métodos de testes de vibração para análise modal na monitoração ...

of 96 /96
Universidade Federal do Rio de Janeiro MÉTODOS DE TESTES DE VIBRAÇÃO PARA ANÁLISE MODAL NA MONITORAÇÃO E DIAGNÓSTICO DE PROBLEMAS EM MÁQUINAS EM NAVIOS E PLATAFORMAS Felipe de Carvalho Mello 2014

Embed Size (px)

Transcript of métodos de testes de vibração para análise modal na monitoração ...

  • Universidade Federal do Rio de Janeiro

    MTODOS DE TESTES DE VIBRAO PARA ANLISE MODAL NA MONITORAO E DIAGNSTICO DE

    PROBLEMAS EM MQUINAS EM NAVIOS E PLATAFORMAS

    Felipe de Carvalho Mello

    2014

  • MTODOS DE TESTES DE VIBRAO PARA ANLISE MODAL NA MONITORAO E DIAGNSTICO DE PROBLEMAS EM MQUINAS EM

    NAVIOS E PLATAFORMAS

    Felipe de Carvalho Mello

    Dissertao de Graduao apresentada ao

    Departamento de Engenharia Naval e Ocenica da

    Universidade Federal do Rio de Janeiro, como parte

    dos requisitos necessrios obteno do ttulo de

    Engenheiro Naval e Ocenico

    Orientador: Severino Fonseca da Silva Neto

    Rio de Janeiro

    Fevereiro de 2014

  • MTODOS DE TESTES DE VIBRAO PARA ANLISE MODAL NA MONITORAO E DIAGNSTICO DE PROBLEMAS EM MQUINAS EM

    NAVIOS E PLATAFORMAS

    Felipe de Carvalho Mello

    DISSERTAO SUBMETIDA AO CORPO DOCENTE DO DEPARTAMENTO DE

    ENGENHARIA NAVAL E OCENICA DA UNIVERSIDADE FEDERAL DO RIO

    DE JANEIRO COMO PARTE DOS REQUISITOS NECESSRIOS PARA

    OBTENO DO GRAU DE ENGENHEIRO NAVAL E OCENICO

    Examinada por:

    ______________________________________________

    Prof. Severino Fonseca da Silva Neto D.Sc.

    ______________________________________________

    Prof. Carl Horst Albrecht, D.Sc.

    ______________________________________________

    Prof. Osvaldo Pinheiro de Souza e Silva, M.Sc.

    RIO DE JANEIRO, RJ BRASIL

    FEVEREIRO DE 2014

  • iii

    Mello, Felipe de Carvalho Mtodos de testes de vibrao para anlise modal na monitorao e diagnstico de problemas em mquinas em navios e plataformas / Felipe de Carvalho Mello.- Rio de Janeiro: UFRJ/DENO, 2014 XVIII, 77 p., il.;13,9 cm Orientador: Severino Fonseca da Silva Neto Dissertao (graduao) UFRJ/DENO/ Departamento de Engenharia Naval e Ocenica, 2014 Referncias Bibliogrficas: p. 74-77 1. Anlise Modal. 2. Processamento de Sinais. . 3. Mquinas alternativas e Rotativas . I. Silva Neto, Severino Fonseca. II. Universidade Federal do Rio de Janeiro, DENO, Departamento de Engenharia Naval e Ocenica. III. Mtodos de Testes de Vibrao para Anlise Modal na Monitorao e Diagnsticos de Problemas em Mquinas em Navios e Plataformas

  • iv

    Onde quer que voc v, v com todo o corao.

    Confcio.

  • v

    Dedicatria

    Ao meu irmo, Rafael

  • vi

    Agradecimentos

    Acima de todos e de tudo, Deus.

    minha famlia de sangue, meu pai Eduardo e minha me Ftima e meu sempre amado

    irmo e meu eterno guerreiro, Rafael, que podem estar em qualquer lugar do mundo

    porm nunca longe do meu corao e das minhas preces.

    minha famlia na faculdade, onde sempre encontrei todo tipo de apoio acadmico,

    pessoal e diverso: Lucas Rosa, Flvio Miranda, Gustavo Montfort, Pedro Santana,

    Alexandre Maioli, Rodrigo Barilli, Jorge Vieira, Gasto Soares, Luiz Felipe Salomo,

    amizades para a vida toda.

    Ao meu amigo Victor Medeiros, crucial nesta reta final de faculdade com todo seu

    emprenho e pacincia durante meses a fio de projetos.

    uma das poucas pessoas que digo que tive o maior privilgio possvel de conhecer,

    meu orientador e eterno professor Severino Fonseca, ser humano irretocvel e um

    professor de uma didtica que exemplo para qualquer um que se proponha a ser um

    educador.

    Aos antigos colegas de trabalho do Estaleiro EISA, Carlos Alberto Almeida e Marco

    Santoloni, onde comecei e aprendi lies valiosas para minha vida profissional e onde

    fui totalmente apoiado no meu empenho na faculdade. Nunca esquecerei tudo que

    fizeram por mim.

    Aos meus novos colegas de trabalho nessa fase importantssima da carreira que inicio,

    Cesar Aun, Bruno Tupinamb, Mrio Moura, Diego Souza, Filipe Barreto, Danilo

    Oliveira e Andr Queiroz. Agradeo muito pela crena no meu potencial e pela

    oportunidade magnfica de carreira que me proporcionam.

    toda famlia Abreu Macedo pelo grande apoio e calorosa recepo na Bahia, Claudio,

    Dora, Guilherme e Rodrigo.

    E um agradecimento mais que especial pessoa que mais me motivou e apoiou nessa

    parte final de curso, minha namorada Joana. Que com certeza vai, junto comigo, montar

    a nossa nova famlia para a vida toda.

  • vii

  • viii

    Resumo da Dissertao apresentada ao DENO/URFJ como parte dos requisitos

    necessrios para obteno do Grau de Engenheiro Naval e Ocenico.

    MTODOS DE TESTES DE VIBRAO PARA ANLISE MODAL NA MONITORAO E DIAGNSTICO DE PROBLEMAS EM MQUINAS EM

    NAVIOS E PLATAFORMAS

    Felipe de Carvalho Mello

    Fevereiro/2014

    Orientador: Severino Fonseca da silva Neto

    Programa: Engenharia Naval e Ocenica

    O trabalho tem como objetivo comparar mtodos de anlise modal para identificar

    problemas em mquinas rotativas e alternativas em navios e plataformas utilizando

    anlise de vibrao em pontos estratgicos do sistema mecnico.

    A metodologia utilizada consistiu na reviso dos conceitos de vibrao, aquisio de

    dados e processamento de sinais, dinmica de mquinas e rotores, manuteno

    preventiva e preditiva de equipamentos, procedimentos para identificao das possveis

    causas da vibrao excessiva de mquinas pelo seu espectro. Descrio do

    procedimento da anlise modal experimental para identificao detalhada dos modos de

    vibrao. Comparao entre mtodos de testes de vibrao para anlise modal em

    sistemas de mquinas em navios e plataformas.

    Com os resultados, espera-se identificar possveis falhas em mquinas rotativas e

    alternativas em navios e plataformas antecipadamente por anlise de vibrao.

  • ix

    Abstract of Dissertation presented to DENO/UFRJ as a partial fulfillment of the

    requirements for the degree of Marine Engineer.

    METHODS OF VIBRATION TESTS FOR MODAL ANALYSIS IN SHIPS AND OFFSHORE PLATFORMS MACHINERY FOR MONITORING AND DIAGNOSIS

    OF FAILURES

    Felipe de Carvalho Mello

    February/2014

    Advisor: Severino Fonseca da Silva Neto

    Department: Marine and Oceanic Engineering

    This work has as an aim to compare modal analysis methods to identify possible

    failures on rotary and alternative machinery installed in ships and offshore platforms

    utilizing vibration analysis on strategic points of the mechanical system.

    The methodology used on this work was based on the revision of vibration concepts,

    data acquisition and signals processing, machinery dynamics, equipments predictive

    and preventive maintenance, procedures for identification of possible causes of

    excessive vibration on machinery by its spectrum. Modal analysis experimental

    procedure description for detailed identification of its modes of vibration.

    By results acquisition it is expected to identify, in advance, possible failures in rotary

    and alternative machinery installed in ships and offshore platforms by vibration

    analysis.

  • x

    Sumrio

    1 INTRODUO ................................................................................................................... 1

    1.1 Introduo .......................................................................................................................................... 1

    1.2 Escopo, Estrutura e Objetivos .......................................................................................................... 2

    1.3 Mquinas Rotativas e Alternativas .................................................................................................. 3

    2 REVISO BIBLIOGRFICA ............................................................................................ 7

    2.1 Anlise Vibratria de Sistemas Mecnicos ..................................................................................... 7

    2.2 Metodologia de Anlise de Vibrao Atual ..................................................................................... 9

    2.3 Mtodos de Identificao de Anlise Modal ................................................................................. 13

    3 FUNDAMENTOS TERICOS ........................................................................................ 17

    3.1 Fundamentao ............................................................................................................................... 17

    4 DESENVOLVIMENTO EXPERIMENTAL ................................................................... 23

    4.1 Introduo ........................................................................................................................................ 23

    4.2 Simulao de Sinais ......................................................................................................................... 23

    4.3 Algoritmos de Implementao dos Mtodos de Identificao Modal ......................................... 24 4.3.1 Estrutura geral do Algoritmo ..................................................................................................... 25 4.3.2 Processamento dos Sinais e Implementao do Algoritmo ....................................................... 25

    4.4 Experimentos Realizados ................................................................................................................ 30 4.4.1 Instrumentao Utilizada ........................................................................................................... 30 4.4.2 Experimentos em Laboratrio ................................................................................................... 32 4.4.3 Experimentos no Circuito de Poo ............................................................................................ 33 4.4.4 Experimentos Realizados .......................................................................................................... 37

    5 RESULTADOS .................................................................................................................. 43

    5.1 Resultados dos Experimentos em Laboratrio ............................................................................. 43

    5.2 Resultados dos Experimentos Circuito de Poo ........................................................................... 49 5.2.1 Testes de Impacto ...................................................................................................................... 49 5.2.2 Testes de Varredura ................................................................................................................... 66

    5.3 Resultados das Simulaes Numricas dos Experimentos .......................................................... 68 5.3.1 Simulao Numrica Viga Laboratrio ..................................................................................... 69 5.3.2 Simulao Conjuntos BCS ........................................................................................................ 70

