II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de...

26
DIODO DE JUN˙ˆO PN 19 II - DIODO DE JUN˙ˆO PN um dispositivo semicondutor unidirecional, constitudo de duas regiıes dopadas interligadas, originando uma junªo PN . 2.1 CURVA DE UM DIODO DE JUN˙ˆO A) Tensªo de joelho a tensªo para a qual a corrente comea a aumentar rapidamente; esta tensªo equivale ao potencial da barreira. Tem como caracterstica: Regiªo nªo-linear < 0,7V Regiªo linear 0,7V B) Tensªo de ruptura: a tensªo mÆxima com polarizaªo inversa, em que o diodo Ø seguido de um aumento de corrente (VBR BREAKOVER Voltage). C) Diodo ideal D) Diodo real com segunda aproximaªo: Os diodos de junªo sªo aplicados em conversores retificadores C.A./C.C. , conversores inversores C.C. /C.A., reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, emissores de luz (LED), receptores de luz (fotos sensores), chave de comutaªo , oscilador em alta freqüŒncia (micro-ondas), supressor de transientes, etc. Com uma polarizaªo direta inicial, nªo flui nenhuma corrente atØ que a tensªo sobre os terminais do diodo atinja 0,7V, independente da corrente que circula. Com polarizaªo inversa funciona como chave aberta. Age como um condutor perfeito (VD= 0V), quando polarizado diretamente e como um excelente isolante (IOR = 0A), quando polarizado inversamente.

Transcript of II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de...

Page 1: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

19

II - DIODO DE JUNÇÃO PN

É um dispositivo semicondutor unidirecional, constituído de duas regiões dopadas interligadas, originando uma

junção �PN� .

2.1 CURVA DE UM DIODO DE JUNÇÃO

A) Tensão de joelho

É a tensão para a qual a corrente começa a aumentar rapidamente; esta tensão equivale ao potencial da barreira. Tem como característica:

Região não-linear < 0,7V Região linear 0,7V B) Tensão de ruptura:

É a tensão máxima com polarização inversa, em que o diodo é seguido de um aumento de corrente (VBR BREAKOVER Voltage).

C) Diodo ideal

D) Diodo real com segunda aproximação:

Os diodos de junção são aplicados em

conversores retificadores C.A./C.C. , conversores inversores C.C. /C.A., reguladores, controle automático de

freqüência, controle de temperatura,

acoplamento e bloqueio de sinais, emissores de luz (LED), receptores de luz (fotos sensores), chave de comutação ,

oscilador em alta freqüência (micro-ondas), supressor de transientes, etc.

Com uma polarização direta inicial, não flui

nenhuma corrente até que a tensão sobre os

terminais do diodo atinja 0,7V, independente da corrente que circula. Com polarização

inversa funciona como chave aberta.

Age como um condutor perfeito (VD= 0V), quando polarizado diretamente e como um excelente isolante (IOR = 0A), quando polarizado inversamente.

id6672514 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Page 2: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

20

E) Diodo real com terceira aproximação:

2.2 POLARIZAÇÃO DE UM DIODO DE JUNÇÃO

A) Junção PN não Polarizada

Em uma junção PN, sem um nível de tensão externa aplicada, não pode haver circulação de corrente, porém pequenas

correntes circulam na junção. Uma das correntes é constituída pelo movimento de alguns elétrons livres do material �N� para o material �P� e algumas

lacunas da região �P� para a região �N�, que conseguiram absorver energia suficiente para ultrapassar a barreira de

depleção. Uma outra parcela de corrente, resulta da ruptura de ligações covalentes por �AGITAÇÃO TÉRMICA�. A corrente

resultante destas circulações denomina-se:

�CORRENTE DE FUGA (Io)� Io = IMAJ + ICB

Io = Corrente de fuga interna ao semicondutor, passando pela junção. IMAJ = Parcela de corrente interna ao semicondutor, gerado pelos portadores majoritários. ICB = Parcela de corrente interna ao semicondutor, gerado por agitação térmica na quebra de ligações covalentes. ( Covalente-Band - aglutinante covalente).

B) Junção PN Com Polarização Inversa:

Os elétrons do material �N� são atraídos pelo terminal (+) e as lacunas pelo terminal (-). Uma corrente estabelece, porém, o

fornecimento não é contínuo, devido aos poucos elétrons livres e lacunas no interior do material. Os elétrons que saem da

região N, deixam mais íons positivos próximo à junção; e as lacunas que se afastam da região �P�, deixam mais íons negativos. Com o aumento de íons negativos e positivos ocorre também um aumento na �Barreira de Potencial�. Esta

barreira torna-se maior até que sua diferença de potencial se iguale à tensão da fonte.

Corrente de Fuga Em Estado de Saturação (IoS1): É uma parcela da corrente de fuga reversa, que circula pelo interior do semicondutor, produzida pelos portadores minoritários que são criados pela energia térmica. Esta corrente de

fuga saturada só pode ser aumentada com o aumento de temperatura. A corrente IoS1, tem o seu valor aproximadamente dobrado para cada aumento de 10oC na temperatura ambiente.

Exemplo: Um diodo de silício tem uma IoS1 de 10 nA a 25oC, caso sua temperatura de trabalho atinja 45o, a sua corrente IoS1 atinge 40 nA.

É incluído uma resistência de corpo (rB), em série com Uma fonte �V� de 0,7V. Como o valor de rB é linear, Quanto maior a corrente , maior será a tensão nos terminais do diodo.

Page 3: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

21

Corrente De Fuga Superficial (IoS2): É uma parcela da corrente de fuga reversa, que circula pela superfície do

semicondutor, produzida pelos portadores de corrente criados por impureza da superfície, que criam trajetos ôhmicos

para circulação desta corrente. A IoS2, tem o seu valor extremamente pequeno. Corrente De Fuga Reversa (IoR): É a corrente que circula pelo semicondutor, quando polarizado reversamente, é a

soma das correntes IoS1 e IoS2. Esta intensidade de corrente pode ser alterada, variando a temperatura do corpo do diodo ou da tensão reversa aplicada sobre seus terminais.

Exemplo: O diodo trivial 1N914, tem uma corrente reversa de 25nA para uma tensão reversa de 20V e uma

temperatura ambiente de 25oC. IoR = IoS1 + IoS2

C) Junção PN Com Polarização Direta:

Os elétrons livres na região �N�, são repelidos pelo terminal negativo (-) e são forçados para a junção, onde eles irão

neutralizar os átomos doadores (íons positivos) na camada de depleção. A medida que os elétrons encontram as lacunas,

eles se tornam elétrons de valência e através das lacunas caminham para a extremidade da região �P�. Atingindo a

extremidade, os elétrons de valência abandonam o cristal e escoam para o terminal positivo. No gráfico das bandas de energia, podemos observar que os elétrons livres ao atravessar a junção e entrar na região �P�

da banda de valência descem de um nível mais alto de energia para um outro mais baixo. À medida que descem irradiam

energia na forma de calor e luz. Os diodos comuns são feitos de silício ou germânio e revestidos de um material opaco que

bloqueia a passagem da luz; toda energia irradiada é dissipada em forma de calor. Para que um diodo conduza a corrente elétrica, é necessário que haja uma �QUEBRA NA BARREIRA DE POTENCIAL�.

(Elétrons da banda de condução da região N atingem as lacunas da banda de valência da região P). Si 0,6V a 0,7V Ge 0,3V a 0,4V

2.3 ANÁLISE DO DIODO DE JUNÇÃO EM CIRCUITOS ELÉTRICOS

A) ANÁLISE EM CIRCUITO DE C.C.

