Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois...

59

Transcript of Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois...

Page 1: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

UNIVERSIDADE FEDERAL DE MINAS GERAISINSTITUTO DE CIÊNCIAS EXATASDEPARTAMENTO DE MATEMÁTICA

Dissertação de Mestrado

Estudo do Bilhar no Anel de CírculosExcêntricos

Reginaldo Braz BatistaOrientadoras: Sylvie Olison Kamphorst e Sônia Pinto de Carvalho

2008

Page 2: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Estudo do Bilhar no Anel de CírculosExcêntricos

Reginaldo Braz BatistaOrientadoras: Sylvie Olison Kamphorst e Sônia Pinto de Carvalho

Dissertação apresentada ao Programa de Pós-Graduação em Matemática do Instituto de

Ciências Exatas da Universidade Federal de Minas Gerais, como requisito à obtenção do

título de MESTRE EM MATEMÁTICA.

Belo Horizonte- MG

2008

Page 3: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

.

Resumo

Estudamos uma família a dois parâmetros de bilhares em mesas circulares com um obs-

táculo interno. A dinâmica do sistema é descrita pela ação de um homeomorsmo no

cilindro compacto. Estudamos a estabilidade de pontos xos e utilizamos as simetrias

do problema para analisar o comportamento das variedades invariantes associadas a um

ponto xo hiperbólico. Provamos a existência de pontos homoclínicos para certos pa-

râmetros e estudamos as implicações dinâmicas da ocorrência de interseção homoclínica

com cruzamento topológico.

Page 4: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

.

Abstract

We study a two parameter family of billiards in circular tables with an internal obstacle.

The dynamic is described by the action of an homeomorphism of the compact cylinder.

We study the stability of the xed points and we use the symmetries of the problem

to analyze the behavior of the invariant manifolds of the hyperbolic xed point. We

prove the existence of homoclinic points for some parameters and we study the dynamical

implication of the homoclinic intersection with topological crossing.

Page 5: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

.

Para: Ari Guimarães Batista e Stella Braz Batista,

Sílvio, Divina, Maristela e Bruno.

5

Page 6: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

.

Agradecimentos

Agradeço a Sylvie Olison Kamphorst e Sônia Pinto de Carvalho por todos os anos de

orientação, aos professores Mário Jorge Dias Carneiro, Carlos Gustavo Moreira e José

Antônio Miranda pela participação na banca, ao Departamento de Matemática da UFMG,

a todos os professores que tive até hoje e aos meus amigos.

Page 7: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Índice

1 Introdução 9

2 O bilhar no anel excêntrico 13

2.1 A aplicação do bilhar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Dinâmica global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Estrutura do espaço de fase . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Simetrias e órbitas periódicas . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 As curvas β constante e o conjunto de singularidades . . . . . . . . 26

2.3.3 Imagens de retas verticais . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.4 Imagens dos eixos de simetria . . . . . . . . . . . . . . . . . . . . . 31

3 Pontos xos 33

3.1 O ponto xo elíptico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 O ponto xo hiperbólico (π, 0) . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Pontos homoclínicos . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Entropia topológica 43

7

Page 8: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

4.1 Critério geométrico para entropia topológica positiva . . . . . . . . . . . . 45

4.2 Entropia topológica positiva do bilhar no anel excêntrico . . . . . . . . . . 50

8

Page 9: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Capítulo 1

Introdução

Consideremos uma partícula em movimento retilíneo uniforme no interior de uma região

plana D, limitada por uma fronteira, ∂D, com a qual a partícula sofre colisões elásticas.

A descrição do comportamento dinâmico desta partícula é o que chamamos de Problema

do bilhar na mesa D. Damos o nome de Bilhar ao sistema dinâmico denido pela situação

descrita acima.

Os bilhares originalmente surgiram como modelos para tratar problemas de mecânica

clássica, hoje são iteressantes do ponto de vista teórico por constituírem fonte de exem-

plos e servirem para testes de conjecturas. De fato, estes sistemas apresentam diversos

fenômenos dinâmicos variando entre os casos que poderíamos classicar como mais or-

denados aos mais caóticos. Esses comportamentos são fundamentalmente determinados

pela geometria da mesa.

Para a descrição matemática do problema podemos considerar a partícula se movimen-

tando com velocidade v unitária. O estado do sistema no instante t é dado pelo ponto

(qt, vt) ∈ D× S1 sendo qt a posição da partícula na mesa e vt sua velocidade. A partir de

um estado inicial (q0, v0) a partícula segue uma trajetória linear com velocidade constante

v0 até sofrer um choque elástico com a fronteira, quando há uma mudança instantânea

na direção da velocidade, v0 → v′0, determinada por uma reexão em relação à direção

tangente à curva no ponto de choque. Podemos assim descrever a dinâmica por um uxo

9

Page 10: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 1.1: O movimento poligonal de uma partícula no bilhar

Φt : M → M , onde M = D × S1 com a identicação (q, v) = (q, v′) nos pontos em que

q ∈ ∂D. (ver [6] ou [3] para uma denição mais detalhada)

A dinâmica do bilhar é mais comumente descrita por uma uma aplicação T : Ω → Ω,

A aplicação de bilhar, onde Ω := (q, v); q ∈ ∂D é o conjunto dos pontos de colisão

na mesa. Dado um ponto (qi, vi) ∈ Ω está associado um único ponto (qi+1, vi+1) ∈ Ω

correspondente à primeira colisão com o bordo da partícula que sai de qi com velocidade

vi. Denimos:

T (qi, vi) := (qi+1, vi+1)

Cada trajetória na mesa é completamente determinada pela seqüência de colisões com o

bordo, dada uma dessas colisões (q, v) obtemos todas as outras por T n(q, v)n∈Z .

Na denição da aplicação T está implícita uma condição sobre a regularidade do bordo da

mesa, não é possível determinar o movimento da partícula quando esta se choca com um

ponto do bordo onde não está denida a tangente. Esta condição impõe uma restrição

sobre a classe de mesas de bilhar tratáveis.

Se a mesa tem o bordo dado por uma curva fechada convexa diferenciável a aplicação do

bilhar está denida para todo ponto em Ω. Podemos nesse caso tomar as colisões (q, v)

nas coordenadas (ω, α) sendo ω um parâmetro de comprimento de arco que identica q

e α o ângulo entre o vetor v e a normal ao bordo no ponto de colisão. Temos o seguinte

resultado:

Teorema 1.0.1 Se a fronteira da mesa for uma curva fechada Ck estritamente convexa, a

10

Page 11: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

aplicação do bilhar T : Ω → Ω é um difeomorsmo Ck−1 preservando a medida cos α dωdα.

Figura 1.2: Colisões consecutivas numa mesa de bilhar

A prova desse fato é devida a Birkho e pode ser encontrada em [6] ou [3]. Basicamente

o resultado é obtido da seguinte expressão para a derivada de T :

D(ω0,α0)T =−1

cos(α1)

τK0 + cos α0 τ

τK0K1 + K0 cos α1 + K1 cos α0 τK1 + cos α1

(1.1)

Nesta expressão temos (ω0, α0) e (ω1, α1) pontos de colisão consecutivos, K0 e K1 são as

curvaturas do bordo em cada ponto de colisão e τ é o comprimento do segmento de reta

dado pela trajetória entre ω0 e ω1 . A dependência em relação à curvatura justica a

perda de um grau de diferenciabilidade da aplicação em relação à diferenciabilidade do

bordo.

Podemos obter o seguinte resultado mais geral:

Teorema 1.0.2 Se a fronteira da mesa de bilhar é dada pela união nita de curvas Ck

com k ≥ 3, estritamente convexas ou retas, então para um subconjunto de Ω a aplicação

de bilhar T : Ω → Ω é um difeomorsmo local Ck−1 que preserva a medida cos αdωdα. O

subconjunto em questão é de medida total.

A prova desse fato encontra-se em [3], onde se estuda de forma detalhada o conjunto

dos pontos em que a aplicação de bilhar não é diferenciável, Conjunto de singularidades.

11

Page 12: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Este conjunto é basicamente constituído pelas condições iniciais que originam choque

com pontos de não diferenciabilidade ou trajetórias que tangenciam o bordo, esta última

situação justica-se pela presença do termo −1cos(α1)

na expressão da derivada que torna-se

ilimitado nos pontos de tangência quando tem-se α1 = π2. No complementar do conjunto

de singularidades, Pontos regulares, a aplicação de bilhar comporta-se como em mesas

convexas preservando a medida cos α dωdα. Mostra-se que o conjunto de singularidades

tem medida nula donde conclui-se o resultado.

Em resumo: a dinâmica do bilhar em mesas cujo bordo satisfaz as condições do teorema

1.0.2 pode ser descrita por um sistema dinâmico discreto (Ω, T, µ). Sendo Ω o conjunto

dos pontos de colisão e T : Ω → Ω um difeomorsmo em um subconjunto Ω′ ⊂ Ω de

medida total com respeito à medida µ := cos αdωdα. O sistema é conservativo o que

signica que µ é uma medida invariante por T , i.e µ(T (A)) = µ(A).

Neste contexto as trajetórias na mesa são traduzidas nas órbitas :

O(ω, α) = ...T−1(ω, α), (ω, α), T (ω, α), ...

e estudar a dinâmica consiste em procurar descrever o comportamento de tais órbitas

para a maioria dos pontos (ω0, α0) ∈ Ω.

12

Page 13: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Capítulo 2

O bilhar no anel excêntrico

Neste trabalho vamos considerar o problema do bilhar em uma mesa circular contendo

um disco como obstáculo interno. A essas mesas daremos o nome de Anéis Excêntricos.

O estudo destes bilhares foi feito pela primeira vez por Saitô et all em [1].

Figura 2.1: Anel Excêntrico

Denição 2.0.1 Um Anel Excêntrico (r, δ) é a região plana compreendida no interior

de um círculo unitário de centro c e externa ao disco de raio r < 1 e centro c′ tal que

|c− c′| = δ > 0 e r + δ < 1

13

Page 14: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

2.1 A aplicação do bilhar

A aplicação de bilhar no anel excêntrico é descontínua em decorrência das trajetórias que

tangenciam o bordo do disco interno. No entanto, é possível descrever a dinâmica deste

sistema por uma aplicação de bilhar modicada que preserva a medida da aplicação de

bilhar usual. Para provar estes fatos iniciemos denindo a parametrização do conjunto de

colisões.

As colisões com o círculo externo serão identicadas pelas coordenadas (ω, α) sendo ω ∈

[−π, π) o comprimento do arco entre o ponto P0 (ver Figura 2.1 ) e o ponto de colisão

medido no sentido anti-horário, o ângulo α ∈ (−π2, π

2) é o ângulo entre o vetor velocidade

e o vetor normal no ponto de colisão medido no sentido horário.