  • xi

    6 COMENTRIOS FINAIS ................................................................................................ 73

    7 REFERNCIAS BIBLIOGRFICAS .............................................................................. 74

  • xii

    Lista de Figuras Figura 1-1 Motor alternativo de combusto interna de dois tempos .............................. 4 Figura 1-2 Motor de combusto interna de quatro tempos ............................................. 4 Figura 1-3 Turbina a gs (GE srie H, 2010) ................................................................. 5 Figura 1-4 - Motor eltrico (Siemens, 2012) ..................................................................... 6 Figura 2-1 - Modos de Vibrao de uma BCS (Brinner et al, 1982) ................................ 9 Figura 2-2 - Critrios de Severidade nas Componentes Espectrais ................................ 11 Figura 2-3 - Fixao dos Acelermetros (Minette, 2013) ............................................... 12 Figura 2-4 - Circuito de Teste com Posio dos Sensores (Minette, 2013) .................... 13 Figura 2-5 - Mtodos de Identificao Modal (Maia e Silva et al, 1997) ....................... 16 Figura 3-1 - Digitalizao de um Sinal Analgico .......................................................... 17 Figura 3-2 - Representao de um Sistema Linear (Arruda, 2001) ................................ 18 Figura 3-3 - Classificao de Sinais Dinmicos (Maia, Silva et al., 1997) ..................... 19 Figura 3-4 - Sistema Mecnico Massa-Mola-Amortecedor ............................................ 19 Figura 4-1 - Sistema Dinmico Simulado (Minette, 2013) ............................................. 24 Figura 4-2 - Estrutura do Algoritmo de Processamento de Sinais (Minette, 2013) ........ 25 Figura 4-3- Definio de Parmetros no Algoritmo (Minette, 2013) ............................. 26 Figura 4-4 - Rotina para Clculo dos Coeficientes do Polinmio Autoregressivo (Minette, 2013) ................................................................................................................ 28 Figura 4-5 Cdigo para Estabilizao de Plos pela Frequncia (Minette, 2013) ....... 28 Figura 4-6 - Instrumentos de Medio: (a) Placa A/D NI (b) Acelermetro Piezoeltrico prova dgua (c) Transdutor de Presso (d) Transdutor de Vazo (Minette, 2013). ............................................................................................................... 32 Figura 4-7 - Montagem do Teste LCDAV/CENPES (Minette, 2013) ............................ 33 Figura 4-8 - Circuito do poo de Teste em Mossor/RN (Minette, 2013). ..................... 34 Figura 4-9 - Distribuio dos Acelermetros em um Conjunto BCS (Minette, 2013) ... 35 Figura 4-10 - Instalao Conjunto BCS e Acelermetros (Minette, 2013) ..................... 35 Figura 4-11 - Curvas de Desempenho Bomba P12-58stg (Minette, 2013) ..................... 38 Figura 4-12 - Curvas Desempenho Bomba P18-62stg (Minette, 2013) .......................... 38 Figura 4-13 - Conjunto BCS Instrumentado (Minette, 2013). ........................................ 40 Figura 4-14 - Impactos com Martelos na Estrutura na Cabea do Poo (Minette, 2013). ......................................................................................................................................... 41 Figura 4-15 Dimenses dos Conjuntos BCS Testados (Minette, 2013). ..................... 42 Figura 5-1 - Sinais Domnio do Tempo Viga Engastada ................................................ 43 Figura 5-2 - Espectros de Densidade Espectral de Todos canais: Viga Engastada ......... 44 Figura 5-3 - Diagrama de Estabilizao Viga Laboratrio ............................................. 45 Figura 5-4 - Histograma de Plos Estabilizados da Viga Laboratrio ............................ 45 Figura 5-5 - Coerncia entre Respostas Viga Laboratrio .............................................. 46 Figura 5-6 - Comparao do Sinal Modelado com o Sinal Medido ................................ 47 Figura 5-7 - Erro Mdio Quadrtico Viga Engastada ..................................................... 47 Figura 5-8 - FPE Viga Engastada .................................................................................... 48 Figura 5-9 - AIC Viga Engastada .................................................................................... 49

  • xiii

    Figura 5-10 - Sinais usados para IRFs Conjunto #1 ...................................................... 50 Figura 5-11 - Sinais usados para IRFs Conjunto#2 ....................................................... 51 Figura 5-12 - Resposta aos Impactos no Domnio do Tempo (canal 16) ........................ 51 Figura 5-13 - Curva de Resposta em Frequncia do Martelo Instrumentado ................. 52 Figura 5-14 - Espectros de Densidade Espectral Conjunto #1 ........................................ 53 Figura 5-15 - Espectros de Densidade Espectral Conjunto #2 ........................................ 53 Figura 5-16 - Espectros de Densidade Espectral de Potncia Conjunto #1 (direo Y) . 54 Figura 5-17 - Espectros de Densidade Espectral de Potncia Conjunto #2 (direo Y) . 54 Figura 5-18 - Diagrama de Estabilizao Conjunto #1 ................................................... 55 Figura 5-19 - Diagrama de Estabilizao Conjunto #2 ................................................... 55 Figura 5-20 - Histograma de Plos Estveis Conjunto #1 .............................................. 56 Figura 5-21 - Histograma de Plos Estveis Conjunto #2 .............................................. 56 Figura 5-22 - Funo de Coerncia das Respostas do conjunto #1 ................................. 58 Figura 5-23 - Funo de Coerncia das Respostas do Conjunto #2 ................................ 58 Figura 5-24 - Influncia da Distncia da Parede no Amortecimento (Q-fator=0/D) (Naik et al, 2003) ............................................................................................................ 59 Figura 5-25 - Efeito da Parede no Amortecimento Viscoso (Naik et al, 2003) .............. 60 Figura 5-26 - Sinal IRF comparao Sinal Modelado Conjunto #1 ................................ 61 Figura 5-27 - Sinal IRF comparao Sinal Modelado Conjunto #2 ................................ 61 Figura 5-28 - Erro Mdio Quadrtico Conjunto #1 ........................................................ 62 Figura 5-29 - Erro Mdio Quadrtico Conjunto #2 ........................................................ 63 Figura 5-30 - FPE Conjunto #1 ....................................................................................... 64 Figura 5-31 - FPE para Conjunto #2 ............................................................................... 64 Figura 5-32 - AIC Conjunto #1 ....................................................................................... 65 Figura 5-33 - AIC Conjunto #2 ....................................................................................... 65 Figura 5-34 - Varredura Conjunto #1 (canal 16) ............................................................. 66 Figura 5-35- Varredura Conjunto #2 (canal 16) .............................................................. 67 Figura 5-36 - Comparao Sweep Test e Frequncias Naturais Conjunto #1 ................. 67 Figura 5-37 - Comparao Sweep Test e Frequncias Naturais Conjunto #2 .............. 68 Figura 5-38 - Simulao Numrica Viga Laboratrio .................................................... 70 Figura 5-39 - Simulao Numrica Conjunto #1 ............................................................ 72 Figura 5-40 - Simulao Numrica Conjunto #2 ............................................................ 72

  • xiv

    Lista de Tabelas Tabela 2-1 Critrio de Severidade API-11RP-S8 ........................................................ 10 Tabela 4-1 - Cdigos Matlab ........................................................................................... 27 Tabela 4-2 - Instrumentao Utilizada ............................................................................ 30 Tabela 4-3 - Posio Acelermetros Viga Engastada ..................................................... 33 Tabela 4-4 Dados Conjunto BCS #1 (Minette, 2013) .................................................. 36 Tabela 4-5 - Dados Conjunto BCS #2 (Minette, 2013) .................................................. 36 Tabela 5-1 - Resultados Viga Engastada ......................................................................... 46 Tabela 5-2- Resultados Conjunto #1 ............................................................................... 57 Tabela 5-3 - Resultados Conjunto #2 .............................................................................. 57 Tabela 5-4- Fluidos Testados (Naik et al, 2003) ............................................................. 60 Tabela 5-5 - Resultados Simulao Numrica Viga Engastada ...................................... 69 Tabela 5-6 - Resultados Simulao Numrica Conjunto #1 ........................................... 70 Tabela 5-7 - Resultados Simulao Numrica Conjunto #2 ........................................... 71

  • xv

    Lista de Smbolos Frequncia Espectral

    t tempo de deslocamento relativo

    b Coeficientes Polinmio Auto regressivos

    Fator de Amortecimento

    n frequncia natural

    d frequncia natural amortecida

    r Frequncia Natural do Modo r

    D diferena finita de variveis

    varivel resultado da multiplicao do fato de amortecimento pela frequncia

    natural

    r varivel resultado da multiplicao do fato de amortecimento pela frequncia

    natural no modo r;

    t tempo contnuo;

    x varivel independente que representa uma grandeza fsica;

    y varivel independente que representa uma grandeza fsica;

    X transformada de Fourier da varivel independente x;

    Y transformada de Fourier da grandeza fsica independente y;

    N nmero de modos de um sistema;

    n contador do nmero de pontos de uma sequncia temporal;

    F fora de excitao externa em um sistema dinmico;

    E Erro Quadrtico Mdio;

    e erro quadrtico;

    m massa modal;

    ngulo de fase;

    (t) Funo delta de Dirac, Funo Impulso;

    Lqr fator de participao modal da referncia q no modo r;

    h Funo Resposta ao Impulso (IRF);

    hpqr Funo Resposta ao Impulso (IRF) de um sistema com excitao no ponto p e

    resposta em q no modo r;

    Dt diferena de tempo entre duas amostras;

    H Funo resposta em Frequncia (FRF);

    r Plos do Sistema Dinmico no modo r

  • xvi

    Apqr Resduo de um sistema com excitao no ponto p e resposta em q no modo r;

    A*pqr Resduo conjugado de um sistema com excitao no ponto p e resposta em q no

    modo r;

    k- ndice contador;

    xk Ponto da IRF no contador k;

    xr razes do polinmio auto regressivo no modo r;

    ak coeficientes do polinmio caracterstico no contador k;

    s varivel complexa;

    i nmero complexo;

    ngulo de fase;

    S Funo de Densidade Espectral de potncia, one sided

    G Funo de Densidade Espectral de potncia, two sided

    R Funo de Correlao;

    Cor Covarincia;

    p ndice que indica ponto de excitao

    q ndice que indica ponto de resposta

    r contador do modo de vibrao;

    m massa

    f fora de excitao no do domnio do tempo;

    F fora de excitao no domnio da frequncia;

    c coeficiente de amortecimento

    cc - coeficiente de amortecimento crtico

    [C] Matriz de Coeficientes de Amortecimentos

    [M] Matriz de Massas

    [K] Matriz de Rigidezes

    [F] Matriz de Fora de Excitao

    L Operador da transformada de Laplace

    Vr Varivel auxiliar

    razes da equao caracterstica

    [L] Vetor de valores da IRF;

  • xvii

    Lista de Nomenclaturas AIC Akaike Information Criteria

    API RP American Petroleum Institute Recommended Practice

    ANPSD Average Normalized Power Spectrum Density

    AR Autoregressive

    ARMA Autoregressive Moving Average

    BCS Bomba Centrfuga Submersa

    BCSS Bomba Centrfuga Submersa Submarina

    BEP- Best Efficiency Point

    CE Complex Exponential

    CENPES Centro de Pesquisa e Desenvolvimento Leopoldo Amrico Miguez de Mello

    DFT Discrete Fourier Transform

    EMA Experimental Modal Analysis

    ESP Electrical Submersible Pump

    FAT Factory Acceptance Tests

    FEM Finite Elements Method

    FFT Fast Fourier Transform

    FPE Final Prediction Error

    FRF Frequency Response Function

    FPE Final Prediction Error

    GB Gigabyte

    IDFT Inverse Fourier Transform

    IRF Impulse Response Function

    LCDAV Laboratrio de Comportamento Dinmico e Anlise de Vibraes

    LSCE Least Square Complex Exponential

    LTI Linear Time Invariant

    MATLAB - Matrix Laboratory

    MGDL Mltiplos graus de Liberdade

    MIMO Multiple Input / Multiple Output

    NBR Norma Brasileira

    NI National Instruments

    NPSD Normalized Power Spectrum Density

    Petrobras Petrleo Brasileiro

  • xviii

    PSD Power Spectrum Density

    SIMO Single Input / Multiple Output

    SISO Single Input / Single Output

    RAM Random Access Memory

    REDA Russian Electrical Dynamo of Arutunoff

    RMS Root Mean Square

    UGDL Um grau de liberdade

    UO-RNCE Unidade Operacional Rio Grande do Norte e Cear

    USB Universal Serial Bus

    VSD Variable Speed Drive

  • 1

    1 Introduo 1.1 Introduo

    Segundo Aranha e Martins (1993) a necessidade de identificar e entender os

    diversos ramos da cincia levou construo de metodologias, sistemticas e

    organizadas, capazes de investigar parmetros e entender como estes interagem e cujo

    resultado a construo de modelos que buscam uma maior compreenso do universo,

    construindo, deste modo, o conhecimento cientfico humano.

