de resistência de uma peça estrutural aos esforços de compressão serão determinadas pela tensão máxima admissível de compressão, obtida da seguinte maneira:

3c

3

c

y2

c

2

a

y

2c

c

Cr

kL125,0

Cr

kL375,0667,1FS

FSF

C2r

kL

1F

FE2C

Cr

kLPara

⎟⎠⎞

⎜⎝⎛×

−⎟⎠⎞

⎜⎝⎛×

+=

×

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

×

⎟⎠⎞

⎜⎝⎛

−=

××=

π

Page 144: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-3

Onde:

r = raio de giração da peça estrutural

E = Módulo de Elasticidade do aço (20500 kN)

Fy = Tensão Limite de Resistência à Tração do Aço

Para o aço ASTM A36 ⇒ Cc = 128

Para o aço ASTM A572 ⇒ Cc = 108

08. 04 – Índices de Esbeltez:

Nas peças comprimidas, o índice de esbeltez (λ) é, ao contrário das peças tracionadas, de fundamental importância, uma vez que o esforço de compressão tende a ampliar excentricidades construtivas. E, a fim de se evitar deformações excessivas, efeitos danosos de impactos ou vibrações indesejáveis, fixaram-se valores máximos para esse índice. Assim sendo o índice de esbeltez λ = Lfl / r, ou seja, a relação entre o comprimento da haste ou barra em relação ao seu raio de giração, não deve ultrapassar: λ <= 200

08. 05 – Flambagem Local - Q:

Além da flambagem global, as peças estruturais comprimidas podem sofrer efeitos da flambagem local. Para assegurar que a flambagem local não ocorra antes da flambagem global da peça estrutural, existem limitações que devem ser obedecidas, ou então, os valores de Fa deverão sofrer coeficientes de minoração, representados por Q.

As limitações que devem ser observadas para os casos de flambagem local são:

Para elementos enrijecidos – são os elementos que têm as duas bordas, paralelas às tensões de compresão, apoiadas em toda a sua extensão

λ=r

kL

22

2a

c

rkL

563.105

rkL23

E12F

Cr

kLPara

⎟⎠⎞

⎜⎝⎛

=

⎟⎠⎞

⎜⎝⎛×

××=

>

π

Page 145: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-4

Alma de perfis I, H ou U

Para elementos não enrijecidos – são os elementos que têm uma borda livre, paralela às tensões de compressão.

Mesas de perfis I, H ou U e abas de perfis L

Onde:

h = altura da alma da peça

tw = espessura da alma da peça

Fy = Tensão Limite de Resistência à Tração do Aço

b = largura da mesa para perfis L e U e (0,5 x bf) para perfis I

tf = espessura da mesa

Para o cálculo da influência da flambagem local nas peças estruturais, dependemos do cálculo de valores auxiliares. O primeiro desses valores é o indice Kc.

Quando:

[ ] 00,1paraFfet)hh(AA

AAQ

fth

371f

t210hF

215th

00,1Q37572AASTM

4336AASTM

F215

th

awefgef

g

efa

w

wef

yw

ayw

==×−−=

=⇒

⎥⎥⎥⎥

⎢⎢⎢⎢

×⎟⎠⎞

⎜⎝⎛

−××

=⇒>

⎪⎩

⎪⎨⎧

=⇒→

→≤

⎪⎩

⎪⎨⎧

=→

=→≤

)00,1Kc(14572AASTM

)00,1Kc(1636AASTM

KcF

80tb

yf

46,0

w

cw

cw

th

05,4K70th

00,1K70th

⎟⎠⎞

⎜⎝⎛

=⇒>

=⇒≤

b b

h h

bb b

Page 146: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-5

Uma vez calculados os valores de Kc, nos é possível determinarmos os fatores de minoração Qs, devido à flambagem local.

Quando:

O coeficiente Q = Qa x Qs será sempre de minoração, portanto, sempre Q <= 1,00

08.06 – Tensão de cálculo – fa:

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛×

×=⇒>

⎥⎦

⎤⎢⎣

⎡××−=⇒≤⇒>

=⇒≤

2

fy

cs

c

yf

c

y

fs

c

yf

c

yf

s

c

yf

tbF

K842,1Q

KF

168tb

KF

tb0036,0293,1Q

KF

168tbe

KF

80tb

00,1Q

KF

80tb

asag

a QQFANf ××≤=

Page 147: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-6

08.07 - Exercícios Resolvidos

a) Determinar a capacidade de carga à compressão axial de um perfil soldado CS 300 x 149 de aço ASTM A36, admitindo-se:

1 – KL = 10,00 m e

2 – KL em relação ao menor eixo = 5,40 m. e em relação ao maior eixo KL = 9,00m

Dados de tabelas de perfis:

Ag = 190 cm2

rx = 12,67 cm

ry = 7,70 cm.

Resolução:

Referência 1 – KL = 10,00 m = 1000 cm → KLx = KLy = 1000 cm

Sendo os valores iguais nos dois sentidos, verificamos a pior hipótese:

Flambagem local

h = 300 – 2 x 2,50 = 250 mm

b = 0,5 x 300 = 150 mm

00,1QQQ00,1Q166

25150

tbMesa

00,1K70th00,1Q4363,15

16250

thAlma

sa

sf

cw

aw

=×=

=⇒<==⇒

=⇒<⇒=⇒<==⇒

bf = 300

d =

300 tw=16

tf =

25

y

x

222a

cy

cm/kN27,687,129563.105

rkL

563.105F

200)128(C87,12970,7

1000

==

⎟⎠⎞

⎜⎝⎛

=

<>==λ

kN190.100,119027,6QAFNANQF ga

ga =××=××=⇒≤=×

Page 148: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-7

Referência 2 – KLy = 540 cm e KLx = 900 cm

b) Admitindo-se um perfil H 152 x 37,1 de aço ASTM A572, com comprimento de 4,00 m, sabendo-se que suas extremidades são rotuladas (rotação livre e translação fixa), verificar:

1 – Carga axial máxima de compressão admitindo-se que há contenção lateral impedindo a flambagem em torno do eixo y e

2 – Comparar o resultado com uma peçca sem contenção lateral.

Dados:

Ag = 47,3 cm2

rx = 6,43 cm

ry = 3,63 cm

Fy = 34,5 kN/cm2

Resolução:

Referência 1 – KLx = 4,00 m = 400 cm (sentido y com contenção)

Verificação da flambagem no sentido x:

comandax200)128(C12,70

70,7540

200)128(C03,7167,12

900

cy

cx

<<==

<<==

λλ

λ

kN70,171.200,119043,11QAFN

cm/kN43,1185,125

128203,711F

85,1128

03,71125,0128

03,71375,0667,1FS

ga

22

2a

3

3

=××=××=

=×⎥⎦

⎤⎢⎣

×−=

−×

+=

bf = 150.8

d =

152.

4 tw=8

tf =

12

y

x

Page 149: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-8

Flambagem local

h = 152,4 – 2 x 12 = 128,4 mm

b = 0,5 x 150,8 = 75,4 mm

Referência 2 – KLx = KLy = 4,00 m = 400 cm (sentidos x e y sem contenção)

Verificação da flambagem:

O perfil nessas condições suporta 45% menos carga de compressão axial do que na referência anterior.

00,1QQQ00,1Q1428,6

124,75

tbMesa

00,1K70th00,1Q3705,16

84,128

thAlma

sa

sf

cw

aw

=×=

=⇒<==⇒

=⇒<⇒=⇒<==⇒

200)108(Cc19,11063,3

400

200)108(Cc20,6243,6

400

y

x

<>==

<<==

λ

λ

kN41100,130,4769,8QAFN

cm/kN69,819,110563.105563.105F

ga

222a

=××=××=

===λ

22

2a

3

3

cm/kN55,1585,150,34

108220,621F

85,1108

20,62125,0108

20,62375,0667,1FS

=×⎥⎦

⎤⎢⎣

×−=

−×

+=

200)108(C20,6243,6

400cx <<==λ

kN52,73500,130,4755,15QAFNANQF ga

ga =××=××=⇒≤=×

Page 150: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-9

c) Admitindo-se um perfil VS 750 x 108 em aço ASTM A36 e sabendo-se que seu comprimento de flambagem tanto na direção x quanto na direção y é de 12,00 m e, em ambas as situações os apoios são com rotulação livre e translação livre, verificar a máxima tensão de compressão axial absorvida pelo perfil.

Dados: Ag = 130 cm2

rx = 31,18 cm

ry = 7,04 cm

h = 750 – 2 x 12,5 = 725 mm

b = 0,50 x 320 = 160 mm

Resolução:

Flambagem global:

K = 1,00 ⇒ KL = 1,00 x 1200 = 1200 cm

Flambagem local

( )[ ]

2480,1243,1124

51,025

168

KF

168

43,11

51,025

80

KF

80

80,125,12

160tbMesa

51,0

8725

05,4K7063,908

725th

98,0130

42,127Qcm42,1278,028,695,72130A

cm28,6963,363,90

37163,3

8,0210h4363,908

725thAlma

c

y

c

y

f

46,0cw

a2

ef

efw

<<

⎪⎪⎪⎪

⎪⎪⎪⎪

==

==

⇒==⇒

=

⎟⎠⎞

⎜⎝⎛

=⇒>==

==⇒=×−−=

=⎥⎦

⎤⎢⎣

×−×

×=⇒>==⇒

bf = 320

d =

750

tw=8

tf =

12,5

y

x

222a

cy

cm/kN63,345,170563.105563.105F

200)128(C45,17004,7

1200

===

<>==

λ

λ

Page 151: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-10

d) Admitindo-se dois perfis I 410 x 60 em aço ASTM A572, colocados lado a lado conforme a figura abaixo, determinar a máxima carga de compressão axial desses perfis, sabendo-se que o comprimento total dessa peça é de 8,00 m, e que na direção x (em torno do eixo y), o perfil encontra-se engastado na base (rotação e translação fixas) e rotulado no topo (rotação livre e translação fixa), enquanto no sentido y (em torno do eixo x), o perfil encontra-se engastado na base (rotação e translação fixas) e livre no topo (rotação e translação livres).