As colisões com o círculo interno serão identicadas pelas coordenadas (ω′, β) sendo ω′ ∈

[(3 − r)π, (3 + r)π) o comprimento de arco medido no sentido horário a partir do ponto

P1 e β ∈ [−π2, π

2] o ângulo do vetor velocidade com a normal no ponto de colisão medido

no sentido anti-horário.

Denimos então o conjunto de colisões por:

C = [−π, π)× (−π

2,π

2) ∪ [(3− r)π, (r + 3)π)× [−π

2,π

2]

que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas

disjuntas. Observemos que o segundo cilindro, das colisões com o círculo interno, é fechado

já que é possível haver colisões de tangência com o este bordo.

Seja F := F(r,δ) : C → C a aplicação do bilhar em um anel (r, δ). Nas coordenadas (ω, α)

escreveremos:

F (ω0, α0) = (ω1, α1)

Pelo teorema (1.0.2), F é um difeomorsmo C∞ a menos de um conjunto de medida nula,

o conjunto de singularidades, que no caso é constituído pelos pontos de C que determinam

trajetórias tangentes ao bordo interno, i.e os pontos (ω0, α0) tais que |α1| = π2. Veremos

adiante que este conjunto é formado por duas curvas fechadas C∞ em [−π.π) × (−π2, π

2)

14

Page 15: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

que são grácos da coordenada ω dados pela equação:

|sen (ω) + δsen (ω − α)| = r (2.1)

estas curvas dividem o cilindro [−π.π)× (−π2, π

2) nos conjuntos:

B = (ω, α) ∈ [−π.π)× (−π

2,π

2), |sen (ω) + δsen (ω − α)| ≤ r

e

A = (ω, α) ∈ [−π.π)× (−π

2,π

2), |sen (ω) + δsen (ω − α)| > r

Figura 2.2: Trajetórias tangentes ao disco interno.

O conjunto B é formado pelos pontos (ω0, α0) tais que F (ω0, α0) é um ponto de colisão

com o círculo interno. Os pontos (ω0, α0) ∈ A são tais que F (ω0, α0) corresponde a uma

colisão com o círculo externo.

Toda colisão com o círculo interno é precedida e sucedida por colisões com o círculo

externo. Podemos então descrever completamente uma trajetória em (r, δ) considerando

somente os pontos de colisão com o círculo externo. Isso nos leva a denir uma nova

aplicação

T : [−π.π)× (−π

2,π

2) → [−π.π)× (−π

2,π

2)

que associa uma colisão (ω0, α0) no círculo externo com a próxima colisão que ocorrer

também com o círculo externo. Podemos escrever:

T (ω, α) =

TA := F (ω, α) se (ω, α) ∈ A,

TB := F 2(ω, α) se (ω, α) ∈ B(2.2)

15

Page 16: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.3: Parametrização das colisões na mesa de bilhar.

Podemos também encontrar equações que relacionam (ω0, α0) com sua imagem T (ω0, α0) =

(ω1, α1). A dedução destas relações encontra-se em [10] ou [9] e segue os parâmetros da

Figura 2.3.

TA =

α1 = α0

ω1 = ω0 + (π − 2α0)(2.3)

TB =

sen α0 + δ sen (α0 − ω0) = rsen β,

sen α1 + δ sen (α1 + ω1) = rsen β,

2β = α0 − ω0 + α1 + ω1

(2.4)

Essa nova aplicação substitui F com vantagens, pois além de estar denida em um domínio

conexo é também um homeomorsmo que preserva a medida cos α dωdα.

Proposição 2.1.1 A aplicação T : [−π, π) × (−π2, π

2) → [−π, π) × (−π

2, π

2) é um home-

omorsmo, C∞ a menos do conjunto de singularidades, e preserva a medida cos αdωdα.

Podemos estenter continuamente T ao fecho de [−π, π) × (−π2, π

2) denindo os pontos

(ω,±π2) como sendo xos.

Prova: Como T |A := F |A e T |intB := F 2|intB são difeomorsmos C∞ resta-nos provar a

continuidade em ∂B. Suponhamos (ωk, αk)k≥0 uma seqüência em B convergindo para

(ω0, α0) ∈ ∂B. Denotemos T (ωk, αk) = (ωk1 , α

k1) e βk = β(ωk, αk). Temos das relações 2.4

que:

sen αk1 + δ sen (αk

1 + ωk1) = rsen βk

16

Page 17: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

2βk = αk − ωk + αk1 + ωk

1

Segue que:

sen αk1 + δ sen (2βk − αk + ωk) = rsen βk

Quando k → ∞ temos βk → β(ω0, α0), ωk1 → ω1(ω0, α0) e αk

1 → α1(ω0, α0). Tomando o

limite na última igualdade acima obtemos:

sen α1(ω0, α0) + δ sen (2β(ω0, α0)− α0 + ω0) = rsen β(ω0, α0)

Como (ω0, β0) ∈ ∂B temos que β(ω0, α0) = ±π2portanto:

sen (2β(ω0, α0)− α0 + ω0) = sen (±π

2− α0 + ω0) = sen (α0 − ω0)

Então, podemos escrever:

sen α1(ω0, α0) + δ sen (α0 − ω0) = rsen β(ω0, α0)

Assim:

sen α1(ω0, α0) = rsen β(ω0, α0)− δ sen (α0 − ω0) = sen (α0)

Esta última igualdade, que segue das relações 2.4, implica que α1 = α0.

Ainda das relações 2.4 temos que:

ωk1 = 2βk − (α0 − ω0 + αk

1)

17

Page 18: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Tomando o limite em k e já considerando que α0 = α1(ω0, α0) temos:

ω1(ω0, α0) = 2(±π

2)− (α0 − ω0 + α1(ω0, α0))

ω1 = ±π − 2α0 + ω0

Como identicamos π e −π temos nalmente que:

α1(ω0, α0) = α0

ω1(ω0, α0) = π − 2α0 + ω0

Logo (ω0, α0) e T (ω0, α0) satisfazem as relações 2.3, ou seja, TA(ω0, α0) = TB(ω0, α0) e

conluímos a continuidade de T em ∂B.

Sendo T contínua em [−π.π) × (−π2, π

2) há uma única extensão contínua em [−π.π) ×

[−π2, π

2], esta extensão consiste em denir como xos os pontos (ω,±π

2). De fato:

limα0→π

2

[ω1(ω0, α0)] = limα0→π

2

[ω0 + (π − 2α0)] = ω0 + (π − 2π)) = ω0

portanto T (ω0,±π2) = (ω0,±π

2).

Quanto à medida, seja µ a medida invariante por F , e C um boreleano de [−π.π)×[−π2, π

2].

Denotemos por K o união ∂B∪α = ±π2 que é um conjunto de medida nula. Temos que

A = (C ∩ A) ∪ (C ∩ B) ∪ (C ∩ K)

Sendo esta união disjunta temos:

µ(T (A)) = µ(T (C ∩ A)) + µ(T (C ∩ B)) + µ(T (C ∩ K))

Como

µ(C ∩ K) = 0

µ(T (C ∩ A)) = µ(F (C ∩ A)) = µ(C ∩ A)

µ(T (C ∩ B)) = µ(F 2(C ∩ A)) = µ(A ∩ B)

18

Page 19: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

temos que

µ(T (A)) = µ((C ∩ A) ∪ (C ∩ B) ∪ (C ∩ K)) = µ(A).

Portanto µ é medida invariante por T .

Utilizando a expressão (1.1) para a derivada da aplicação do bilhar vamos obter a derivada

da aplicação T :

D(ω0,α0)T =

∂ω1(ω0,α0)

∂ω∂ω1(ω0,α0)

∂α

∂α1(ω0,α0)∂ω

∂α1(ω0,α0)∂α

(2.5)

Precisamos considerar separadamente os casos em que (ω0, α0) ∈ A e (ω0, α0) ∈ B. No

primeiro caso, segue facilmente das relações 2.3 que:

D(ω0,α0)T =

1 −2

0 1

No caso em que (ω0, α0) ∈ B temos que T (ω0, α0) = F 2(ω0, α0), logo pela regra da cadeia

D(ω0,α0)T = D(ω0,α0)F2 = DF (ω0,α0)F.D(ω0,α0)F .

A condição inicial (ω0, α0) ∈ B determina uma colisão (ω′, β) = F (ω0, α0) com o círculo

interno. Da expressão (1.1) temos que:

D(ω0,α0)T =−1

cos β

−τ0 + cos α0 τ0

−τ0+cos α0

r− cos β τ0

r+ cos β

(2.6)

A condicão (ω′, β) determina uma colisão T (ω′, β) = (ω1, α1) com o bordo externo. No-

vamente pela expressão 1.1 temos:

D(ω′,β)T =−1

cos α1

τ1r

+ cos β τ1

−τ1+cos α1

r− cos β −τ1 + cos α1

(2.7)

19

Page 20: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Fazendo o produto de (2.6) com (2.7) obtemos:

∂ω1

∂ω= −2τ0τ1

r+

2τ1 cos α0

r− (τ0 + τ1 − cos α0) cos β

∂ω1

∂α=

2τ1τ0

r+ τ0τ1 cos β

∂α1

∂ω=

2

r(τ1τ0 − τ1 cos α0 − τ0 cos α1) + (τ1 + τ0 − cos α0 − cos α1) cos β +

cos α1 cos α0

r∂α1

∂α= −2τ1τ0

r+

2τ0 cos α1

r+ (τ0 − τ1) cos β + cos α1 cos β

quando calculadas em (ω0, α0)

2.2 Dinâmica global

Uma visão global da dinâmica do sistema é obtida observando a disposição das órbitas

no espaço de fase Ω, as guras a seguir ilustram casos típicos da dinâmica para diferentes

parâmetros (r, δ). Elas são obtidas pela plotagem em Ω - aqui representado pelo retângulo

[−π, π]× [−π2, π

2] - de segmentos de órbitas para várias condições iniciais.

Basicamente a estrutura do espaço de fase nestes bilhares é determinada pela existência

de dois pontos xos ((0, 0) e (π, 0)) e as principais alterações da dinâmica global ocorrem

em função da mudança de estabilidade destes pontos em decorrência de uma variação nos

parâmetros.

Figura 2.4: Exemplos de trajetórias poligonais na mesa de bilhar e suas respectivas órbitas.