    Um exemplo de uma dessas metodologias a cincia de identificao de

    sistemas que, atravs da observao de suas entradas e respostas, tem por objetivo

    descobrir e definir os parmetros capazes de construir a representao terica de um

    sistema fsico e pode ser aplicada desde sistemas de engenharia complexos at

    problemas de biotecnologia.

    A identificao desses sistemas tem se mostrado promissora para determinar,

    desenvolver e otimizar caractersticas dinmicas de estruturas, principalmente, no

    campo de anlise de sistemas estruturais, devido crescente complexidade proveniente

    das demandas tecnolgicas e exigncias cada vez mais rigorosas de padres ambientais

    e de segurana (HE e FU, 2001).

    Estimando respostas de um sistema baseando-se em entradas impostas ao

    mesmo, nos opomos ao problema de dimensionamento, definido como o problema

    direto. Fazendo isto poderemos estudar o sistema sob a tica da anlise estrutural (Filho,

    2008).

    O grande objetivo da Engenharia de Estruturas hoje sempre torn-las o mais

    leve e resistentes possvel. O que acarreta indiretamente em menores dimenses e custos

    porm traz tambm problemas indesejveis de vibraes excessivas.

    A recente aplicao de anlises modais na identificao de sistemas de

    engenharia de estruturas tem colaborado com engenheiros e projetistas para definir

    caractersticas especficas de cada sistema. Seus parmetros dinmicos, hoje, podem ser

    identificados e com isso tornar possvel o aprimoramento do projeto estrutural

    aumentando sua segurana por meio de comparaes entre o modelo matemtico do

    projeto e seu teste experimental. Este processo torna a previso de falhas do sistema

    algo altamente confivel. (Peeters, 1993).

  • 2

    Anlise modal, em suma, descrever a estrutura em caractersticas naturais, ou

    parmetros dinmicos, intrnsecos daquele sistema, so eles: frequncia, amortecimento

    e seu modo de vibrao. (Meirovitch, 1986).

    O poder da anlise modal na definio das caractersticas de um equipamento se

    torna crucial nos dias atuais, onde os equipamentos principais e auxiliares de um

    sistema ocenico, seja ele um navio, uma plataforma ou qualquer estrutura sobre a gua

    ligada diretamente economia mundial, no tem margem para falhas ou interrupes

    em sua operao. Uma plataforma que custa milhares de dlares para operar em alto

    mar ou um navio dotado de diversos tipos de motores que caso apresentem falhas geram

    prejuzos significativos a seus operadores e seus contratantes so exemplos claros de

    como no se pode dar o luxo de ter interrupes significativas ao longo de sua vida til,

    alm, claro, de envolver riscos de danos potenciais a vidas humanas, animais e ao

    meio ambiente.

    O intuito do presente trabalho mostrar que a deteco precisa de eventos

    danosos a estas operaes possvel com o uso da anlise modal. Levantando as

    caractersticas de frequncias naturais e amortecimentos de motorizaes rotativas ou

    alternativas poderamos ter planos de manuteno precisos, gerando custos menores e

    ausncia de prejuzos com operaes estagnadas por falhas.

    1.2 Escopo, Estrutura e Objetivos

    Para o entendimento dos mtodos de testes de vibrao para anlise modal, sua

    metodologia e aplicao de seus conceitos, esto mostrados no restante do captulo

    caractersticas fsicas de mquinas tanto rotativas quanto alternativas e a motivao do

    trabalho.

    No segundo captulo, mostrado alguns exemplos dos equipamentos os quais esta

    dissertao ser focada, mquinas alternativas e rotativas. Nele detalhado o seu uso

    em navios e plataformas, seus componentes construtivos e o histrico do

    desenvolvimento. Alm disso, mostrada a evoluo das metodologias aplicadas

    atualmente nos testes feitos e como isto motivou este trabalho.

    No terceiro captulo, so expostos os fundamentos nos quais se baseiam o

    processamento de sinais, a modelagem de sistemas, o tratamento de sinais aleatrios e

    detalhamento do mtodo de identificao modal utilizado para obteno dos parmetros

    dinmicos.

  • 3

    No quarto captulo sero expostas maneiras nas quais se basearam e foram feitos

    os experimentos. Seu embasamento e descrio de todos os equipamentos e

    procedimentos que podem ser seguidos para efetuar tal anlise.

    No quinto captulo sero expostos os resultados obtidos por (Minette, 2013) em

    todos os testes realizados. Como foram tratados os sinais e sob quais ticas os mesmos

    foram analisados.

    No sexto e ltimo captulo , h as consideraes finais e concluses sobre toda a

    fundamentao terica e a anlise dos resultados obtidos por (Minette, 2013).

    O objetivo deste trabalho explicar o conceito de anlise modal e explanar,

    atravs de planos de manuteno, de que maneira estas anlises podem vir a prevenir

    grandes prejuzos financeiros, ambientais e integridade fsica de operadores evitando a

    falha de mquinas rotativas e alternativas.

    1.3 Mquinas Rotativas e Alternativas

    As mquinas, especialmente as movidas a energia trmica ou eletricidade, esto

    presentes na vida humana desde a primeira revoluo industrial. Podemos dividir estas

    em duas grandes categorias, alternativas onde temos como exemplo motores de carros,

    navios, lanchas e pequenos itens como cortadores de grama gasolina e mquinas

    rotativas, que podem ser representadas principalmente por turbinas a gs e motores

    eltricos, estes aplicados em uma gama imensa de dispositivos como bombas rotativas,

    pequenas mquinas, guinchos de perfurao e recolhimento de amarras e etc. Mquinas

    alternativas so, ainda, divididas em outras duas categorias, dois tempos e quatro

    tempos, de acordo com o modo como queimam combustvel no interior de suas cmaras

    de combusto. Nos motores dois tempos um ciclo termodinmico se completa a cada

    volta do eixo, compreendendo as etapas de admisso, compresso, combusto e

    exausto. Esta caracterstica permite que o prprio pisto atue tambm como vlvula,

    abrindo e fechando as janelas (aberturas) na parede da cmara de combusto. Esta opo

    simplifica a mquina, tambm dispensando comando de vlvula e muito utilizada em

    motores de pequeno porte. No entanto, em motores de grande porte, isto no uma

    alternativa adequada por reduzir o curso para compresso e permitir a comunicao

    direta entre a admisso de combustvel e os dutos de exausto. Os maiores motores de

    propulso naval, a diesel, operam em dois tempos, mas, com o emprego de apenas uma

  • 4

    janela e uma vlvula no cabeote. Aspiram e exaurem a mistura ar-combustvel em um

    movimento e queimam.

    Figura 1-1 Motor alternativo de combusto interna de dois tempos

    Para motores de quatro tempos, os gases completam um ciclo termodinmico a

    cada duas voltas do eixo. Neste caso, para um pisto, ocorre admisso e compresso

    numa volta e combusto e exausto na consecutiva. Esta alternncia requer

    necessariamente o emprego de um (ou mais) comando de vlvulas, engrenado rvore

    de manivelas de tal forma que tenha metade da velocidade de rotao da mesma,

    permitindo que o ciclo de abertura de vlvulas dure os quatro tempos.

    Figura 1-2 Motor de combusto interna de quatro tempos

  • 5

    Motores rotativos operam de maneira diferente dos alternativos. Estes no fazem

    uso de pistes que se movem alternativamente durante o ciclo de operao da mquina.

    Em geral fazem uso de rotores e cmaras de combusto quando so movidos a

    combustveis de alto poder de ignio ou apenas bobinas e um eixo rotor quando so

    movidos energia eltrica.

    Como exemplo de um motor rotativo empregado em indstria naval, tanto em

    navios militares como em plataformas atravs de turbo-geradores, pode ser citada a

    turbina a gs. Esta opera em uma condio onde seu modelo ideal expresso pelo Ciclo

    Brayton. So compostas essencialmente por: compressor, cmara de combusto e

    turbina. O compressor aspira o ar, que entra em alta presso na cmara de combusto

    onde misturado ao combustvel do sistema, aps a ignio da mistura os gases so

    expulsos em alta velocidade onde passam pela turbina, fazendo com que sua passagem

    rotacione a mesma e consigo um eixo motriz gerando a energia mecnica do sistema.

    Figura 1-3 Turbina a gs (GE srie H, 2010)

    Outro tipo de motor rotativo so os motores eltricos. Dentre estes, os mais

    utilizados so os de corrente alternada que se baseiam no campo girante, que surge

    quando um sistema de correntes alternadas trifsico aplicada em polos defasados

    fisicamente de 120. Dessa forma, como as correntes so defasadas 120 eltricos, em

    cada instante, um par de polos possui o campo de maior intensidade, cuja associao

  • 6

    vetorial possui o mesmo efeito de um campo girante que se desloca ao longo do

    permetro do estator e que tambm varia no tempo.

    Figura 1-4 - Motor eltrico (Siemens, 2012)

  • 7

    2 Reviso Bibliogrfica 2.1 Anlise Vibratria de Sistemas Mecnicos

    Dentre as principais causas para falhas em equipamentos industriais, a vibrao

    uma das maiores, para isso a anlise de vibrao tornou-se uma ferramenta poderosa

    para escritrios de projeto, fbricas e operadores a fim de evitar a perda de ativos

    materiais ou humanos. Grande parte dos equipamentos industriais, de fabricantes

    confiveis, como mquinas alternativas e rotativas apresentam muito pouca vibrao ao

    sair de seus centros de fabricao. O que as fazem apresentar mais vibrao so as

    condies nas quais so operadas e principalmente seu tempo de uso. Desgaste de

    componentes internos, falta de manuteno adequada, deformaes e corroses so

    fenmenos que com a vida til do equipamento chegando ao fim tendem a aparecer com

    maior agressividade causando desbalanceamentos, perdas de materiais em rotores e etc.

    e estes por sua vez causam a to indesejada vibrao no meio industrial. A anlise

    vibratria considerada, hoje, o meio mais valioso de se prevenir que equipamentos

    vitais apresentem tais desgastes ou falhas. Tal anlise nos permite traar planos de

    manuteno preditiva, a qual tem o intuito de elaborar um plano de manuteno de

    forma a prever falhas e as evitar antes que estejam sequer prximas de acontecer (Rao,

    2008).