Aplicando KIRCHHOFF na malha dada: V= VD + VRL Substituição VRL = IDRL, temos: V = VD + IDRL e VD = V - IDRL

A equação apresenta duas variáveis dependentes (VD e ID) e dois valores constantes (V e RL). Como são necessárias no mínimo, duas equações para determinar duas variáveis dependentes desconhecidas; a segunda

equação é fornecida pela característica do elemento diodo, isto é: ID = f(VD) Rescrevendo a equação: VD = V � IDRL ID = 1 VD + V . RL RL Equação de uma reta

y = m x + b

Page 4: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

22

Podemos observar na equação e no gráfico da linha de carga, que a inclinação da reta de carga é negativa, (o valor de ID diminui com o aumento de VD).

1) Cálculo do ponto superior da reta de carga, adota-se VD = 0, logo:

2) Cálculo do ponto inferior da reta de carga, adota-se ID = 0, logo:

3) Cálculo do ponto quiescente de trabalho (Q):

Quando não se dispõe da curva do diodo, adota-se para cálculo aproximado da corrente direta de trabalho: IDQ = V - 0,7 0,7 V para diodos de silício RL 0,3 V para diodos de germânio

RESISTÊNCIA ESTÁTICA

É a resistência ôhmica apresentada pelo corpo do diodo no ponto quiescente quando o mesmo opera em C.C.; também

conhecido como resistência DC.

RDC = VD RDC = 1V = 105,3 ID 9,5 X 10-3A

Para a região de polarização inversa de um diodo semicondutor com VD = -20V, apresenta uma corrente inversa (IOR) de 1A, logo: RDC = 20 = 20 M >> 105,3 1A

Uma vez determinada a resistência estática, o diodo pode ser substituído por um resistor com este valor. Qualquer

mudança na tensão aplicada ou na resistência de carga, entretanto, resultará em um ponto quiescente diferente e,

portanto, uma resistência DC diferente.

B) ANÁLISE EM CIRCUITO DE CA

mAK

V

RL

VVD

RLID 10

2

200

1

20V=V=VD 1

1

0

RLRL

VVDVD

RLRL

V

RL

VVD

RL

mAmAVKRL

VVD

RLIQ 5,9101

2

1=IQ

1

Page 5: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

23

Considerando que o circuito, tem como fonte de entrada, um sinal senoidal com um nível C.C. Como o nível C.C. é muito

maior do que o sinal senoidal em qualquer instante, o diodo estará sempre diretamente polarizado e existirá

continuamente uma corrente no circuito.

Conforme gráfico da reta de carga, é mostrado a resultante da entrada C.C. de 20V e também o efeito do sinal C.A..

Note que foram traçadas duas linhas de cargas adicionais nos picos positivo e negativo do sinal de entrada. No instante em que o sinal senoidal está no valor de pico positivo a entrada poderia ser substituída por uma bateria C.C. de 22V e a

linha de carga resultante traçada conforme mostrado no gráfico. Para o pico negativo, VCC = 18V.

RESISTÊNCIA DINÂMICA:

É a resistência ôhmica resultante, apresentada pelo corpo do diodo quando circula por ele uma componente alternada. Para cálculo da resistência dinâmica ou resistência CA de um diodo, é necessário conhecer a variação de tensão e

corrente no diodo. Usando o gráfico de linha de carga, determinamos ID e VD, traçando uma linha reta tangente à curva no ponto

quiescente. A linha tangente deve �aproximar o mais possível� as características na região de interesse, conforme

mostrado. rd Vd rd 0,01V __ = 5 Id linha tangente 2 x 10-3A Note que ID depende exponencialmente de �V�, o que resulta em um aumento bastante rápido quando �V� cresce. As características de um diodo de silício (Si) de uso comercial

são levemente diferentes das características mostrada no

gráfico abaixo. Isto se deve à resistência da massa, ou volume, do material

semicondutor e à resistência de contato entre o material

semicondutor e o condutor metálico externo. Elas provocarão um pequeno desvio da curva na região de

polarização direta, conforme indica a linha tracejada do gráfico. Através da física do estado sólido pode-se demonstrar que a corrente do diodo está matematicamente relacionada à temperatura absoluta (T) e à polarização aplicada (V) da seguinte maneira:

Page 6: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

24

Nem sempre nos dispomos da curva do diodo, para que possamos determinar sua resistência dinâmica. Um

outro processo é utilizando o Cálculo Diferencial que estabelece que �a derivada de uma função é igual à

inclinação da linha tangente traçada naquele ponto�.

Is = corrente de saturação inversa T TC + 273 T temperatura absoluta da junção( Kelvin) e TC graus Celsius q = 11.600 q carga do elétron (1,6 x 10

-19C) k constante de Boltzmann (1,38 x 10-23) k constante empírica, 1 para Ge e 2 para Si

q (Si) = 11.600 = 5.800 C T = TC + 273 = 25 + 273 = 298º K k 2

I = Is (e9,732 - 1) = ( 1 x 10-6) (16848 - 1 ) = (16,85 x 10-3A) Is = 1,0A (corrente inversa no diodo de silício à 100C) Is = 0,1mA (corrente inversa no diodo de germânio à 100C) Tomando a derivada da equação de SCHOCKLEY:

Sendo I 16,85mA >> que Is = 1,0 A, adota-se n = 1 para Ge e Si, na região mais vertical da curva característica .

Portanto, com a temperatura ambiente: T = 298º Kelvin q = 11.600 = 11.600 = 11.600C dI = 11.600 x I 38,93 x I k 1 dV 298 Efetuando o arredondamento e fazendo I = ID, temos: dV = 1 0,0257 r'd = 0,0257V dI 38,93 x I I ID A equação acima implica que a resistência dinâmica pode ser determinada simplesmente substituindo o valor quiescente da

corrente do diodo na equação. Não há necessidade de se ter as características ou se preocupar em traçar linhas tangentes,

conforme foi definido. Já foi observado no gráfico de características do diodo semicondutor, que as características de uma unidade comercial são

levemente diferentes daquelas determinadas pelas equações, por causa da massa e da resistência de contato do

dispositivo semicondutor. Este nível de resistência adicional deve ser incluído na equação, acrescentando-se um fator denominado �rB�. O fator rB (medido em ohms) para diodos de uso geral pode variar tipicamente de 0,1 para dispositivos de alta potência até 2 para alguns dispositivos de baixa potência. Adota-se para cálculos: ID 1000mA rB = 2 ID > 1000mA rB = 0,1 r'd = 26mV + rB ID(mA)

r'd = 26mV IDmA

CK

VC

T

V

k

q 0C0

25T e 0,5V=VD=V Para 732,9298

5,05800

T

IsIk

q

eIsI kT

qV

dV

dI 1

Page 7: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

25

Para o exemplo dado anteriormente, onde o valor determinado graficamente é rd = 5, se escolhermos rB = 2, então:

r'd = 26mV + 2 = 4,65 9,8mA Com a evolução das técnicas de construção, este fator adicional tem assumido importância cada vez menor, podendo ser

eliminado. A equação padronizada pela maioria dos livros técnicos, para cálculo da resistência dinâmica, e que será utilizado em nossos estudos é:

2.4 CIRCUITOS COM DIODOS DE JUNÇÃO

2.4.1 Multiplicadores De Tensão

Diodos e capacitores podem ser associados às linhas de alimentação de modo a aumentar a tensão de saída C.C. para um

valor maior que aquele obtido por retificação. A montagem dos multiplicadores é feito por dois ou mais retificadores de pico que produzem uma tensão contínua igual a um múltiplo de tensão de pico de entrada (2VP, 3VP, 4VP, etc...) Os multiplicadores de tensão são aplicados nos dispositivos de ALTA TENSÃO e BAIXA CORRENTE, como exemplo citamos os tubos de raios catódicos (TV, Osciloscópios e telas de computadores).