Características Geométricas de cada perfil:

Ag = 76,20 cm2 Ix = 21.707 cm4

Iy = 1.205 cm4

rx = 16,88 cm ry = 3,98

Fy = 34,50 kN / cm2

Resolução:

Flambagem global:

No sentido y (em torno do eixo x)o pilar é engastado na base e livre no topo:

KLx = 2,10 x 800 = 1680cm

No sentido x (em torno do eixo y)o pilar é engastado na base e rotulado no topo:

KLy = 0,80 x 800 = 640 cm

Característica geométricas da peça global

Ag = 76,20 x 2 = 152,40 cm2

kN30,44895,013063,3QAFN

95,097,098,0QQQ

97,051,0

258,120036,0293,1KF

tb0036,0293,1Q

ga

sa

c

y

fs

=××=××=

=×=×=

=⎥⎦

⎤⎢⎣

⎡××−=⎥

⎤⎢⎣

⎡××−=

407

178

7,7

12,5

178

382

y

x

Page 152: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-11

Assim sendo:

Flambagem local (para cada perfil isoladamente):

h = 382 mm

b = 0,50 x 178 = 89 mm

00,1QQQ

00,1Q1625

8012,75,12

89tbMesa

00,1K7061,497,7

382th

00,1QAA

cm20,38cm60,3838,1061,49

37138,10

77,0210h3761,497,7

382thAlma

sa

sf

cw

agef

efw

=×=

=⇒=<==⇒

=⇒<==

=⇒=

>=⎥⎦

⎤⎢⎣

×−×

×=⇒>==⇒

cm75,920,762

482.14recm88,1620,762

414.43r

cm482.142

8,1720,76205.12)xAI(2I

cm414.43707.212I2I

yx

42

21ggyoy

4xox

==×

=

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛×+×=×+×=

=×=×=

200C64,6575,9

640

200C53,9988,16

1680

cy

cx

<<==

<<==

λ

λ

22

2a

3

3

cm/kN38,1091,150,34

108253,991F

91,1108

53,99125,0108

53,99375,0667,1FS

=×⎥⎦

⎤⎢⎣

×−=

−×

+=

kN158200,140,15238,10QAFNANQF ga

ga =××=××=⇒≤=×

Page 153: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-12

e) Uma diagonal de treliça é composta por duas cantoneiras de abas iguais de 64 x 6,3. Sabendo-se que seu comprimento de flambagem em torno de ambos os eixos é de 300 cm, determinar a máxima carga e compressão axial suportada pela diagonal em aço ASTM A36.

Dados de cada perfil:

Ag = 2 x 7,68 = 15,36 cm2

Ix = Iy = 29,10 cm4

rx = ry = 1,95 cm e xg = yg = 1,83 cm

Resolução:

Flambagem global ⇒ pior condição KL = 1,00 x 300

Flambagem local:

f) Dois perfis do tipo U de 203 x 17,1 estão posicionados de frente um para o outro com distância total de 400 mm. Sabendo-se tratar de aço ASTM A572 e que os comprimentos de flambagem são: 5000 mm em torno do eixo x e de 10000 mm em torno do eixo y, determinar a máxima carga suportada pelo perfil em questão.

Dados de cada perfil:

Ag = 2 x 21,8 = 43,60 cm2

Ix = 1.356 cm4 e Iy = 54,90 cm4

xg = 1,45 cm

tw = 5,59 mm e tf = 9,9 mm

64

6,35

y

x

1,83

kN50,6800,136,1546,4QAFN

00,1Q1607,1035,6

64tbAlma/Mesa

ga

sf

=××=××=

=⇒<==⇒

x

y

203

57,4

400

xgxg

222a

cx

cm/kN46,484,153563.105563.105F

200)128(C84,15395,1

300

===

<>==

λ

λ

Page 154: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-13

Resolução:

Flambagem global:

No sentido y : KLx = 500cm

No sentido x : KLy = 1000 cm

Características geométricas da peça global

Assim sendo:

Flambagem local (para cada perfil isoladamente)

h = 203 – 2 x 9,9 = 183,2 mm

b = 57,4 mm

kN67300,160,4344,15QAFN

00,1QQQ00,1Q1480,5

9,94,57

tbMesa

00,1K70th00,1Q3731,36

59,5203

thAlma

ga

sa

sf

cw

aw

=××=××=

=×=

=⇒<==⇒

=⇒<⇒=⇒<==⇒

cm62,1860,43113.15recm89,7

60,43712.2r

cm113.152

45,12080,2190,542)xAI(2I

cm712.2356.12I2I

yx

42

21ggyoy

4xox

====

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −

×+×=×+×=

=×=×=

200C71,5362,18

1000

200C37,6389,7

500

cy

cx

<<==

<<==

λ

λ

22

2a

3

3

cm/kN44,1585,150,34

108237,631F

85,1108

37,63125,0108

37,63375,0667,1FS

=×⎥⎦

⎤⎢⎣

×−=

−×

+=

Page 155: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-14

g) Dado um perfil CVS 550 x 184 em aço ASTM A572, determinar a máxima carga axial de compressão suportada pelo perfil sabendo-se que em torno do eixo x, a peça está engastada na base e livre no topo, enquanto que em torno do eixo y a peça está rotulada na base e no topo, e que o comprimento da peça é de 9,00 m.

Dados geométricos da peça:

Ag = 234 cm2

rx = 23,13 cm e ry = 9,31 cm

h = 550 – 2 x 19 = 512 mm

b = 0,50 x 400 = 200 mm

Resolução:

Flambagem global ⇒ L = 900 cm

Em torno do eixo x: K = 2,10 ⇒ KLx = 2,10 x 900 = 1890 cm

Em torno do eixo y: K = 1,00 ⇒ KLx = 1,00 x 900 = 900 cm

Flambagem local:

kN541.200,123486,10QAFN

00,1QQQ00,1Q1453,10

19200

tbMesa

00,1Kc70th00,1Q3732

16512

thAlma

ga

sa

sf

wa

w

=××=××=

=×=

=⇒<==⇒

=⇒<⇒=⇒<==⇒

bf = 400

d =

550

tw=16

tf =

19

y

x

200)108(C67,9631,9

900

200)108(C71,8113,23

1890

cy

cx

<<==

<<==

λ

λ

22

2a

3

3

cm/kN86,1091,150,34

108267,961F

91,1108

67,96125,0108

67,96375,0667,1FS

=×⎥⎦

⎤⎢⎣

×−=

−×

+=

Page 156: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-15

h) A fim de absorver uma carga axial de compressão de 750 kN, foi composta uma barra de seção I com chapas das mesas de 200 x 20 mm e da alma de 500 x 8 mm. em aço ASTM A572. Seguindo o esquema estático apresentado, determinar o máximo comprimento da barra que pode ser adotado.

Resolução:

Características Geométricas da barra

cm72,4120669.2recm81,22

120440.62r

cm669.212

8,050122022I

cm440.6212

508,02612012

2202I

cm1208,050)220(2A

yx

433

y

43

23

x

2g

====

=⎟⎟⎠

⎞⎜⎜⎝

⎛ ×+⎟⎟

⎞⎜⎜⎝

⎛ ××=

=⎟⎟⎠

⎞⎜⎜⎝

⎛ ×+⎟⎟

⎞⎜⎜⎝

⎛×+

××=

=×+××=

Lx

LyLy

bf = 200

d =

540

tw=8

tf =

20

y

x

Page 157: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-16

Comprimento máximo do perfil será obtido mediante a tensão máxima: Flambagem Local: Verificação do perfil mediante Q = 0,925

( )[ ]

925,0QQQ

00,1Q145,34

80520

100tbMesa

00,1K705,628

500th

925,0120

03,111Qcm03,1118,029,515,62120A

cm29,5125,65,62

37125,6

8,0210h375,628

500thAlma

sa

sf

cw

a2

ef

efw

=×=

=⇒=<==⇒

=⇒<==

==⇒=×−−=

=⎥⎦

⎤⎢⎣

×−×

×=⇒>==⇒

⎪⎪⎩

⎪⎪⎨

=×=⇒=

=×=⇒=

≤⎟⎠⎞

⎜⎝⎛

==≤⎟⎠⎞

⎜⎝⎛⇒

⎟⎠⎞

⎜⎝⎛

=

=→≥×⇔==

=

λ

λ

cm61372,496,129LrL

cm964.281,2296,129LrL

96,129r

kL

890.1625,6563.105

F563.105

rkL

rkL

563.105F

fFadotamosfQFcm/kN25,6120750f

108CPara

yy

yy

xx

xx

a

2

2a

aaaa2

a

c

⎪⎪⎩

⎪⎪⎨

=×=⇒=

=×=⇒=≤⎟

⎠⎞

⎜⎝⎛

==≤⎟⎠⎞

⎜⎝⎛⇒

⎟⎠⎞

⎜⎝⎛

=

==⇒==

=

λ

λ

cm59072,496,124LyrLyy

cm850.281,2296,124LxrLxx

96,124r

kL

616.1576,6563.105

F563.105

rkL

rkL

563.105F

cm/kN76,6925,025,6Fcm/kN25,6

120750f

108CPara

y

x

a

2

2a

2a

2a

c

Page 158: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-17

Tendo em vista que no plano do eixo y a barra está contraventada, podemos adotar comprimento máximo para a barra de: L = 590 x 2 = 1.180 cm.

i) Para a diagonal principal de uma treliça de banzos paralelos em aço ASTM A36, solicitada por uma carga de compressão de 45 kN, com comprimento de 3.600 mm e cujas ligações deverão ser com parafusos de 8 mm dispostos em 4 linhas de 2 parafusos cada, utilizando o perfil mais econômico (mais leve), pede-se:

1 – dimensionar a diagonal usando uma única cantoneira de abas iguais;

2 – dimensionar a diagonal usando duas cantoneiras de abas iguais, ligadas por chapa de espessura de 8 mm e sabendo que, nesse caso, deverá haver uma diagonal secundaria impedindo o deslocamento da principal em torno do seu eixo x.