A Figura 2.5 ilustra o caso típico da dinâmica para parâmetros r > δ. Nota-se a presença

de curvas invariantes em torno de (0, 0) sugerindo a estabilidade deste ponto. Observa-se

uma cadeia de ilhas de estabilidade associadas a uma órbita periódica. Nas proximidades

20

Page 21: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.5: Órbitas para a mesa de parâmetros (0.5,0.25). Em destaque o conjunto de

singularidades dado pelas curvas em formato de senóides.

dos bordos as órbitas estão restritas a curvas invariantes α =constante, correspondendo

às condições iniciais que determinam apenas colisões com o círculo externo. Em destaque

também as curvas de singularidade.

A Figura 2.6 caracteriza a dinâmica para o caso r < δ. Nota-se a ausência da ilha central

em torno de (0, 0) que deixa de ser elíptico para essa região de parâmetros. Persistem

as curvas invariantes vizinhas ao bordo e algumas ilhas de estabilidade correspondendo a

órbitas periódicas elípticas também são perceptíveis.

Fica clara a dependência da dinâmica em relação aos parâmetros (r, δ) e a inuência dos

pontos (π, 0) e (0, 0) que são os dois únicos pontos xos da aplicação T no interior de Ω.

Analizaremos a dinâmica na vizinhança destes pontos com mais detalhe no capítulo 3.

Em particular temos maior interesse em estudar o comportamento das variedades invari-

antes associadas ao ponto (π, 0). Mostraremos a existência de interseções homoclínicas e

algumas conseqüências desse fenômeno.

21

Page 22: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.6: Órbitas para a mesa de parâmetros (0.3,0.4)

2.3 Estrutura do espaço de fase

Nesta seção provamos algumas propriedades do espaço de fase que serão úteis no estudo

que faremos da dinâmica dos bilhares excênctricos.

Representaremos o cilindro Ω pelo retângulo [−π, π] × [−π2,−π

2] o qual dividiremos em

quadrantes tendo como referência as curvas

γ0 := (ω, 0) φ0 := (π, α) ξ0 := (0, α)

Denotaremos os quadrantes por Qi, i = 1, 2, 3, 4 na ordem da Figura 2.7. Cada Qi é um

conjunto fechado cujo bordo são segmentos das curvas γ0, φ0, ξ0 e do bordo ∂Ω.

Dado C ⊂ Ω um subconjunto qualquer, denotaremos por Cn o conjunto T n(C) para todo

n ∈ Z. Diremos que C é invariante por T se T (C) = C. Diremos que C é xado por T

se ∀x ∈ C temos T (x) = x.

22

Page 23: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.7: A divisão do espaço de fase em quadrantes pelos eixos de simetria.

2.3.1 Simetrias e órbitas periódicas

Deniremos em Ω as seguintes aplicações, que chamaremos de simetrias:

X : Ω → Ω X(ω, α) = (−ω, α)

Y : Ω → Ω Y (ω, α) = (ω,−α)

Aos conjuntos xados por estas aplicações damos o nome de eixos de simetria. Temos

γ0 := (ω, 0) como eixo de Y e os conjuntos φ0 := (π, α) e ξ0 := (0, α) os eixos de

simetria de X.

A aplicação T satisfaz as seguintes relações de simetria:

Y T−1 = TY e XT−1 = TX (2.8)

A primeira é uma propriedade geral das aplicações de bilhar, a segunda é conseqüência

da simetria do anel excêntrico. Ambas podem ser provadas diretamente das equações 2.4

e 2.3. A Figura 2.8 ilustra as simetrias na mesa de bilhar.

Vericaremos as implicações para a dinâmica decorrentes das relações (2.8). Observemos

que X deixa invariante o eixo de simetria Y , i.e X(γ0) = γ0, e Y deixa invariantes os

23

Page 24: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.8: Simetrias do bilhar no anel excêntrico.

eixos de simetria de X, i.e Y (φ0) = φ0 e Y (ξ0) = ξ0. Além disto se um conjunto C for

invariante por alguma das simetrias X ou Y teremos

C−n = T−n(C) = T−nX(C) = XT n(C) se X(C) = C

C−n = T−n(C) = T−nY (C) = Y T n(C) se Y (C) = C

Se tomamos C como um dos eixos de simetria temos:

X(γn) = Y (γn)

φ−n = X(φn) = Y (φn)

ξ−n = X(ξn) = Y (ξn)

Logo há uma relação de simetria entres as imagens dos eixos γ0, φ0 e ξ0. Estas curvas

também estão relacionadas com os pontos periódicos de T .

Proposição 2.3.1 Dados m, n inteiros não simultaneamente nulos, os pontos de (γm ∪

φm ∪ ξm) ∩ (γn ∪ φn ∪ ξn) são pontos periódicos de T .

prova: Observemos inicialmente que se (ω, α) ∈ cm∩c′n então T−n(ω, α) ∈ T−n(cm∩c

′n) =

cm−n∩c′0, ou seja, T−n((ω, α)) ∈ c′0 e se este ponto for periódico (ω, α) também será. Logo

para provar o resultado basta considerarmos as interseções do tipo cm∩ c′0. Vamos dividir

em casos :

1. γm ∩ γ0:

24

Page 25: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Se (ω0, α0) ∈ γm∩γ0 então (ω0, α0) ∈ γ0 e (ω−m, α−m) = T−m(ω0, α0) ∈ T−m(γm) =

γ0. Segue que:

Y (ω−m, α−m) = (ω−m, α−m) e Y (ω0, α0) = (ω0, α0)

Pelas relações de simetria satisfeitas por T temos:

(ω0, α0) = Y (ω0, α0) = Y Tm(ω−m, α−m) = T−mY (ω−m, α−m)

= T−m(ω−m, α−m) = T−2m(ω0, α0)

Portanto (ω0, α0) é um ponto periódico de período menor ou igual a 2m.

2. (φm ∪ ξm) ∩ (φ0 ∪ ξ0):

Como no caso anterior, se (ω0, α0) ∈ (φm ∪ ξm)∩ (φ0 ∪ ξ0) então (ω0, α0) ∈ (φ0 ∪ ξ0)

e (ω−m, α−m) ∈ (φ0 ∪ ξ0) donde:

X(ω−m, α−m) = (ω−m, α−m) e X(ω0, α0) = (ω0, α0)

Temos também que:

(ω0, α0) = X(ω0, α0) = XTm(ω−m, α−m) = T−mX(ω−m, α−m)

= T−m(ω−m, α−m) = T−2m(ω0, α0)

Portanto (ω0, α0) é um ponto periódico de período menor ou igual a 2m.

3. (φm ∪ ξm) ∩ γ0:

Se (ω0, α0) ∈ (φm ∪ ξm) ∩ γ0 então (ω−m, α−m) ∈ (φ0 ∪ ξ0) donde:

X(ω−m, α−m) = (ω−m, α−m) e X(ω0, α0) = (ω0, α0)

Temos que:

(ω−m, α−m) = Y (ω−m, α−m) = Y T−m(ω0, α0) = TmY (ω0, α0) = (ωm, αm)

Como (ω−m, α−m) ∈ (φ0 ∪ ξ0) temos ω−m ∈ 0, π donde xm ∈ (φ0 ∪ ξ0) já que

pelas relações acima temos ωm = ω−m . Segue que xm ∈ (φ0 ∪ ξ0) e (ω−m, α−m) =

T−2m(xm) ∈ T (φ0 ∪ ξ0) = (φ−m ∪ ξ−m). Ou seja, (ω−m, α−m) ∈ (φ0 ∪ ξ0) ∩ (φ−2m ∪

ξ−2m) donde pelo caso 2 (ω−m, α−m) é um ponto periódico de período menor ou

igual a 4m, assim como (ω0, α0).

25

Page 26: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Não é uma conseqüência da proposição acima mas as interseções γ0 ∩ φ0 = (π, 0) e

γ0 ∩ ξ0 = (0, 0) também são pontos periódicos, sendo os únicos pontos xos de T no

interior de Ω, isso pode ser vericado diretamente das equações 2.4.

2.3.2 As curvas β constante e o conjunto de singularidades

Consideremos agora as curvas β constante. Relembremos que β identica o ângulo de

colisão com o disco interno e que se expressa em função de (ω0, α0) por:

β(ω0, α0) =1

2(α0 − ω0 + α1(ω0, α0) + ω1(ω0, α0))

Uma curva com β constante é o conjunto dos pontos (ω, α) tais que β(ω, α) = c para

alguma constante c ∈ [−π2, π

2]. Estas curvas são grácos C∞ de ω. De fato, derivando em

relação a α0:∂β

∂α0

=1

2(1 +

∂α1

∂α0

+∂ω1

∂α0

)

Mas:∂α1

∂α0

= −2τ0τ1

r+ 2

τ0 cos α1

r− (τ0 + τ1) cos β + cos α1 cos β

e∂ω1

∂α0

= 2τ0τ1

r+ (τ0 + τ1) cos β

Portanto:∂β

∂α0

=1

2(1 + 2

τ0 cos α1

r+ cos α1 cos β)

que é sempre não nulo já que α1 ∈ (−π2, π

2) e β ∈ [−π

2, π

2]

Segue do teorema da função implícita que para cada valor c ∈ [−π2, π

2] o conjunto β(ω0, α0) =

c é um gráco C∞ de ω. Portanto as curvas β = const são fechadas e homotópicas aos

bordos do cilindro.

A região B do cilindro Ω é folheada pelas curvas β constante sendo que o conjunto de

singularidades ∂B, é dado pelas curvas β = π2e β = −π

2. Isso prova que o conjunto de

singularidades tem medida nula por ser o gráco de uma aplicação diferenciável.

26

Page 27: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Outro caso que nos interessa é a curva β = 0, conjunto no qual coincidem as ações de T

e X, i.e T (ω0, α0) = (ω0,−α0) = X(ω0, α0). Provemos esta armação.

Lema 2.3.1 β(ω0, α0) = 0 se e somente se T (ω0, α0) = (ω0,−α0)

Prova: Se β(ω0, α0) = 0 temos:

0 = 2β = α0 − ω0 + α1 + ω1

donde (α0−ω0) = −(α1 +ω1) e sen (α0−ω0) = −sen (α1 +ω1). Das equações (2.4) segue

que:

sen α0 + sen α1 + δ (sen (α0 − ω0) + sen (α1 + ω1)) = 2rsen β = 0 (2.9)

donde sen α0 + sen α1 = 0.

Como α0, α1 ∈ (−π2, π

2) concluímos que α0 = −α1 e de (2.3.2) temos ω1−ω0 = −(α1+α0) =

0 donde ω0 = ω1.

Por outro lado T (ω0, α0) = (ω0,−α0) então ω1 = ω0 e α1 = −α1 logo β(ω0, α0) =

12(α0 − ω0 + α1 + ω1) = 0.

