INSTRUMENTAÇÃO DE UM CALORÍMETRO - Inicial — UFRGS ... · de energia para o calorímetro...

35
Escola de Engenharia Engenharia Mecânica Medições Térmicas i UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA INSTRUMENTAÇÃO DE UM CALORÍMETRO por Dhiego Reichak da Silva – 136126 Adriano Kuckoski – 136120 Guilherme Hiller – 136122 Ângelo Rempel – 147369 Trabalho Final da Disciplina de Medições Térmicas Porto Alegre, junho de 2008.

Transcript of INSTRUMENTAÇÃO DE UM CALORÍMETRO - Inicial — UFRGS ... · de energia para o calorímetro...

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

i

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

INSTRUMENTAÇÃO DE UM CALORÍMETRO

por

Dhiego Reichak da Silva – 136126

Adriano Kuckoski – 136120

Guilherme Hiller – 136122

Ângelo Rempel – 147369

Trabalho Final da Disciplina de

Medições Térmicas

Porto Alegre, junho de 2008.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

ii

RESUMO

O presente trabalho consiste em realizar e avaliar a instrumentação de um Calorímetro. O

procedimento é verificar primeiramente, o funcionamento do mesmo para que se tenha e real

idéia de como deve ser feita a medição. Os sensores de temperatura foram escolhidos com base

na viabilidade financeira e pela praticidade de manuseio. Desta forma, os três sensores (NTC)

utilizados para a medição da temperatura são calibrados e ajustados em uma curva exponencial.

A medição é obtida com todos os cuidados necessários. O poder calorífico do Gás Liquefeito de

Petróleo é adquirido através de dois experimentos diferentes. Os resultados de cada experimento

foram bastante diferentes. Se comparando com valor real pesquisado, chegou-se a uma diferença

de aproximadamente 35% no primeiro experimento e 3,5% no segundo. Os erros de medição

associados chegou a ambos os experimentos a 9,75% tendo como principal fator, a precária

medição de vazão.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

iii

ABSTRACT

This work is to implement and evaluate the instrumentation of a Calorimeter. The first

procedure is to check the operation of the same and has the real idea of how it should be made to

measure. The temperature sensors were chosen based on financial viability and the practicality of

handling. Thus, the three sensors (NTC) used for the measurement of temperature are calibrated

and adjusted on an exponential curve. The measurement is made with all necessary care. The

calorific value of Liquefied Petroleum Gas is acquired through two different experiments. The

results of each experiment were quite different. If compared with real value searched, it was a

difference of approximately 35% in the first experiment and 3.5% in the second. The errors of

measurement associated reached both experiments to 9.75% with the main factor, the precarious

measurement of flow.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

iv

SUMÁRIO

INTRODUÇÃO .............................................................................................................................7

1 CALORÍMETRO..................................................................................................................8

2 MATERIAIS UTILIZADOS..............................................................................................11

3 PROCEDIMENTO .............................................................................................................12

4 SENSORES..........................................................................................................................13

4.1 CALIBRAÇÃO DOS SENSORES.....................................................................................................13 4.1.1 Sensores verdes: ....................................................................................................................15 4.1.2 Sensores pretos:.....................................................................................................................15

5 INCERTEZAS DE MEDIÇÃO: ........................................................................................17

5.1 INCERTEZAS ASSOCIADAS AOS SENSORES: ................................................................................17 5.1.1 Incerteza nos valores das resistências: .................................................................................17 5.1.2 Incerteza no valor real da temperatura: ...............................................................................17 5.1.3 Incerteza do multímetro: .......................................................................................................17

5.2 INCERTEZAS ASSOCIADAS A VAZÃO: .........................................................................................18 5.2.1 Gás.........................................................................................................................................19 5.2.2 Água.......................................................................................................................................19

6 RESULTADOS: ..................................................................................................................20

6.1 EXPERIMENTO 1 .........................................................................................................................20 6.2 EXPERIMENTO 2 .........................................................................................................................20

6.2.1 Incerteza ................................................................................................................................21 6.3 EXPERIMENTO 3 .........................................................................................................................22

6.3.1 Incerteza ................................................................................................................................22

7 DISCUSSÃO........................................................................................................................24

CONCLUSÃO .............................................................................................................................25

REFERÊNCIAS ..........................................................................................................................26

ANEXOS ......................................................................................................................................27

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

v

LISTA DE FIGURAS

Figura 1 - Calorímetro...................................................................................................................8

Figura 2 – Balanço Térmico..........................................................................................................9

Figura 3 – Sensores Acoplados....................................................................................................13

Figura 4 – Processo de Calibração..............................................................................................14

Figura 5 – Gráfico Sensores Verdes............................................................................................15

Figura 6 – Gráfico dos Sensores Pretos......................................................................................15

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

vi

LISTA DE TABELAS

Tabela 1 – Constantes dos Sensores ............................................................................................16

Tabela 2 – Incerteza dos Sensores...............................................................................................18

Tabela 3 – Vazão Mássica de Gás................................................................................................19

Tabela 4 – Vazão Mássica de Água .............................................................................................19

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

7

INTRODUÇÃO

Na natureza existem distintas formas de disponibilidade de energia, uma destas formas se

manifesta através dos gases combustíveis, onde, através de sua queima podemos transformar a

energia armazenada para uma forma que seja mais adequada conforme a necessidade.