A) Dobrador de tensão em Meia-Onda

B) Dobrador de tensão em Onda Completa

No semiciclo positivo D1 conduz carregando o capacitor C1 com VP e D2 permanece em corte. No semiciclo negativo D2 conduz carregando o capacitor C2 com VP e D1 permanece em corte. Nesta condição tem-se, nas extremidades dos capacitores seriais, o potencial de 2VP, com uma freqüência de oscilação (Fo) de

2Fent.

Cada diodo ficará submetido a uma tensão inversa de pico (PIV) de

2VP.

C) Triplicador de tensão

É um dobrador de tensão acrescido de mais um retificador de pico. No primeiro semiciclo negativo, D1 entra em estado de condução carregando C1 com VP.

No segundo semiciclo, positivo, o diodo D1 entra em estado de corte e D2 em estado de condução, transferindo a carga

de C1(VP) acrescido de VP da fonte, para os terminais do capacitor C2. Estando C2 carregado com 2VP, no segundo semiciclo negativo os diodos D1 e D3 entra em estado de condução transferindo a carga C2 para o capacitor C3. Nesta condição temos nas extremidades dos capacitores seriais (C1 em série com C3) um potencial de 3VP com uma freqüência de oscilação (Fo) de Fent. Cada diodo ficará submetido a uma tensão inversa de pico (PIV) de 2VP. Podemos observar na configuração do triplicador de tensão que para cada acréscimo de um retificador de pico,

aumentamos um VP na tensão de saída.

rd resistência dinâmica calculada pela tangente à curva do diodo. r'd resistência dinâmica calculada pela fórmula da derivada da

equação de SHOCLEY.

No semiciclo negativo (-), o diodo D1 está polarizado diretamente e

D2 reversamente, esta condição carrega C1 até a tensão pico

(VP). No semiciclo positivo (+), diodo D1 fica polarizado reversamente e D2 diretamente, nesta condição, o diodo D2

transfere a carga C1 (VP) acrescido de VP da fonte, para os terminais do capacitor C2. A freqüência de oscilação do sinal

armazenados no capacitor C2 tem o mesmo valor da freqüência do

sinal de entrada (Fo = Fent). Cada diodo ficará submetido a uma tensão inversa de pico (PIV) de

2VP. O capacitor C1 ficará submetido a uma tensão de 1VP , enquanto que C2 ficará submetido a uma tensão de 2 VP .

ID

25mV=dr'

Page 8: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

26

2.4.2 Limitadores (CLIPPERS) Ou Ceifadores

Os circuitos limitadores, tem como função retirar parte do sinal aplicado à entrada, acima ou abaixo de um dado nível, como

exemplo podemos citar o �Amplificador Limitador�, que tem como característica limitar o valor instantâneo de sua saída

dentro de um máximo pré-determinado. Podem, também, serem utilizados para alterar a forma do sinal de entrada ou

proteger os circuitos que recebem um dado sinal. São classificados em limitadores positivos, negativos ou positivos e negativos. A) Limitador positivo

RS = RL 100

B) Limitador negativo:

No limitador negativo, o diodo D1 ceifa o semiciclo negativo e deixa para os terminais da carga apenas os semiciclos positivos.

C) Limitador negativo polarizado:

Para o limitador polarizado, podemos deslocar o ponto de corte para (V + 0,7V), como o limitador corta no semiciclo negativo, a tensão de corte é dado por -(V + 0,7V). Quando a tensão sobre os terminais da carga atingir -(V + 0,7V), o diodo conduzirá e a saída será mantida em -(V + 0,7V). Para tensões inferiores a -(V + 0,7V), o diodo deixará de

conduzir e o circuito se transforma em um divisor de tensão.

D) Limitador positivo e negativo polarizado por fonte ativa e passiva:

A associação de limitadores nos permite criar formas de ondas na saída, que se assemelhará a uma onda quadrada,

podendo ser simétrica ou assimétrica. O princípio de funcionamento é o mesmo definido nos subitens B e C. As fontes V1 e V2 podem ser substituídas, acrescentando mais diodos de silício, sendo que cada diodo acrescentado produzirá uma compensação de 0,7V.

RS = RL 100

No limitador positivo, o diodo D1 ceifa o semiciclo positivo e deixa para os terminais da carga apenas os semiciclos negativos. O corte do semiciclo positivo não é feito

exatamente em �zero volts�, devido

a barreira de potencial do diodo de junção, para o exemplo 0,7V. Para manter o limitador como uma fonte de tensão estabilizada, adota-se o resistor série RS, cem vezes

menor que a carga (RL) conectada.

Page 9: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

27

E) Limitador positivo e negativo polarizado por fonte ativa :

A associação de limitadores nos permite criar formas de ondas na saída, que se assemelhará a uma onda quadrada,

podendo ser simétrica ou assimétrica. O princípio de funcionamento é o mesmo definido nos subitens B e C. As fontes V1 e V2 podem ser substituídas, acrescentando mais diodos de silício, sendo que cada diodo acrescentado

produzirá uma compensação de 0,7V. Para o limitador polarizado com diodos, o nível de supressão (ponto de corte) é:

2.4.3 Grampeador C.C. (CLAMPERS)

O grampeador C.C., também conhecido como �estabilizador de linha de fase� ou �restaurador C.C.�, tem como função

somar uma tensão C.C. ao sinal de entrada. Este tipo de circuito é utilizado em TV para somar uma tensão contínua ao sinal de vídeo (restaurador de vídeo). Como exemplo, citamos um sinal senoidal variando de +5V a -5V, para o grampeador positivo sua saída idealmente oscila

de 0 a +10V e para o grampeador negativo sua saída idealmente oscila de 0 a -10V.

A) Grampeador positivo: No primeiro semiciclo negativo, o diodo D1 entra em estado de condução e carrega o capacitor C1 com a tensão de pico

da entrada (VP). No semiciclo positivo o diodo D1 é polarizado reversamente (corte) e a tensão que aparece sobre os terminais da carga

será a soma da tensão de pico armazenada em C1 com a tensão de pico positivo da fonte geradora de C.A. Na primeira aproximação, considerando a resistência dinâmica do diodo de junção (RFD = 0), temos na carga: Numa segunda aproximação, considerando a resistência dinâmica que aparecerá sobre os terminais do diodo (RFD 0), a queda de tensão de 0,7V (silício) sobre o mesmo, temos nos terminais da carga:

B) Grampeador negativo

2.4.4 Detector De Pico

Formado por grampeadores C.C., ligados em cascata. A senoide de entrada é grampeada positivamente, portanto, na saída do detector tem um valor de pico de 2VP. Como regra de projetos, para que o detector obtenha um bom desempenho, a constante de tempo RLC deve ser muito maior que o período do sinal de entrada:

VRL = 2VP

VRL = - (2VP - 0,7V)

VRL = 2VP - 0,7V

O grampeador negativo tem o mesmo princípio

do grampeador positivo, o que o diferencia é a

polaridade da tensão

sobre os terminais da carga

VC= nºdiodos x 0,7V VC= 4 x 0,7V = 2,8V

RLC >> 1 . Fent

Page 10: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

28

Sua maior aplicação é nos voltímetros de corrente contínua, quando

se deseja medir tensões senoidais assimétricas. No exemplo ao lado, se utilizarmos um voltímetro C.A. teremos uma

leitura incoerente, uma vez que, os instrumentos de medição C.A.

medem valores eficazes (RMS) de ondas senoidais simétricas. Utilizando um voltímetro C.C., acrescentado de um detector de pico, teremos uma leitura do valor real do sinal medido de pico a pico.

2.5 DIODOS EMISSORES DE LUZ

Quando um diodo é percorrido por uma corrente no sentido direto, a recombinação dos portadores de carga na

junção é acompanhada de um fenômeno: parte da energia envolvida no processo é emitida na forma de ondas

eletromagnéticas. Estas ondas eletromagnéticas têm freqüência e comprimento que dependem do material empregado na

construção do dispositivo.