Figura 2.9: As curvas β constante

2.3.3 Imagens de retas verticais

Descreveremos agora as imagens de retas verticais, em alguns problemas o comportamento

da imagem de tais curvas é determinante para a obtenção de muitos resultados, este é o

27

Page 28: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

caso das aplicações do tipo Twist caracterizadas por uma condição de desvio das verticais,

ver [7]. Aplicações de bilhares convexos apresentam essa propriedade, não é o caso do

bilhar excêntrico como veremos a seguir.

Fixado ω0 seja vω0 := ω0 × [−π2

, π2] a reta vertical passando por ω0. Esta reta intercepta

cada gráco β = π2e β = −π

2em um ponto, denotados respectivamente por (ω0, α

+) e

(ω0, α−). Descreveremos agora a imagem T (vω0) = (ω1(ω0, α), α1(ω0, α)).

No intervalo [−π2, α+) temos que vω0 pertence à região A e temos por (2.8) que ∂ω1(ω0,α)

∂α=

−2. Portanto ω1(ω0, .) : [−π2

, π2] → Ω é injetiva, donde segue que o único ponto de

interseção entre vω0 e T (vω0) neste intervalo é o ponto xo (ω0,−π2).

No intervalo (α−, π2] temos vω0 também contida em A e ∂ω1(ω0,α)

∂α= −2. Portanto ω1(ω0, .)

é injetiva e o único ponto de interseção entre vω0 e T (vω0) neste intervalo é o ponto xo

(ω0,π2).

No intervalo [α+, α−], vω0 pertence à região B e

∂ω1(ω0, α0)

∂α=

2τ1τ0

r+ (τ0τ1) cos β > 0

dado que τ0, τ1 e r são positivos e cos β ≥ 0 pois β ∈ [−π2, π

2]. Segue que ω1(ω0, .) é injetiva

portanto T (vω0) intercepta vω0 em um único ponto que é exatamente o mesmo ponto de

interseção entre vω0 e β = 0, já que pelo lema 2.3.2 temos que se (ω0, α) ∈ β = 0 então

T (ω0, α) = (ω0, α1(ω0, α)) ∈ vω0 .

Figura 2.10: Trajetórias correspondentes a uma reta vertical.

Seja Π1 : Ω → [−π, π] a projeção na primeira coordenada. Observamos que dado ω0, o

conjunto Π1(T (vω0)) não cobre [−π, π], a justicativa geométrica deste fato é que não é

possível a partir de um ponto ω0 no bordo externo atingir todos os pontos do bordo externo

28

Page 29: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 2.11: Na primeira gura: uma reta vertical, v, interceptando as curvas

β =constante. Na segunda gura: a imagem da vertical interceptando as imagens das

curvas β =constante.

com uma única iterada da aplicação de bilhar em decorrência do obstáculo interno, ver

Figura 2.10.

Assim, para cada ω0 existe um intervalo aberto I ⊂ [−π, π) tal que Π1(T (vω0)) ∩ I =

∅. Nota-se pela Figura 2.11 que os extremos deste intervalo correspondem aos pontos

Π1(T (ω0, α±)) onde (ω0, α

±) são os pontos de interseção entre vω0 e a curva de singulari-

dades, β = ±π2.

No caso especíco do eixo ξ0, a reta vertical que passa por (0, 0), o intervalo complementar

de Π1(T (ξ0)) em [−π, π) é um intervalo simétrico (−θ, θ) centrado no ponto π, logo a curva

T (ξ0) não possui pontos em comum com a curva φ0, ver Figura 2.12

A seguir utilizamos as propriedades das imagens de retas verticais para provar alguns

lemas que serão úteis mais à frente.

Lema 2.3.2 Se (ω0, α0) ∈ Q4 então ω0 ≤ ω1(ω0, α0) ≤ π

prova: Seja ω0 ∈ [−π, 0] e seja vω0 a reta vertical passando por ω0. Denotemos por v+ω0

o

segmento de vω0 entre os pontos (ω0,π2) e (ω0, α

∗) = vω0 ∩ β = 0.

O conjunto T (v+ω0

) é uma curva contínua de extremos em (ω0,π2) e T (ω0, α

∗) = (ω0,−α∗).

Observemos que T (v+ω0

) pertence à região de Q4 ∪Q1 compreendida entre as curvas vω0 e

29

Page 30: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

T (ξ0). Segue disso que T (v+ω0

) não intercepta a curva φ0 portanto Π1(T (v+ω0

)) pertence ao

intervalo [ω0, π).

Obsevermos que T (vω0 ∩ Q4) ⊂ v+ω0

portanto Π1T ((vω0 ∩ Q4)) ⊂ [ω0, π) donde segue que

ω0 ≤ ω1(ω0, α0) ≤ π para todo (ω0, α0) ∈ Q4.

Lema 2.3.3 Seja (ω, α) ∈ Q4 ponto não xado por T , se O+(ω, α) := T n(ω, α)n≥0 ⊂

Q4 então (0, 0) ∈ O+(ω, α).

prova: SendoO+(ω, α) subconjunto limitado em Q4 podemos denir ω∗ := supΠ1(O+(ω, α)).

Dado esse ω∗ existe um α∗ tal que (ω∗, α∗) ∈ O+(ω, α). Pela invariância por T deO+(ω, α)

e pelo lema 2.3.2 temos que:

ω∗ ≤ ω1(ω∗, α∗) ≤ supΠ1(O+(ω, α)) = ω∗

Portanto T (ω∗, α∗) = (ω∗, α1(ω∗, α∗)) donde ou (ω∗, α∗) é um ponto xo ou T (ω∗, α∗) ∈

(β = 0 ∩ vω∗).

No caso de (ω∗, α∗) ser ponto xo, não pode ser do tipo (ω∗, π2) pois existe uma vizinhança

do bordo superior de Ω tal que a órbita de todo ponto nesta vizinhança pertence a uma

curva invariante homotópica ao bordo, ver Figura 2.5 e 2.6 , logo não podemos ter uma

órbita se acumulando em (ω∗, π2).

Resta-nos então a segunda hipótese que, pelo lema 2.3.1, implica em:

(ω∗, α1(ω∗, α∗)) = (ω∗,−α∗)

devemos ter então α∗ = 0 pois do contrário teríamos (ω∗, α1(ω∗, α∗)) ∈ int(Q3). Sendo

assim, (ω∗, α∗) ∈ γ0 ∩ β = 0 = (0, 0), (π, 0). Para nalizar observemos que π ≤ ω0 ≤

ω∗. Assim se ω∗ = π teríamos (ω, α) = (π, 0) ponto xado por T o que contradiz nossa

hipótese. Concluímos então que (ω∗, α∗) = (0, 0).

30

Page 31: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

2.3.4 Imagens dos eixos de simetria

Descreveremos agora comportamento das imagens dos eixos de simetria. Segue das ob-

servações anteriores sobre as imagens de verticais que as únicas interseções entre as cuvas

φ0 = vπ e φ1 = T (vπ) são os pontos xos (π, 0), (π, π2) e (π,−π

2). Mostraremos que para

o caso r > δ uma propriedade análoga vale também para a curva γ0, ou seja, as únicas

interseções entre γ0 e γ1 são os pontos xos (0, 0) e (π, 0).

De fato se (ω0, α0) ∈ γ0 e (ω1, α1) ∈ γ1 ∩ γ0 então α0 = α1 = 0 e segue de 2.4 que:

δ sen (−ω0) = rsen β = δ sen (ω1)

2β = −ω0 + ω1

(2.10)

donde cos(ω0) = cos(ω1) e:

cos(β)2−sen (β)2 = cos(2β) = cos(ω1) cos(ω0)+sen (ω1)sen (ω0) = cos(ω1)2+sen (ω1)

2 = 1

então:

2 cos(β)2 = cos(β)2 + sen (β)2 + cos(β)2 − sen (β)2 = 2

donde cos(β)2 = 1 e como β ∈ [−π2, π

2] temos β = 0. Mas se β(ω0, α0) = 0 temos que

(ω0, α0) ∈ (γ0 ∩ β = 0) = (0, 0), (π, 0). O que demonstra o armado.

Temos portanto que γ1 é uma curva simples fechada no cilindro e que intesecta γ0 somente

nos pontos xos (0, 0) e (π, 0).

Será útil provar que γ1 possui pontos no interior do quadrante Q4. Faremos isso agora:

Seja v = (1, 0) o vetor tangente a γ0 no ponto xo (π, 0) numa vizinhança na qual T é

diferenciável. Temos que:

D(π,0)T.v =1

r(r − 2δr + 2δ − 2δ2, 2δ(r + δ))

Como 0 < r + δ < 1 temos que:

2δ(r + δ) > 0

Temos também que:

r − 2δr + 2δ − 2δ2 = r + 2δ(1− r − δ) > 0

31

Page 32: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Logo o vetor D(π,0)T.v tem todas as coordenadas positivas, podemos então concluir que

localmente ao ponto p a curva γ1 tem pontos no interior do quadrante Q4.

Figura 2.12: Eixos de simetria e suas imagens.

32

Page 33: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Capítulo 3

Pontos xos

Figura 3.1: Pontos xos.

Para qualquer valor de parâmetros (r, δ) a aplicação T possui exatamente dois pontos xos

no interior do cilindro Ω, situados na região B onde a aplicação é diferenciável, são eles

(π, 0) e (0, 0). O ponto (π, 0) é sempre hiperbólico, já o ponto (0, 0) pode ser hiperbólico,

parabólico ou elíptico dependendo dos parâmetros (r, δ). Veriquemos estes fatos.

Para o ponto (π, 0) temos:

DT(π,0) =1

r

r − 2δr + 2δ − 2δ2 2(1− δ)(1− r − δ)

2δ(r + δ) r − 2δr + 2δ − 2δ2

(3.1)

E os autovalores desta matriz são:

λ1,2 =(r − 2δr + 2δ − 2δ2)

√(4δ(1 + δ)(δ − r)(1− r − δ))

r

Sendo δ 6= 0 e r+δ < 1 temos que os termos na raiz quadrada são sempre positivos donde

os autovalores são reais e diferentes. Observemos que pela propriedade de preservar área

33

Page 34: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

temos det(DT(π,0)) = 1 portanto os auto-valores satisfazem λ1 = 1λ2

logo ambos têm

módulo diferentes de 1 o que caracteriza o ponto xo como sendo hiperbólico.

Para o ponto (0, 0) temos:

DT(0,0) =1

r

r + 2δr − 2δ − 2δ2 2(1 + δ)(1 + δ − r)

2δ(δ − r) r + 2δr − 2δ − 2δ2

(3.2)

Com autovalores:

λ1,2 =(r + 2δr − 2δ − 2δ2)

√(4δ(1 + δ)(δ − r)(1− r + δ))

r

Como r e δ são positivos, apenas o fator (δ − r) na raiz quadrada pode mudar de sinal,

alterando assim a natureza dos autovalores λ1 e λ2. Temos portanto, as seguintes possi-

bilidades:

• se r > δ , os autovalores são complexos conjugados e o ponto xo é elíptico.