Com o decorrer do tempo foram descobertos várias formas de combustíveis e na

atualidade, com o aumento da competitividade econômica, não raro são propostos combustíveis

alternativos. Cabe então representar através de uma unidade padrão a eficiência de cada um

destes, em outras palavras, determinar qual a quantidade de energia que está disponível por

unidade de massa do elemento combustível. Tal quantidade é mensurada através da propriedade

denominada poder calorífico.

Desta forma o presente trabalho trata da determinação, através de medição experimental,

do poder calorífico do Gás liquefeito do Petróleo (GLP), já que este está presente em diversas

aplicações comuns no cotidiano atual. Para tanto foi necessário o correto manuseio do

equipamento denominado Calorímetro bem como dos sensores utilizados no procedimento de

medição.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

8

1 CALORIMETRO

Este equipamento consiste num trocador de calor acoplado a um sistema de refrigeração a

água de forma que, toda a troca de energia ocorre entre os gases de combustão provenientes da

combustão e a água que resfria o equipamento. A quantidade de energia ganha pela água é

mensurada através da medição da variação da sua temperatura e vazão do equipamento.

Abaixo pode-se ver na figura 1 o esquema de funcionamento do Calorímetro.

Figura 1 - Calorímetro

1- Região de entrada da água.

2- Câmara de combustão.

3- Região de circulação da água.

4- Bico de Bunsem (queima do gás).

5- Saída dos gases provenientes da queima.

6- Saída da água, medição da temperatura de saída dos gases.

A- Medição da temperatura de entrada da água.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

9

B- Medição da temperatura de saída da água.

C- Medição da temperatura de entrada dos gases.

Porém para que a medição seja válida deve-se manter o calorímetro em funcionamento

em regime permanente, isto é, o equipamento não deve ter perdas de energia para o ambiente e a

medição deve ser realizada quando a temperatura de saída tenha se estabelecido, para uma vazão

de água constante.

Utilizou-se o calorímetro para determinar o poder calorífico inferior dos gases

combustíveis. Esta é uma característica muito importante de um combustível que indica a

quantidade de energia liberada por unidade de massa consumida numa combustão.

Fazendo-se um balanço de energia no calorímetro temos que a energia que entra no

volume de controle que envolve o calorímetro deve ser igual a energia que sai do volume de

controle. Isso significa que a energia que entra (com o gás combustível) deve ser igual à energia

que sai (entregue à água). Ou seja, Ee = Es. Considerando que outras perdas pelas paredes do

calorímetro sejam pequenas.

O balanço térmico está representado de forma esquemático na figura 2 abaixo.

GÁS

AR ÁGUA FRIA

ÁGUA QUENTE

GÁS PRODUTO

CALORÍMETRO

Figura 2 – Balanço Térmico

Colocando esse balanço em termos de potências temos a Equação 1:

)(m pci m C T Tp Eagás água Sa= − (1)

Onde :

.

gásm = Vazão mássica de gás combustível (kg/s).

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

10

pci = Poder calorífico inferior do gás combustivel (kJ/kg).

.

águam = Vazão mássica de água (kg/s).

pC = Calor específico da água (4,179 kJ/kgK).

SaT = Temperatura de saída da água (ºC).

EaT = Temperatura de entrada da água (ºC).

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

11

2 MATERIAIS UTILIZADOS

- 3 Termistores (NTC).

- Mangueiras.

- 1 Termômetro (calibração).

- Multímetro.

- Garrafa térmica (calibração).

- Jarra com marcador de volume.

- Cronômetro.

- Medidor de volume (para medir o volume de gás utilizado).

- Calorímetro.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

12

3 PROCEDIMENTO

Como toda instrumentação, precisa-se ter certeza de que os sensores estão funcionando

corretamente, ou seja, de que estão respondendo de acordo com a variação da grandeza a ser

medida. Para tanto se iniciou o processo de calibração.