Resolução – 1a. Parte

Aço ASTM A36 – Fy = 25 kN/cm2

3600

VER DETALHE DETALHE

1a. Tentativa:

Limitação de flambagem

Perfil adotado L 64 x 6,10

cm80,1200360

200Lflr200

rLflprincipalDiagonal ==≥→≤→ =λ

kN750kN36,750925,012076,6QAFN

cm/kN76,6

72,4590

563.105

rkL

563.105F

ga

222

ya

≅=××=××=

=

⎟⎠⎞

⎜⎝⎛

=

⎟⎠⎞

⎜⎝⎛

=

Page 159: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-18

Dados geométricos do perfil:

Ag = 7,68 cm2

t0 = 1/4” = 1/4 x 2,54 = 6,35 mm (espessura da aba) e rx = ry = 1,95 cm

Flambagem global:

2a. Tentativa:

Perfil adotado L 76 x 9,10

Dados geométricos do perfil:

Ag = 11,48 cm2

t0 = 5/16” = 5/16 x 2,54 = 7,9 mm (espessura da aba) e rx = ry = 2,33 cm

Flambagem global:

2fgn

fp

cm22,6]635,015,1268,7[]tA[ALíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

=××−→∑−=→

=+=→=

×φ

φφ

kN45kN28,1900,122,610,3QAFN

00,1Q1607,1035,6

64tbAlma/Mesa

na

sf

<=××=××=

=⇒<==⇒

2fgn

fp

cm67,9]79,015,1248,11[]tA[ALíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

=××−→∑−=→

=+=→=

×φ

φφ

222a

cx

cm/kN42,451,154563.105563.105F

200)128(C51,15433,2

360

===

<>==

λ

λ

222a

cx

cm/kN10,362,184563.105563.105F

200)128(C62,18495,1

360

===

<>==

λ

λ

Page 160: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-19

3a. Tentativa:

Perfil adotado L 76 x 10,7

Dados geométricos do perfil:

Ag = 13,61 cm2

t0 = 3/8” = 3/8 x 2,54 = 9,53 mm (espessura da aba) e rx = ry = 2,35 cm

Flambagem global:

Portanto, o perfil adotado será L 76 x 10,7

kN45kN74,4200,167,942,4QAFN

00,1Q1662,99,7

76tbAlma/Mesa

na

sf

<=××=××=

=⇒<==⇒

2f

fp

cm42,11]953,015,1261,13[]tAg[AnLíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

=××−→∑−=→

=+=→=

×φφφ

222a

cx

cm/kN50,420,153563.105563.105F

200)128(C20,15335,2

360

===

<>==

λ

λ

kN45kN39,5100,142,1150,4QAFN

00,1Q1698,753,9

76tbAlma/Mesa

na

sf

>=××=××=

=⇒<=×=⇒

Page 161: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-20

Resolução – 2a. Parte

VER DETALHEDETALHE

1800

1800

diagonal secundária

y

x

8

Nesse caso, teremos de analisar as condições de esbeltez em torno dos eixos x e y. No entanto, a condição mais desfavorável será em torno do eixo x, razão pela qual devemos verificar a esbeltez em torno desse eixo. Assim:

1a. Tentativa:

Limitação de flambagem

No entanto, em vista do comportamento anterior de dimensionamento das peças sob a ação da compressão, devemos adotar o perfil também sob os aspectos dos baixos valores obtidos de Fa. Nesse caso, adotamos:

Perfil adotado 2 L 38 x 3,48

Dados geométricos do perfil:

Ag = 4,45 cm2

t0 = 1/4” = 1/4 x 2,54 = 6,35 mm (espessura da aba) e rx = 1,14 cm

Ix = Iy = 5,82 cm4 e xg = yg = 1,19 cm

cm90,0200180

200Lflr200

rLflprincipalDiagonal ==≥→≤→ =λ

2

acm5,7

645

FNAEstimativa ==≥→

Page 162: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-21

Flambagem global:

Flambagem local:

2a. Tentativa:

Perfil adotado 2 L 51 x 5,83

Dados geométricos do perfil:

Ag = 7,41 cm2

t0 = 5/16” = 5/16 x 2,54 = 7,94 mm (espessura da aba) e rx = 1,52 cm

Ix = Iy = 17,48 cm4 e xg = yg = 1,54 cm

kN45kN72,1800,198,513,3QAFN

00,1Q1698,535,6

38tbAlma/Mesa

na

sf

<=××=××=

=⇒<==⇒

2f

fp

cm98,52]635,015,1245,4[]tAg[AnLíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

=×××−→∑−=→

=+=→=

×φφφ

222a

cx

cm/kN13,367,183563.105563.105F

200)128(C67,18396,1

360

===

<>==

λ

λ

20067,18396,1

360ycm96,145,42

14,34AIr

cm14,3428,019,145,482,52

2txd)dAI(2I

20052,15615,1

180xcm15,145,42

64,11AIr

cm64,1182,52I2I

yy

42

g2

0yy

xy

4xox

<==⇔=×

==

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +×+×=+=→×+×=

<==⇔=×

==

=×=×=

λ

λ

Page 163: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

8-22

Flambagem global:

Flambagem local:

Portanto, o perfil adotado será 2 L 51 x 5,83

Obs: a resolução dos exercícios somente se apresenta como exemplificação para efeitos didáticos.

2f

fp

cm17,112]793,015,1241,7[]tAg[AnLíquidaÁrea

mm5,115,38mm8

LíquidaÁrea

=×××−→∑−=→

=+=→=

×φφφ

222a

cx

cm/kN97,475,145563.105563.105F

200)128(C75,14547,2

360

===

<>==

λ

λ

kN45kN51,5500,117,1197,4QAFN

00,1Q1642,694,7

51tbAlma/Mesa

na

sf

>=××=××=

=⇒<==⇒

20075,14547,2

360ycm47,241,72

74,90AIr

cm74,9028,054,141,748,172

2txd)dAI(2I

20088,11654,1

180xcm54,141,72

96,34AIr

cm96,3448,172I2I

yy

42

g2

0yy

xy

4xox

<==⇔=×

==

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ +×+×=+=→×+×=

<==⇔=×

==

=×=×=

λ

λ

Page 164: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-1

09 – Elementos Sujeitos a Flexão Composta Peças sujeitas a Flexão Composta são aquelas sujeitas às combinações da ação de Momentos Fletores associados à atuação de esforços de Tração ou Compressão. No primeiro caso denomina-se Flexo-Tração, enquanto que no segundo, denomina-se Flexo-Compressão.

Para verificação de qualquer uma dessas situações, emprega-se o mesmo procedimento que já foi analisado nos capítulos anteriores.

09.01 – Flexo-Tração:

Admitindo-se os esforços solicitantes

N = força axial de tração

Mx = momento fletor em relação ao eixo x

My = momento fletor em relação ao eixo y

Teremos as tensões atuantes

ft = tensão atuante de tração

fbx = tensão atuante de flexão em relação ao eixo x

fby = tensão atuante de flexão em torno do eixo y

Para as condições de segurança, devemos atender a seguinte equação:

Fbx = tensão admissível de flexão em relação ao eixo x

Fby = tensão admissível de flexão em relação ao eixo y

Onde Fbx deve ser obtido através das condições estudadas no capitulo 07 e Fby será determinado por:

Para perfis não simétricos: Fby = 0,60xFy

Para perfis simétricos:

by

by

bx

bx

y

t

Ff

Ff

F6,0f

++×

⎪⎩

⎪⎨

⎥⎦

⎤⎢⎣

⎡×⎟⎠⎞

⎜⎝⎛−×=⇔>

×=⇔≤

⇒≤

×=⇒>

yyby

yby

yyf

ybyyf

Ftfb006,0075,1FF

F75,0F

F54

F80

tb

F60,0FF

80tb

Page 165: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-2

09.02 – Flexo-Compressão:

Admitindo-se os esforços solicitantes

N = força axial de compressão

Mx = momento fletor em relação ao eixo x

My = momento fletor em relação ao eixo y

Teremos as tensões atuantes

fa = tensão atuante decompressão

fbx = tensão atuante de flexão em relação ao eixo x

fby = tensão atuante de flexão em torno do eixo y

Para as condições de segurança, devemos atender as seguintes equações:

1) baixo nível de compressão

2) alto nível de compressão (condições simultâneas)

Fbx = tensão admissível de flexão em relação ao eixo x

Fby = tensão admissível de flexão em relação ao eixo y

E:

Cmx e Cmy são fatores de redução:

1 – Membros comprimidos em estruturas deslocáveis – Cm = 0,85

(barras de pórticos, barras em balanço, barras bi-engastadas submetidas a carregamento transversal entre suas extremidades)

2 – Membros comprimidos em estruturas indeslocáveis e não sujeitas a cargas transversais entre os apoios no plano de flexão

00,1Ff

Ff

Ff15,0

Ff

by

by

bx

bx

a

a

a

a≤++⇔≤

⎪⎪⎪

⎪⎪⎪

≤×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

≤++×

⇔>00,1

F'Ff1

fC

F'Ff1

fCFf

00,1Ff

Ff

Fy6,0f

15,0Ff

byey

a

bymy

bxex

a

bxmx

a

a

by

by

bx

bxa

a

a

22

b

e

rKL

563.105

rLbK23

E12'F

⎟⎠⎞

⎜⎝⎛

=

⎟⎠⎞

⎜⎝⎛ ×

×

××=

π

40,0MM40,060,0C

2

1m ≥×−=

Page 166: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-3

M1 e M2 são o menos e o maior momento fletor nas extremidades da parte do membro sem contenção lateral no plano de flexão considerado.