• se r = δ os autovalores são iguais a −1 e o ponto xo é parabólico.

• se r < δ temos os autovalores reais e diferentes de ±1 e o ponto xo é hiperbólico.

Passamos agora a estudar a dinâmica localmente a cada um destes pontos xos no caso

r > δ, para isso utilizaremos o fato de que a aplicação T é diferenciável em uma vizinhança

de cada ponto.

3.1 O ponto xo elíptico

O Teorema da Forma Normal de Birkho, [7], arma que se os autovalores λj de D(0,0)T

são não ressonantes, i.e λn 6= 1, n = 1, 2, 3 ou 4, então existe um homeomorsmo h tal

que h T h−1(z) = ei(γ+τ1|z|2)z + O(|z|4), ou seja T é conjugada com uma rotação, a

menos dos termos O(|z|4), onde z é complexo e o primeiro coeciente de Birkho τ1 é

dado por uma expressão polinomial nos coecientes de Taylor de T até ordem 3.

34

Page 35: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

O Teorema do Twist de Moser, [8], arma que se τ1 é não nulo então a inuência de

O(|z|4) em alguns casos pode ser desconsiderada, nestes casos T age como uma rotação o

que resulta na existência de curvas invariantes na vizinhança do ponto xo.

É possível mostrar, [12], que para o caso r > δ os autovalores de D(0,0)T são não resso-

nantes e que o primeiro coeciente de Birkho é dado por:

τ1 = −1

8(1− 1

r) 6= 0

Prova-se assim a existência de curvas invariantes em torno do ponto xo elíptico (0, 0) o

que explica a ilha de estabilidade observada na Figura 2.5.

3.2 O ponto xo hiperbólico (π, 0)

Denotaremos por p o ponto xo (π, 0). Pelo Teorema de Hartman-Grobman, [2], existe

uma bola B(p, ε) de centro p e raio ε na qual T é conjugada topologicamente com DpT .

É consequência deste teorema a existência local de uma variedade invariante estável cuja

denição é:

W sloc(p) := x ∈ B(p, ε)|T n(x) → p quando n →∞

Tem-se também a existência de uma variedade invariante instável denida por:

W uloc(p) := x ∈ B(p, ε)|T−n(x) → p quando n →∞

Segue do Teorema da Variedade Estável, [2], que sendo T um difeomorsmo C∞ em

B(p, ε), a variedade estável local é uma curva C∞ tangente em p ao auto-espaço associado

ao menor auto-valor de DpT . Analogamente a variedade instável é uma curva C∞ tangente

em p ao auto-espaço associado ao maior auto-valor de DpT .Portanto são curvas que se

interceptam transversalmente em p.

É através das variedades invariantes que a inuência de um ponto xo hiperbólico se

estende à dinâmica global. De fato, podemos denir globalmente as variedades invariantes

pelos conjuntos:

W s(p) := x ∈ M |T n(x) → p quando n →∞ =∞⋃

n=0

T−n(W sloc(p))

35

Page 36: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

W u(p) := x ∈ M |T−n(x) → p quando n →∞ =∞⋃

n=0

T n(W sloc(p))

No que segue, vamos estudar propriedades das variedades invariantes globais associadas

ao ponto (π, 0). Iniciamos com algumas observações sobre as simetrias das variedades

locais.

Seja B(p, ε) a vizinhança de p na qual vale a conjugação entre T e DpT . Podemos denir

as variedades invariantes de p utilizando o conjunto de B := B(p, ε) da seguinte forma:

W sloc =

∞⋂n

T n(B) e W uloc =

∞⋂n

T−n(B)

Essa denição caracteriza W sloc como o maior conjunto T -invariante em B, i.e todo con-

junto T -invariante de B está contido em W sloc. Analogamente W u

loc é o maior conjunto

T−1-invariante em B.

As variedades invariantes locais se relacionam pelas simetrias X e Y . De fato, usando que

a bola B(p, ε) é um conjunto invariante por X e Y , i.e X(B) = B e Y (B) = B temos:

X(W sloc) = X(

∞⋂n

T n(B)) =∞⋂n

XT n(B) =∞⋂n

T−nX(B) =∞⋂n

T−n(B) = W uloc

Analogamente Y (W sloc) = W u

loc e consequentemente XY (W sloc) = W s

loc e XY (W uloc) = W u

loc.

Segue da conjugação entre T e DpT que a única interseção entre W sloc e W u

loc é o ponto

xo p. Isso implica que p também é a única interseção entre os eixos de simetria e as

variedades locais. De fato, se por exemplo W uloc ∩ γ0 = q 6= p então:

q = Y (q) = Y (W uloc ∩ γ0) = W s

loc ∩ γ0

donde q é um ponto de W sloc ∩W u

loc diferente de p, o que não pode ocorrer.

Concluímos então que W uloc possui dois ramos totalmente contidos no interior dos qua-

drantes Qi e, como XY (W uloc) = W u

loc, concluímos também que cada um destes ramos

pertence a um quadrante distinto. Analogamente para W sloc.

A próxima proposição e seu corolário garantem que as variedades invariantes globais

petencem ao fecho topológico do conjunto constituído pelas imagens dos eixos de simetria.

36

Page 37: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Proposição 3.2.1 Dado ε > 0 existe k0 tal que para todo k ≥ k0 as curvas γk e φk

possuem segmentos com extremos em p e são tais que a ε-vizinhança de qualquer ponto

em Wuloc(p) possui um ponto destes segmentos.

Prova Seja B := B(p, ε) uma bola aberta na qual vale a conjugação topológica entre T e

DpT garantida pelo teorema de Hartman- Grobman. Podemos escolher ε sucientemente

pequeno de forma que:

T (γ0 ∩B ∩Q4) ⊂ (Q4) e T (φ0 ∩B ∩Q4) ⊂ (Q4) (3.3)

o que é garantido pelas propriedades das imagens dos eixos de simetria vistas na seção

2.3.4.

Denimos a seqüência de conjuntos Knn∈N da seguinte forma:

K0 = B ∩Q4 e Kn := T (Kn−1) ∩K0 para n > 0

Esta é uma seqüência de compactos encaixados. De fato, B e Q4 são compactos portanto

Figura 3.2: Denição dos conjuntos Kn

K0 = B ∩ Q4 é compacto. Mas se para algum n o conjunto Kn é compacto então

Kn+1 = T (Kn) ∩K0 também é compacto. Segue por indução em n que Kn é compacto

para todo n.

Por denição temos que K1 ⊆ K0 e por (3.3) sabemos que esta continência é estrita. Mas

se para algum n tivermos Kn ⊆ Kn−1 então Kn+1 = T (Kn) ∩K0 ⊆ T (Kn−1) ∩K0 = Kn.

Segue por indução em n que Kn ⊆ Kn−1 para todo n.

Seja K∞ =⋂∞

n=0 Kn, por ser a interseção de compactos encaixados este conjunto é não

vazio e compacto. K∞ também é T−1-invariante, de fato se x ∈ K∞ então x ∈ Kn para

37

Page 38: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

todo n > 1 donde T−1(x) ∈ Kn−1 para todo n > 1, ou seja T−1(x) ∈ Kn para todo n logo

T−1(x) ∈ K∞.

Sendo K∞ ⊂ B um conjunto T−1−invariante temos que:

K∞ ⊂∞⋂

n=0

T n(B) = W uloc(p) (3.4)

A continência acima implica que W uloc(p) possui um ramo no interior do quadrante Q4.

Provaremos agora que este ramo é exatamente K∞.

Denotemos por U o conjunto (W uloc(p) ∩ Q4). Como p ∈ U temos que U ⊂ T (U) e por

denição temos U ⊂ (B ∩Q4) = K0. Mas se U ⊂ Kn para algum n ≥ 0 temos:

U ⊂ (T (U) ∩K0) ⊂ (T (Kn) ∩K0) = Kn+1

Conclui-se por indução em n que U ⊂ Kn para todo n > 0 donde U ⊂ K∞. E juntamente

com (3.4) temos K∞ = W uloc(p) ∩Q4.

Corolário 3.2.1 Qualquer segmento compacto da variedade instável globalWu(p) é apro-

ximado pelas curvas γk e φk com k ∈ N

prova Seja L um segmento compacto qualquer da variedade instável Wu(p). Existe n0

tal que T−n0(L) ⊂ Wuloc(p). Como T n0 é homeomorsmo, dado ε > 0 existe δ tal que se

x ∈ B(T−n0(y), δ) então T n0(x) ∈ B(y, ε).

Consideremos V (δ) uma δ-vizinhança de Wuloc(p). Como a variedade local é igual à inter-

seção da seqüência de compactos encaixados Kn temos que existe n tal que Kn ⊂ V (δ),

então (γn ∩ B) ⊆ ∂Kn ⊆ V (δ). Conseqüentemente um segmento de γn está δ-próximo

de T−n0(L), logo T n0(γn) possui um segmento que está ε- próximo de L. Analogamente

(φn ∩ B) ⊆ ∂Kn e pelo mesmo argumento existe um segemento de T−n0(φn) que está ε-

próximo de L.

Utilizando a simetria X podemos construir a seqüência de compactos X(Kn)n∈N que

aproxima o ramo de W sloc(p) em Q3 e concluir que este ramo é aproximado pelas curvas

38

Page 39: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

γ−n e φ−n assim como qualquer segmento compacto da variedade global W s(p). Resulta-

dos análogos são provados para os demais ramos das variedades invariantes.

3.2.1 Pontos homoclínicos

Seja f : M → M um difeomorsmo, dado um ponto xo p dizemos que q é homoclínico

a p se q ∈ Ws(p) ∩ Wu(p). i.e fn(q) e f−n(q) convergem para p quando n → ∞. A

existência de pontos homoclínicos acarreta complexidade para a dinâmica. Em particular

se o ponto homoclínico é originado por uma interseção transversal. Neste caso prova-

se a existência de um subconjunto invariante por alguma potência de f cuja dinâmica é

conjugada com um sistema simbólico, o Shift, [2]. Algumas conseqüências são a densidade

de pontos periódicos e homoclínicos neste subconjunto invariante e a positividade da

entropia topológica do sistema.

A existência pontos homoclínicos para o ponto xo p da aplicação de bilhar T para a faixa

de parâmetros r > δ resulta da seguinte proposição:

Proposição 3.2.2 No caso r > δ as variedades invariantes Wu(p) e Ws(p) possuem um

ponto em comum sobre o eixo de simetria ξ0

Prova Para provar a existência de interseção entre as variedades basta mostrar queWu(p)

possui um ponto q 6= p em ∂Q4, então por simetria Ws(p) possui o mesmo ponto.