De posse de uma garrafa térmica, e de um termômetro de mercúrio determinou-se os

valores de resistência de cada NTC da seguinte maneira: Colocava-se água a uma certa

temperatura dentro da garrafa térmica e mergulhavam-se os sensores e o termômetro juntos,

tapava-se a boca da garrafa com um pedaço de poliestireno expandido (para minimizar a perda

de calor da água para o ambiente), deixando que a temperatura estabiliza-se. Em seguida, através

de um multímetro lia-se o valor da resistência associada a temperatura em cada sensor. O

próximo passo foi criar a curva de calibração de cada NTC com os dados obtidos.

Com os sensores devidamente calibrados e a curvas de calibração obtidas deu-se inicio a

medição e a obtenção dos dados para levantamento do PCi do gás.

O procedimento é bem simples. Regula-se a intensidade da chama e a vazão de água pelo

calorímetro de modo que a temperatura de saída dos gases não seja maior do que 3 a 4°C para

garantir que o calorímetro trabalhasse a frio e que quase toda energia fosse transferida para a

água. Mediu-se então a temperatura de entrada e saída da água no calorímetro. De posse de um

medidor de volume e um cronômetro, obteve-se a vazão de gás. De forma semelhante mediu-se a

vazão de água com a ajuda de uma jarra com marcador de nível.

A amostragem das vazões foi seqüencial, mediu-se uma após a outra, já a medição das

temperaturas foi obtida em intervalos de quinze minutos. Isso considerando que o Calorímetro

operava em regime permanente.

Assim com os valores das grandezas e sua incertezas obtidos e a equação de conservação

de energia para o calorímetro calculo-se o valor do Pci do gás e sua incerteza de medição para

três casos descritos mais adiante.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

13

4 SENSORES

Para realizar a medição das temperaturas de entrada e saída da água e entrada e saída dos

gases de combustão foram selecionados sensores termistores do tipo NTC que empregam um

decréscimo bastante não linear da sua resistência com a variação da temperatura.

Este tipo de sensor foi escolhido devido a sua facilidade de manuseio bem como seu

baixo custo, o único porém é que este necessita de que seja feita uma calibração do mesmo.

Para a medição das resistências dos sensores foi usado um multímetro digital.

4.1 Calibração dos sensores

Foi adquirido dois diferentes tipos de sensores cada um com resistências diferentes e

custos diferentes. Como foram necessários três diferentes pontos de medição foram calibrados

três sensores de cada modelo, três de 5KΩ e três de 10KΩ .

Os sensores foram calibrados contra um termômetro de mercúrio com resolução de 0.1ºC.

A calibração foi realizada de forma bastante simples:

Primeiramente os sensores foram acoplados adequadamente ao termômetro de

mercúrio.

Figura 3 – Sensores Acoplados

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

14

Colocou-se água dentro de uma garrafa térmica, então os sensores, juntamente

com o termômetro foram colocados dentro da garrafa.

Esperou-se algum tempo até que a variação de temperatura no termômetro fosse

estabilizada então foi feita a leitura das resistências dos sensores.

O processo foi repetido para diferentes temperaturas de água na garrafa térmica.

Figura 4 – Processo de Calibração

Então foi possível obter os seguintes gráficos da variação das resistências com as

temperaturas para os diferentes patamares de temperaturas.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

15

4.1.1 Sensores verdes:

Resistência X Temperatura

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Temperatura(ºC)

Res

istê

ncia

s(K

hom

)

Sensor D

Sensor E

Sensor F

Figura 5 – Gráfico Sensores Verdes

4.1.2 Sensores pretos:

Resistência X Temperatura

2.00

4.00

6.00

8.00

10.00

12.00

14.00

10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00

Temperatura(ºC)

Res

istê

ncia

s(K

hom

)

Sensor_A

Sensor_B

Sensor_C

Figura 6 – Gráfico dos Sensores Pretos

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

16

Analisando os gráficos pode-se verificar um bom comportamento das resistências dos

sensores verdes, logo estes foram selecionados para realizar as medidas de temperatura dos gases

aquecidos e do fluído.

O sensor preto A também foi selecionado para realizar a medição, já que apresentou uma

curva bastante coerente com a esperada. Os sensores pretos B e C foram descartados já que seu

comportamento pareceu diferenciado dos demais por erro sistemático ou por erro grosseiro

durante a medição.

Foram utilizadas curvas exponenciais do tipo *( ) B RT R Ae= para interpolar os valores

intermediários de temperatura.

Na Tabela 1 estão as constantes A e B de cada um dos sensores.