3 – Membros comprimidos em estruturas indeslocáveis contidas à translação dos nós no plano do carregamento e sujeitas a carregamentos transversais entre os apoios:

a) membros com extremidade sem rotação – Cm = 0,85

b) membros com extremidade com rotação – Cm = 1,00

Na maioria dos casos, a verificação e o dimensionamento das peças sujeitas à flexo-compressão, podem ser efetuados utilizando-se de Cm = 1,00, pois trata-se de um valor conservador (a favor da segurança).

Page 167: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-4

09.03 – Exercícios:

a) Uma coluna com 10,00 m. de altura, com três apoios articulados nas direções dos dois eixos principais, está sujeita na extremidade superior a uma carga axial de compressão N = 1.000 kN e a meia altura a um momento fletor M = 300 kN.m. Nessas condições, verificar se um perfil CVS 450 x 116 suporta a aplicação das cargas referidas, utilizando-se do aço ASTM A-36.

Dados geométricos do perfil:

A = 148,3 cm2 Wx = 2.348 cm3 rx = 18,88 cm ry = 6.97 cm rt = 7,97 cm Fy = 25 kN/cm2

Resolução:

1 – Verificação da compressão Flambagem global – KL = 5,00 m = 500 cm → KLx = KLy = 500 cm Sendo os valores iguais nos dois sentidos, verificamos a pior hipótese:

Flambagem local

h = 450 – 2 x 1,6 = 418 mm b = 0,5 x 300 = 150 mm

2a

2a

s

c

yf

cw

aw

cm/kN32,1100,100,132,11Fcm/kN74,630,148

000.1f

00,1Q16

KF

8038,916150

tbMesa

00,1K7044,33th

00,1Q4344,335,12

418thAlma

=××=<==

=⇒=≤==⇒

=⇒<=

=⇒<==⇒

500

cm50

0 cm

bf = 300

d =

450 tw=12.5

tf =

16

y

x300

kN.m

222

2a

3

3

cy

cm/kN15256,0cm/kN32,1186,125

128274,711F

86,1128

74,71125,0128

74,71375,0667,1FS

200)128(C74,7197,6

500

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

×−=

−×

+=

<<==λ

Page 168: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-5

2 – Verificação da flexão

Flambagem local:

As condições de flambagem local já foram verificadas na analise da compressão em condições mais desfavoraveis.

Flambagem global: → Lb = 500 cm. – verificar apoio lateral

Para a condição mais desfavorável, teremos sem apoio lateral completo

Tipo de seção:

Tensão Admissível

Elementos de seção compacta e sem apoio lateral:

( )apoiocomcm500cm600

256,130

45060.14

FAd

060.14Lb

apoiosemcm500cm37825

3063F

b63Lb

yf

2

y

f1

→>=×

×

→<=×

compactanãoseção8,10F

54

38,916

150tb10844,33

5,12418

th

y

fw

−→=

==⇔≤==

74,6297,7

500r

Lbt

==

2y

2

f

x

2y

2x

t

cm/kN15F60,0cm/kN50,31

6,13045500

75,1430.8

AdLb

75,1430.8"Fb

cm/kN15F60,0cm/kN152560,0'Fb

74,62r

Lb

43,15825

75,1580.358

85,7025

75,1710.71

=×>=⎟⎠⎞

⎜⎝⎛

××

×=

⎟⎠⎞

⎜⎝⎛×

×=

=×<=×=

=>

75,1Cb0150

0MM

30,2MM3,0

MM05,175,1Cb

2

1

2

2

1

2

1

=⇒==

≤⎟⎠⎞

⎜⎝⎛×+⎟

⎠⎞

⎜⎝⎛×+=

150

kN.m

150

kN.m

Page 169: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-6

Adotamos o maior valor → Fbx = 15 kN / cm2

Verificação da esbeltez:

Tensão atuante

3 – Verificação da flexão composta

Fator de redução Cmx: Membros comprimidos em estruturas indeslocáveis e não sujeitas a cargas transversais entre os apoios no plano de flexão.

Portanto o perfil CVS 450 x 116 absorve as cargas aplicadas.

b) Uma coluna com 8,00 m. de altura, com apoios articulados em torno do eixo y e engastado na base e livre no topo em torno do eixo x, está sujeita na extremidade superior a uma carga axial de compressão N = 37,50 kN e a uma carga uniformemente distribuída g = 5 kN/m na direção do eixo y. Nessas condições, verificar se um perfil I 460 x 82 – Padrão Açominas – suporta a aplicação das cargas referidas, utilizando-se do aço ASTM A-572.

00,1Qe16215

63244,33thw

=⇒=<=

bx2

x

xbx Fcm/kN39,6

348.2000.15

WMf <===

22ex

x

xex

a

a

cm/kN50,15048,26563.105'F48,26

88,18500

rKL'F

compressãodenívelalto15,0595,032,1174,6

Ff

==→==→

→>==

60,0150

040,060,0MM40,060,0C

2

1mx =×−=×−=

00,186,0015

5,15074,61

39,660,032,1174,6

F'Ff1

fC

F'Ff1

fCFf

00,1875,000

1539,6

256,074,600,1

Ff

Ff

F6,0f

00,1F

'Ff1

fC

F'Ff1

fCFf

00,1Ff

Ff

F6,0f

15,0Ff

byey

a

bymy

bxex

a

bxmx

a

a

by

by

bx

bx

y

a

byey

a

bymy

bxex

a

bxmx

a

a

by

by

bx

bx

y

a

a

a

<=+×⎟⎠⎞

⎜⎝⎛ −

×+→

×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

<=++×

→≤++×

⎪⎪⎪

⎪⎪⎪

≤×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

≤++×

⇔>

Page 170: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-7

Dados geométricos do perfil:

A = 104,7 cm2

Wx = 1.615,5 cm3

rx = 18,62 cm

ry = 4,22 cm

Fy = 34,5 kN/cm2

Resolução:

1 – Cálculo estático

2 – Verificação da compressão

Flambagem global – KLx = 2 x 800 cm = 1.600 cm → KLy = 800 cm

Flambagem local

h = 460 – 2 x 1,6 = 428 mm

b = 0,5 x 191 = 95,5 mm

2a

2a

sf

cw

agef

efw

cm/kN94,2Fcm/kN36,0f

00,1Q1497,516

5,95tbMesa

00,1K7023,43th

00,1QAA

8,4273,6094,223,43

37194,2

99,0210h3723,439,9

428thAlma

=<=

=⇒<==⇒

=⇒<=

=⇒=

>=⎥⎦

⎤⎢⎣

×−×

×=⇒>==⇒

bf = 191

d =

460 tw=9.9

tf =

16

y

x

Lx=8

00 c

m

Ly=8

00 c

m

m.kN160285

2LgM

22x

x =×

=

a2

a

222a

cy

cx

Fcm/kN36,07,104

50,37f

cm/kN7,205,346,0cm/kN94,257,189563.105F

200)108(C57,18922,4

800

200)108(C75,8488,18

600.1

<==

=×<==

<>==

<<==

λ

λ

Page 171: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-8

3 – Verificação da flexão

Flambagem local:

As condições de flambagem local já foram verificadas na analise da compressão em condições mais desfavoráveis.

Flambagem global: → Lb = 500 cm. – verificar apoio lateral

Para a condição mais desfavorável, teremos sem apoio lateral completo

Tipo de seção: pode ser dispensada a verificação uma vez que não existe apoio lateral completo.

Tensão Admissível

Elementos sem apoio lateral:

( )apoiosemcm800cm271

5,346,11,19

46060.14

FAd

060.14Lb

apoiosemcm800cm2055,3410,1963

Fb63Lb

yf

2

y

f1

→<=×

×

→<=×

97,16097,4

800r

Lb

cm97,4

699,08,426,11,192

862.1r

t

t

==

=⎟⎠⎞

⎜⎝⎛ ×

+××=

2y

2

f

x

2y

22x

t

cm/kN15F60,0cm/kN25,12

6,11,1946800

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN08,897,160

75,1520.119'Fb

97,160r

Lb

87,1345,34

75,1580.358

31,605,34

75,1710.71

=×<=⎟⎠⎞

⎜⎝⎛

××

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×

=

=<

75,1Cb0160

0MM

30,2MM3,0

MM05,175,1Cb

2

1

2

2

1

2

1

=⇒==

≤⎟⎠⎞

⎜⎝⎛×+⎟

⎠⎞

⎜⎝⎛×+=

Page 172: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-9

Adotamos o maior valor → Fbx = 12,25 kN / cm2

Verificação da esbeltez:

Tensão atuante

4 – Verificação da flexão composta

Portanto o perfil I 460 x 82 absorve as cargas aplicadas.

c) Uma coluna com 9,00 m. de altura, com apoios articulados em torno dos eixos principais (x e y), está sujeita na extremidade superior a uma carga axial de compressão N = 2.550 kN e a duas cargas uniformemente distribuídas g = 4,5 kN/m na direção do eixos x e y. Nessas condições, verificar se um perfil CS 400 x 245 suporta a aplicação das cargas referidas, utilizando-se do aço ASTM A-36.