    Como mostrado por (Benevunuti, 2004) a metodologia para implementar um

    sistema de monitorao contnua de vibrao de moto-bombas do circuito primrio de

    refrigerao de um reator nuclear expes uma sistemtica para desenvolvimento da

    anlise preditiva de vibrao para monitorao e diagnstico de uma mquina. No

    trabalho, Benevunuti aplica atravs da transformada de Fourier tcnicas clssicas de

    anlises de sinais construindo espectros, monitorando valores de RMS e usando a

    tcnica do envelope para identificao de falhas em mancais de rolamento. Nele

    possvel ver como aplicar o conceito de manuteno preditiva pode ser usado para

    elevar a confiabilidade de sistemas

    Como feito por Bonaldo (1993) para antecipar condies operacionais que

    seriam danosas ao equipamento foi utilizado sinais de vibrao em compressores

    denominadas surge. Devido s caractersticas no estacionrias do sinal, o uso de

    processamentos baseados em transformada de Fourier no adequado, fazendo

    necessrio o uso de tcnicas de transformada do tipo tempo-frequncia, conhecidas

  • 8

    tambm como ondelete ou wavelet. O sucesso em identificar o fenmeno baseando-

    se em anlise de vibrao foi devido ao modelo matemtico elaborado, mas sua

    deteco poderia ser melhorada caso fossem usados sinais de vazo e presso.

    Como feito por (Merini, 2011) o sinal de vibrao pode ser usado para inferir

    sobre a anlise da condio e outros parmetros como a anlise de funes resposta em

    frequncias (FRF) de tubulaes para medio de vazo em escoamentos bifsicos, de

    forma no intrusiva.

    Como mostrado por Haynes et al (1989/1990) pode-se monitorar mquinas

    acionadas por motores eltricos atravs da anlise da corrente eltrica do motor,

    entretanto, estudos posteriores como de Ribeiro (1999) mostraram que esta tcnica no

    muito confivel para realizao da diagnose de, por exemplo, bombas centrfugas

    submersas.

    No caso de equipamentos que possuem uma alta produo de rudos e

    componentes transientes, Bendat e Piersol (2010) afirmam que no possvel utilizar

    de tcnicas baseadas em transformada de Fourier. Desta forma, Ribeiro (1999) utilizou

    tcnicas para lidar com sinais muito ruidosos e transientes, que so as tcnicas de tempo

    frequncia (ondelete, wavelet), bem como aplicadas por Bonaldo, 1993, com

    pseudo-distribuio de Wigner-Ville, funes de Malat e Morlet.

    Em seu mtodo (Ribeiro, 1999) apresentou um mtodo de sucesso, porm que

    no mitigava as chances de uma falha em operao, apenas a detectava.

    J como mostrado por (Brinner et al 1982) foi feito a busca dos princpios

    fsicos que causam vibraes e associando os mesmos s falhas que so detectveis

    atravs deste tipo de anlise.

    Por ser um processo pouco compreendido, a vibrao a causa de muitas falhas

    terem seu incio, segundo os autores, ainda existem dificuldades de diagnosticar

    precisamente tais processos.

    Como realizado por Bak (2012), simulaes numricas para identificao de

    frequncias naturais torcionais em bombas submersas foram utilizadas e sua posterior

    avaliao das tenses geradas neste processo.

  • 9

    Figura 2-1 - Modos de Vibrao de uma BCS (Brinner et al, 1982)

    2.2 Metodologia de Anlise de Vibrao Atual

    No incio da explorao de petrleo, o conceito de explorao submarina no

    existia ainda, logo todos os poos eram terrestres. Poos terrestres possuem um acesso

    muito mais fcil a equipamentos e custos menores em sua reposio ou manuteno,

    logo a confiabilidade destes equipamentos no necessitava de nveis to altos.

    Na dcada de 1990, quando a explorao de petrleo no Brasil foi intensificada

    em ambientes martimos, onde a interveno nos sistemas de bombeio do poo no

    eram operaes de fcil realizao, foi necessrio o desenvolvimento de sistemas de

    bombeio submerso mais confiveis e durveis que os anteriormente usados em campos

    terrestres. Tal fato foi motivado pois tendo em vista que a explorao em guas ultra

    profundas elevou os custos de manuteno de equipamentos, primeiro pela

    complexidade dos mesmos e segundo pelo altssimo custo que a interrupo da

    produo gera s campanhas de produo.

    O primeiro passo para gerar mais confiabilidade aos sistemas e impedir falhas

    logo no incio da produo foi um maior rigor nos testes mecnicos e eltricos logo na

    bancada de testes dos fabricantes, por meio de um FAT Factory Acceptance Tests,

    mais rigoroso.

  • 10

    No campo do teste mecnico, os equipamentos tinham suas curvas de

    desempenho e sinais de vibrao analisados ao serem postos em operao em ambientes

    que simulavam os reais em termos de presso e vazo.

    Na parte eltrica, por meio de simulaes de condies reais de instalao de

    cabos submarinos (stackup e string tests) eram analisados o motor e seu variados de

    frequncia.

    Os critrios de aceitao que atualmente regem os testes de vibrao do sistema

    bombeamento submerso esto descritos nas normas API 11-RPS8 (API, 1993), onde os

    limites de vibrao so estabelecidos e os critrios de desempenho esto definidos na

    API-RP11-S2 (API, 1997).

    Os critrios de aceitao de vibrao so definidos segundo a norma API-

    RP11S8. Por uma questo de conveno, estipulou-se que os valores adotados seriam

    0,156 in/s e 0,255 in/s. Segundo (Minette, 2013) como no existia acesso ao eixo para

    medio de sua vibrao, as medies foram feitas atravs de acelermetros fixados na

    sua carcaa.

    Tabela 2-1 Critrio de Severidade API-11RP-S8

    Peak Velocity Ranges of Vibration Severity Vibration Severity

    Peak-to-Peak displacement Amplitude @3600rpm

    [in/sec] [cm/sec] [mils] [mm] 0,0838

    Os valores diferentes so aplicados por faixa de frequncias, conforme mostrado

    na Figura 2-2. Nela possvel verificar que at 75% da frequncia de rotao do eixo

    adotada uma amplitude de componente espectral de 0,255 in/s e acima desta frequncia,

    a tolerncia fica mais rgida, valendo 0,156 in/s. Isso se deve ao fato das componentes

  • 11

    espectrais inferiores a 75% da rotao do eixo serem consideradas fenmenos

    fluidodinmicos cujos efeitos no degradam o equipamento.

    Figura 2-2 - Critrios de Severidade nas Componentes Espectrais

    Tais medies so efetuadas em sistemas de bombeio que foram

    experimentalmente montados em condies prximas a sua operao. So medidos

    presso de descarga, vazo, vibrao da carcaa e variveis eltricas.

    Os acelermetros foram fixados na estrutura externa em direes ortogonais em

    3 sees transversais de cada componente (superior, meio e inferior), de preferncia

    sobre os mancais. Considerando, por exemplo, um sistema com bomba, protetor e

    motor, cada um ter 6 sensores, totalizando 18 sinais. A fixao pode ser vista

    detalhadamente na Figura 2-3.

  • 12

    Figura 2-3 - Fixao dos Acelermetros (Minette, 2013)

    Segundo experimento realizado por (Minette, 2013) o sistema para realizao

    dos ensaios de vibrao no teste de integrao composto basicamente de um circuito

    fechado de gua, um medidor de vazo, sensor de presso na descarga, poo falso e um

    vlvula de controle de vazo (choke valve). O conjunto BCS fica na vertical apoiado na

    cabea do poo e pendurado por uma tubulao (coluna de produo) enroscada na sua

    descarga, submersos cerca de 10 metros.

  • 13

    Figura 2-4 - Circuito de Teste com Posio dos Sensores (Minette, 2013)

    Segundo (Minette, 2013), ao verificar as condies de contorno, suspeitou-se que

    uma vez em funcionamento o sistema venha a apresentar um comportamento dinmico

    que afetar as componentes espectrais que se relacionam aos defeitos. A diferenciao

    das componentes espectrais dentre quais fenmenos so mecnicos, quais so

    fluidodinmicos e quais so defeitos, se torna um dos objetivos das anlises de

    vibraes.

    2.3 Mtodos de Identificao de Anlise Modal

    Atualmente, o escopo da chamada anlise Modal Experimental (EMA

    Experimental Modal Analysis) definido como anlises como identificao de sistemas

    dinmicos, calibrao de modelos numricos, identificao de falhas, anlise de

    modificaes e outros. Toda anlise modal tem como objetivo a identificao dos

    parmetros dinmicos de estruturas baseando-se em dados retirados de experimentos.

    (Maia e Silva et al, 1997).

  • 14

    Dentre os citados parmetros dinmicos do pargrafo anterior podem ser

    destacados como principais caractersticas as frequncias naturais, fatores de

    amortecimento e modos de vibrao de um sistema. Com tais parmetros em mos

    podem ser elaborados os modelos modais, modelos estes que descrevem tais

    comportamentos como parmetros modais.

    A anlise modal baseada na hiptese que a resposta de vibrao de um sistema

    dinmico linear invariante no tempo (LTI Linear Time-Invariant) pode ser expressa

    como uma combinao linear de um conjunto de movimentos harmnicos. Esta hiptese

    remete ao uso da srie de Fourier, cuja combinao de um conjunto de sries

    harmnicas de senos e cossenos representa funes peridicas complexas. (Minette,

    2013)

    Todas as propriedades fsicas do sistema de massa, rigidez, amortecimento e

    suas distribuies espaciais do modelo matemtico influenciam no comportamento

    dinmico, ou seja, caso haja mudana nas condies de contorno de um sistema, seu

    comportamento dinmico tambm mudar, podendo ser tratado como um novo sistema

    dinmico.

    A anlise modal o conjunto de mtodos experimentais, tericos e numricos.

    Os mtodos tericos e numricos se fundamentam na modelagem e soluo de equaes

    parciais diferenciais e atravs do princpio da superposio de sistema dinmicos

    lineares, permitem transformar essas equaes em problemas de autovalor e autovetor.

    (Minette, 2013)

    As solues numricas de discretizao de sistemas, hoje, nos permite analisar

    quase que qualquer estrutura linear atravs do uso dos mtodos de elementos finitos

    (FEM Finite elements methods), o que faz com que se melhore muito a capacidade de

    identificao dos mtodos tericos.

    Pelo lado da anlise experimental modal, o advento de sistemas de informtica

    como computadores e sistemas prprios para a aquisio de dados permitiram um

    grande desenvolvimento na capacidade de anlise deste tipo experimento.

    Este tipo de anlise tem suas bases tericas fundamentadas nas relaes

    existentes entre a resposta de vibrao em um ponto e a excitao no mesmo, ou ponto

    diferente, em funo da sua frequncia. As combinaes de excitaes e respostas

    (entradas e sadas) levam a um conjunto completo de funes respostas em frequncia

    (FRF frequency response function).

