Lec8[1]Multiplicadores de Lagrange

download Lec8[1]Multiplicadores de Lagrange

of 23

Transcript of Lec8[1]Multiplicadores de Lagrange

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    1/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    MATH 209Calculus, III

    Volker Runde

    University of Alberta

    Edmonton, Fall 2011

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    2/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Maxima and minima with constraints, I

    Problem

    Find the maximum or minimum off(x, y)under the constraintg(x, y) =C.

    Geometric intuition

    A maximum or minimum occurs if the tangent lines to the levelcurves ofg and f at (x0, y0) are parallel, i.e.,

    f(x0, y0) =g(x0, y0)

    for some .

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    3/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Maxima and minima with constraints, II

    More formally. . .Suppose that f(x, y, z) has a maximum or minimum value atP(x0, y0, z0) on the surface Sgiven by g(x, y, z) =C.Let r(t) = x(t), y(t), z(t) be a curve passing through P, andlet t0 be such that r(t0) =

    x0, y0, z0

    . Set

    h(t) :=f(x(t), y(t), z(t)); then h(t) has a maximum orminimum at t0. Hence:

    0 =h(t0)

    = fx(x0, y0, z0)x(t0) + fy(x0, y0, z0)y

    (t0)

    +f

    z(x0, y0, z0)z

    (t0)

    =

    f(x0, y0, z0)

    r(t0).

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    4/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Maxima and minima with constraints, III

    More formally. . . (continued)

    This meansf(x0, y0, z0) r(t0)

    and thus

    f(x0, y0, z0) tangent plane to S at P.

    If

    g(x0, y0, z0)

    = 0, this means that

    f(x0, y0, z0) =g(x0, y0, z0)

    for some , aLagrange multiplier.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    5/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, I

    Example

    Find the minimum and maximum of

    f(x, y) =x2 + 2y2

    on the circle linex2 +y2 = 1.

    Set g(x, y) =x

    2

    +y

    2

    , so that

    f = 2x, 4y and g= 2x, 2y.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    6/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, II

    Example (continued)

    Need to find x, y, and , such thatf(x, y) =g(x, y), i.e.,

    2x=2x(1)4y=2y(2)

    and

    x2 +y2 = 1.(3)

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    7/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, III

    Example (continued)

    Case 1: x= 0.Then (1) implies = 1, so that 4y= 2yby (2), and thusy= 0. Then (3) yields x=

    1.

    Thus check (1, 0).Case 2: x= 0.By (3), y= 1, and = 2 by (2).Thus check (0,1).We have

    f(1, 0) = 1 and f(0,1) = 2,

    i.e., the minimum is 1 attained at (1, 0), and the maximum is2 attained at (0,

    1).

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    8/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, IV

    Example (continued)

    What about the maximum and minimum of f on the disc

    x

    2

    +y2

    1?To check on x2 +y2

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    9/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, V

    Example

    Find the minimum and maximum distance of (0, 0, 1) from theellipsoid x2 + 2y2 +z2 = 4.Set

    f(x, y, z) =

    x2 +y2 + (z 1)2x2 +y2 + (z 1)2

    = (distance of (0, 0, 1) and (x, y, z))2

    andg(x, y, z) =x2 + 2y2 +z2.

    Need to find x, y, z, and such thatf(x, y, z) =g(x, y, z) and g(x, y, z) = 4.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    10/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, VI

    Example (continued)

    As

    f =

    2x, 2y, 2z

    2

    and

    g=2x, 4y, 2z

    ,

    this amounts to solving:

    2x=2x,(1)

    2y=4y,(2)2z 2 =2z,(3)

    x2 + 2y2 +z2 = 4.(4)

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    11/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, VII

    Example (continued)Case 1: x= 0.By (1), we have = 1, so that z 1 =zby (3), which isimpossible.Case 2: x= 0.Case 2.1: y= 0. By (2), we have = 1

    2. By (3), we have

    2z 2 =z, i.e., z= 2. By (4),

    0 + 2y2 + 4 = 4

    and thus y= 0, which is a contradiction.Case 2.2: y= 0. In this case, (4) yields z2 = 4, i.e., z= 2.Check at (0, 0,2):

    f(0, 0, 2) = 1 and f(0, 0,

    2) = 9.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    12/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, VIII

    Example

    Find the maximum and minimum of

    f(x, y) =x2 2xy

    under the constraint

    g(x, y) :=1

    2x2 +

    2

    3y2 = 2.

    We havef = 2x 2y,2x

    and

    g=x,

    4

    3y

    .