Constante A Constante B

Sensor A 68.483 -0.1600

Sensor D 69.414 -0.0991

Sensor E 69.527 -0.1012

Sensor F 69.817 -0.1021

Tabela 1 – Constantes dos Sensores

Quanto a faixa de calibração, para baixas temperaturas (até aproximadamente 40°C) a

maioria dos NTC´s apresenta comportamento quase que linear, já para temperaturas mais altas

(acima de 40°C) esta “linearidade” já não confere. Como pode se observado nos gráficos acima,

a linearização da curva de calibração bem que poderia ser feita, já que compreende a faixa de

baixas temperaturas, porem optamos por uma curva de interpolação exponencial para

amenizarmos os erros.

Como pôde-se observar nos gráficos anteriores os valores das constantes foram obtidas

considerando uma faixa de variação da temperatura situada entre 10ºC e 45ºC, logo esta é a faixa

de medição que estes sensores estão aptos a medir.

Tratando-se de uma instrumentação, várias incertezas estavam envolvidas, tanto na

calibração, como na medição em si. Adotou-se a temperatura lida no termômetro, para a

calibração dos sensores, como absoluta (100% correta), já que é um instrumento de laboratório.

A única incerteza envolvida na calibração foi a do multímetro.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

17

5 INCERTEZAS DE MEDIÇÃO:

5.1 Incertezas associadas aos sensores:

Tendo em mãos as curvas de calibração dos sensores temos que analisar as incertezas

associadas. Existem três fontes de incertezas associadas que estão associadas as medidas feitas

com os sensores.

5.1.1 Incerteza nos valores das resistências:

A única especificação técnica com relação aos sensores é em relação ao valor da

resistência elétrica nominal de cada sensor, logo foi necessário á calibração de cada sensor. Com

esta abordagem eliminamos esta incerteza. Uma abordagem menos conservadora, que também

poderia ser aplicada se estivéssemos tratando de um número muito elevado de sensores, seria

fazer a média dos valores nominais dos sensores e calibrar somente um sensor. Porém esta

abordagem só se aplicaria se o número de sensores fosse muito elevado já que as incertezas neste

caso seriam muito maiores.

5.1.2 Incerteza no valor real da temperatura:

Os sensores foram calibrados de acordo com os valores de temperatura fornecidos por um

termômetro de tubo de mercúrio, no entanto, o valor de temperatura medido pelo termômetro

também tem uma incerteza associada. Para fins de simplificações dos cálculos a incerteza

associada ao elemento sensor de calibração foi desprezada, os valores de temperaturas lidos no

termômetro foram considerados absolutos.

5.1.3 Incerteza do multímetro:

A medição também está sujeita a incerteza associada ao multímetro utilizado. Para fins de

cálculos de incerteza utilizou-se como a variação fornecida pelo manual do fabricante do

multímetro.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

18

Dados do multímetro:

Multímetro digital modelo MD-606pro.

Resolução na escala de 40 Kohm igual a 10 ohm. Exatidão +-(1% +2d).

Então considerando 2d=10 ohm, temos:

E= +-(1% +0.01)Kohm.

* ( ) , 0.01 0.01B RT R A e R R= ∆ = + (2)

2( )T RT RR

∂∆ = ∆∂

(3)

( )2*( * * )(0.01 0.01)B RT A B e R∆ = + (4)

Com base nisso foi calculada a incerteza para cada um dos valores de resistência medidos

durante a calibração, como se mostra na Tabela 2.

Temperatura(ºC) R_A(ºC) R_D(ºC) R_E(ºC) R_F(ºC)

12.20 0.2 0.2 0.2 0.2

20.30 0.3 0.3 0.3 0.3

26.10 0.3 0.3 0.3 0.3

30.90 0.3 0.3 0.3 0.3

34.90 0.3 0.3 0.3 0.3

39.10 0.3 0.3 0.3 0.3

43.00 0.3 0.3 0.3 0.3

Tabela 2 – Incerteza dos Sensores

Observando a tabela acima podemos ver que a maioria dos valores é 0,3ºC, então é

razoável tomar como incerteza para os valores de temperaturas medidos 0,3ºC.

5.2 Incertezas associadas à vazão:

As incertezas na medição das vazões envolvidas, tanto do gás como da água foram

obtidas por amostragem. A partir da amostragem, calculou-se a média e o desvio padrão,

atribuindo-se então dois desvios padrões para a incerteza de medição.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

19

5.2.1 Gás

Vazão Mássica [kg/s]

3,73134E-05

4,03226E-05

3,90625E-05

3,57143E-05

3,62845E-05

4,01284E-05

3,71471E-05

Tabela 3 – Vazão Mássica de Gás

Média: 3,8E-05 kg/s

Desvio Padrão para pequenas amostras: 1,84E-06 kg/s

Incerteza de medição para dois desvios padrões: 9,71%

5.2.2 Água

Vazão Mássica [kg/s]