Suponhamos por contradição que (Wu(p) − p) ∩ ∂Q4 = ∅, então dado qualquer ponto

(ω0, α0) ∈ (Q4 ∩ Wu(p)) − p temos pelo lema 2.3.3 que O+(ω0, α0) tem (0, 0) como

ponto de acumulação. Mas para r > δ o ponto (0, 0) é elíptico estável, portanto existe um

aberto invariante V contendo (0, 0). Assim, se O+(ω0, α0) se acumula em (0, 0) temos que

esta órbita pertence ao aberto V . Podemos tomar V sucientemente pequeno de forma

que p não pertença ao fecho de V , mas isso é uma contradição com o fato de (ω0, α0) ∈ Wup .

39

Page 40: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Concluímos então queWu(p)∩ ∂Q4 6= ∅. Resta provar agora que esta interseção pertence

ao eixo ξ0. Seja então U o segmento de Wu(p) de extremos em p e em um ponto q ∈ ∂Q4

sendo q o primeiro ponto de interseção entre de Wu(p) e ∂Q4, o que equivale a dizer que

somente p e q são pontos de U em ∂Q4.

Suponhamos que q ∈ γ0, então temos que Y (U) é um segmento de Ws(p) contido em Q3

cujo único ponto em γ0 é q. Isso implica que q é um ponto homoclínico.

Por um lado temos que T (q) ∈ γ1(∈ Q4∪Q1) mas por outro temos que T (q) ∈ (Y (U)− q)

logo pertence ao quadrante Q3. Uma contradição que nos leva a concluir que a primeira

interseção entre Wu(p) e Q4 não ocorre em γ0. Com um argumento análogo podemos

provar que essa primeira interseção também não pode ocorrer em φ0.

Resta-nos então o segmento α = π2 e o eixo ξ0. Como o primeiro é formado por pontos

xos concluímos que q ∈ ξ0.

A proposição acima garante a existência de interseção entre as variedades mas não es-

clarece a natureza de tal interseção. São possíveis a tangência, a transversalidade ou

mesmo a conexão de sela. Como não pedimos mais que a diferenciabilidade na vizinhança

do ponto xo podemos ter ainda outros tipos mais complicados de interseção.

Experimentos numéricos como o ilustrado na Figura 3.3 indicam que para o caso r > δ

a interseção deve ser em geral, no mínimo, um cruzamento topológico, i.e as variedades

se cruzam mas não necessariamente de modo transversal. Assim, vamos supor daqui

para frente que ocorre este tipo de interseção e procurar descrever algumas conseqüências

dinâmicas advindas dessa suposição.

Iniciamos utilizando a aproximação das variedades invariantes pelas imagens dos eixos

de simetria para vericar uma propriedade conhecida dos pontos homoclínicos que é o

fato de serem aproximados por órbitas periódicas de período arbitrariamente grande e

por pontos homoclínicos. No próximo capítulo ilustramos como provar a positividade

da entropia topológica do sistema utilizando a interseção homoclínica e as simetrias do

problema.

40

Page 41: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 3.3: A interseção das variedades invariantes sobre o eixo ξ0. Ao centro a ilha de

estabilidade do ponto xo elíptico (0, 0).

Proposição 3.2.3 Os pontos homoclínicos a p topologicamente tranversos são aproxima-

dos por pontos periódicos e pontos homoclínicos.

prova: Seja q um ponto homoclínico dado por uma interseção topologicamente transversa

dos segmentos Ls ⊂ Ws(p) e Lu ⊂ Wu(p).

Seja B(q, ε) uma bola fechada de centro em q e com raio ε sucientemente pequeno para

que os segmentos Ls e Lu tenham interseção com o bordo ∂B em quatro pontos distintos:

a, b ∈ Lu ∩ ∂B e c, d ∈ Ls ∩ ∂B. Considere δ > 0 sucientemente pequeno de forma que

as bolas de raio δ e centro em a, b, c e d sejam disjuntas.

Seja s ⊂ B uma curva contínua com extremos em B(a, δ) ∩ ∂B(q, ε) e B(b, δ) ∩ ∂B(q, ε)

e s′ ⊂ B também contínua com extremos em B(c, δ) ∩ ∂B(q, ε) e B(d, δ) ∩ ∂B(q, ε). A

curva s divide B em duas regiões cada uma delas contendo pontos de s′ o que implica que

s ∩ s′ 6= ∅.

Pela Proposição 3.2.1 existe m ∈ N tal que segmentos de φm e γm estão δ-próximos de

Lu e segmentos de φ−m e γ−m estão δ-próximos de Ls. Segue desse fato que φm ∩ ∂B e

41

Page 42: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 3.4: A curva s (pontilhada) que aproxima Lu intercepta a curva s′ que aproxima

Ls.

γm ∩ ∂B são pontos de B(c, δ) e B(d, δ) e φ−m ∩ ∂B e γ−m ∩ ∂B são pontos de B(a, δ) e

B(b, δ). Pela observação no parágrafo anterior temos que γm ∩ φ−m 6= ∅ ,γ−m ∩ φm 6= ∅,

γm ∩ γ−m 6= ∅ e φm ∩ φ−m 6= ∅. Todos estes pontos de interseção são periódicos.

Pelo mesmo argumento podemos mostrar que Lu ∩ (γ−m ∪ γ−m) 6= ∅ e Ls ∩ (γm ∪ γm) 6= ∅

e estes pontos de interseção são homoclínicos a p.

As conclusões acima valem se considerarmos ε′ ≤ ε. Isso implica que para toda vizinhança

de um ponto homoclínico à p topologicamente transverso existem pontos periódicos e

outros pontos homoclínicos à p.

Com pequenas alterações na demonstração acima é possível vericar também que os

pontos homoclínicos de tangência também são aproximados por órbitas periódicas de

período arbitrariamente grande e por pontos homoclínicos.

42

Page 43: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Capítulo 4

Entropia topológica

A entropia topológica de uma aplicação f : M → M é um número, htop(f), que mede

a complexidade do comportamento dinâmico do sistema (M, f) em termos da taxa de

crescimento exponencial do número de órbitas que podem ser distinguidas ao longo do

tempo dentro uma precisão dada.

O cálculo da entropia topológica de um sistema permite localizá-lo em uma escala de

complexidade comparado a outros sistemas, quanto maior htop(f) maior a complexidade.

Por se tratar de um invariante topológico a entropia também permite decidir sobre a

equivalência de dois sistemas.

A seguir damos uma denição de entropia topológica para uma aplicação de um espaço

compacto e apresentamos algumas propriedades deste conceito, baseamo-nos nas referên-

cias [5] e [2].

Dado um espaço métrico compacto M e uma aplicação f : M → M dizemos que um

conjunto S ⊂ M é um (n, ε) − gerador se para todo x ∈ M existe um y ∈ S tal que

d(f i(x), f i(y)) < ε para 0 ≤ i ≤ n

Pela compacidade de M é sempre possível encontrar um (n, ε) − gerador nito para

quaisquer n e ε. (ver [5]). A cardinalidade r(n, ε) de tal conjunto satifaz r(n, ε) ≤ mn

43

Page 44: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

para algum m. Daí:

limsupn→+∞(1

nlog(r(n, ε))) < +∞

pois ( 1nlog(r(n, ε))) ≤ ( 1

nlog(mn)) = log(m).

Denimos a entropia topológica htop(f) de f pelo limite:

htop(f) = limε→0(limsupn→+∞(1

nlog(r(n, ε))))

Utilizaremos neste trabalho algumas propriedades da entropia topológica que dizem res-

peito à comparação entre as entropias de sistemas que se relacionam topologicamente.

Precisamente dizemos que um sistema (N, g) é um fator topológico de (M, f) se existe

uma plicação θ : M → N contínua, sobrejetora e satisfazendo fθ = θg. Neste caso temos

que:

htop(g) ≤ htop(f) (4.1)

Se a aplicação θ denida acima for um homeomorsmo dizemos que os sistemas (M, f)

e (N, g) são topologicamente equivalentes e teremos htop(g) = htop(f). Uma última pro-

priedade útil é a que relaciona a entropia de f a uma de suas potências fk. Neste caso

temos:

htop(fk) = k.htop(f) (4.2)

Agora apresentaremos brevemente uma classe de sistemas dinâmicos abstratos de grande

utilidade teórica: os Shifts. Tais sistemas possuem entropia topológica positiva.

Dado um conjunto nito de símbolos A = a1, ...aN denimos os espaço de seqüências

bi-innitas:

ΣN = ...s−1.s0.s1...|sj ∈ A ∀j ∈ Z

dene-se uma topologia neste conjunto cuja base é dada pelos cilindros simétricos Cα−k...α−1.α0....αk

que por sua vez são denidos por:

Cα−k...α−1.α0....αk(s) ∈ ΣN |si = αi com− k ≤ i ≤ k

44

Page 45: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Com esta topologia ΣN é um espaço métrico completo, compacto e totalmente desconexo.

Neste espaço está denido um homeomormso σ : ΣN → ΣN que age "transladando"as

seqüências, i.e, σ(s)i = si+1, por essa razão σ recebe o nome de shift.

O sitema dinâmico (ΣN , σ) é um sistema simbólico de dinâmica bastante complexa tanto

que serve de paradigma para o que freqüentemente se chama de caos. A propriedade

que nos interessa aqui é que estes sistemas apresentam entropia topológica positiva, mais

precisamente podemos provar (ver [15]) que htop(σ) = log(N) para σ : ΣN → ΣN

4.1 Critério geométrico para entropia topológica posi-

tiva

O objetivo desta seção é apresentar um método geométrico [14] pelo qual é possível

provar que uma aplicação f possui entropia topológica positiva. A estratégia é conseguir

uma fatoração topológica entre alguma potência de f e o shift (Σ2, σ) . Assim, pelas

propriedades (4.1) e (4.2) teremos:

htop(f) =1

nhtop(f

n) ≥ 1

nhtop(σ) > 0

Iniciemos com algumas denições: seja f : M → M um homeomorsmo de uma va-

riedade bidimensional. Considere N ⊂ M um subconjunto homeomorfo ao retângulo

[−1, 1]× [−1, 1] e R ⊂ N pré imagem em N do retângulo [−1, 1]× [−ρ, ρ].

Identicaremos N com o retângulo [−1, 1]× [−1, 1] e R com o retângulo [−1, 1]× [−ρ, ρ],

essa identicação é feita por simplicidade de notação sem prejuízo para as denições e

resultados que seguem.

Denição 4.1.1 Um conjunto V ⊆ int(N) é chamado de essencial se V contém uma

curva unindo as duas componentes de N/R.