Dados geométricos do perfil:

A = 316 cm2

Af = 126 cm2 e Aw = 64,03 cm2

Wx = 4.591 cm3

Wy = 1.681 cm3

rx = 17 cm

ry = 10,30 cm

rt = 11,10 cm

Fy = 25 kN/cm2

Resolução:

1 – Cálculo estático

00,1Q60,18025,12

63223,43th

ew

=⇒=<=

bx2

x

xbx Fcm/kN90,9

5,615.1000.16

WMf <===

00,193,0025,1290,9

94,236,000,1

Ff

Ff

Ff

compressãodenívelbaixo15,012,094,236,0

Ff

by

by

bx

bx

a

a

a

a

<=++→≤++

→<==

bf = 400

d =

400 tw=19

tf =

31.5

y

x

Lx=L

y=90

0 cm

gg

m.kN56,458

95,48LgMM

22x

yx =×

==

Page 173: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-10

2 – Verificação da compressão

Flambagem global – KLx = KLy = 900 cm

Flambagem local

h = 400 – 2 x 31,5 = 337 mm

b = 0,5 x 400 = 200 mm

3 – Verificação da flexão em torno do eixo x

Flambagem local:

As condições de flambagem local já foram verificadas na analise da compressão em condições mais desfavoráveis.

Flambagem global: → Lb = 900 cm. – verificar apoio lateral

2a

2a

sf

cw

aw

cm/kN18,1000,100,118,10Fcm/kN07,8f

00,1Q1635,65,31

200tbMesa

00,1K7074,17th

00,1Q4374,1719337

thAlma

=××=<=

=⇒<==⇒

=⇒<=

=⇒<==⇒

( )apoiocomcm900cm772.1

2512640

060.14

FAd

060.14Lb

apoiosemcm900cm50425

4063F

b63Lb

yf

2

y

f1

→>=×

→<=×

2a

222

2a

3

3

cy

cx

cm/kN07,8316550.2f

cm/kN15256,0cm/kN18,10883,125

128238,871F

883,1128

38,87125,0128

38,87375,0667,1FS

200)128(C38,8730,10

900

200)128(C94,5217900

==

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

×−=

−×

+=

<<==

<<==

λ

λ

Page 174: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-11

Para a condição mais desfavorável, teremos sem apoio lateral completo

Tipo de seção: dispensável a verificação, uma vez que a peça não tem apoio lateral completo

Tensão Admissível

Elementos de seção compacta e sem apoio lateral:

Cb = 1,00 – peça bi-apoiada

Adotamos o maior valor → Fbx = 15 kN / cm2

Verificação da esbeltez:

Tensão atuante

4 – Verificação da flexão em torno do eixo y

perfil simétrico

08,8110,11

900r

Lbt

==

2y

2

f

x

2y

22

x

t

cm/kN15F60,0cm/kN51,29

12640900

430.8

AdLb

430.8"Fb

cm/kN15F60,0cm/kN93,122500,1670.075.1

08,812567,0'Fb

12008,81r

Lb54

12025

00,1580.358

5425

00,1710.71

=×>=⎟⎠⎞

⎜⎝⎛×

=⎟⎠⎞

⎜⎝⎛×

=

=×<=×⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

××

−=

<=<

00,1Q16215

63274,17th

ew

=⇒=<=

bx2

x

xbx Fcm/kN92,0

591.4556.4

WMf <===

by2

by

2yby

f

Fcm/kN71,2681.1556.4f

cm/kN75,182575,0F75,0F

35,680,1025

541625

8035,6tb

<==

=×=×=

>=→=<=

Page 175: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

9-12

5 – Verificação da flexão composta

Fator de redução Cmx = Cmy = 1,00 – membros comprimidos em estruturas indeslocáveis contidas à translação dos nós no plano do carregamento e sujeitas a carregamentos transversais entre os apoios, com extremidades com rotação.

Portanto o perfil CS 400 x 248 não absorve as cargas aplicadas.

22eyyey

22exxex

a

a

cm/kN83,1338,87563.105'F38,87

30,10900'F

cm/kN67,3094,52563.105'F94,52

17900'F

compressãodenívelalto15,079,018,1007,8

Ff

==→==→

==→==→

→>==

λ

λ

00,122,1F

'Ff1

fC

F'Ff1

fCFf

75,1883,1307,81

71,200,1

1567,37

07,81

92,000,118,1007,8

F'Ff1

fC

F'Ff1

fCFf

00,174,075,1871,2

1592,0

256,007,800,1

Ff

Ff

F6,0f

00,1F

'Ff1

fC

F'Ff1

fCFf

00,1Ff

Ff

F6,0f

15,0Ff

byey

a

bymy

bxex

a

bxmx

a

a

byey

a

bymy

bxex

a

bxmx

a

a

by

by

bx

bx

y

a

byey

a

bymy

bxex

a

bxmx

a

a

by

by

bx

bx

y

a

a

a

>=×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+→

×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

<=++×

→≤++×

⎪⎪⎪

⎪⎪⎪

≤×⎟⎠⎞

⎜⎝⎛ −

×+

×⎟⎠⎞

⎜⎝⎛ −

×+

≤++×

⇔>

Page 176: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-1

10 – Bases de Pilares

As estruturas metálicas, na maioria quase absoluta das vezes, apóia-se sobre estruturas de concreto armado, sejam essas estruturas compostas por pilares ou blocos de fundações. Em qualquer um dos casos, deverá existir no contato entre os dois tipos de estrutura – metálica e concreto –, bases metálicas a fim de se poder efetuar essa transição entre os sistemas estruturais.

A finalidade básica dessas bases metálicas será a de distribuir a carga oriunda dos pilares metálicos sobre uma base de concreto, assim como determinar a fixação da estrutura metálica em sua extremidade inicial.

No caso de bases de pilares, existem dois tipos básicos de bases: as rotuladas e as engastadas.

As bases rotuladas, conforme a próprio nome a define, são aquelas que têm comportamento estrutural à semelhança de uma rótula, ou seja, são capazes de transmitir esforços verticais e horizontais sem, no entanto, transmitirem momentos fletores. Tendo em vista que a maioria dos pilares metálicos são solicitados a esforços de flexão e compressão e, muito embora esse tipo de base metálica seja bastante econômico, sua utilização restringe-se a pilares de fechamento lateral de edifícios metálicos que não recebam as estruturas principais, ou ainda em casos em que exista terreno de baixa capacidade geotécnica e, assim sendo, momentos fletores não podem ser absorvidos pelas fundações, exigindo bases rotuladas, havendo, nesses casos, a necessidade de se promover adequadas condições estruturais nos componentes acima das bases dos pilares.

N

H

CHUMBADORES

FACE SUP. BLOCO

DETALHE DA BASE DE PILARES

EM PLANTA EM CORTE

A

B

dd

Lb

t

Page 177: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-2

As bases engastadas, ao contrário das rotuladas, transmitem, além dos esforços verticais e horizontais, também momentos fletores, possibilitando o engastamento dos pilares junto às bases. Essas bases são bastante variadas em função da amplitude dos esforços que devam absorver, podendo-se dispor de vários chumbadores, assim como de nervuras de enrijecimento, quando se tratar de chapas de espessura elevada.

CHUMBADORES

FACE SUP. BLOCO

DETALHE DA BASE DE PILARES

EM PLANTA EM CORTE

A

B

dd

Lb

t

N

H

M

Conforme se verifica nos desenhos esquematizados acima, os elementos componentes principais das bases de pilares metálicos são: chapa de base e chumbadores.

10.1 – Chapas de Base:

Para o cálculo das chapas de base, toma-se como resistência admissível do concreto, o valor máximo de 0,35 fck (resistência do concreto à compressão), a partir do qual se verifica as dimensões da chapa. Para as bases de pilares sujeitos somente a esforço de compressão, essas chapas são dimensionadas a partir da tensão gerada pela aplicação desse esforço de compressão, supondo que a chapa possuindo dimensões maiores do que os pilares, conforme mostrado nos desenhos acima, absorva as tensões à maneira de uma aba em balanço com a largura de 1 cm. Na prática, tomam-se para a e b, valores maiores ou iguais a 75 mm.

t

N

H

fc

A

B

bb

a a

a

Page 178: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-3

Assim teremos:

Tomando-se o maior valor entre Ma e Mb: (por exemplo Ma)

Para as bases de pilares sujeitas a esforços de compressão e flexão, as tensões sobre a superfície do bloco de fundações apresentam-se de forma irregular. De um lado verifica-se uma maior tensão de compressão, enquanto que do lado oposto, verifica-se uma tendência a tensões de tração de maneira tal que a chapa de base tenda a desprender-se da base, sendo impedida desse desprender através da colocação de chumbadores.

t

N

H

fc

a

M

ft

A

B

aa

bb

Nesses tipos de bases, em geral a medida a é superior a b, sendo, na prática, recomendado que esse valor seja maior ou igual a 100 mm.

As dimensões A e B da placa, são em geral, determinadas pelas dimensões dos pilares, sendo, no entanto, necessário verificar se as tensões de compressão não ultrapassam as tensões admissíveis do concreto:

2bfMe

2afM

f35,0BA

Nf

2c

b2

ca

ckc

×=

×=

×≤×

=

y

c

b

2c

yb2

2c

2

2c

b

Ffa2t

Faf3t

F75,0Ft

af3

6t

2af

WMF

××≥→××

×=→××

==

ckccc

f35,0fBM6

fB2N

fB2NA ×≤

××

+⎟⎠⎞

⎜⎝⎛

××+

××≥

Page 179: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-4

O cálculo da espessura da placa efetua-se da mesma maneira anterior, adotando-se as condições de uma aba em balanço solicitada por um esforço correspondente à tensão calculada, sendo na prática, essa tensão considerada como sendo retangular e não mais triangular, conforme o diagrama observado, adotando-se o valor máximo obtido para fc. Esse método pode ser adotado uma vez que as dimensões em balanço da chapa são bastante diminutas.

10.2 – Chumbadores:

Os chumbadores têm a finalidade de fixar as chapas e, por conseqüência, os pilares metálicos às fundações. Esses chumbadores são barras redondas em aço ASTM A36 ou SAE 1020.