Para os diodos comuns de silício, a emissão ocorre em pequena escala na região dos raios infravermelhos. Os diodos

emissores de luz tem a capacidade de emitir luz no espectro visível; isto ocorre quando o mesmo é polarizado diretamente,

fazendo com que seus elétrons livres atravessem a junção e combinem com as lacunas. Os primeiros diodos emissores de luz foram feitos utilizando �Fosfeto-Arseneto de Gálio� e emitiam luz vermelha, recebendo o nome de �Light Emitting Diodo�- diodo emissor de luz - que abreviando, em inglês, resultou na sigla �LED�. O

diodo LED é fabricado para emissão de luz com comprimento de onda que varia de 5500 Å(Angstrons) a 9100 Å. O comprimento da onda da luz emitida depende dos elementos semicondutores aplicados, sendo que a cor da luz irradiada pelo Led depende do comprimento da onda, que depende da quantidade de fósforo (GaAsP).

Page 11: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

29

A tensão de alimentação dos diodos emissores, está relacionado com a queda de tensão em seus terminais, quando circula um corrente através de sua junção. A queda de tensão dos diodos emissores é a tensão capaz de vencer a barreira de potencial existente na junção quando polarizado diretamente. Os diodos Led�s tem uma queda de tensão típica que varia de 1,4V a 3,0V, e esta variação depende da cor e da corrente

que circula por ele (ver tabela).

MATERIAL COR MAX VD (V) ID (mA)

GaP GaAsP GaAsP GaAsP GaAs

Verde Amarelo Laranja

Vermelho Infravermelho

5600 Å 5900 Å 6100 Å 6600 Å 9100 Å

3,0 3,0 2,0 1,6 1,4

20 20 20 20 20

Os diodos emissores suportam correntes diretas de no máximo 100mA e uma mínima corrente direta com uma emissão de

luz estável de 10mA. Sua tensão direta (VD) de trabalho, é especificada em função de uma corrente direta (ID) de trabalho. GaP Fosfato de Gálio GaAs Arseneto de Gálio GaAsP Fosfeto de Arseneto de Gálio

2.5.1 � Aplicações :

Os diodos emissores de luz substituem as lâmpadas incandescentes e tem várias aplicações, devido à baixa tensão de

alimentação, longa vida, baixo consumo e rápido chaveamento. Vida útil da lâmpada incandescente 500 horas Vida útil da lâmpada néon 1000 horas Vida útil do diodo emissor de luz , sua vida útil é reduzida quando se trabalha com uma corrente superior à corrente nominal (20mA). Tem um tempo de resposta 106 vezes mais rápido que a lâmpada incandescente. Sua maior aplicação é como lâmpadas indicadoras, displays alfanuméricos e componentes optoacopladores.

Page 12: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

30

2.5.2 - Cálculo De Circuitos Com LED

1) Resistor limitador (RS):

RS = 12V - 1,6V = 520 20mA

Usando o mesmo exemplo, calcular o resistor limitador para que a corrente do diodo seja de 40mA. RS = 12V - 1,6V = 260 40mA

Para os dois casos, os resistores calculados são indisponíveis

comercialmente; por isso, adotam-se os resistores padronizados mais próximos do calculado (510 e 270).

Para o caso de ligarmos Led�s em série, conforme figura, podemos usar a

seguinte fórmula: RS = 12V - (3,0V + 2,0V + 1,4V) = 280 20mA

VPM - Valor Padrão de Mercado

2) Potência de dissipação (PD)

Sabemos que a potência dissipada pelo componente, não é totalmente

convertida em luz, já que o rendimento do dispositivo não é 100%,

entretanto, para efeito de cálculo adota-se:

IF = 12V - 1,6V = 20,4mA 510

Para o exemplo anterior, substituindo o resistor calculado pelo resistor padrão. PD = VD x IF PD = 1,6V x 20,4mA = 32,64Mw

2.6 APLICAÇÃO DE DIODOS DE JUNÇÃO

Para que possamos exemplificar, circuitos utilizando os diodos de junção, faremos um breve estudo de um dispositivo eletromagnético, que tem uma grande aplicação em circuitos eletrônicos.

2.6.1 RELÉ ELETROMAGNÉTICO

Dispositivo eletromagnético com acionamento mecânico de contatos, constituído de uma armadura fixa , uma armadura

móvel e um núcleo de aço - doce . O relê eletromagnético, pode ser definido como uma "Chave operada eletricamente", tem em sua armadura fixa, uma

bobina enrolada sobre um núcleo de aço-doce magnético. Quando a corrente flui na bobina, o núcleo torna-se imantado (apresentando características de um imã) e atrai a armadura móvel de aço. Com o deslocamento da armadura móvel,

temos o fechamento de contatos elétricos ( NA normalmente aberto ) e a abertura dos contatos elétricos ( NF normalmente fechados ).Quando a corrente não flui pelas espiras da bobina, uma mola responsável pela força antagônica

da armadura móvel, faz com que a mesma retorne a posição de repouso (dezenergizada). Aplicação de sistemas com relês eletromagnéticos apresentam como vantagens : Amplificador de comando de corrente com uma pequena corrente de comando da bobina, os seus contatos

podem comandar uma grande corrente de carga;

Isolador de circuitos Pode isolar um circuito de comando em baixa tensão (exemplo 6VCC) de um circuito de carga

em alta tensão (exemplo 127 VCA);

Receptor de controle - remoto O relê pode estar comandando uma carga, que tem o seu comando a uma longa

distancia , este sinal de comando pode vir por pares de fio, uma vês que a corrente de comando é muito pequena ou pode

vir por um sinal radio freqüência "RF", para este comando devemos instalar uma placa de recepção de sinais de "RF",

com o circuito de comando

VPM = 270

VPM = 270

VF - Tensão da fonte em volts VD - Queda de tensão no diodo (depende da cor do Led a ser

aplicado). IF - Corrente direta que se deseja circular pelo Led ( o valor da corrente deve estar entre a mínima de 10mA e a máxima de

100mA).Idealmente que a corrente direta assuma o valor da corrente nominal 20mA. Para o exemplo, utilizando os valores típicos da corrente e de VD, calcular o resistor �RS� para um Led vermelho :

VPM = 510

Page 13: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

31

Os relês eletromagnéticos podem ser classificados como : ( ver figuras )

Relê tipo batente; telefone; com travamento mecânico; com chave múltipla seqüencial; diferencial.

Page 14: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

32

Os relês eletromagnéticos podem ser simbolicamente representados : ( ver tabela )

2.6.2 SEQUÊNCIAL DE TRÊS DIGITOS COM MEMORIZAÇÃO ELETROMECÂNICA

O circuito eletrônico "Seqüencial de três dígitos com memorização eletromecânica", tem sua aplicação indicada para operar

cargas, que tem sua operação restrita á determinados operadores. Exemplo : Fechadura elétrica de portas; Motor de portão elétrico; Circuito de partida de motores automotivos; O circuito foi projetado para operar com três algarismos, e aceita alteração da senha "684" ou um acréscimo de algarismos.

A tensão de alimentação do circuito de controle, esta ligado diretamente á tensão nominal das bobinas dos relês aplicados,

o mercado disponibiliza relês com bobinas de tensões nominais de 6V, 9V, 12V, 16V, 24V e 48V em corrente contínua.