45

Page 46: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Denição 4.1.2 Uma faixa horizontal é um conjunto S ⊆ R tal que

• S é fechado e conexo por caminhos

• S contém uma curva unindo os bordos verticais de R, i.e −1 × [−ρ, ρ] e 1 ×

[−ρ, ρ]

• ∂S é uma curva de Jordan dada pela união de um número nito de arcos todos com

extremos nos bordos verticais de R

Toda faixa horizontal S possui em ∂S exatamente duas curvas ligando os bordos verti-

cais de R. Denotaremos por cmax a curva mais próxima de [−1, 1]×ρ e por cmin a outra.

Denição 4.1.3 Seja S uma faixa horizontal. Dizemos que uma aplicação F estica S

sobre R se F (S) ⊂ int(N), F (∂S ∩ int(R)) ⊂ N/R e F leva cmax e cmin em componentes

opostas de N/R.

Figura 4.1:

Lema 4.1.1 Seja S uma faixa horizontal e V um subconjunto essencial de N . Supon-

hamos que F estica S sobre R. Então F (S ∩ V ) é essencial.

prova Por denição de conjunto essencial, V contém um arco γ : [0, 1] → R tal que γ(0)

pertence a cmax de S, γ(1) pertence a cmin e γ(t) ⊆ int(R) para 0 < t < 1.

46

Page 47: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Uma componente de ∂S ∩ int(R) é chamada de positiva se é levada por F na componente

de N \R que contém F (cmax). Chamamos de negativa a componente de ∂S ∩ int(R) que

é levada por F na componente de N/R que contém F (cmin).

Seja t0 ∈ [0, 1) o último valor do parâmetro para o qual γ(t) intercepta uma componente

positiva de ∂S ∩ int(R) e t1 ∈ (t0, 1] o próximo valor no qual γ(t) intercepta ∂S.

Observe que se γ(t) deixar S através de alguma componente de ∂S ∩ int(R) então deve

voltar a S atravessando a mesma componente.

O arco de γ(t) entre γ(t0) e γ(t1) pertence a S e sua imagem por F é uma curva em

int(N) que liga as duas componentes de N \ R, já que F (γ(t0)) e F (γ(t1)) pertencem a

componentes opostas de N \R. Assim F (S ∩ V ) é essencial.

Figura 4.2:

Teorema 4.1.1 Suponhamos que N contém duas faixas horizontais fechadas e disjuntas,

S0 e S1, que são esticadas através de R por F . Então o shift completo Σ2 é fator topológico

de F .

prova: Seja

Λ =∞⋂

k=−∞

F k(S0 ∪ S1)

47

Page 48: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

que é o conjunto dos pontos cujas órbitas por F estão contidas nas faixas S0 e S1. A

cada z ∈ Λ associamos uma seqüência π(z) de 0′s e 1′s de acordo com seu itinerário pelas

faixas, mais precisamente π(z) é a seqüência cujo k-ésimo termo é 0 se F k(z) ∈ S0 ou 1

se F k(z) ∈ S1.

Seja π : Λ → Σ2 a aplicação que leva um ponto z ∈ Λ em sua seqüência π(z) ∈ Σ2. Esta

aplicação está bem denida uma vez que as faixas S0 e S1 são disjuntas. Logo para todo

k e qualquer z existe um único Si tal que F k(z) ∈ Si e assim existe uma única seqüência

em Σ2 associada a z. Veremos que π : Λ → Σ2 é uma fatoração de Λ sobre Σ2.

1. π é contínua.

Sejam z ∈ Λ e α = π(z) ∈ Σ2. Dada uma vizinhança V de α existe um inteiro

positivo r para o qual o cilindro Cα[−r,r] está contido em V .

Para −r ≤ k ≤ r seja Bk ⊂ N uma bola aberta contendo z tal que F k(Bk) inter-

cepta somente a faixa Sαk, a existência de Bk é garantida pela continuidade de F e

pelo fato de S0 e S1 serem fechadas e disjuntas.

O conjunto B = (⋂r

k=−r Bk) ∩ Λ é uma vizinhança de z em Λ tal que F k(B) ⊆ Sαk

para −r ≤ k ≤ r, ou seja, para todo z′ ∈ B, π(z′)k = αk donde F (z′) ∈ Cα[−r,r] e

F (B) ⊆ Cα[−r,r] e conclui-se assim a continuidade de π.

2. Vale a igualdade π F |Λ = σ π.

Seja z ∈ Λ e α = π(z). Por denição F k(z) ∈ Sαke logo z ∈ F−k(Sαk

). Temos

então que z ∈⋂∞

k=−∞ F−k(Sαk) e π(

⋂∞k=−∞ F−k(Sαk

)) = π(z).

Logo

π F (z) ⊆ π F (∞⋂

k=−∞

F−k(Sαk)) = π(

∞⋂k=−∞

F−k+1(Sαk))

48

Page 49: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Por uma mudança de índice na interseção innita temos:

π F (z) ⊆ π(∞⋂

k=−∞

F−k(Sαk+1))

Observe que

π(∞⋂

k=−∞

F−k(Sαk+1))k = αk+1

Logo

π(∞⋂

k=−∞

F−k(Sαk+1)) = σ π(z)

Finalmente como σ π(z) é um único ponto em Σ2 temos a igualdade π F (z) =

σ π(z).

3. π é sobrejetiva.

Para mostrar esse item vamos precisar Lema 4.2.1 e do seguinte :

Lema 4.1.2 Dado r ≥ 1 o conjunto:

F (Sα−1) ∩ F 2(Sα−2) ∩ ... ∩ F r(Sα−r)

é essencial para cada α ∈ Σ2

prova Por indução em r. O caso r = 1 é claro pois F estica Si através R. Suponha

que o lema valha para r > 1. Então:

V = F (Sα−2) ∩ F 2(Sα−3) ∩ ... ∩ F r(Sα−r−1)

é essencial e pelo Lema 4.2.1:

F (Sα−1 ∩ V ) = F (Sα−1) ∩ F 2(Sα−2) ∩ ... ∩ F r+1(Sα−(r+1))

é essencial, portanto o lemma vale para r + 1, donde concluímos por indução que é

válido para todo r.

49

Page 50: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Corolário Para cada α ∈ Σ2 e cada r ≥ 0 o conjunto Λr(α) =⋂r

k=−r F−k(Sαk) é

não vazio.

prova: Seja β = σr+1(α) então αj = βj−r−1.

Λr(α) = F−r(Sα−r) ∩ F−r+1(Sα−r+1) ∩ ... ∩ F r(Sαr))

substituindo αj por βj−r−1 temos:

Λr(α) = F−r(Sβ−2r−1) ∩ F−r+1(Sβ−2r) ∩ ... ∩ F r(Sβ−1))

Podemos escrever:

Λr(α) = F−(r+1)(F (Sβ−2r−1) ∩ F 2(Sβ−2r) ∩ ... ∩ F 2r(Sβ−1))

e concluímos que Λ(r) é não vazio já que pelo Lema 4.1.2 o conjunto F (Sβ−2r−1)) ∩

F 2(Sβ−2r) ∩ ... ∩ F 2r(Sβ−1) é essencial e portanto não vazio.

Os conjuntos Λr(α) são interseções nitas de compactos, portanto são compactos e

temos Λ0(α) ⊃ Λ1(α) ⊃ ...Λn(α) ⊃ ... Logo⋂∞

r=0 Λr(α) é não vazio para cada α, ou

seja existe z ∈⋂∞

k=−∞ F−k(Sαk). Segue que para todo α ∈ Σ2 existe z ∈ Λ tal que

π(z) = α donde π é sobrejetiva.

4.2 Entropia topológica positiva do bilhar no anel ex-

cêntrico

C. Foltin em [13] provou que os bilhares excêntricos apresentam entropia topológica po-

sitiva para algum valor de parâmetro r sucientemete pequeno. Nesta seção ilustramos

como a existência de um ponto homoclínico topologicamente transversal implica na po-

sitividade da entropia topológica do sistema. Utilizamos as simetrias do espaço de fase

para construir a fatoração topológica com o shift de dois símbolos.

50

Page 51: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Suponha que exista um ponto q homoclínico topologicamente transverso sobre eixo ξ0.

Denotemos por Lu e Ls dois segmentos compactos das variedades invariantes, instável e

estável respectivamente, que se interceptam em q.

Lema 4.2.1 Existe n0 tal que segmentos das curvas γn0, φn0, γ−n0 e φ−n0 limitam um

conjunto conexo contendo q em seu interior e cujo bordo é formado por exatamente um

segmento de cada uma das curvas γn0, γ−n0, φn0 e φ−n0.

prova: Na prova da proposição 3.2.3 mostra-se que dado ε > 0 existe n0 tal que as

seguintes interseções:

γn0 ∩ γ−n0 , γn0 ∩ φ−n0 , φn0 ∩ φ−n0 e φn0 ∩ γ−n0

são todas não vazias com pontos da bola aberta B(q, ε).

Como q ∈ ξ0, o conjunto φn0 ∩ φ−n0 possui um ponto p1 sobre o eixo ξ0, já que φn0 =

X(φ−n0). Seja φn0(t) uma parametrização da curva φn0 tal que φn0(t0) = p1, e orientada

de forma que para algum t1 > t0 temos φn0(t1) ∈ γ−n0 , e para todo t0 < t < t1 temos que

φn0(t) não pertence à γ−n0 . Diremos neste caso que φn0(t1) é a primeira interseção entre

φn0 e γ−n0 . Denotaremos φn0(t1) por p2.

Seja agora γ−n0(t) parametrização de γ−n0 tal que γ−n0(t′0) = p2 e orientada de forma que

para algum t′1 > t′0 temos que γ−n0(t′1) é a primeira interseção entre γ−n0 e o eixo ξ0, que

denotaremos por p3.

Por construção temos que o segmento de φn0(t) entre t0 e t1 intercepta γ−n0(t) somente

no ponto p2. Assim, temos uma curva simples ligando p1 a p3 dada pela união de segmen-

tos de φn0 e γ−n0 . A imagem pela simetria X desta curva é também uma curva simples

ligando p1 a p3 dada pela união de segmentos das curvas φ−n0 e γn0 . A união desta duas

curvas limita uma região conexa contendo q em seu interior e cujo bordo é formado por

exatamente um segmento de cada curva γn0 , γ−n0 , φn0 e φ−n0

Pelo lema acima podemos denir uma coleção de conjuntos Dnn≥n0 onde Dn é o conexo

contendo q limitado pelas curvas γn, φn, γ−n e φ−n. Pela simetria Y existe um segundo

51

Page 52: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

ponto homoclínico q′ = Y (q) sobre o eixo ξ0, ao qual associamos uma coleção de conjuntos

D′nn≥n0 tais que D′

n = Y (Dn).