Para o primeiro caso de base analisada, ou seja, das bases rotuladas, os chumbadores serão dimensionados somente a esforço de cisalhamento quando houver esforço horizontal:

Não havendo esforço horizontal, utilizar Øchumb>0,40 x tchapa>16mm.

Para o segundo caso, das bases engastadas, conforme se viu, a tendência da chapa de base desprender-se do bloco de fundação em função da aplicação de esforços de flexão, é impedida por chumbadores que serão, dessa maneira, solicitados por esforços de tração (T).

fc

ft

N

M

T

e

c

c/3

y

x

n = número de parafusos na linha

Havendo esforços horizontais geradores de cisalhamento associado aos esforços de tração oriundos de flexão, a tensão limite no chumbador deverá ser determinada por:

ynec

F4,0HA×

=

( )

unec

tc

c

2t

2c

F33,0nTA

yxNMT

3C

2Axe

3cAy

ffAfc

ABM6

BAN

WM

BANf

ABM6

BAN

WM

BANf

××=→

×−=

−=→−−=

=

⎪⎪⎭

⎪⎪⎬

××

−×

=−×

=

××

=+×

=

u22

chumbv

chumbt

F33,0fh3ftf

AHf

ATf

×≤+=

=→=

Page 180: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-5

Não havendo atuação de cargas horizontais, cargas de tração ou de momentos fletores, o diâmetro dos chumbadores deve ter, como recomendação prática, o mínimo de 16 mm., enquanto que as chapas das bases, dentro da mesma hipótese prática, devem ter espessura maior ou igual a 12.5 mm.

TABELA DE CHAPAS GROSSAS

ESPESSURA (mm) PESO ((kg/m2) ESPESSURA (mm) PESO (kg/m2)

12,5 100 38 295

16 126 45 355

20 150 50 395

22 176 57 448

25 200 63 495

TABELA PARA CHUMBADORES

AÇO SAE 1020 ASTM A36 Φ (mm) Área (cm2) V (Kn) T (Kn) V (Kn) T (Kn)

12,5 1,25 10,30 15,40 12,30 19,60

16 2,00 16,90 25,20 20,10 32,10

20 3,15 26,40 39,40 31,40 50,20

22 3,80 31,90 47,60 38,00 60,80

25 4,95 41,20 61,50 49,10 78,50

32 8,05 67,50 100,80 80,40 128,60

38 11,35 95,20 142,10 113,30 181,30

44 15,20 127,60 190,60 152,00 243,10

50 19,65 164,90 246,10 196,20 314,00

57 25,50 214,20 319,80 255,00 408,00

64 32,15 270,00 403,20 321,50 514,40

SAE 1020: Fy = 21 kN/cm2; Fu = 38 kN/cm2

ASTM A36: Fy = 25 kN/cm2; Fu = 40 kN/cm2

Page 181: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-6

Os espaçamentos máximos e mínimos recomendados entre chumbadores, deverão estar em acordo com o seguinte esquema geral, onde d=diâmetro do chumbador:

a

3da

a

3d3d a

10.3 – Exemplos Práticos:

01) Dado o pilar formado por um perfil CS 300x149, sujeito a uma carga de compressão axial de 2.170 kN, sabendo que o concreto utilizado na base será C-25, determinar a espessura da chapa de base e o diâmetro dos chumbadores, utilizando para ambos o aço ASTM A36.

A

B

bb

a a

Resolução:

Dimensões mínimas da chapa:

mm204mm184540,0t40,00Hchumbador

.mm45echapaadotado.mm30,475,18

868,0102Ffa2t

cm/kN75,182575,0F75,0F

cm.kN75,432

10875,0MMcm/kN868,05050

170.2fpara

mm75100300500bamm500cm50480.2BA

cm480.25,235,0

170.2f35,0

NBAf35,0BA

Nf

chumb

b

c

2yb

2ba

2c

2

ckckc

φφ →=×=×>→=→

=→=××=××≥

=×=×=

==→=×

=

>=−==→=≅==

=×→×≤×

=

{⎪⎪⎪

⎪⎪⎪

×

⎪⎪

⎪⎪

≥→×

<<→+

≤<→+

≤→+

⎪⎩

⎪⎨⎧

→×

→×

d75,1cortadasbordas

mm33dd25,1

mm33d26mm6d

mm26d19mm7d

mm19dmm6d

adasminlabordasadevalores

stracionadapeçast25

scomprimidapeçast15máximooespaçament

Page 182: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-7

02) Dado o pilar formado por um perfil VS 750x108, sujeito a uma carga de compressão axial de 450 kN, sabendo que o concreto utilizado na base será C-25, determinar, determinar a espessura da chapa de base e o diâmetro dos chumbadores, utilizando para ambos o aço ASTM A36.

Resolução:

Dimensões mínimas da chapa:

03) Dado o pilar formado por um perfil CVS 450x116, sujeito a uma carga de compressão axial de 1.000 kN e momento fletor de 150 kN x m, sabendo que o concreto utilizado na base será C-30, determinar, determinar a espessura da chapa de base e o diâmetro dos chumbadores, utilizando para ambos o aço ASTM A36.

750

600

150

150

150 150

A

B

bb

a a

mm164mm55,1240,0t40,00Hchumbador

.mm5,12echapaadotado.mm15,175,1811,05,72

Ffa2t

cm/kN75,182575,0F75,0F

cm.kN00,32

1011,0MMcm/kN11,04790

450fpara

cm515cm230.44790BA.mm470Bemm900150750A

cm5155,235,0

450f35,0

NBAf35,0BA

Nf

chumb

b

c

2yb

2ba

2c

22

2

ckckc

φφ →=×=×>→=→

=→=××=××≥

=×=×=

==→=×

=

>>=×=×→==+=

=×→×≤×

=

Page 183: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-8

Resolução:

Dimensões mínimas da chapa:

04) Dado o pilar formado por um perfil W 460x82, sujeito a uma carga de compressão axial de 37,50 kN e momento fletor de 160 kN x m, sabendo que o concreto utilizado na base será C-25, determinar, determinar a espessura da chapa de base e o diâmetro dos chumbadores, utilizando para a chapa o aço ASTM A36 e para os chumbadores o aço SAE 1020..

100

100 100

660

390

100

mm20cm15,32cm52,04033,02

74,13A

kN74,1339,44

39,14000.1000.15T

cm39,14334,69

275xcm39,445,7

334,6975y

mm202adotadomm205040,0chumb

mm50echapaadotado.cm85,475,1849,0152t

cm/kN75,182575,0Fcm.kN13,552

1549,0M

2nec

2b2

a

φ

φ

→<=××

=

=×−

=

=−=→=−−=

→=×>φ

=→=××≥

=×=→=×

=

( )

cm75cm4505,160000.156

05,1602000.1

05,1602000.1A

cm34,6904,049,0

7549,0ccm/kN04,0

7560000.15

6075000.1

ABM

BANf

cm/kn49,0cm/kn05,13375,0f375,0f

cm/kN49,07560

000.156075

000.1ff35,0AB

MBA

Nf

222t

22ckc

22cck2c

<=⎟⎠⎞

⎜⎝⎛

××

+⎟⎠⎞

⎜⎝⎛

××+

××≥

=+×

=−=

×−

×=

×−

×=

>=×=×≤

=→×≤×

=

Page 184: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

10-9

Resolução:

Dimensões mínimas da chapa:

( )

cm66cm50,5388,039000.166

88,039250,34

88,039250,34A

cm77,6005,058,0

6658,0ccm/kN05,0

6639000.16

396650,37

ABM

BANf

cm/kn58,0cm/kn5,2375,0f375,0f

cm/kN58,06639

000.163966

50,37ff35,0AB

MBA

Nf

222t

22ckc

22cck2c

<=⎟⎠⎞

⎜⎝⎛

××

+⎟⎠⎞

⎜⎝⎛

××+

××≥

=+×

=−=

×−

×=

×−

×=

>×=×≤

=→×≤×

=

mm383adotado2cm13,103833,03

381A

kN38174,40

74,1250,37000.16T

cm74,12377,60

266xcm74,405

377,6066y

mm162adotadomm2,153840,0chumb

mm38echapaadotado.cm52,375,1858,0102t

cm/kN75,182575,0Fcm.kN00,292

1058,0M

nec

2b2

a

φ

φ

→=××

=

=×−

=

=−=→=−−=

→=×>φ

=→=××≥

=×=→=×

=

Page 185: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-1

11 – Projeto de Mezanino

11.1. – Definição:

Mezaninos metálicos são estruturas bastante comuns em obras residenciais, comerciais e industriais. Trata-se de estruturas de dimensões das mais variadas mas que, no entanto, tendem a ter essas dimensões menores do que a área onde estão inseridas. Essas estruturas de mezanino estão sempre inseridas nos interiores de áreas e costumam ocupar áreas intermediarias entre pisos, ocupando em torno de cinqüenta por cento da área total.

No caso de obras residências, as cargas verticais atuantes são determinadas por normas pertinentes. Para os mezaninos comerciais, há sempre uma variação nas cargas acidentais atuantes, variando entre 0,20 até 1,00 kN/m2. Para os mezaninos industriais, as variações de cargas são muito mais amplas, pois existem casos, muito comuns, em que haja a necessidade de se colocar equipamentos cujo peso deve ser avaliado caso a caso, tanto do ponto de vista da atuação de cargas estáticas quanto dinâmicas, sendo, em geral, dimensionados para cargas acidentais que variam de 0,4 a 1,50 kN/m2, o que não quer dizer que não haja situações ainda mais diversas para todos os casos de utilização.

As peças estruturais que compõem os mezaninos metálicos são basicamente vigas, pilares e contraventamentos horizontais e verticais, muito embora nesses sistemas estruturais não haja influência de esforços horizontais provenientes dos efeitos horizontais de vento, pois, na maioria das vezes, esses sistemas encontram-se internamente posicionados, deve se posicionar contraventamentos, uma vez que as estruturas metálicas são sempre bastante esbeltas.