Para que possamos ligar a carga, devemos montar uma seqüência operativa:

A) Usando o teclado de acionamento, acionamos a tecla de nº 6, que levará um potencial positivo ao terminal superior da bobina do relê "RL1" e estando o terminal inferior com um potencial negativo via resistor "R1", aparece nos terminais do

relê uma diferença de potencial, que, gera uma corrente elétrica que circula pelas espiras da bobina. Com a circulação da

corrente pelas espiras da bobina, origina um campo eletromagnético, que, magnetiza o núcleo de aço-doce, criando um eletroímã. A força eletromagnética do núcleo atrai a armadura móvel do relê, fazendo com que seu contato "NA" torne-se "fechado". Com o fechamento do contato, acontece uma realimentação do terminal superior da bobina com " + VCC",

memorizando o comando de operação do mesmo (selamento da bobina). Estando o terminal superior da bobina "RL1" com "+VCC", isto permite que o operador possa dar seqüência na operação.

B) Usando o teclado de acionamento, acionamos a tecla nº 8, que levará um potencial positivo ao terminal superior da bobina do relê "RL2" e estando o terminal inferior com um potencial negativo, aparece nos terminais do relê uma diferença

de potencial, que, gera uma corrente elétrica que circula pelas espiras da bobina. Com a circulação da corrente pelas

espiras da bobina, origina um campo eletromagnético, que, magnetiza o núcleo de aço-doce, criando um eletroímã. A força

eletromagnética do núcleo atrai a armadura móvel do relê, fazendo com que seu contato "NA" torne-se "fechado". Com o fechamento do contato, acontece uma realimentação do terminal superior da bobina com " + VCC", memorizando o comando de operação do mesmo (selamento da bobina). Estando o terminal superior da bobina "RL2" com "+VCC", isto permite que o operador possa dar seqüência na operação.

C) Usando o teclado de acionamento, acionamos a tecla nº 4, que levará um potencial positivo ao terminal superior da

bobina do relê "RL3" e estando o terminal inferior com um potencial negativo, aparece nos terminais do relê uma

diferença de potencial, que, gera uma corrente elétrica que circula pelas espiras da bobina. Com a circulação da corrente

pelas espiras da bobina, origina um campo eletromagnético, que, magnetiza o núcleo de aço-doce, criando um eletroímã. A força eletromagnética do núcleo atrai a armadura móvel do relê, fazendo com que seu contato "NA" torne-se "fechado". Com o fechamento do contato, acontece uma realimentação do terminal superior da bobina com " + VCC", memorizando o

comando de operação do mesmo (selamento da bobina). O relê RL3 tem disponível dois contatos normalmente abertos "NA", um opera em C.C., efetuando o selamento do relê e

o outro contato é utilizado em C.A. para energizar a carga.

Page 15: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

33

D) Em caso de operação errada, teclas diferente de X6, X8 e X4, temos operação do relê "RL4", com memorização do "Erro". Neste caso dos os relês de comando são desligados e bloqueados sua operação, com sinalização do led vermelho e

sinalização sonora (energização da sirene).

E) Para resetar o circuito, acionamos simultaneamente as teclas " X e X " .

X1 A X9 Contatos normalmente abertos do tipo Push-boton do teclado de acesso

X e X Contatos normalmente fechados do tipo Push-boton do teclado de acesso

RL1, RL2, RL3 e RL4 Chaves operadas eletricamente;

D1 Diodo trivial de silício, que opera como proteção contra inversão de polaridade da fonte de alimentação do circuito;

D2 Diodo trivial de silício, que opera como acoplador de sinais "positivos", provenientes das teclas de "ERRO", que, tem a função de energizar o relê "RL4" e desacoplar sinal "positivo", provenientes da energização do relê RL1.

D3 Diodo trivial de silício, que opera como acoplador de sinais "positivos", provenientes do fechamento do contato do

relê "RL4", que, tem a função de manter energizado o relê "RL4" (memorização selamento operativo do relê "RL4" e

desacoplar sinal "positivo", provenientes do fechamento dos contatos de "Erro". D4 e D5 Diodo LED que sinaliza operação correta (energização da carga) e operação incorreta e bloqueio do circuito de

controle .

R1 Resistor divisor de tensão do relê "RL1", que, tem a função de criar uma d.d.p. no instante de acoplamento de sinal

positivo proveniente do diodo D2, evitando um curto-circuito da fonte de alimentação.

R2 e R3 Resistor limitador de corrente nos diodos LEDs, aproximadamente 20 mA.

SIRENE Sinalização sonora de operação incorreta e bloqueio do circuito de controle.

2.7 DIODO ZENER É um diodo que trabalha melhor na região de ruptura e é um dos componentes de maior importância dos reguladores de

tensão; circuitos que mantém a tensão na carga praticamente constante, apesar das grandes variações na tensão de linha

e de carga.

Page 16: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

34

Podem funcionar em três regiões:

A) Região direta

B) Região de fuga

C) Região de ruptura

D) Reta de carga

VZ tensão zener é o ponto que o diodo sai da região de fuga e entra na região de ruptura. A tensão zener é especificada em função de uma corrente de teste (IZt) e uma corrente máxima permitida (IZMAX). Para levantamento da reta de carga, definir os valores mínimos e máximos de tensão de fonte e a tensão zener na reta

horizontal do gráfico. Adota-se VE < VZ, a corrente zener igual a zero e calcula-se a interseção vertical, considerando

VZ = 0.

Na região direta ele começa a conduzir 0,7V, como um diodo de silício comum e estabelece

uma corrente direta (IF) pelo diodo.

Polarizado inversamente, entre zero e a ruptura, ele apresenta apenas uma pequena corrente de fuga ( IOR - corrente de fuga reversa).

Polarizado inversamente, ao atingir a tensão de

ruptura (VZ), é seguido de um aumento de

corrente praticamente na vertical com o eixo x; (ver reta de carga).

Page 17: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

35

Para VE = 20V: IZ = VE - VZ IZ = 20V - 0 = 20mA RS 1K Para VE = 30V: IZ = VE - VZ IZ = 30V - 0 = 30mA RS 1K Obtemos a linha de carga superior com um ponto de interseção dada por Q1. A tensão através do diodo zener será

ligeiramente maior que a tensão do joelho na ruptura, porque a curva I(V) inclina-se suavemente. Ponto quiescente Q1: IZQ = VEQ -VZQ IZQ = 20V- 12V = 8mA RS 1K Ponto quiescente Q2:

IZQ = VEQ - VZQ IZQ = 30V �12V = 18mA RS IK

Comparando os pontos quiescente Q1 e Q2, veremos que há mais corrente através do diodo zener no ponto Q2, mas

aproximadamente a mesma tensão zener. E) Potência máxima zener (PZMAX ):

É a máxima potência de dissipação, especificado pelo fabricante. PZMÁX = VZ x IZMÁX

PZMÁX = Potência especificada (máxima) VZ = Tensão zener IZMÁX = Máxima corrente zener especificada

F) Corrente mínima do zener (IZMIN):

É a mínima corrente que deve circular pela junção do diodo para que o mesmo opere como regulador de tensão. Como regra de projetos, este valor deverá estar entre 5% a 10% da corrente máxima permitida pelo zener.

G) Resistência zener (Rzt):

É a resistência ou impedância zener de especificação, para uma corrente de teste (IZT) e uma tensão zener de teste

(VZT) Como exemplo, especificaremos o diodo zener 1N3020 VZT = 10V IZT = 25mA RZT = 7 Neste exemplo, o diodo zener tem uma tensão de 10V e uma resistência de 7 quando a corrente zener for 25mA.

2.7.1 Diodo Zener Como Regulador De Tensão

É chamado de regulador de tensão porque mantém uma tensão de saída constante, mesmo que a corrente que passe por

ele varie. Para operar como regulador zener o mesmo deve operar com polarização inversa e a tensão da fonte deve ser maior do

que a tensão zener de ruptura (VZ). Para limitar a corrente zener abaixo de sua especificação, instala-se um resistor em série (RS) com o diodo zener

VE Tensão de saída da fonte a ser regulada. VRS Queda de tensão no resistor série. VZ Tensão zener ou tensão de saída regulada.