0,018450185

0,018416206

0,018416206

0,018484288

0,018315018

Tabela 4 – Vazão Mássica de Água

Média: 0,01841 kg/s

Desvio Padrão para pequenas amostras: 5,66E-05 kg/s

Incerteza de medição para dois desvios padrões: 0,7%

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

20

6 RESULTADOS:

A partir do procedimento descrito como segue em anexo, foram realizados três

experimentos. Tinha-se a idéia de não só comparar o resultado com o valor verdadeiro, mas

também verificar e analisar outras formas de medir a fim de avaliar e comparar os resultados que

teríamos com a variação de alguns parâmetros não especificados no procedimento na qual

tínhamos e mãos.

6.1 Experimento 1

Neste experimento, tentou-se seguir a risca o roteiro em anexo. Ao longo de todos os

experimentos tinha-se uma vazão de água limitada, já que pegou-se a água diretamente da rede

que abastecia o prédio, ou seja, tínhamos uma vazão máxima de água definida.

Como se segue no roteiro, tinha que realizar o experimento onde a temperatura entre o

gás de combustão na saída e a ambiente não pudesse passar de 2°C. Para que esta temperatura

não passasse de 2°C, a vazão de gás tinha que ser muito baixa, o que impossibilitou de fazer a

medida, já que saía da faixa de medida do medidor de vazão que estava disponibilizado.

Com base na falta de dados da vazão do gás, resolveu-se abortar esta medida e passar-se a

trabalhar com uma diferença de temperatura maior. Com isso esperava-se um determinado erro

em função deste procedimento, como é descrito na conclusão do trabalho.

6.2 Experimento 2

Neste experimento realizamos todos os procedimentos de forma adequada, só não nos

importamos com a diferença de temperatura entre o ambiente e a saída do gás, o que

teoricamente faria com que nem todo o calor é transferido da chama para a água. Os resultados

da seguem abaixo, sendo as temperaturas já estão transformadas em ºC através da calibração dos

sensores:

• Temperatura da água de entrada: 17,98°C

• Temperatura da água de saída: 35,10°C

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

21

Para medição de vazão da água, utilizamos uma garrafa demarcada com o volume de 1l. A

partir disso, quando o sistema já estava em regime, medimos quanto tempo demorava para

encher esta garrafa até a marca. O tempo médio decorrido depois de 5 medidas foi de 54,3s, o

que com uma densidade de 1000 3/kg m , chegamos a uma vazão mássica de 1,84E-02 kg/s.

Neste experimento, conseguiu-se medir a vazão do gás já que estava na faixa de trabalho

que o medidor de vazão media. Esta vazão foi determinada da mesma forma que a água. Como o

medidor de vazão era acumulativo, mediu-se quanto tempo era necessário para que fosse

utilizado 0,001 3m .

O tempo médio decorrido depois de 5 medidas foi de 129,93s. A densidade pesquisada e

utilizada para o gás GNV, foi de 2,5 3/kg m . Com base nisto, chegou-se a uma vazão mássica de

1,9285E-05 kg/s. Substituindo os valores na equação de balanço de energia considerando o calor

específico da água de 4,179 /kJ kgK, chegou-se a um valor nominal para o poder calorífico do

gás de 68.319 kJ/kg.

6.2.1 Incerteza

Para o calculo das incertezas utilizamos o procedimento de propagação de incertezas que

formulado para a Equação 1 fica assim:

2 2 2 2 2

2

( ) ( )( ) ( ) ( )

2p ga ea sa

a sa ea c a p sa ea mp sa ea m a p sa t a p ea tPci

g g g g g

m T T u m c T T uc T T u m c T u m c T uu

m m m m m

− − − −= + + + + −

ɺɺɺ ɺɺ ɺ

ɺ ɺ ɺ ɺ ɺ

(5)

Substituindo os valores na Equação 5 considerando cp da água líquida constante 4,179

kJ/kgK, obtemos:

2,283 05 4,393 7 8,193 4 8,193 4Pciu e e e e= + + +

Seguindo a equação, chegamos as seguintes parcelas de incertezas:

• Água = 2,283e5;

• Gás = 4,393e7;

• As duas temperaturas = 8,193e4 cada;

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

22

Resolvendo a equação:

9,75%Pciu =

Logo, para uma confiança de 95% (dois desvios padrões), o PCi do gás foi de:

(68,319 ± 6,658 )kJ/kg

Segundo dados da “CTGAS – Dados e Unidades de Conversão” tem-se como valor de

referência para o poder calorífico do gás de aproximadamente 49.613 kJ/kg. Isso nos diz que, a

partir de todos os erros inerentes no processo de aquisição dos resultados, obteve-se um erro

entre o valor nominal medido e o valor real em torno de 35%, o que foi considerado totalmente

insatisfatório. Devido a este resultado, decidiu-se realizar outro experimento como é descrito a

seguir.