No presente caso, vamos dimensionar um mezanino metálico para utilização comercial, utilizando-se para o piso, placas do tipo wall, apropriadas para esses casos. Quanto ao dimensionamento dos contraventamentos, adotaremos perfis mínimos para esse fim.

Page 186: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-2

11.2. – Dimensionamento:

Dimensionar o mezanino metálico abaixo, utilizando-se dos seguintes dados:

a- carga acidental – 4,00 kN/m2;

b – peso próprio da estrutura (estimado) – 0,40 kN/m2;

c - peso da placa de piso tipo wall – 0,20 kN/m2;

d – fôrro – 0,20 kN/m2;

e – vigas secundárias – utilizar perfis U laminados (ASTM A-36);

f – vigas principais – utilizar vigas padrão W Açominas (ASTM A-572);

g – pilares – utilizar perfis CS (ASTM A-36);

h – altura do mezanino: 3.400mm.

PM.403

VM

4000

VM 04

VM

05

VM

VM

VM

VM

VM

05

7500

PM.5

PM.7 PM.8

PM.1VM 01

VM

06

3000

VM

VM

06

VM

VM

VM

VM

VM

0606 06 06 06

PM.2

PM.6

PM.3

06

VM 02

VM 02

VM

06

VM

06

VM

06

6 x 1250 = 7500 4 x 1250 = 5000

1250

5000

4000

3000

7000

7000

PLANTA DO MEZANINO

05 05 05 05 05

12500

Page 187: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-3

Resolução:

Inicialmente devemos definir a atuação das cargas por área de influencia, seguido pela determinação do esquema estático da estrutura. Assim sendo, as primeiras vigas a serem dimensionadas serão as denominadas vigas secundárias, ou V.M.05 e V.M.06, seguido pelas principais: V.M.01 a V.M.04.

1 – V.M.05

00,1QQQ

00,1Q1680,599,074,5

tb

00,1K70th

00,1Q10877,32559,032,18

th

:)Q(localflambagem)a

cm68,599,074,5Amm4,57b

cm24,10559,032,18Amm20,1839,92203h

mm203d/cm40,133W

:Dados

)tentativa1(10,17x203Uadotadoperfil

cm120W)oestatísticnúmero(50,1256,0

5,1200.1W

fbM

WWM

fbcm/kN25F36AASTM

kN122

00,400,62

qV

cm.kN200.1m.kN128

00,400,68

qM

.m/kN00,625,180,4q

m/kN80,4CTm/kN00,4CA

m/kN80,020,020,040,0CP

sa

sf

cw

aw

a

2f

2w

3x

a

3xpx

x

pxx

x

xx

2y

x

22

x

2

2

2

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=×−=

==

=→=→×

×=

×=⇒=→=→−

=

==×

=

=×=

=

=

=++=

γ

γ

l

l

Page 188: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-4

perfiloutroadotarFbcm/kN00,94,133

200.1WM

fb

:AtuanteTensão)e

cm/kN90,5QQ90,5Fb

00,1Q00,1Q

77,322609,5

632

cm/kN90,5Fbcm/kN90,5

68,53,2040000,1430.8

"Fb

cm/kN78,225,207

00,1520.119'Fb

apoiadabiViga00,1Cb

12025,20793,1

400r

Lbcm93,1

624,10

68,52

9,54r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

lateralcontençãosemLbcm36,157

2568,53,20060.14

FAd

060.14Lb

Lbcm32,7225

74,563

F

b63Lb

.cm400Lb

:globalflambagem)b

x2

x

xx

2ex

e2

x2

x

22

x

tt

x

yf

2

y

f1

→>===

=××=

=→=

>=

==

×

×=

=

−→=

>==→=

=

→→

<=

×

=

×

=

<=×

=

=

00,1QQQ

00,1Q1624,699,018,6

tb

00,1K70th

00,1Q10832,1800,132,18

th

:)Q(localflambagem)a

cm12,699,018,6Amm80,61b

cm32,1800,132,18Amm20,1839,92203h

mm203d/cm00,164W

:Dados

)tentativa2(20,24x203Uadotadoperfil

sa

sf

cw

aw

a

2f

2w

3x

a

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=×−=

==

Page 189: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-5

perfiloutroadotarFbcm/kN22,7166200.1

WM

fb

:AtuanteTensão)e

cm/kN35,6QQ35,6Fb

00,1Q100Q

32,1825135,6

632

cm/kN35,6Fbcm/kN35,6

12,63,2040000,1430.8

"Fb

cm/kN96,2201

00,1520.119'Fb

apoiadabiViga00,1Cb

12020199,1

400r

Lbcm99,1

632,18

12,62

9,72r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

lateralcontençãosemLbcm55,169

2512,6

3,20060.14

FAd

060.14Lb

Lbcm87,7725

18,663

F

b63Lb

.cm400Lb

:globalflambagem)b

x2

x

xx

2ex

e2

x2

x

22

x

tt

x

yf

2

y

f1

→>===

=××=

=→=

>=

==

×

×=

=

−→=

>==→=

=

→→

<=

×

=

×

=

<=×

=

=

00,1QQQ

00,1Q1695,511,16,6

tb

00,1K70th

00,1Q10839,3762,018,23

th

:)Q(localflambagem)a

cm33,711,160,6Amm66b

cm14,1461,018,23Amm80,23111,12254h

mm254d/cm00,221W

:Dados

)tentativa3(70,22x254Uadotadoperfil

sa

sf

cw

aw

a

2f

2w

3x

a

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=×−=

==

Page 190: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-6

254x22,7U

:adotadoperfil)h

Fvcm/kN85,014,14

12AV

f

cm/kN102540,0F2,6325

31639,37

th

:tocisalhamen)g

cm14,1350400

350cm35,0

800.2500.20384

400100

65

f

:Deformação)f

Fbcm/kN43,5221200.1

WM

fb

:AtuanteTensão)e

cm/kN08,6QQ08,6Fb

00,1Q00,1Q

39,3725608,6

632

cm/kN08,6Fbcm/kN08,6

33,74,2540000,1430.8

"Fb

cm/kN68,319,180

00,1520.119'Fb

apoiadabiViga00,1Cb

12019,18022,2

400r

Lbcm22,2

614,14

33,72

10,95r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

lateralcontençãosemLbcm30,162

2533,7

4,25060.14

FAd

060.14Lb

Lbcm16,8325

6,663

F

b63Lb

.cm400Lb

:globalflambagem)b

2

w

xv

2v

w

4

x2

x

xx

2ex

e2

x2

x

22

x

tt

x

yf

2

y

f1

<===

=×=→=<=

==<=××

×

×

=

<===

=××=

=→=

>=

==

×

×=

=

−→=

>==→=

=

→→

<=

×

=

×

=

<=×

=

=

l

Page 191: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-7

2 – V.M.06

lateralcontençãosemLbcm25,157

2525,42,15060.14

Lb

Lbcm49,6125

88,463Lb

cm300Lb

:globalflambagem)b

00,1QQQ

00,1Q1661,587,088,4

tb

00,1K70th

00,1Q10836,21508,085,10

th

:)Q(localflambagem)a

cm25,487,088,4Amm8,48b

cm51,5508,085,10Amm50,1087,82152h

mm152d/cm70,71W

:Dados

)tentativa1(20,12x152Uadotadoperfil

cm68W)oestatísticnúmero(50,1256,0

5,1675W

fbM

WWM

fbcm/kN25F36AASTM

kN92

00,300,62

qV

cm.kN675m.kN75,68

00,300,68

qM

.m/kN00,625,180,4q

m/kN80,4CTm/kN00,4CA

m/kN80,020,020,040,0CP

2

1

sa

sf

cw

aw

a

2f

2w

3x

a

3xpx

x

pxx

x

xx

2y

x

22

x

2

2

2

<=

×

=

<=×

=

=

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=×−=

==

=→=→×

×=

×=⇒=→=→−

=

==×

=

=×=

=

=

=++=

γ

γ

l

l

Page 192: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-8

perfiloutroadotarFbcm/kN41,97,71

675WM

fb

:AtuanteTensão)e

cm/kN86,7QQ86,7Fb

00,1Q00,1Q

36,2122586,7

632

cm/kN86,7Fbcm/kN86,7

25,42,1530000,1430.8

"Fb

cm/kN70,364,179

00,1520.119'Fb

apoiadabiViga00,1Cb

12064,17967,1

300r

Lbcm67,1

651,5

25,42

80,28r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

x2

x

xx

2ex

e2

x2

x

22

x

tt

x

→>===

=××=

=→=

>=

==

×

×=

=

−→=

>==→=

=

→→

lateralcontençãosemLbcm49,176

2577,42,15060.14

Lb

Lbcm05,6925

48,563Lb

cm300Lb

:globalflambagem)b

00,1QQQ

00,1Q1694,411,148,5

tb

00,1K70th

00,1Q10847,1287,085,10

th

:)Q(localflambagem)a

cm77,487,048,5Amm8,54b

cm04,1211,185,10Amm50,1087,82152h

mm152d/cm00,95W

:Dados

)tentativa2(40,19x152Uadotadoperfil

2

1

sa

sf

cw

aw

a

2f

2w

3x

a

<=

×

=

<=×

=

=

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=×−=

==

Page 193: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-9

4,19x152U

adotadoperfil)h

Fcm/kN75,004,12

9AV

f

cm/kN102540,0F2,6325

31647,12

th

:toCisalhamen)g

.cm86,0350300

350cm43,0

724500.20384

300100

65

f

:Deformação)f

Fbcm/kN10,795675

WM

fb

:AtuanteTensão)e

cm/kN82,8QQ82,8Fb

00,1Q00,1Q

47,1221382,8

632

cm/kN82,8Fbcm/kN82,8

77,42,1530000,1430.8

"Fb

cm/kN30,467,166

00,1520.119'Fb

apoiadabiViga00,1Cb

12067,16680,1

300r

Lbcm80,1

604,12

77,42

90,43r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

v2

w

xv

2v

w

4

x2

x

xx

2ex

e2

x2

x

22

x

tt

x

<===

=×=→=<=

==<=××

×

×

=

<===

=××=

=→=

>=

==

×

×=

=

−→=

>==→=

=

→→

l

Page 194: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-10

3 – V.M.01/V.M.04

Adotaremos para essas vigas o mesmo dimensionamento, tomando-se a área de influencia da V.M.04.