Regra de cálculo para o regulador zener:

A) Tensão Thevenin (VTH) É a tensão que aparece sobre os terminais do diodo zener, imaginando que o diodo zener está aberto, neste instante tem-

se um divisor de tensão, formado por RS e RL.

A relação que satisfaz o funcionamento do diodo zener na região de ruptura é: VTH > VZ

B) Corrente quiescente no resistor série ( IRSQ)

IRSQ = VE - VZ ou IRSQ = IRL + IZ RS

VRS = VE -VZ

VTH = RL x VE RL + RS

Page 18: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

36

D) Corrente quiescente na carga RL (IRLQ)

IRLQ = VZ VRL = VZ RL

E) Corrente quiescente no diodo zener (IZQ)

IZQ = IRSQ - IRLQ

F) Cálculo do resistor série RS

Para o dimensionamento do resistor �RS�, necessitamos conhecer as características da fonte de alimentação a ser

regulada e das condições operativas que o regulador deverá atuar. Exemplificaremos quatro formas de operação:

1) Fonte fixa e carga fixa (FFCF); 2) Fonte fixa e carga variável (FFCV); 3) Fonte variável e carga fixa (FVCF); 4) Fonte variável e carga variável (FVCV).

2.7.1.1 Regulador De Tensão Zener Com Fonte Fixa e Carga Fixa (FFCF)

A) Dimensionamento do resistor RS :

Menor valor ôhmico que o resistor RS pode assumir (RSMIN) RSMIN = VE - VZ = 16V - 12V = 65 IRL + (IZMAX x 0,9) 24mA + (41,66mA x 0,9)

Maior valor ôhmico que o resistor RS pode assumir (RSMAX) RSMAX = VE - VZ = 16V - 12V = 142 IRL + IZMIN 24mA + 4,166mA

Valor ôhmico ideal que o resistor RS pode assumir (RSIDE) RSIDE = VE - VZ = 16V - 12V = 89,22 IRL + IZMAX 24mA + 20,83mA 2

B) Cálculo dos parâmetros elétricos quiescente por componente:

Resistor série RS

IRSQ = VE - VZ = 16V - 12V = 43,96mA PRSQ = RS x (IRSQ)2 = 91 x (43,96mA)2 = 175,85mW RS 91 Carga RL

IRLQ = VZ = 12V = 24mA PRLQ = RL x (IRLQ)2 = 500 x (24mA)2 = 288mW RL 500 Diodo zener

IZQ = IRSQ - IRLQ = 43,96mA - 24mA = 19,96mA PZQ = VZ x IZQ = 12V x 19,96mA = 239mW

Podemos observar no projeto que suas características atendem plenamente a carga e não sobrecarrega o diodo zener,

pois sua potência máxima é de 500mW e no circuito opera próximo a 50% da mesma. Cálculo da tensão thevenin: VTH = RL x VE = 500 x 16V = l3,54V RL + RS 500 + 91

VTH > VZ, satisfaz a regra de cálculo para o regulador de tensão zener.

VPM = 91

IZMIN = IZMAX x 0,1 = 4,166mA IZMAX = PZ = 0,5W = 41,66mA VZ 12V IRL = VZ = 12V = 24mA RL 500

Page 19: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

37

2.7.1.2 Regulador De Tensão Zener Com Fonte Fixa e Carga Variável (FFCV)

A) Dimensionamento do Resistor RS

Menor valor ôhmico que o resistor RS pode assumir (RSMIN): RSMIN = VE - VZ = 16V - 12V = 106,68 IZMAX x 0,9 41,66mA x 0,9

Maior valor ôhmico que o resistor RS pode assumir (RSMAX): RSMAX = VE - VZ = 16V - 12V = 142 IRL + IZMIN 24mA + 4,166mA

Valor ôhmico ideal para o resistor RS (RSIDE): RSIDE = VE - VZ = 16V - 12V = 121 IZMAX + IRL 32,83mA

2 B) Cálculo dos parâmetros elétricos quiescente por componente:

Resistor série RS IRSQ = VE - VZ = 16V - 12V = 33,33mA RS 120 PRSQ = RS x (IRSQ)2 = 120 x (33,33mA)2 = 133mW

Carga RL: IRLQ = VZ = 12V = 24mA RL 500 PRLQ = RL x (IRLQ)2 = 500 x (24mA)2 = 288mW

Diodo zener Com a carga RL conectada: IZQ = IRSQ - IRL = 33,33mA - 24mA = 9,33mA PZQ = VZ x IZQ = 12V x 9,33mA = 111mW Com a carga RL desconectada: IZQ = IRSQ = 33,33mA PZQ = VZ x IZQ = 12V x 33,33mA = 399mW

Podemos observar no projeto que suas características atendem plenamente a carga e não sobrecarrega o diodo zener

independente da carga RL estar ou não conectada. Cálculo da tensão thevenin (VTH):

VTH = RL x VE = 500 x 16V = 12,9V RL + RS 500 + 120

VTH > VZ, satisfaz a regra de cálculo para o regulador de tensão zener

2.7.1.3 Regulador De Tensão Zener Com Fonte Variável e Carga Fixa (FVCF)

VPM = 120

IZMAX = PZ = 0,5W = 41,66mA VZ 12V

IZMIN = IZMAX x 0,1 = 4,166mA

IRL = VZ = 12V = 24mA RL 500

IZMAX = PZ = 0,5W = 41,66mA VZ 12V

IZMIN = IZMAX x 0,1 = 4,166ma

IRL = VZ = 12V = 24mA RL 500

Page 20: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

38

A) Dimensionamento do resistor RS

Menor valor ôhmico que o resistor RS pode assumir (RSMIN)

130

9,066,4124

1220

9,0 mAmA

VV

IZI

VZVERS

MAXRL

MAXMIN

Maior valor ôhmico que o resistor Rs pode assumir (RSMAX):

142

166,424

1216

mAmA

VV

IZI

VZVERS

MINRL

MINMAX

Valor ôhmico ideal para o resistor RS (RSIDE):

84,133

2

166,424

122

1620

2

2mA

mA

VVV

IZI

VZVEVE

RSMAX

RL

MINMAX

IDE

Podemos observar nos cálculos que a faixa entre os resistores máximo e mínimo é muito estreita e em alguns projetos

onde a fonte de entrada assume uma grande faixa de variação, os valores calculados dos resistores máximo e mínimo

tornam-se incoerentes (RSMÁX<RSMIN); desta forma, temos duas opções para prosseguir com o cálculo do projeto:

1) aumentar a potência do zener utilizado e recalcular os resistores, fazendo RSMÁX > RSMIN.

2) manter a potência inicial do zener e fazer RSIDE = RSMIN.