  • 15

    Na anlise de engenharia atual, os recursos mais utilizados baseiam-se em

    modelos de elementos finitos para a aquisio dos parmetros dinmicos de um sistema.

    O resultado desta anlise de elementos finitos pode ser usada para prever as alteraes

    no comportamento da estrutura inicialmente projetada. Porm como nem todos os

    sistemas estruturais permitem o amplo uso da anlise numrica, experimentos fsicos

    analisados em laboratrios ou no campo de operao tornam-se ferramentas valiosas na

    calibrao destas estruturas.

    Apesar de todos os recursos atuais nem sempre possvel o uso de

    experimentos, pelo seu custo ou impossibilidade fsica de serem realizados. Tal

    condio deu origem ao tipo de anlise modal denominado output-only, ou somente

    respostas. Tais anlises so uma extenso da anlise modal experimental e so

    baseadas no processamento e anlise de respostas obtidas do sistema em operao sob

    efeito de todas as condies que este evento incorre sobre o sistema.

    Como domnios de tcnicas desenvolvidas para anlises modais experimentas,

    tem-se o da frequncia e o do tempo. Quando observado o domnio da frequncia os

    problemas comuns so na resoluo, contaminao do espectro ou o vazamento do

    espectro, este ltimo tambm conhecido por leakage, alm de problemas com

    sistemas com altas densidades modais. Quando analisados no domnio do tempo sua

    maior desvantagem se restringe ao fato de apenas poder estimar modos no alcance das

    estimativas da ordem dos modelos, sendo que para melhorar isso, necessrio aumentar

    a ordem.

    Basicamente, divide-se os mtodos em duas classificaes: direto ou indireto.

    Quando indireto, o modelo analisado baseando-se em um modelo de parmetros

    modais. Quando direto, o modelo analisado com base em modelos no espao de

    estados e sua formulao feita com matrizes de equaes dinmicas de equilbrio.

    Na ultima linha de classificaes pode-se ver como o sistema : uma entrada e

    uma sada, SISO (single input, single output), uma entrada e mltiplas sadas SIMO

    (single input, multiple output) ou mltiplas entradas e mltiplas sadas MIMO (multiple

    input, multiple output). Na Figura 2-5 possvel ver os mtodos e suas classificaes.

  • 16

    Figura 2-5 - Mtodos de Identificao Modal (Maia e Silva et al, 1997)

  • 17

    3 Fundamentos Tericos 3.1 Fundamentao

    Para um sistema dinmico determinado, necessrio agora rever alguns conceitos

    a fim de analisar os sinais que sero obtidos.

    Os registros de experimentos podem ser definidos como o resultado quantitativo

    da observao de um fenmeno fsico e so valores cujas grandezas fsicas so funo

    de uma varivel independente. Ao definir uma varivel independente, neste caso o

    tempo, como t para valores definidos como x, temos uma funo x(t) onde estes valores

    variam de acordo com o tempo. Tal funo determinada como um sinal. Este sinal se

    constitui unidimensional se for funo apenas do tempo, neste caso, uma varivel

    independente. Amplitude a definio para a magnitude da funo x(t). Observando e

    tomando amostras discretas das amplitudes de um fenmeno fsico ao logo de um

    intervalo temporal em perodos constantes, realiza-se a amostragem digital do sinal

    deste fenmeno, como pode ser visto na Figura 3-1. Assim, caracteriza-se uma

    sequncia ou srie temporal de nmeros. (Arruda, 2001).

    Figura 3-1 - Digitalizao de um Sinal Analgico

  • 18

    Quando possvel traduzir um fenmeno fsico, em termos de seus valores,

    como uma expresso matemtica e ter assim valores futuros previstos, seus sinais

    representativos so chamados de determinsticos. Por outro lado, sinais chamados de

    aleatrios so gerados pela traduo matemtica de fenmenos onde seus valores

    coletados geram um comportamento nico e assim no podem ser repetidos nem

    previstos. (Bendat e Piersol, 1986).

    Para os termos gerais da engenharia, pode-se descrever um sistema atravs de

    um elemento fsico (modelo matemtico) que ao responder a excitaes impostas gera

    novos sinais, chamados repostas ou sadas. Chama-se de estado um conjunto de

    variveis independentes internas do sistema dinmico que o caracterizam. Suas

    respostas so funes da entrada naquele instante de tempo e obrigatoriamente de

    valores da entrada anterior (Filho, 2008).

    Se no sistema torna-se possvel representar a soma de suas respostas como uma

    soma dos vrios sinais de entrada (principio da superposio) pode-se denominar este

    sistema como linear. (Arruda, 2001).

    Tomando um sistema L com excitaes x1(t) e x2(t) e respectivas respostas y1(t) e

    y2(t), se o sistema for linear, ele poder ser representado pela soma das entradas e das

    sadas, conforme Figura 3-2 (Minette, 2013):

    Figura 3-2 - Representao de um Sistema Linear (Arruda, 2001)

    Quanto a variao da relao entre entradas e sadas temos dois tipos de

    classificaes para os sistemas. Ao analisar o sistemas e caso esta relao no varie com

    o tempo, classifica-se o sistema em invariante no tempo ou estacionrio.

    Se alm desta relao no varias mas tambm a mesma venha a assumir valores

    bem definidos chamamos o sistema de determinstico. Se neste mesmo sistema seu

    estado se comportar como uma varivel aleatria e possa ser descrito em funes de

    probabilidade, este dito como estocstico. A maior ocorrncia deste fenmeno deriva

  • 19

    de sensores expostos a rudo e/ou sofrem perturbaes durante as medies (Filho,

    2008).

    Figura 3-3 - Classificao de Sinais Dinmicos (Maia, Silva et al., 1997)

    Ao balancearmos a fora externa F(t), a fora elstica k.y(t), a fora viscosa

    dy(t)/dt.C (admitindo um amortecimento do tipo viscoso) e a fora de inrcia

    m.d2y(t)/dt2 , pode-se modelar o comportamento de um sistema LTI com 1 grau de

    liberdade de um sistema massa-mola-amortecedor. (Meirovitch, 1986).

    Figura 3-4 - Sistema Mecnico Massa-Mola-Amortecedor

    A equao construda ento:

    !()! +

    () + . = F

    Equao 3-1

    Classificada como equao diferencial ordinria de 2 ordem, onde seus termos

    so expressos por: F(t) a fora de excitao, y(t) o deslocamento do corpo, m a massa do

    corpo, c a constante de amortecimento e k a rigidez da mola (Meirovitch, 1986).

  • 20

    Com a soluo homognea de um sistema(sem fora de excitao), pode-se

    calcular a frequncia natural amortecida do sistema sub-amortecido, d, ainda e o fator

    de amortecimento, , que so calculados por (Rao, 2008):

    ! = 1 ! e =c/cc,

    Equao 3-2

    Onde:

    ! = 2

    Equao 3-3

    Pode-se admitir a soluo da equao homognea na seguinte forma quando o

    sistema est sem foras externas (Rao, 2008):

    () = !"

    Equao 3-4

    Onde X e s so constantes a serem determinadas. Substituindo a soluo na

    equao diferencial (Equao 3-1), ter-se-:

    (ms2+cs+k)Xest=0

    Equao 3-5

    Tomando a soluo no trivial, chega-se :

    ms2+cs+k=0

    Equao 3-6

    Cujas razes so:

    !,! = ! 4

    2 = 2

    2

    !

    Equao 3-7

    Chega-se na soluo da equao diferencial homognea ao substituirmos as

    solues da parte homognea na Equao 3-1 :

    = !!!! + !!!!

    Equao 3-8

    As constantes C1 e C2 so funo das condies iniciais do sistema, em t=0. Quando

    s razes s1 e s2 elas podem cair nos seguintes casos:

    i) As razes so reais, ou seja, ((c/2m)2>k/m), neste caso as foras de

    amortecimento governam o sistema e o sistema dito superamortecido;

  • 21

    ii) As razes so complexas conjugadas ((c/2m)21:

    = !!!!! !!!! !!!! + !!!!! !

    !!!

    Equao 3-11

    ii) Sistema criticamente amortecido =1:

    = !!!! ! + !

    Equao 3-12

    iii) Sistema subamortecido

  • 22

    = !"#

    Equao 3-15

    Onde a amplitude de fora de excitao F e a frequncia harmnica so

    constantes. A soluo particular da equao dada por (Rao, 2008):

    = !"#

    Equao 3-16

    Onde uma amplitude complexa, chamada de fasor (Maia, Silva et al, 1997) o

    que permite a incluso de um ngulo de fase, da seguinte forma:

    = !"

    Equao 3-17

    Ao substituir a equao da resposta forada na equao do movimento, chega-se

    a:

    =

    ! +

    Equao 3-18

    Fazendo a transformao de da forma complexa (x+yi) para forma exponencial

    Rei, atravs do teorema de Euler (Ogata, 2002), e substituindo na soluo da equao

    de resposta do movimento do sistema x(t), ter-se- a resposta para a funo forante

    (soluo particular):

    =

    ( !)! + ()!!(!"!!)

    Equao 3-19

    Esta ento a resposta do sistema dinmico fora de excitao e interessante

    observar que a resposta x(t) tem um atraso relativo ao termo em relao fora

    excitadora F(t). Na equao chamada de soluo em regime estacionrio. Por se tratar

    de um sistema linear, possvel ento somar a soluo particular com a soluo da

    equao homognea, de forma a obter a soluo geral, para o sistema subarmortecido

    (Maia et al, 1997):

  • 23

    = !!!!! !!!!! !!!! + !!!!!! !

    !!! +

    ( !)! + ()!!(!"!!)

    Equao 3-20

    4 Desenvolvimento Experimental 4.1 Introduo

    Conforme aplicao experimental de (Minette, 2013) da tcnica SIMO, no qual o

    trabalho desenvolvido fora a anlise modal em bombas centrfugas submersas para

    poos de petrleo com as condies de contorno de operao. Foram considerados que

    mesmo este sistema tendo passado por vrios testes de fbrica e testes de vibrao, seria

    de grande valia fazer tambm um teste de impacto.

    Em experimentos nos quais usa-se um impulso como funo de entrada, pode-se

    modelar, para uma faixa de frequncia, que o sinal de sada ser a prpria IRF.

    O tipo de ponta do martelo sero usada como a determinante da funo da faixa

    de frequncia.

    As trs etapas do experimento realizado por (Minette, 2013) foram:

    Anlise e processamento de um sinal simulado;

    Anlise e processamento de um sinal em condies controladas;

    Anlise e processamento do sistema de bombeio;

    Primeiramente foi desenvolvido um modelo matemtico com parmetros

    previamente calculados, aps isto obteve-se a resposta do impulso e sua anlise. No

    caso do experimento exemplificado aqui, utilizou-se uma viga engastada com

    acelermetros com o objetivo de avaliar o algoritmo para um sinal real.

    O sinal simulado e o teste em laboratrio foram feitos com uma modelagem do

    tipo SIMO j que se usa apenas um ponto de contato para a gerao do sinal de

    excitao com a cabea do martelo.