6.3 Experimento 3

Como os resultados não foram necessariamente bons, realizou-se outro experimento a fim

de comparar com o resultado obtido anteriormente. Neste experimento, utilizou-se uma vazão de

gás um pouco maior (na verdade a maior que se tinha disponível).

Seguindo os mesmos procedimentos do experimento anterior, chegou-se aos seguintes

resultados:

• Temperatura da água de entrada: 20,31°C;

• Temperatura da água de saída: 46,21°C;

• Vazão mássica de gás 3,792E-05 kg/s;

• Vazão mássica de água 1,80E-02 kg/s.

6.3.1 Incerteza

Fazendo-se da mesma forma como no experimento 2, utilizando a Equação 5, temos: 1,293 05 2,489 7 2,028 4 2,028 4Pciu e e e e= + + +

Seguindo a equação, chegamos as seguintes parcelas de incertezas:

• Água = 1,293e5;

• Gás = 2,489e7;

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

23

• As duas temperaturas = 2,028e4 cada;

Resolvendo a equação:

9,74%Pciu =

Logo, para uma confiança de 95% (dois desvios padrões), o PCi do gás foi de:

(51,422 ± 5,058 )kJ/kg

Utilizando a equação de balanço de energia, chegou-se a um resultado de 51,422 kJ/kg,

com isso o erro a partir do resultado ficou em apenas em 3,65%, o que se mostrou mais

satisfatório do que os resultados anteriores, mas a temperatura entre a saída do gás e a ambiente

ficou maior do que 10°C.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

24

7 DISCUSSÃO

A titulo de curiosidade, o calorímetro instrumentado é capaz de medir tanto o PCi (poder

calorífico inferior), como o PCs (poder calorífico superior). O PCs é obtido medindo-se a massa

de água condensada na saída dos gases de queima, obtendo assim a energia específica dissipada

na condensação, somando ao PCi.

Nas medições realizadas, foi medido somente o poder calorífico inferior já que a vazão de

água condensada era baixa e não tínha-se um medidor específico disponível que conseguisse

medir esta vazão. O erro existente no caso desta medição seria grande em função de que nem

toda a água condensada desceria pelo tubo e cairia até o recipiente, ficando gotas no tubo e no

instrumento, devido a essa mínima vazão da água influenciaria no resultado final da medição.

Durante a calibração a principal dificuldade era manter a temperatura da água dentro da

garrafa térmica constante, ou pelo menos variando muito pouco dentro do tempo necessário para

a aquisição dos dados de resistência dos sensores. Conseguiu-se isso tapando a boca da garrafa

térmica com um pedaço de isolante de poliestireno expandido diminuindo a troca de calor da

água com o ambiente.

Outra dificuldade encontrada, além de fazer o calorímetro trabalhar a frio, foi a medição

da vazão do gás. Por ser pouco o gás utilizado o mostrador de consumo quase não variava dando

a impressão de que não estava funcionando. Para resolver isso teve-se que estimar a vazão

consultando dados em material antigo confeccionado por outros experimentos já realizados.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

25

CONCLUSÃO

Levando em conta as dificuldades encontradas, obteve-se bons resultados.

A dificuldade na medição da vazão mássica de gás, quando se operou o calorímetro da

forma indicada, determinou as novas hipóteses e simplificações para o cálculo do PCi.

Aumentando a vazão do gás, conseguiu-se medi-la. Porém uma parte considerável de sua

energia, que não foi medida, não foi transferida à água e conseqüentemente introduzindo o maior

erro no levantamento do Pci do gás.

Obteve-se o melhor valor para o Poder calorífico inferior do gás no terceiro experimento,

51,422 ± 5,058 kJ/kg. Este valor médio comparado com o obtido no site da Ultragáz (49,613

kJ/kg) apresenta uma diferença de 3,65%. Um valor muito bom considerando o erro, já citado,

devido a dificuldade na medição da vazão do gás e que o gás comum (GLP) utilizado, é

composto basicamente por Metano e Butano e que qualquer variação em sua composição altera o

seu PCi deixando assim duvidas se, se comprou valores de gases iguais ou não.

Fica agora a sugestão para melhoria do experimento: utilizar um botijão de gás medindo

sua massa no começo e no final do experimento para levantamento da vazão do gás.