B) Cálculo dos parâmetros elétricos quiescentes por componente:

1) Com a tensão máxima de entrada (VEQ=20V)

Resistor série RS IRSQ = VEQ - VZ = 20V - 12V = 61,54mA PRSQ = RS x (IRSQ)2 = 130 x (61,54mA)2 = 492mW

RS 130 Carga RL IRLQ = VZ = 12V = 24 mA PRLQ = RL x (IRLQ)2 = 500 x (24mA)2 = 288mW

RL 500 Diodo zener IZQ = IRSQ - IRLQ = 61,54mA - 24mA = 37,54mA PZQ = VZ x IZQ = 12V x 37,54mA = 450mW 3) Com a tensão mínima de entrada (VEQ=16V)

Resistor série RS IRSQ = 16V - 12V = 30,77mA PRSQ = 130 x (30,77mA)2 = 123mW

130 Carga RL Mantém os mesmos valores calculados em �B�. Diodo zener IZQ = 30,77mA - 24mA = 6,77mA PZQ = 12V x 6,77mA = 81mW Podemos observar nos cálculos dos parâmetros elétricos que, utilizando VEMAX e VEMIN, ambos atendem plenamente à

carga e às características do diodo zener. Cálculo da tensão thevenin : VTH = RL x VEQ RL + RS VTH1 = 500 x 20V =15,87V VTH2 = 500 x16V = 12,69V 500 + 130 500 + 130

VTH > VZ satisfaz a regra de cálculo para o regulador de tensão zener. Para o regulador FVCF, quando RSMAX < RSMIN e optarmos pela opção RSIDE = RSMIN, torna-se necessário o cálculo da tensão crítica de entrada (VC),

que eqüivale à menor tensão de entrada no regulador sem que o mesmo perca suas características de regulação. VC = (IRLQ + IZMIN) x RS + VZ = (24mA + 4,166mA) x 130 + 12V = 15,66V Para que o regulador opere em toda faixa de variação da tensão de entrada, temos que fazer:

VEMIN VC

VPM = 130

Page 21: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

39

2.7.1.4 Regulador De Tensão Zener Com Fonte Variável e Carga Variável (FVCV)

A) Dimensionamento do resistor RS

Menor valor ôhmico que o resistor RS pode assumir : Maior valor ôhmico que o resistor RS pode assumir :

213

9,066,41

1220

9,0 mA

VV

IZ

VZVERS

MAX

MAXMIN

142

166,424

1216

mAmA

VV

IZI

VZVERS

MINRL

MINMAX

Valor ôhmico ideal para o resistor RS:

Para os reguladores FVCV, a potência exigida pelo diodo zener, normalmente, é maior que a potência dos zeners utilizados nos outros tipos de reguladores. Sendo assim, os cálculos do menor e maior valor ôhmico do resistor RS podem mostrar valores incoerentes. RSMAX < RSMIN

Para os cálculos em que RSMAX < RSMIN, adota-se as opções: 1) Aumentar a potência zener utilizada e recalcular os resistores, para fazer RSMAX > RSMIN .

Para o exemplo, substituindo o diodo zener de 0,5W para um de 1W, o resistor RSMAX torna-se maior que RSMIN. Calcular o resistor ideal como:

8,111

2

33,8324

122

1620

2

2mAmA

VVV

IZI

VZVEVE

RSMAXRL

MINMAX

IDE

3) Manter a potência zener inicial de projeto e fazer:

RSIDE RSMIN = 213

B) Cálculo dos parâmetros elétricos quiescentes por componentes: Para o cálculo dos parâmetros elétricos,

consultar a tabela abaixo, utilizando as mesmas fórmulas aplicadas no subitem 2.7.1.4.

PARÂMETROS

PZ = 1,0 W

OPÇÃO 1 RSIDE = 110

PZ = 0,5W

OPÇÃO 2 RSIDE = 200

VEMAX = 20V

VEMIN = 16V

VEMAX = 20V

VEMIN = 16V

IRSQ

72,73mA

36,36mA

40mA

22,8mA

PRSQ

582mW

145mW

320mW

104mW

IRLQ

24mA

24mA

24mA

22,8mA

PRLQ

288mW

288mW

288mW

259mW

IZQ

48,73mA

12,36mA

16mA

- X -

PZQ

585mW

148mW

192mW

- X -

VEC

15,56V

17,53V

Na opção - 1, com um aumento da potência zener de 0,5W para 1W, o regulador permite operar em toda faixa de variações da tensão não regulada. Para a menor tensão de entrada a carga recebe a corrente necessária para o seu funcionamento e o diodo zener uma corrente de trabalho > IZMIN, garantindo o seu funcionamento.

VPM = 110

VPM = 200

IZMAX = PZ = 0,5W = 41,66mA VZ 12V

IZMIN = IZMAX x 0,1 = 4,166mA IRL = VZ = 12V = 24mA RL 500

Page 22: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

40

Para a maior tensão de entrada a carga continua com sua tensão e corrente estáveis e o diodo zener recebendo uma

corrente de trabalho < (IZMAX x 0.9), garantindo um funcionamento estável. Calculando a tensão crítica de entrada podemos observar, que um aumento de potência zener permite maior faixa de

oscilação na tensão de entrada. VEC = (IRLQ + IZMIN) x RS + VZ VEC = (24mA + 8,33mA) x 110 + 12V = 15,56V Na opção - 2, o valor calculado da corrente no resistor série RS , com VEMIN = 16V , demonstra que regulador perde suas características de regulador estabilizado, pois a tensão sobre os terminais da carga será inferior a VZ e a corrente disponível para a carga, aproximadamente 20mA. IRSQ = VEQ - VZ 16V - 12V = 20mA RS 200 Em uma segunda aproximação, considerando que o diodo zener encontra-se fora de serviço, a corrente sobre o resistor RS Com maior precisão é: IRSQ = VEQ = 16V = 22,8mA RS + RL 200 + 500 Como o cálculo do regulador foi feito através da segunda opção do subitem �A�, torna-se necessário calcular a tensão

crítica de entrada, para garantir o funcionamento do zener.

Tensão de entrada crítica mínima (VECMIN)

VECMIN = (IRLQ + IZMIN) x RS + VZ = (24mA + 4,166mA) x 200 + 12V = 17,63V

Tensão de entrada crítica máxima (VECMAX)

VECMAX = ( IZMAX x RS ) + VZ = ( 83,33mA x 110 ) + 12V = 21,116V

A tensão VECMIN = 17,63V é a menor tensão que a fonte não regulada pode fornecer, sem que o regulador zener perca

suas características de regulador estabilizado. A tensão VECMAX = 21,116V é a maior tensão que a fonte não regulada pode fornecer, sem que o regulador zener

danifique e perca suas características de regulador estabilizado. A perda da regulação de tensão em uma fonte de alimentação de circuitos eletrônicos ocasiona irregularidades em seu

funcionamento, tornando necessário um aumento da potência zener, para que as variações da carga e da tensão de

entrada, não limite o funcionamento do regulador. Um regulador estabilizado deve operar com o diodo zener na região de

ruptura (VTH > VZ). Outra maneira de se projetar um regulador zener estabilizado, é conhecendo a impedância zener (RZ),

aplicando-se a relação:

RZ 0,01RS e RZ 0,01RL

Sendo impossível, em certos casos, satisfazer a regra de 100 : 1 usando um regulador zener, optamos por um regulador menos estabilizado ou um regulador transistorizado.

Os reguladores de tensão transistorizados, também conhecidos como �circuito amplificador de tensão zener� , tem como

função básica aumentar a potência característica do diodo zener, isto é, com um diodo zener de 500mW podemos regular

uma tensão para uma carga de 2000mW ou mais; este grau de amplificação será definido pelo transistor utilizado no

circuito regulador. Os reguladores de tensão transistorizados, serão concatenados com os estudos dos amplificadores

transistorizados na configuração �Coletor-Comum� ou �Seguidor de Base�.