    4.2 Simulao de Sinais

    Foi ento modelado um sistema massa mola amortecedor, com 3 graus de

    liberdade, calculado analiticamente os seus parmetros e ento comparado os sinais de

    sada com as caractersticas deste modelo. Assim pode-se comparar a eficcia do

    algoritmo usado.

  • 24

    Figura 4-1 - Sistema Dinmico Simulado (Minette, 2013)

    O sistema discreto modelado est mostrado na Figura 4-1. A fora de excitao

    aplicada somente em no corpo 3 e so medidas as respostas em todas as coordenadas

    X1, X2 e X3. Como pretende-se analisar testes de impactos, foi analisada a resposta do

    sistema ao impulso.

    Calcula-se tambm as frequncias naturais do sistema e suas formas modais

    analiticamente. De posse da matriz de rigidez e de massa, desprezando os

    amortecimentos, pode-se calcular atravs da equao (Rao, 2008):

    | ![] = 0

    Equao 4-1

    Cuja soluo no trivial leva a soluo do problema de autovalor:

    | ![] = 0

    Equao 4-2

    Onde as frequncias naturais so calculadas pela raiz quadrada dos autovalores e

    os autovetores fornecem as formas modais.

    4.3 Algoritmos de Implementao dos Mtodos de Identificao Modal

    O algoritmo de identificao modal apresentado agora ir funcionar como um ponto de partida para programaes em LabView em futuras anlises modais, feito por (Minette, 2013) este algoritmo tem como funo a implementao de um mtodo de identificao modal em ambiente computacional.

  • 25

    4.3.1 Estrutura geral do Algoritmo

    Ao elaborar seu meio de processar os sinais, (Minette, 2013) desenvolveu rotinas

    que puderam acessar facilmente dados e realizar operaes deixando apenas as variveis

    que interessavam ser editveis

    A estrutura do sistema com os parmetros para processamento est mostrada na

    Figura 4-2:

    Figura 4-2 - Estrutura do Algoritmo de Processamento de Sinais (Minette, 2013)

    Ao, no domnio do tempo, serem analisados os dados qualitativamente de

    maneira visual, os dados passam por uma seleo inicial. Com isto, repiques, sinais

    ruidosos e de pouca energia, entre outros, so eliminados. Posteriormente anlise e

    descarte de sinais ruins, a componente de corrente contnua eliminada e so aplicadas

    janelas retangulares para anular sinais esprios.

    Como feito por (Minette, 2013),aps ter pr-processado os dados e selecionados,

    eles passam por processamentos no domnio da frequncia para construo das PSDs,

    Funes de Coerncia e o algoritmo LSCE. No primeiro processo, so definidas as

    janelas para estimao dos espectros de densidade espectral, nmeros de pontos, taxa de

    sobreposio para construo dos periodogramas, faixa de frequncia analisada e

    resoluo espectral. Com isto torna-se possvel construir estimativas, calcular as

    funes de coerncia entre os canais e ainda construir a ANPSD.

    4.3.2 Processamento dos Sinais e Implementao do Algoritmo

    Segundo (Minette, 2013) o processamento dos sinais foi feito com auxlio do

    algoritmo exposto, realizado por uma rotina prpria construda em um ambiente de

    computacional de cdigo numrico desenvolvida pela empresa MathWorks com o

    software comercial Matlab verso 2008b. Esse software contm uma srie de

    bibliotecas voltadas para implementao de clculos numricos, manipulao de

  • 26

    matrizes, construo de rotinas e grficos (Ljung, 1997) atravs de uma linguagem de

    programao de 4 gerao (chamadas tambm de linguagem de alto nvel) (Heering e

    Mernik, 2002).

    Devido grande quantidade de dados a ser analisados (Minette, 2013),

    automatizou o mximo possvel os processamentos. Seus processamentos foram

    divididos em trs grandes grupos:

    Domnio do Tempo;

    Domnio da Frequncia;

    Mtodo LSCE;

    Aps a definio do tipo de processamento a ser realizado, os parmetros

    utilizados para os clculos so carregados e a rotina executada.

    Figura 4-3- Definio de Parmetros no Algoritmo (Minette, 2013)

    Os parmetros escolhidos seguem para uma lista a fim de se determinar quais

    parmetros serviro no processamento do algoritmo. Os processamentos mais

    ====================================================================

    =====> Programa para Anlise Modal tipo SIMO / Output-Only

  • 27

    importantes puderam ser facilmente implementados atravs do uso da biblioteca do

    Matlab, dentre os quais cabe ressaltar:

    Tabela 4-1 - Cdigos Matlab

    Objetivo Cdigo Matlab

    Clculo da transformada Rpida de Fourier fft.m

    Clculo do periodograma de Welch pwelch.m

    Clculo de razes de polinmios roots.m

    Clculo de Histogramas hist.m

    Clculo da funo de Coerncia mscohere.m

    Clculo dos Coeficientes do polinmio autoregressivo atravs da Matriz de

    Toepliz prony.m

    Segundo (Minette, 2013) o algoritmo de Prony foi usado na modelagem de

    funo de resposta ao impulso de filtros digitais sendo este o propsito do cdigo da

    biblioteca do Matlab. Sua modelagem aplica a transformada-Z sobre a funo de

    transferncia do sistema, obtendo assim (Ljung, 1997):

    = =

    !!!!!!!!!!!!!!

    Equao 4-3

    E na forma de fatorada do polinmio escrita na forma:

    =!!!!!

    !!!!! !!!!!

    Equao 4-4

    Onde M o nmero de zeros e N o nmero de plos, as razes do numerados

    !levam a funo a zero (zeros da funo de transferncia) e as razes do polinmio do

    denominador ! levam a funo a tender ao infinito (plos da funo de transferncia).

    O termo k um contador, z a varivel complexa, a e b so os coeficientes da

    representao polinomial.

  • 28

    Figura 4-4 - Rotina para Clculo dos Coeficientes do Polinmio Autoregressivo

    (Minette, 2013)

    J para a estabilizao dos plos em termos da frequncia, a rotina

    implementada foi:

    Figura 4-5 Cdigo para Estabilizao de Plos pela Frequncia (Minette, 2013)

    Inicialmente, foram estimados os PSDs dos sinais, atravs do Periodograma de

    Welch. As variaes das janelas utilizadas foram de Hamming, Hanning e Retangular,

    dt=1/ar; n=length(data); Tp=(n-1)*dt; % k=fix((Tp/(n-1))/dt); h_ref=data(1:k:1+(L-1)*k); [b,a]=prony(h_ref,M,Np); coefi=a; xr=roots(a); lambda=log(xr)/(dt); natf=imag(lambda); damps=real(-lambda)./natf; V=exp((0:k*dt:(Np-1)*k*dt)'*lambda.'); A=V\h_ref(1:Np); pronyphase=atan(imag(A)./real(A))*180/pi; t=0:k*dt:(L-1)*k*dt; ind_natf=find(natf==abs(natf)); wf=abs(natf(ind_natf))/(2*pi); damper=damps(ind_natf)/(2*pi);

    function [est_f1 est_f2]=estabilization(data,erf) % prelocating memory est_f1=zeros(size(data)); est_f2=zeros(size(data)); % A linha 1 formada por todos os valores com o maior nmero de % plos, primeira linha igual da matriz inicial est_f1(1,:)=data(1,:); est_f2(1,:)=data(1,:); for i=2:size(data,1); % variando as linhas da matriz de frequncias, para %variar o nmero de plos % encontrar os valores que so prximos e seus ndices for j=1:size(data,2); % variando as colunas % organiza a matriz em frequncias prximas aos ndices da coluna 1 [valueminf1 idxf]=min(abs(data(1,:)-data(i,j))); %valores %comparados a 1 linha [valueminf2 idxf]=min(abs(data(i-1,:)-data(i,j))); %valores %comparados a linha anterior if valueminf1

  • 29

    alm de variar o nmero de pontos para FFT e a porcentagem de sobreposio no

    periodograma. Procurou-se com isso, estimar PSDs de forma a visualizar os picos onde

    h suspeita de amplificao. Alm disso, foram traadas as funes de coerncia entre

    os canais de sada, de forma a avaliar frequncias de alta coerncia e corroborar com os

    dados obtidos das PSDs. Foram traadas PSDs individuais, em cascata e funes.

    Os grficos de para anlise foram construdos para cruzar os dados entre as PSDs, a

    ANPSD e os plos estabilizados. Alm disso, devido a varincia dos plos, foram

    construdos histogramas, que permitem analisar a ocorrncia de plos para uma dada

    frequncia.

  • 30

    4.4 Experimentos Realizados

    Segundo (Minette, 2013), aps o estudo do mtodo, implementao e teste do

    algoritmo, foram realizados experimentos reais. Primeiramente realizou-se um teste

    laboratorial e por fim um teste com as bombas centrfugas submersas.

    Em laboratrio foi realizado um experimento simples com uma viga de alumnio

    engastada na sua base.

    J no teste no circuito de poo, foram testadas dois conjuntos de bombas

    completos, instalados em condies de operao.

    4.4.1 Instrumentao Utilizada

    Segundo (Minette, 2013) a que foi utilizada instrumentao no laboratrio e no campo foram as mesmas, sendo que no circuito foram utilizados transdutores de vazo e presso que no cabiam nos testes de laboratrio.

    Tabela 4-2 - Instrumentao Utilizada

    Instrumentao Utilizada Conversor de Frequncia

    Weg, entrada 480V/245A, sada 480V/242A, Frequncia sada 30-70Hz, Modelo CW11

    Sistema de Aquisio/ Conversor

    Analgico Digital e Gravador

    Chassi NI-9172 com mdulos NI-9233 USB, National Instruments, com 32 canais, 50 kHz, resoluo de 24 bits, Software de Contole Labview 8.0

    Computador Porttil Notebook Toshiba, Intel Core [email protected], 8GB de memria RAM Software de

    Processamento Matlab 7, com pacote "System Identification Toolbox"

    Transdutor de Vibrao

    Acelermetro piezoeltrico, PCB - IMI 624B11, 100 mV/g, 50g, 2,4-5000Hz, 100 m de Cabo Integral prova dgua e carcaa blindada

    Transdutor de Presso Fabricante Wika, modelo NBR14105

    Martelo de Impacto Fabricante PCB, modelo 086D50, 0,23 mV/N

    Transdutor de Vazo

    Fabricante Emerson-Micro Motion Coriolis Flow meter, modelo: CMF300 M355WRAUEZZZ, Vazo Mxima 272000 kg/h

  • 31

    O sistema da empresa National Instruments com software Labview 8.0 foi o

    utilizado por (Minette, 2013) para a aquisio dos sinais. O sistema dotado de um

    conversor analgico digital de 24 bits com taxa de amostragem de 2 kHz at 50 kHz por

    canal com no mximo de 32 canais (Modelo NI-9178 com placas USB NI-9233). O

    sistema tem um filtro analgico anti-aliasing.

    O acelermetro usado foi piezoeltrico com sensibilidade de 100 mV/g, faixa de

    aquisio de 2Hz at 10kHz a prova dgua do fabricante PCB-IMI, modelo 624B11.