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

26

REFERÊNCIAS

• CTGÁS. “Dados e Unidades de Conversão“

• UltraGáz. < http://www.ultragaz.com.br/glp/o_glp/densidade.htm >

• SCHNEIDER, Paulo Smith. “Polígrafo - Notas de Aula”

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

27

ANEXOS

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

28

ROTEIRO PARA AULA EXPERIMENTAL MEDIÇÃO DO PODER CALORÍFICO INFERIOR DO GLP

EM CALORÍMETRO DE GÁS Tamb=20.6ºC Tea=17.1ºC Tsa=24.4ºC Tsg=20.8ºC ma=2L/56s mg=99g/h Tamb=18ºC Tea=16,2ºC Tsa=29ºC Tsg=21,2ºC ma=2L/56s mg=171g/h

O calorímetro para gás combustível é um equipamento que se destina a determinar o poder calorífico inferior de gases combustíveis. Esta é uma característica muito importante de um combustível que indica a quantidade de energia liberada por unidade de massa consumida numa combustão.

GÁS COMBUSTÍVEL

AR ÁGUA FRIA

ÁGUA QUENTE

GÁS PRODUTO

CALORÍMETRO

Fig. 1 - Balanço de Energia num volume de controle que envolve o calorímetro.

Fazendo-se um balanço de energia no calorímetro temos que a energia que entra no volume de controle que envolve o calorímetro deve ser igual a energia que sai do volume de controle. Isso significa que a energia que entra (com o gás combustível) deve ser igual à energia que sai (entregue à água). Ou seja, Ee = Es. Colocando esse balanço em termos de potências temos:

mg.pci = ma.cp.(Tsa-Tea)

onde, mg = vazão mássica de gás combustível (kg/s), pci = poder calorífico inferior (kJ/kg), ma = vazão mássica de água (kg/s), cp = calor específico da água (4,179 kJ/kgK), Tsa = temperatura de saída da água (oC) e Tea = temperatura de entrada da água (oC). Para realizar a medição orientar-se pelos seguintes passos: 1) Dois alunos são necessários para regular a água de refrigeração: um abre moderadamente a torneira enquanto o outro observa o copo de alimentação de água (veja esquema do calorímetro), a fim de que não haja derramamento de água por uma vazão excessiva. A regulagem deve ser tal que cause um pequeno fluxo de água na mangueira de retorno; 2) Abrir o registro do gás do butijão grande; 3) Acender o bico de Bunsen com regulagem pequena de chama e introduzi-lo com cuidado na fornalha; 4) Colocar o Bunsen sobre a base e aumentar a chama; 5) Regular a potência da chama de tal forma que a temperatura de saída dos gases não exceda a temperatura ambiente em mais de dois graus Celsius;

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

29

6) Colocar o “liquinho” com cuidado sobre a balança e ligá-la. Anotar na tabela a massa inicial do “liquinho”; 7) Obtidas as condições acima mudar a alimentação de gás do Bunsen abrindo a válvula do liquinho e fechando a válvula do butijão. Começar a contar uma hora de ensaio no relógio; 8) Fazer a leitura da temperatura ambiente no termômetro de bulbo seco, ler as temperaturas de entrada da água, saída da água e saída dos gases, nos três termômetros de mercúrio do calorímetro; 9) Medir a vazão de água mudando o fluxo de água para o recipiente através da válvula direcionadora do copo de saída da água do calorímetro (copo da direita). Controlar o tempo para recolher dois litros de água a fim de calcular a vazão mássica de água (kg/s); 10) De quinze em quinze minutos repetir as leituras anotando na tabela; - Obs.: Verificar constantemente por um espelho se a chama não apagou. Se porventura a chama apagar, fechar a válvula de gás do Bunsen e ventilar o calorímetro. Em seguida acender a chama novamente. A ventilação consiste em retirar o Bunsen da câmara de combustão e introduzir o ventilador portátil ligado durante cerca de 15 segundos. Nome: _____________________________

Turma: _______________ Data:_______________

Massa inicial do liquinho:______________ kg Massa final do liquinho: _______________ kg

HORA Tamb (oC) Tea (

oC) Tsa (oC) Tsg (

oC) ma (kg/s)

Legenda: Tamb = temperatura ambiente Tea = temperatura de entrada da água Tsa = temperatura de saída da água Tsg = temperatura de saída dos gases ma = vazão mássica da água

Resultado:

pci = ____________ kJ/kg

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

30

Distribuição da temperatura na câmara de combustão de um calorímetro

Procedimento As temperaturas foram medidas em três posições: no centro, na parede e na metade do raio do cilindro da câmara de combustão. Para cada uma dessas posições foram tomadas 33 medidas na direção axial, afastadas de 1cm cada. Foi utilizado um termopar do tipo K para a obtenção dos dados de temperaturas.