Os lemas a seguir provam algumas propriedades dos conjuntos Dn e D′n que serão úteis

mais adiante.

Lema 4.2.2 Dado ε > 0 existe n tal que Dn ⊂ B(q, ε)

prova: Consideremos Ls e Lu segmentos compactos das variedades que se interceptem

em q e que estejam totalmente contidos em B(q, ε). Dada a compacidade dos segmentos

podemos escolher δ > 0 tal que a δ−vizinhança de Ls ∪ Lu esteja totalmente contida em

B(q, ε).

Seja n1 tal que as imagens por T n1 e T−n1 dos eixos de simetria contenham segmentos na

δ-vizinhança de Ls ∪ Lu. Temos assim que Dn1 ⊂ B(q, δ).

Lema 4.2.3 Existe n tal que T (Dn) ∩Dn = ∅

prova: Existe ε′ > 0 tal que as bolas abertas B(q, ε′) e B(T (q), ε′) são disjuntas. Pela

continuidade de T , existe também δ′ tal que T (B(q, δ′)) ⊂ B(q, ε′) donde T (B(q, δ′)) ∩

B(q, δ′) = ∅. Escolhendo n tal que Dn ⊂ B(q, δ′) temos que T (Dn) ∩Dn = ∅.

A partir de agora xemos ε > 0 tal que B(q, ε) ∩ B(q′, ε) = ∅. Fixaremos também n0 de

forma que Dn0 ⊂ B(q, ε) D′n0⊂ B(q′, ε) e T (Dn0) ∩Dn0 = ∅, T (D′

n0) ∩D′

n0= ∅.

O conjunto T−n0(Dn0) tem duas componentes do bordo sobre os eixos de simetria γ0 e φ0,

são as imagens por T−n0 dos segmentos de ∂Dn0 pertencentes à γn0 e φn0 . Analogamente

para T−n0(D′n0

). Estas pré-imagens servirão como faixas verticais utilizadas no método

da seção anterior, portanto passaremos a usar a seguinte notação.

S0 = T−n0(Dn0) e S1 = T−n0(D′n0

)

52

Page 53: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 4.3: A aproximação das variedades pelos eixos de simetria denem o conjunto Dn.

A pré-imagem T−n(Dn) é um conjunto que possui componentes do bordo sobre os eixos

de simetria.

Por construção o conjunto Dn0 é simétrico em relação a X, i.e X(Dn0) = Dn0 . Como

conseqüência temos T 2n0(S0) = X(S0) e S1 = XY (S0). De fato:

X(S0) = XT−n0(Dn0) = T n0X(Dn0) = T n0(Dn0) = T 2n0(S0)

e

XY (S0) = XY (T−n0(Dn0)) = T−n0XY (D−n0) = T−n0X(D′−n0

) = T−n0(D′−n0

) = S1

A Figura 4.4 ilustra os conjuntos S0, S1 e suas imagens por T 2n0 .

Figura 4.4: Os conjuntos S0, S1 e suas imagens por T 2n0 , X(S0) e X(S1) respectivamente.

Observemos que os segmentos de γ0 e φ0 que pertencem a ∂S0 são levados por T 2n0 em

segmentos de γ2n0 e φ2n0 que são as componentes de ∂X(S0) que não pertencem aos eixos

53

Page 54: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

de simetria. Os segmentos de γ−2n0 e φ−2n0 em ∂S0 por sua vez são levados por T 2n0 nos

segmentos de γ0 e φ0 pertencentes a ∂X(S0).

Escolhemos n0 de forma que T (Dn0) ∩ Dn0 = ∅, portanto temos que T (S0) ∩ S0 = ∅,

o mesmo valendo pra S1. Observemos que T (S0) é um subconjunto de Q4 e T (S1) um

subconjunto de Q2, (ver Figura 4.5 ).

Figura 4.5: O conjunto S0 e sua imagem T (S0) ⊂ Q4 e o conjunto S1 com sua imagem

T (S1) ⊂ Q2

Passamos agora a descrever a disposição do conjunto T (X(S0)), para tanto consideremos

c : [0, 1] → X(S0) uma curva contínua tal que c(0) ∈ φ0 e c(1) ∈ γ0. Observemos que

para algum t0 ∈ (0, 1) c(t0) pertence à variedade Wsp .

Como T (Dn0) ∩ Dn0 = ∅ temos que T (X(S0)) ∩ X(S0) = ∅ logo T (c(t)) é uma curva

contínua sem pontos em comum com X(S0).

Como φ0 ∩X(S0) é segmento do bordo de S0 temos que T (c(0)) ∈ T (S0) ⊂ Q4. E como

γ0 ∩X(S0) é segmento do bordo de S1 temos que T (c(1)) ∈ T (S1) ⊂ Q2.

O ponto s(t0) pertencente à variedade estável é levado em um ponto T (c(t0)) também na

variedade só que mais póximo de p.

Concluímos que T (c(t)) é uma curva contínua ligando um ponto de T (S0) a um ponto de

T (S1) passando por um ponto de Wsp na região interna ao anel composto pelos conjuntos

S0,X(S0), S1 e X(S1), (ver Figura 4.4).

54

Page 55: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Figura 4.6: A imagem de uma curva contínua ligando pontos de ∂X(S0)∩φ0 e ∂X(S0)∩γ0

Como esse é o comportamento de qualquer curva contínua em X(S0) que liga pontos de

∂X(S0) ∩ φ0 e ∂X(S0) ∩ γ0 concluímos que o conjunto T (X(S0)) tem a disposição como

ilustrado na Figura 4.7. Por simetria XY podemos descrever a disposição do conjunto

T (X(S1)).

Figura 4.7: As imagens por T dos conjuntos X(S0) e X(S1) .

Para nos adequarmos ao método geométrico da seção anterior é necessário denir um

conjunto N homeomorfo a um retângulo o qual tem S0 e S1 como faixas horizontais. Para

nossos propósitos é suciente denirmos N como qualquer conjunto conexo que contenha

os conjuntos S0, S1 tal que os segmentos γ0∩∂S0, φ0∩∂S0 e γ0∩∂S1, φ0∩∂S1 façam parte

do bordo de N . Deniremos N de forma a conter em seu interior os conjuntos T (S0),

55

Page 56: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

T (S1), T (X(S0)) e T (X(S1)) . A Figura 4.8 ilustra uma escolha possível de N .

Figura 4.8: O conjunto N .

Proposição 4.2.1 T 2n+1 estica S0 e S1 através de R

prova

Indicaremos por cimax e ci

min respectivamente as curvas cmax e cmin da faixa horizontal Si.

Com essa notação temos que c0max = φ−2n0 ∩ ∂S0 e c0

min = γ−2n0 ∩ ∂S0. Segue que:

T 2n+1(c0max) = T (T 2n0(φ−2n0 ∩ ∂S0)) = T (φ0 ∩X(S0)) ⊂ N/R+

T 2n+1(c0min) = T (T 2n0(γ−2n0 ∩ ∂S0)) = T (γ0 ∩X(S0)) ⊂ N/R−

Ou seja, a aplicação T 2n0+1 leva a faixa horizontal S0 em T (X(S0)) que é subconjunto do

interior de N e leva as curvas c0max e c0

min em componentes opostas de N/R, então T 2n0+1

estica S0 sobre N . Por simetria concluímos também que T 2n0+1 estica S1 sobre N .

A proposição acima conclui o que pretendíamos mostrar, ou seja, se as variedades in-

variantes Wup e Ws

p possuem uma interseção topologicamente transversal sobre o eixo de

simetria ξ0 então a aplicação T possui entropia topológica positiva. Observemos mais uma

56

Page 57: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

vez que não provamos que a interseção entre as variedades é topologicamente transver-

sal, mas zemos esta suposição com base em experimentos computacionais que sugerem

que este é o comportamento dessas interseções para a maior parte dos casos em que os

parâmetros do bilhar satisfazem r > δ.

57

Page 58: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

Referências Bibliográcas

[1] SAITÔ, N.; HIROOKA, H.; FORD, J.; VIVALDI, F.; WALKER, G. H.Numerical

Study of Billiard Motion in a Annulus Bounded by non Concentric Circles. Physica

D, Amsterdam, 1982. 5, p. 273 - 286.

[2] HASSELBLATT B.; KATOK A. Introduction to the Modern Theory of Dynamical

Systems. Cambridge University Press, 1995.

[3] KATOK, B.; STRELCYN, J.M Invariant manifolds, entropy and billiards;. smooth

maps with singularities.Lect. Notes Math., Vol. 1222.

[4] PALIS; DE MELO. Introdução aos Sistemas Dinâmicos. Rio de Janeiro: IMPA, 1978.

(Projeto Euclides)

[5] MAÑÉ, R. Introdução à teoria ergódica. Rio de Janeiro: IMPA, 1982.

[6] MARKARIAN, R; CHERNOV, N. Chaotic Billiards

[7] CARNEIRO, M. J. D., RAGAZZO, C. G., ZANATA, S. A., Introdução á Dinâmica

de Aplicações do Tipo Twist, 25o Colóquio Brasileiro de Matemática, 2005.

[8] C. L. SIEGEL, J. K. MOSER. Lectures on Celestial Mechanics, Springer-Verlag,

1971.

[9] COSTA, M. Estudo de Órbitas Periódicas no Bilhar de Círculos não Concêntricos

(Mestrado em Física) - Instituto de Ciências Exatas, Universidade Federal de Minas

Gerais, Belo Horizonte, 2001.

58

Page 59: Estudo do Bilhar no Anel de Círculos Excêntricos · 2019. 11. 14. · que é a união de dois cilindros disjuntos dado que os bordos são duas curvas fechadas disjuntas. Observemos

[10] LATOSINSK, I. Variedades invariantes de aplicações no plano (Mestrado em Mate-

mática) - Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo

Horizonte, 2005.

[11] OLIFFSON KAMPHORST, S.;PINTO DE CARVALHO, S.The First Birkho Coe-

cient and the Stability of 2-Periodic Orbits on Billiards. Experimental Mathematics

vol 14 (2005).

[12] BRAZ BATISTA, R. Estudo do bilhar no anel de círculos excêntricos. (Relatório de

Iniciação cientíca)- - Instituto de Ciências Exatas, Universidade Federal de Minas

Gerais, Belo Horizonte, 2005. (2005).

[13] FOLTIN, C. Billiards with positive topological entropy.Nonlinearity 15 (2002).

[14] BURNS, K.; WEISS, H.; A geometric criterion for positive topological entropy. Com-

munications in Mathematical Physics 172(1995).

[15] LIND, D.;MARCUS, B.; Introdoction to symbolic dynamics and Coding. Cambridge

Univ.Press, 1996

59