lateralcontençãosemLbcm75,119

5,3408,99,30

060.14Lb

Lbcm40,1095,34

2,1063Lb

cm125Lb

:globalflambagem)b

00,1QQQ

00,1Q1473,589,010,5

tb

00,1K70th

00,1Q925,486,010,29

th

:)Q(localflambagem)a

cm08,989,02,10Amm102b

cm46,176,010,29Amm291h

mm309d/cm356W

:Dados

)tentativa1(3,28x310Wadotadoperfil

cm326W)oestatísticnúmero(00,15,346,00,1750.6

W

fbM

WWM

fbcm/kN5,34F572AASTM

kN362

50,760,92

qV

cm.kN750.6m.kN50,678

50,760,98

qM

.m/kN60,900,280,4q

2

1

sa

sf

cw

aw

a

2ff

2w

3x

a

3xpx

x

pxx

x

xx

2y

x

22

x

<=

×

=

<=×

=

=

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=

==

=→=→×

×=

×=⇒=→=→−

=

==×

=

=×=

γ

γ

l

l

Page 195: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-11

Em vista de que as características geométricas do perfil são maiores do que o perfil W 310x28,3, adotado na 1a. tentativa, não é necessário efetuar-se as demais verificações.

→=→

=××

×

×

=

→==>=××

×

×

=

<===

=××=

=→=

>=

=×<=

=

=

×

×=

×

×−=

−→=

<<→==→=

=

→→

)levemais(adotadocm77.12I80,38x410W

39x360W

5,44x310W

propostosperfis

cm016.914,2500.20384

750100

60,95

I

maiorperfiladotar.cm14,2350750

350cm51,3

500.5500.20384

750100

60,95

f

:Deformação)f

Fbcm/kN96,18356750.6

WM

fb

:AtuanteTensão)e

cm/kN50,20QQ50,20Fb

00,1Q00,1Q

5,4814050,20

632

cm/kN70,2050,3460,0cm/kN50,20Fb

cm/kN50,20Fbcm/kN82,19

08,99,3012500,1430.8

"Fb

cm/kN50,205,3400,1670.075.1

64,485,3467,0'Fb

apoiadabiViga00,1Cb

10264,484664,4857,2

125r

Lbcm57,2

646,17

08,92

158r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

4x

4

4

nec,x

4

x2

x

xx

2ex

e22

x

2x

2x

22

x

tt

x

l

Page 196: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-12

4 – V.M.03

lateralcontençãocomLbcm07,195

5,3429,193,40

060.14Lb

Lbcm85,1895,34

7,1763Lb

cm125Lb

:globalflambagem)b

00,1QQQ

00,1Q1412,809,185,8

tb

00,1K70th

00,1Q928,5075,010,38

th

:)Q(localflambagem)a

cm29,1909,17,17Amm177b

cm58,2875,010,38Amm381h

mm403d/cm7,929W

:Dados

)levemais(adotado53x410W

8,57x360Wpossíveisperfis

cm780.1514,2500.20384

750100

80,165

Icm14,2fpara

cm570W)oestatísticnúmero(00,15,346,00,1813.11

W

fbM

WWM

fbcm/kN5,34F572AASTM

kN632

50,780,162

qV

cm.kN813.11m.kN13,1188

50,780,168

qM

.m/kN80,1650,380,4q

2

1

sa

sf

cw

aw

a

2ff

2w

3x

4

4

nec,xa

3xpx

x

pxx

x

xx

2y

x

22

x

>=

×

=

>=×

=

=

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=

==

→→

=××

×

×

=→=

=→=→×

×=

×=⇒=→=→−

=

==×

=

=×=

γ

γ

l

l

Page 197: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-13

53x410W:adotadoperfil)h

Fcm/kN20,258,28

63AV

f

cm/kN80,135,3440,0F545,34

3168,50

th

:toCisalhamen)g

verificadajá:Deformação)f

Fbcm/kN71,1270,929

813.11WM

fb

:AtuanteTensão)e

cm/kN77,22QQ77,22Fb

00,1Q00,1Q

8,5013277,22

632

cm/kN77,22Fb

cm/kN77,225,3466,0Fb

:)Fb(flexãodeAdmissívelTensão)d

compacta912,8tb

compacta928,50th

:seçãodetipo)c

v2

w

xv

2v

w

x2

x

xx

2ex

e2

x

2x

x

f

w

<===

=×=→=<=

<===

=××=

=→=

>=

=

=×=

→<=

→<=

Page 198: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-14

5 – V.M.02

lateralcontençãocomLbcm87

5,3435,5

1,25060.14

Lb

Lbcm33,1085,34

1,1063Lb

cm125Lb

:globalflambagem)b

00,1QQQ

00,1Q1453,953,005,5

tb

00,1K70th

00,1Q925048,0

24th

:)Q(localflambagem)a

cm35,553,01,10Amm101b

cm52,1148,024Amm240h

mm251d/cm6,182W

:Dados

)levemais(adotado9,17x250W

5,22x200Wpossíveisperfis

cm000.243,1500.20384

500100

20,75

Icm43,1350500

fpara

cm109W)oestatísticnúmero(00,15,346,00,1250.2

W

fbM

WWM

fbcm/kN5,34F572AASTM

kN182

00,520,72

qV

cm.kN250.2m.kN50,228

00,520,78

qM

.m/kN20,750,180,4q

2

1

sa

sf

cw

aw

a

2ff

2w

3x

4

4

nec,xa

3xpx

x

pxx

x

xx

2y

x

22

x

>=

×

=

>=×

=

=

=×=

=⇒<==

=→<→=⇒<==

=×=→=

=×=→=

==

→→

=××

×

×

=→==

=→=→×

×=

×=⇒=→=→−

=

==×

=

=×=

γ

γ

l

l

Page 199: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-15

9,17x250W:adotadoperfil)g

verificadajá:Deformação)f

Fbcm/kN32,126,182

250.2WM

fb

:AtuanteTensão)e

cm/kN70,20QQ70,20Fb

00,1Q00,1Q

5013970,20

632

cm/kN70,2050,3460,0cm/kN06,23Fb

cm/kN06,23Fbcm/kN82,19

08,99,3012500,1430.8

"Fb

cm/kN06,235,3400,1670.075.1

505,3467,0'Fb

apoiadabiViga00,1Cb

10250465050,2

125r

Lbcm50,2

652,11

35,52

91r

:)Fb(flexãodeAdmissívelTensão)d

lateralapoiosemldispensáveseçãodetipo)c

x2

x

xx

2ex

e22

x

2x

2x

22

x

tt

x

<===

=××=

=→=

>=

=×>=

=

=

×

×=

×

×−=

−→=

<<→==→=

=

→→

Page 200: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-16

5 – P.M.01 a P.M.08

Para o dimensionamento dos pilares adotaremos a pior situação, ou seja, a de maior carga, determinada também por área de influência.

Carga do P.M.05:

comanda15,9173,3

340

96,5242,6

340

cm34034000,1LK

:globalflambagem)b

00,1QQQ

00,1Q1638,98,05,7

tb

00,1K70th

00,1Q4327,2163,04,13

th

:)Q(localflambagem)a

mm0,8t150b

mm3,6tmm13482150h

mm150d/cm40,32A

:Dados

25x150CSadotadoperfil

cm50,10A)oestatísticnúmero(50,1256,0

5,1105A

faN

AA

Nfacm/kN25F36AASTM

kN10580,488,21N

m88,212

00,300,42

00,550,7A

y

x

sa

sf

cw

aw

a

ff

w

2

2p

pmáxmáx2y

máx

2luênciainf

→==

==

=×=×

=×=

=⇒<==

=→<→=⇒<==

=→=

=→=×−=

==

=→=→×

×=

×=⇒=→=→−

=×=

=

+=

λ

λ

γ

γ

Page 201: ESTRUTURAS METÁLICAS I - acn.eng.br I.pdf · puc-campinas – ceatec – fac. de engenharia civil estruturas metÁlicas i prof. augusto cantusio neto 0.1 estruturas metÁlicas i

PUC-CAMPINAS – CEATEC – FAC. DE ENGENHARIA CIVIL ESTRUTURAS METÁLICAS I

Prof. AUGUSTO CANTUSIO NETO

11-17

07 – Verificação do peso total:

Ao encerrar-se o dimensionamento é preciso verificar o peso final da estrutura, a fim de que esse não ultrapasse de 10 a 15% do valor inicial adotado.

25x150CSadotadoperfil)e

Facm/kN24,340,32

105fa

:atuanteTensão)d

cm/kN43,891,1

25

1082

15,911Fa

91,1108

15,91125,0108

15,91375,0667,1FS

108C

:AdmissívelTensão)c

2

22

2

3

3

c

<==

×−=

−×

+=

=<λ

recalcularnecessárioénão15,140,046,0

pesoslaçãoRe

m/kN46,0m/kg4650,67

115.3MédioPeso

m50,67:MezaninodoÁrea

115.3:GeralTotal

68040,30,250825x150CS

17900,59,17029,17x250W

39850,70,53010,53x410W

58250,78,38028,38x410W

63600,47,22077,22x254U

64000,34,19114,19x152U

)kg(totalocomprimentpesobarrasde.n

22

2

o

→==

===