As medidas foram feitas em duas etapas, sendo a primeira com vazão alta do gás e a segunda com menor vazão. Primeira medição

Tamb=18ºC Tea=16,2ºC Tsa=29ºC Tsg=21,2ºC ma=2L/56s mg=171g/h

Posição (cm)

Parede (ºC)

Raio/2 (ºC)

Centro (ºC)

Raio/2 (ºC)

Parede (ºC)

36 551 611 777 611 551 35 533 602 803 602 533 34 517 599 831 599 517 33 546 605 866 605 546 32 533 598 876 598 533 31 521 585 915 585 521 30 535 553 942 553 535 29 531 537 959 537 531 28 533 535 980 535 533 27 513 524 986 524 513 26 477 518 1001 518 477 25 451 526 1012 526 451 24 396 529 1009 529 396 23 368 530 1005 530 368 22 348 514 1010 514 348 21 331 505 1008 505 331 20 305 491 1012 491 305 19 277 476 1018 476 277 18 241 455 1009 455 241 17 211 437 1010 437 211 16 163 410 1007 410 163 15 130 386 1006 386 130 14 104 353 1005 353 104 13 80 324 1005 324 80 12 58 301 1005 301 58 11 51 258 999 258 51 10 46 224 1000 224 46

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

31

9 42 205 205 42 8 39 187 187 39 7 38 173 173 38 6 37 148 148 37 5 35 138 138 35 4 33 132 132 33 3 33 117 117 33 2 33 111 111 33 1 33 106 106 33

Fig. (1) Distribuição da temperatura na câmara de c ombustão do calorímetro

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

32

Segunda medição

Tamb=20.6ºC Tea=17.1ºC Tsa=24.4ºC Tsg=20.8ºC ma=2L/56s mg=99g/h

Posição (cm)

Parede (ºC)

Raio/2 (ºC)

Centro (ºC)

Raio/2 (ºC)

Parede (ºC)

36 306 404 478 404 306 35 276 434 492 434 276 34 305 434 499 434 305 33 351 440 502 440 351 32 333 443 513 443 333 31 341 442 545 442 341 30 367 459 583 459 367 29 374 472 614 472 374 28 381 480 627 480 381 27 363 484 662 484 363 26 385 497 696 497 385 25 346 497 720 497 346 24 314 482 747 482 314 23 268 452 739 452 268 22 250 432 788 432 250 21 218 424 731 424 218 20 178 361 715 361 178 19 137 337 665 337 137 18 104 308 637 308 104 17 90 294 641 294 90 16 52 256 705 256 52 15 53 241 730 241 53 14 52 213 741 213 52 13 49 185 782 185 49 12 46 166 778 166 46 11 41 148 770 148 41 10 38 128 722 128 38 9 35 105 105 35 8 33 85 85 33 7 31 77 77 31 6 29 66 66 29 5 27 60 60 27 4 27 59 59 27 3 27 45 45 27 2 27 42 42 27 1 27 39 39 27

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

33

Fig. (2) Distribuição da temperatura na câmara de combustão do calorímetro

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

34

Temperaturas medidas no centro do calorímetro

Figs. (1) e (2) Temperaturas ao longo do centro do calorímetro com vazão de gás de 171 g/h.

O primeiro gráfico (fig. 1) representa a distribuição de temperaturas medidas no centro do calorímetro. O ponto de partida da medida foi do centro da chama (na base do bico) para cima. Nota-se que no centro da chama a temperatura é mais baixa, aumentando à medida se aproxima do contorno da chama e diminuindo quando o ponto de medida afasta-se da parte externa da chama. O segundo gráfico é a ampliação do lado esquerdo do gráfico 1, com objetivo de melhor visualizar a variação de temperatura dentro do contorno da chama.

Distr. Temp. no Centro I

750

800

850

900

950

1000

0 10 20 30cm

ºC

Distr. Temp. no Centro I

990

995

1000

1005

1010

1015

1020

0 5 10 15cm

ºC

Escola de Engenharia Engenharia Mecânica

Medições Térmicas

35

Figs. (3) e (4) Temperaturas ao longo do centro do calorímetro com vazão de gás de 99 g/h. O gráfico 3 representa a distribuição de temperaturas no centro da chama, partindo também o ponto de medida da base do bico. Neste caso a vazão de gás foi de 99 g/h, menor que a anterior que foi de 191g/h. o gráfico 4 representa, do mesmo modo que o gráfico 2, o lado esquerdo do gráfico 3.

Distr. Temp. no Centro II

450

550

650

750

0 5 10 15 20 25 30cm

ºC

Distr. Temp. no Centro II

720

730

740

750

760

770

780

790

0 2 4 6 cm

ºC