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    13/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, IX

    Example (continued)

    We need x, y, and satisfying

    2x 2y=x,(1)2x=4

    3y,(2)

    1

    2x2 +

    2

    3y2 = 2.(3)

    Case 1: = 0.Then (2) yields x= 0, so that y= 0 by (1). This contradicts(3).

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    14/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, X

    Example (continued)

    Case 2: = 0.Then (2) yields 2y= 3

    . Plugging into (1) gives

    2 + 3

    x=x.

    Case 2.1: x= 0. Then y= 0 by (1), which contradicts (3).Case 2.2: x= 0. Then = 2 + 3

    , i.e.,

    0 =2 2 3 = ( 1)2 4.

    This means= 3 or = 1.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    15/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XI

    Example (continued)

    Case 2.2.1: = 3. Then (2) yields2x= 4y, i.e., x= 2y.Plugging into (3) leads to 2y2 + 2

    3y2 = 2, i.e., y2 = 3

    4, so that

    y= 32 .Ify=

    3

    2 , then x= 3. Ify=

    3

    2 , then x=

    3.

    Test3,

    3

    2

    and

    3,

    3

    2

    , and obtain

    f

    3, 3

    2

    =f

    3,3

    2

    = 6.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    16/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XII

    Example (continued)

    Case 2.2.2: = 1. Then (2) yields2x= 43y, i.e., x= 2

    3y.

    Plugging into (3) leads to 29y2 + 2

    3y2 = 2, i.e., y2 = 9

    4, so that

    y= 32

    .Ify= 3

    2, then x= 1. Ify= 3

    2, then x= 1.

    Test

    1, 32

    and

    1,32

    , and obtain

    f

    1,32

    =f1,32 = 2.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    17/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XIII

    Example (continued)

    What is the maximum and minimum offon the ellipse1

    2x2

    +

    2

    3y2

    2?We know it on 12x2 + 2

    3y2 = 2.

    For 12x2 + 2

    3y2

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    18/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XIV

    Example (continued)

    Second derivative test:

    fxx= 2, fyy = 0, and fxy = 2.Then

    D= 2 0 (2)2 = 4,

    i.e., fhas a saddle at (0, 0).Hence, all maxima and minima off on 1

    2x2 + 2

    3y2 2 occur

    on the boundary of the ellipse.

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    19/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Maxima and minima with two constraints

    The case of two constraints

    Suppose that f(x, y, z) has a maximum or minimum at(x0, y0, z0) under the constraints g(x, y, z) =C1 andh(x, y, z) =C2.

    Ifg(x0, y0, z0) andh(x0, y0, z0) are not zero and notparallel, there are and with

    f(x0, y0, z0) =g(x0, y0, z0) +h(x0, y0, z0).

    Hence, find x, y, z, , and with

    f(x, y, z) =g(x, y, z) +h(x, y, z),

    and check the values off at (x, y, z).

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    20/23

    MATH 209

    Calculus,III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XV

    Example

    Find the maximum value of

    f(x, y, z) =x+ 2y+ 3z

    on the intersection of the plane x y+z= 1 and the cylinderx2 +y2 = 1.Set

    g(x, y, z) =x2 +y2 and h(x, y, z) :=x y+z,

    so that

    f := 1, 2, 3, g= 2x, 2y, 0,and

    h=

    1,

    1, 1

    .

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    21/23

    MATH 209

    Calculus,

    III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XVI

    Example (continued)

    Find x, y, z, , and such that:

    1 =2x+,(1)

    2 =2y 3,(2)3 =,(3)

    x

    y+z= 1,(4)

    x2 +y2 = 1.(5)

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    22/23

    MATH 209

    Calculus,

    III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XVII

    Example (continued)

    By (3), = 3, and by (1) = 0 and x= 1

    .By (2), y= 5

    2.

    Plugging into (5) yields 12

    + 2542

    = 1, i.e., 2 = 294

    and thus

    = 292

    .It follows that

    x= 229

    , y= 529

    and

    z= 1 x+y= 1 729

    .

  • 8/13/2019 Lec8[1]Multiplicadores de Lagrange

    23/23

    MATH 209

    Calculus,

    III

    Volker Runde

    Lagrange

    multipliers

    Two

    constraints

    Examples, XVIII

    Example (continued)

    Test f at 2

    29,

    529

    , 1 + 7

    29

    and

    229

    , 529

    , 1 729

    .

    The corresponding values off are

    229

    + 2

    5

    29

    + 3

    1 7

    29

    = 3 29.

    The maximum is thus 3 +

    29.