    Devido a grande robustez do sistema testado por (Minette, 2013), foi utilizado

    um martelo de impacto de grande porte, capaz de transferir ao sistema energia suficiente

    para aquisio eficiente dos sinais. Por ter sido aplicada a metodologia do tipo output

    only, o referido martelo apenas produziu o impacto, no sendo utilizado para medir a

    fora de excitao produzida.

  • 32

    Figura 4-6 - Instrumentos de Medio: (a) Placa A/D NI (b) Acelermetro

    Piezoeltrico prova dgua (c) Transdutor de Presso (d) Transdutor de Vazo

    (Minette, 2013).

    4.4.2 Experimentos em Laboratrio

    Os experimentos em laboratrio foram realizados por (Minette, 2013) tiveram

    como local o LCDAV-CENPES: Laboratrio de Comportamento Dinmico e Anlise

    de Vibraes do Centro de Pesquisa e Desenvolvimento da Petrobras.

    O sistema que fora montado foi do tipo SIMO: a viga foi engastada na sua base e

    os todos os impactos de excitao feitos prximos a este ponto, que pode ser observada

    na seta amarela na Figura 4-7. Foram utilizados 5 acelermetros distribudos

    uniformemente ao longo da viga.

  • 33

    Figura 4-7 - Montagem do Teste LCDAV/CENPES (Minette, 2013)

    A viga testada de alumnio 5052, com seo retangular de 25,4 x 6,35 mm (1

    pol x pol). O seu comprimento de 1,31 m e os acelermetros foram posicionados

    nas seguintes posies:

    Tabela 4-3 - Posio Acelermetros Viga Engastada

    Acelermetro

    Posio [m]

    (relativo ao ponto de

    Engaste)

    #1 0,11

    #2 0,41

    #3 0,72

    #4 1,01

    #5 1,31

    Foram realizados no total 15 impactos na sua base.

    4.4.3 Experimentos no Circuito de Poo

    Os experimentos realizados por (Minette, 2013) na cidade de Mossor-RN, na

    base 34 da Petrobras, ativo da Unidade Operacional Rio Grande do Norte e Cear UO-

  • 34

    RNCE. Os campos de produo daquela regio usam o equipamento o qual Minette

    estava tratando em sua tese. Para atender esta os campos de produo, o ativo necessitou

    desenvolver uma grande infraestrutura para atender as demandas de manuteno.

    Os ensaios para avaliao de desempenho contam com bancadas para testes de

    bombas, teste de motores e um poo falso para testes de conjuntos completos. Esse poo

    est ligado a um circuito fechado, instrumentado com transdutor de vazo tipo Coriolis

    e transdutor de presso de na cabea do poo, conforme Figura 4-8, alm de conversores

    de frequncia para controle da rotao, transformadores eltricos e cabos de potncia.

    Desta forma, foi possvel montar, instalar e operar os conjuntos completos de

    BCS para realizao dos testes propostos para anlise modal experimental.

    Tendo em vista que se pretende incrementar os testes de vibrao (string test)

    que so realizados, o posicionamento dos acelermetros e sua configurao a mesma

    realizada nos string tests.

    Figura 4-8 - Circuito do poo de Teste em Mossor/RN (Minette, 2013).

    Os acelermetros so instalados em posies ortogonais da seo transversal da

    BCS, seguindo a metodologia realizada nos string tests. So instalados 6

  • 35

    acelermetros em cada componente, em 3 sees diferentes, assim so necessrios no

    mnimo 18 canais para instrumentar um conjunto completo, conforme Figura 4-9.

    Figura 4-9 - Distribuio dos Acelermetros em um Conjunto BCS (Minette, 2013)

    Figura 4-10 - Instalao Conjunto BCS e Acelermetros (Minette, 2013)

    Os testes foram realizados com dois conjuntos BCS, cuja diferena entre eles a

    bomba. No conjunto #1 foi utilizada uma bomba com 58 estgios, j no segundo, a

  • 36

    bomba tinha 62 estgios. Os outros componentes foram os mesmos, conforme descritos

    nas tabelas Tabela 4-4 e

    Tabela 4-5.

    Tabela 4-4 Dados Conjunto BCS #1 (Minette, 2013)

    Conjunto #1

    Dados Comprimento

    [m]

    Massa

    [kg]

    Material

    Carcaa

    Dimetro

    [pol]

    Fabricante Baker Huges

    Coluna Produo 9,02 86,6 Ao Carbono 2,875

    Bomba P12-58stg-SSD/Srie 400 / Modelo PMXSSD 2,14 108,9 Ao 9Cr-1Mo 4

    Suco Modelo FPXAR-CINT-H6 / Srie 400 0,27 9,1 Ao 9Cr-1Mo 4

    Selo/protetor Modelo FSB3-XLT / Srie 400 1,7 66,7 Ao 9Cr-1Mo 4,5

    Motor Modelo 450MSPIX / Srie 450 3,67 252,7 Ao 9Cr-1Mo 4,5

    Sensor de

    Fundo Centinel 1,25 41,7 Ao 9Cr-1Mo 4,5

    18,05 565,7

    Tabela 4-5 - Dados Conjunto BCS #2 (Minette, 2013)

    Conjunto #2

    Dados Comprimento

    [m]

    Massa

    [kg]

    Material

    Carcaa

    Dimetro

    [pol]

    Fabricante Baker Huges

    Coluna de Produo 9,02 86,6 Ao Carbono 2,875

    Bomba P18-62stg-SSD/ Srie 400

    Modelo PMXSSD 3,15 160 Ao 9Cr-1Mo 4

    Suco Modelo FPXAR-CINT-H6 / Srie 400 0,27 9,1 Ao 9Cr-1Mo 4

    Selo/protetor Modelo FSB3-XLT / Srie 400 1,7 66,7 Ao 9Cr-1Mo 4,5

    Motor Modelo 450MSPIX / Srie 450 3,67 252,7 Ao 9Cr-1Mo 4,5

    Sensor de

    Fundo Centinel 1,25 41,7 Ao 9Cr-1Mo 4,5

    19,06 616,8

  • 37

    4.4.4 Experimentos Realizados

    Segundo (Minette, 2013) testes de impactos e varredura foram feitos. Nos testes

    de varredura, seu objetivo foi levantar as curvas de desempenho e dados de vibrao

    para o sistema em operao.

    Nos testes de impactos, seu objetivo foi verificar a possibilidade de realizao

    dos testes e a robustez do mtodo de identificao.

    4.4.4.1 Teste de Varredura

    Como realizado por (Minette, 2013), uma srie de testes iniciais foram efetuados

    a fim de testar o conjunto e verificar suas condies operacionais. Ainda, objetivando

    comparar os resultados do string test com o da anlise modal experimental, foram

    realizados testes de varredura, sweep test, onde o sistema de bombas submersas

    colocado para operar em diferentes rotaes, mas sempre no seu ponto de maior

    eficincia, BEP best efficiency point.

    Para determinar tal ponto, basta olhar as curvas fornecidas pelo fabricante das

    bombas em seus catlogos. No caso deste experimento, o fabricante forneceu um

    software chamado AutographPCtm - Sizing Program for ESP 8.7.1.0 Baker Huges

    Incorporated. O qual permitiu fazer o input de caractersticas tpicas do equipamento e

    obter suas curvas tericas de desempenho e outros dimensionamentos. Neste software

    foi possvel ter as curvas de altura manomtrica por vazo traada utilizando um banco

    de dados do modelo da bomba, rotao e nmero de rotores. As curvas das bombas

    testadas so mostradas na Figura 4-11 e Figura 4-12.

    Observam-se ento as faixas operacionais da bomba, seu mnimo e mximo e

    consequentemente qualquer operao fora desta faixa acarretar em uma grande

    possibilidade de falhas danosas ao equipamento. Operar abaixo do limite mnimo, far

    com que ocorra um fenmeno chamado downtrust, onde a fora axial tal de no ser

    mais suportada pelo mancal de escora e provoca o atrito entre o rotor (parte rotativa) e o

    difusor (parte esttica), causando roamento e podendo levar a falha catastrfica. Acima

    do limite superior ocorre o fenmeno de uptrust, que o mesmo efeito anterior, mas o

    roamento ocorre na parte superior.

  • 38

    Figura 4-11 - Curvas de Desempenho Bomba P12-58stg (Minette, 2013)

    Figura 4-12 - Curvas Desempenho Bomba P18-62stg (Minette, 2013)

    Tais testes objetivam uma variao da rotao do motor eltrico atravs do

    conversor de frequncia. Sempre foi utilizada a condio de maior eficincia para que as

    anlises fossem coerentes nas diferentes rotaes do equipamento. Colocando sempre o

  • 39

    equipamento para operar sobre esta condio para realizar a aquisio dos sinais de

    vibrao.

    Seguindo a curva fornecida pelo software do fabricante foi feito com que o

    conversor de frequncia efetuasse a variao. Todos os testes foram realizados no ponto

    de maior eficincia da rotao especificada.

    O procedimento para teste de Varredura consistiu em:

    Instalar o conjunto BCS com acelermetros presos a sua carcaa;

    Levantar os pontos de vazo e presso de descarga para operao no ponto de

    maior eficincia em cada rotao;

    Ligar o sistema e regular a vlvula de controle de vazo para o sistema operar na

    condio de maior eficincia (BEP);

    Aps estabilizao do ponto de operao, realizar uma aquisio dos dados de

    vibrao a uma taxa mnima de 4096 Hz, por um tempo mnimo de 330 s;

    Depois de realizados os testes, para cada canal feito uma anlise espectral com o

    objetivo de verificar o comportamento de suas componentes sncronas com a rotao e

    avaliar sua resposta dinmica. Os sinais processados via transformada rpida de Fourier

    (FFT) tem apenas o filtro anti-aliasing usado no sistema de aquisio, sem nenhum

    outro filtro digital.

    4.4.4.2 Teste de Impacto

    Segundo (Minette, 2013) testes de impacto objetivam gerar uma excitao no

    sistema similar a uma ampla faixa frequncia de forma a obter respostas naturais do

    sistema (rudo branco). Por se tratar de um sistema muito pesado, submerso e o nico

    ponto acessvel ser perto de seu ponto de suportao, foi utilizado o maior martelo de

    impacto disponvel para excitar toda estrutura.

  • 40

    Figura 4-13 - Conjunto BCS Instrumentado (Minette, 2013).

    O mtodo utilizado aqui foi baseado em tradicionais tcnicas de anlise modal

    experimental com excitao do tipo impacto. O ponto de realizao dos impactos pode

    ser visto na Figura 4-14 e o sistema instrumentado em Figura 4-13.

  • 41

    Figura 4-14 - Impactos com Martelos na Estrutura na Cabea do Poo (Minette, 2013).

    Para se ter uma boa representao estatstica, foram efetuados cerca de 30

    impactos a uma taxa de aquisio de 25kHz durante um tempo de 3 segundos, por

    diferentes tcnicos de forma aleatria e evitando inserir qualquer tipo de contedo

    frequencial nos impactos, como efetuar excitaes de modo cadenciado.

    No foram medidos os sinais de fora do impacto (fora de excitao).

    4.4.4.3 Simulaes Numricas dos Experimentos

    Segundo (Minette, 2013) construiu-se um modelo numrico simplificado para se

    ter uma ideia de parmetros dinmicos para o sistema de bombas submersas em

    questo.