Page 23: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

41

2.8 EXERCÍCIOS TEÓRICOS � CAP. II

1) Dê a definição de um diodo de junção . 2) Represente simbolicamente seis tipos de diodo de junção, que tem maior aplicação em circuitos eletrônicos? 3) Em que quadrante opera um diodo trivial, que tem sua barreira de depleção reduzida e como se chama essa região? 4) O que é tensão de ruptura num diodo de junção trivial? 5) Em que quadrante opera um diodo trivial, que tem sua barreira de depleção aumentada , como se chama essa região

e como ela se divide? 6) Represente simbolicamente e graficamente um diodo de junção real com Segunda e terceira aproximação? 7) O que é corrente covalente-band, em um diodo de junção? 8) Dê a definição de corrente de fuga em estado de saturação e superficial, em um diodo de junção? 9) Em um diodo de junção, quem são os portadores minoritários e majoritários de cada região e em que banda de

energia estão localizados? 10) Na junção de um diodo existem os portadores fixos, qual o nome desses portadores e em que banda de energia

estão localizados? 11) Para um diodo polarizado diretamente, descrever o movimento de elétrons circulando pelas regiões e bandas de

energias respectivamente? 12) Quanto vale a faixa de potencial de joelho com Segunda aproximação, da curva característica dos diodos de junção

de germânio e silício? 13) Dê a representação matemática da equação de uma reta de um diodo de junção, utilizando os parâmetros elétricos? 14) O que é resistência estática de um diodo de junção? 15) Como se explica os diferentes valores de resistência estática de um diodo de junção de silício e de germânio,

polarizado reversamente? 16) O que é resistência dinâmica de um diodo de junção, dê os dois símbolos indicativos e a forma em que os mesmos

são determinados? 17) Como se explica o pequeno desvio da curva característica de um diodo de junção, operando na região direta? 18) O que é um circuito multiplicador de tensão estático e onde se aplica esse tipo de circuito? 19) O que é um circuito Clippers (ceifadores) e onde se aplica? 20) O que é um circuito Clampers (grampeadores) e onde se aplica? 21) Qual o nome do circuito eletrônico, que é acrescentado nos voltímetros de corrente contínua, destinados a medir

ondas senoidais assimétricas? 22) Dê o significado da palavra �LED� ? 23) Em que faixa de luz com comprimento em Angstrons ( Å ), são fabricados os diodos emissores de luz? 24) Qual a faixa do comprimento de onda em nano-metros, da luz visível aos olhos humanos ? 25) Dê o significado da formula química GaAsP, utilizado na dopagem de diodo LED ? 26) Dê o tempo de vida útil em horas, de uma lâmpada incandescente, néon e de um diodo LED, quando os mesmos

forem energizados corretamente ? 27) Cite as três regiões de operação de um diodo zener e explique em qual delas o mesmo é usado em circuitos de fonte

de alimentação? 28) Para que um diodo zener opere como regulador de tensão, o que torna-se necessário relacionando a fonte de

entrada e a carga a ser alimentada ? 29) O que é um regulador de tensão estabilizado? 30) Para um regulador de tensão zener , que não satisfaz a regra de 100:1, relacionando carga e impedância zener, qual

será a opção na revisão de projeto?

Page 24: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

42

2.9 EXERCÍCIOS DE CÁLCULOS � CAP. II

1) Um diodo de junção de silício, apresenta uma corrente de fuga reversa em estado de saturação de 32nA à 26° C. Qual

a intensidade dessa corrente à 46°C ? 2) Um diodo de junção apresenta uma corrente de fuga à 50° C de 60 nA. Determinar a intensidade da corrente de fuga à

25° C ? 3) Levantar a reta de carga e determinar a resistência estática do diodo, no circuito abaixo. 4) Levantar a reta de carga e determinar a resistência dinâmica do diodo, no circuito abaixo.

5) Um diodo de junção de silício apresenta uma corrente média direta de 40,05 mA, com uma tensão nos terminais de

0,63V. Determinar: A) A tensão na junção do diodo? B) A que temperatura ambiente foram feita as medições? C) Qual o valor da resistência dinâmica apresentado pelo material ativo do diodo? D) Qual o valor da resistência dinâmica apresentado nos terminais do diodo?

6) Sabendo que a tensão de junção de um diodo é de 0,59V a uma temperatura ambiente de 31ºC. Determinar:

A) A corrente média direta que circula pelo diodo? B) A temperatura absoluta da junção? C) A resistência dinâmica apresentada nos terminais do diodo? D) A queda de tensão nos terminais do diodo?

7) Um diodo de junção apresenta uma corrente média direta de 1400mA, com uma tensão nos terminais do diodo de

0,38V. Determinar: A) A tensão na junção do diodo? B) A que temperatura ambiente foram feita as medições? C) Qual o valor da resistência dinâmica apresentado pelo material ativo do diodo? D) Qual o valor da resistência dinâmica apresentado nos terminais do diodo? E) Qual a temperatura absoluta da junção?

8) Em um diodo de junção circula uma corrente média de 1,1A com uma temperatura ambiente de 299,15°K e uma queda

de tensão nos terminais do diodo de 0,35V. Determinar: A) A corrente de saturação inversa de fuga? B) A tensão de junção do diodo? C) A queda de tensão passiva, gerada pelo diodo? D) A quantidade de carga elétrica em Coulomb existente no interior do diodo? E) A resistência dinâmica apresentada nos terminais do diodo?

9) Calcular a tensão média de saída sobre os terminais do capacitor C2.

Page 25: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

43

10) Calcular os níveis de supressão, para o circuito limitador com diodos de silício.

11) Para o circuito multiplicador abaixo determinar:

A) A tensão no capacitor C1? B) A tensão no capacitor C2? C) A tensão na carga RL? D) O PIV necessário para os diodos aplicados? E) A freqüência de oscilação nos terminai da carga RL?

12) Um circuito dobrador de tensão apresenta nos terminais da carga 141,421V, determinar: A) A tensão existente nos terminais do capacitor da primeira célula retificadora de pico? B) A tensão eficaz no gerador senoidal? C) O PIV no diodo D1? D) A freqüência de entrada sabendo que o tempo em /2 é igual 6,25 ms? E) A freqüência de oscilação nos terminais da carga?

13) Esquematizar e dimensionar um quadruplicador de tensão utilizando os dados: VE = 127V, FE = 60Hz e RL = 10K.

A) PIV dos diodos? B) Tensão nominal dos capacitores? C) Corrente de pico que circula pela carga? D) Corrente média que circula pela carga?

14) Esquematizar e dimensionar um dobrador de tensão em onda completa com: VRL = 120V e FO = 120Hz

A) Tensão eficaz de entrada? B) A freqüência de entrada? C) O PIV dos diodos? D) A tensão nominal dos capacitores?

15) Projetar um limitador polarizado simétrico com uma tensão de saída de pico de 4,5V, utilizando diodos triviais. A

tensão C.A de entrada é de 6,36V em RMS e a carga a ser conectada é de 2K7. 16) Para o circuito limitador abaixo, desenhar a forma de onda na carga, indicando o nível de tensão.

Page 26: II - DIODO DE JUN˙ˆO PN - estudandoeletronica.xpg.com.br · reguladores, controle automÆtico de freqüŒncia, controle de temperatura, acoplamento e bloqueio de sinais, missores

DIODO DE JUNÇÃO PN

44

17) Para o circuito grampeador abaixo, desenhar a forma de onda na carga e determinar a corrente de pico-a-pico na carga?

18) Para o circuito abaixo, dimensionar o resistor RS e calcular as potências dissipadas em cada diodo Led ?

19) Para o circuito abaixo, dimensionar o resistor RS e calcular as potências dissipadas em cada diodo Led ?

20) Para o circuito regulador de tensão zener, calcular a mínima e máxima corrente que circula pelo diodo zener.

21) Projetar um regulador zener FFCF, com uma carga de 220 em 13V, sabendo que a tensão de entrada é de 22V ?

22) Projetar um regulador zener FFCV, com uma carga de 220 em 13V, sabendo que a tensão de entrada é de 22V ?

23) Projetar um regulador zener FVCF, com uma carga de 220 em 13V, sabendo que a tensão de entrada varia de 18V

a 22V ?

24) Projetar um regulador zener FVCV, com uma carga de 220 em 13V, sabendo que a tensão de entrada varia de 18V

a 22V ?

25) Para o regulador zener FVCF abaixo, determinar a tensão crítica de alimentação �VEC� superior e inferior do circuito.

26) Para o regulador zener FVCV abaixo, determinar a tensão crítica de alimentação �VEC� superior e inferior do circuito.