    Minette modelou os dois conjuntos BCS atravs de um software comercial

    MSC-NASTRAN Verso 10.0 de elementos finitos (FEM). Seus modelos foram feitos

    com um elemento de tubo de seo circular com 30 elementos e 900 ns, cujo nico

    carregamento inserido foi o peso prprio.

    Foram utilizados modelos simples, porm aproximados dos elementos que compe o

    sistema de bombas submersas utilizados nas construes destes sistemas reais. O

  • 42

    modelo foi construdo por Minette com elementos de vigas tubulares, com suas massas

    concentradas nas espessuras, incluindo a massa da gua interna, e rigidezes estimadas

    pelo material e geometria da carcaa, conforme dados da Tabela 4-4 e da

    Tabela 4-5. No foram considerados efeitos de iterao dinmica com a gua, os

    acelermetros e cabos foram desprezados, bem como o efeito de parede. Assim, os

    modelos esto na Figura 4-15.

    Figura 4-15 Dimenses dos Conjuntos BCS Testados (Minette, 2013).

  • 43

    5 Resultados 5.1 Resultados dos Experimentos em Laboratrio

    Os seguintes resultados foram obtidos por (Minette, 2013) na sua aplicao da

    tcnica SIMO na anlise modal do comportamento da bomba centrfuga submersa

    citada anteriormente.

    Os sinais do domnio do tempo so vistos por canal. Cada marcao (crculos

    pretos) indica um impacto independente, na Figura 5-1.

    Figura 5-1 - Sinais Domnio do Tempo Viga Engastada

    Depois de selecionados os impactos e eliminados rudos, o processamento dos

    sinais realizado.

  • 44

    Figura 5-2 - Espectros de Densidade Espectral de Todos canais: Viga Engastada

    A primeira reposta foram os PSDs dos canais, onde ficaram claras as

    amplificaes. Nota-se a participao de todos os canais nos modos, exceto na

    amplificao prxima de 10 Hz, onde um dos canais no participa. Para identificao

    dos parmetros dinmicos o mtodo LSCE ento usado, obtendo-se assim a Figura

    5-3.

  • 45

    Figura 5-3 - Diagrama de Estabilizao Viga Laboratrio

    possvel observar que h uma srie de plos que so instveis, mas mesmo

    assim fica claro que h apenas 3 componentes que estabilizam em todas iteraes. Para

    se ter uma melhor visualizao, um histograma dos plos estabilizados construdo,

    Figura 5-4.

    Figura 5-4 - Histograma de Plos Estabilizados da Viga Laboratrio

    Assim, possvel identificar de maneira objetiva as componentes em frequncia

    do plos estabilizados, conforme Tabela 5-1.

  • 46

    Tabela 5-1 - Resultados Viga Engastada

    Modo Frequncia Estabilizada

    [Hz] Varincia [Hz] Fator de Amortecimento [%] Varincia [%]

    1 4,56 0,03 0,46% 0,00% 2 14,90 0,10 0,37% 0,00% 3 41,34 0,10 0,50% 0,01% 4 81,18 0,01 0,11% 0,00%

    importante ressaltar que na Figura 5-2, h uma componente de baixa

    frequncia, o primeiro modo de vibrao, que no foi identificado pelo mtodo LSCE,

    mas que aparece na ANPSD, nos PSDs e ainda nas funes de coerncia entre os

    canais, conforme figura Figura 5-5.

    Figura 5-5 - Coerncia entre Respostas Viga Laboratrio

    Com as frequncias identificadas e seus respectivos fatores de amortecimentos,

    possvel verificar a sua varincia, entre os parmetros estabilizados. Ainda verificado

    o erro mdio quadrtico do sinal modelado com o sinal original. Tomando ento os

    coeficientes do polinmio autoregressivo estimados, pode-se reconstruir o sinal medido

    na Figura 5-6.

  • 47

    Figura 5-6 - Comparao do Sinal Modelado com o Sinal Medido

    Assim possvel calcular o erro mdio quadrtico para cada impacto em funo

    do nmero de coeficientes do polinmio auto-regressivo (Figura 5-7).

    Figura 5-7 - Erro Mdio Quadrtico Viga Engastada

    Para se ter uma referncia se o nmero de plos utilizados para modelagem do

    sistema est coerente, foram usados dois critrios: o FPE (Final Prediction Error) e o

  • 48

    AIC (Akaike Information Criteria). Eles so ndices que estabelecem a ordem tima

    para o modelo. Quanto menor o valor do ndice, melhor o nmero da ordem do modelo.

    Figura 5-8 - FPE Viga Engastada

  • 49

    Figura 5-9 - AIC Viga Engastada

    Para viga engastada, segundo os grficos da Figura 5-8 e Figura 5-9, fica claro de

    se ver os valores mnimos esto quando o nmero de plos 10. Como h 4 modos na

    faixa de frequncia analisada, os ndices indicaram um nmero prximo, ou seja, 2*N

    modos, ou seja, 5 modos e isso foi verificado nos dois ndices.

    5.2 Resultados dos Experimentos Circuito de Poo

    Os resultados para os testes do circuito de poo foram divididos em duas partes: a

    primeira relativa aos testes de impacto e o segundo relativo aos experimentos de

    varredura.

    5.2.1 Testes de Impacto

    Com o conjunto BCS em condio operacional, foram realizados os testes de

    impacto. Da mesma forma conforme efetuado com a viga engastada os sinais foram

    inicialmente avaliados no domnio do tempo para depois iniciar o processamento dos

    sinais. Os sinais usados como IRFs para esto na Figura 5-10 e Figura 5-11.

  • 50

    Para o processamento, foi utilizada uma taxa de aquisio de 25 kHz, durante

    um tempo de amostragem de 3 segundos por impacto. Foram usados 16 canais

    simultneos sem dados de fora do martelo de impacto.

    Para construo dos espectros de densidade de potncia foram usados conjuntos de

    dados de 75000 pontos para transformada de Fourier, com uma sobreposio de 66% e

    janela do tipo hanning.

    Para anlise do mtodo LSCE, inicialmente a modelagem foi feita com 36 plos

    e reduo at 12 pra estabilizao. Como critrio foi considerado a estabilizao da

    frequncia com um desvio de at 2%. Devido a alta taxa de aquisio o sinal filtrado

    digitalmente (decimao) para uma faixa de at 100 Hz, que a faixa de interesse para

    operao de BCSs atualmente.

    Figura 5-10 - Sinais usados para IRFs Conjunto #1

  • 51

    Figura 5-11 - Sinais usados para IRFs Conjunto#2

    Um impacto de cada conjunto pode ser visualizado com detalhes na Figura 5-12.

    Figura 5-12 - Resposta aos Impactos no Domnio do Tempo (canal 16)

    importante observar que os impactos se aproximam ao modelo de uma funo

    do tipo delta de Dirac at uma faixa de frequncia, conforme pode ser visto na FRF do

    martelo fornecido pelo fabricante na Figura 5-13.

  • 52

    Figura 5-13 - Curva de Resposta em Frequncia do Martelo Instrumentado

    Esta informao do martelo permite analisar a faixa de frequncia que poder ser

    usada para anlise modal. Ao analisar a faixa espectral completa, at 12,5 kHz,

    notvel a perda de energia para componentes de alta frequncia, conforme figura Figura

    5-14 e Figura 5-15.

  • 53

    Figura 5-14 - Espectros de Densidade Espectral Conjunto #1

    Figura 5-15 - Espectros de Densidade Espectral Conjunto #2

    Aps analisados os PSDs, foi definida a faixa espectral a ser analisada,

    conforme na Figura 5-16 e Figura 5-17. Alm dos espectros, foi traada em conjunto a

    ANPSD que est destacada em preto pontilhado.

  • 54

    Figura 5-16 - Espectros de Densidade Espectral de Potncia Conjunto #1 (direo Y)

    Figura 5-17 - Espectros de Densidade Espectral de Potncia Conjunto #2 (direo Y)

    Aps essas anlises os sinais foram processados pela tcnica LSCE, para anlise

    do diagrama de estabilizao e identificao dos parmetros dinmicos. Os resultados

    esto na Figura 5-18 e Figura 5-19.

  • 55

    Figura 5-18 - Diagrama de Estabilizao Conjunto #1

    Figura 5-19 - Diagrama de Estabilizao Conjunto #2

    Para uma melhor visualizao dos plos estabilizados devido a varincia dos

    resultados, foram construdos os histogramas, Figura 5-20 e Figura 5-21.

  • 56

    Figura 5-20 - Histograma de Plos Estveis Conjunto #1

    Figura 5-21 - Histograma de Plos Estveis Conjunto #2

    Desta forma, ficam claros os plos estabilizados. Da mesma forma que foram

    verificado que com a viga engastada, as componentes em frequncia mais baixas da

    faixa analisada apresentaram uma varincia maior que na faixa de 35 Hz at 70 Hz. Isto

  • 57

    devido a fato da forma de excitao privilegiar modos de vibrao nessa faixa de

    frequncia.

    Tabela 5-2- Resultados Conjunto #1

    Resultados Conjunto #1

    Modo Frequncia Estabilizada

    [Hz] Varincia [Hz]

    Fator de Amortecimento

    [%] Varincia [%]

    1 5,01 0,20 2,08% 0,05% 2 10,50 0,83 1,99% 0,04% 3 19,92 2,66 1,33% 0,03% 4 25,88 1,48 1,15% 0,00% 5 29,72 0,20 1,10% 0,00% 6 36,45 0,06 0,78% 0,01% 7 44,28 0,04 0,76% 0,00% 8 52,99 0,10 0,56% 0,00% 9 66,82 0,40 0,80% 0,01% 10 73,54 0,67 0,58% 0,00% 11 79,58 0,10 0,77% 0,00%

    Tabela 5-3 - Resultados Conjunto #2

    Resultados Conjunto #2

    Modo Frequncia Estabilizada

    [Hz] Varincia [Hz]

    Fator de Amortecimento

    [%] Varincia [%]

    1 4,68 1,28 2,27% 0,00% 2 10,92 0,33 1,95% 0,03% 3 17,68 0,21 1,91% 0,00% 4 20,97 0,76 1,75% 0,01% 5 26,84 0,37 1,75% 0,01% 6 33,94 0,39 1,34% 0,00% 7 36,82 0,13 0,95% 0,00% 8 41,13 0,13 0,74% 0,00% 9 49,06 0,20 1,01 0,00% 10 58,38 0,14 0,97% 0,00% 11 68,69 0,17 0,64% 0,00% 12 73,81 0,24 0,62% 0,00% 13 78,56 0,10 0,47% 0,00%

    Para verificar os parmetros estimados, foram traados as funes de coerncia

    entre os canais, Figura 5-22 e Figura 5-23.

  • 58

    Figura 5-22 - Funo de Coerncia das Respostas do conjunto #1

    Figura 5-23 - Funo de Coerncia das Respostas do Conjunto #2

    Na modelagem realizada para estimativa dos parmetros dinmicos, o fator de

    amortecimento para baixas frequncias, quando comparado com estruturas

    convencionais, pode ser considerado elevado.

    Segundo Filho (2008), valores de cerca de 1%