MOLP -...

12
http://jnrm.srbiau.ac.ir * MOLP MOLP MOLP * . Corresponding author, Email: [email protected] پژوهشاضیوین در ری های نحقیقاتم و تاحد علومی، وه آزاد اسنشگا دا

Transcript of MOLP -...

http://jnrm.srbiau.ac.ir

*

MOLP

MOLP

MOLP

*. Corresponding author, Email: [email protected]

های نوین در ریاضیپژوهش دانشگاه آزاد اسالمی، واحد علوم و تحقیقات

MOLP

MOLP

MOLP

MOLP

MOLP

خمینت

MOLP

yxy

x

1

t t

,

1 1

t

2 2 2

max

s.t.

max

s.t. ,

x y

y

c x d y

A x B y b

e y

A x B y b

1, nc x2, , nd e y1A

1 1m n1B1 2m n2A

2 1m n2B2 2m n

1

t t

,

1 1

max

s.t.

x yc x d y

A x B y b

t

2 2 2

max

s.t.

ye y

A x B y b

( , )x y

y

x

11 1 . A x B y b

MOLP

MOLP

t

1

t

2

t

min

min

min

s.t.

,

p

c x

c x

c x

Ax b

x 0

, , ,1 2n

pc c cm nA

nxmb

{ | , } X xAx b x 0

MOLP

{ | } Y Cxx X

MOLP

x

Cp n

it

ic

x XMOLP

x X

, Cx Cx Cx Cx

xy Cx

EX

NY

{ | ; , }E X x X x X Cx Cx Cx Cx

{ | }.N E Y Cx x X

x X

x X

Cx Cx

xy Cx

WEX

WNY

WE { | ; } X x X x X Cx Cx

WN WE{ | }. Y Cx x X

E WEX X. N WNY Y

y Y

tmax

s.t.

,

p

1 s

y s Y

s 0

pp1

s

1

2

s

s

s p

s

y Y

max s

s.t. s1

s 0,

p

y Y

s

I I I I(y ,y , ,y )1 2 py

I

N

y min y

s.t.

k k

y Y

1,2, ,k pMOLP

ykky

N N N(y ,y , ,y )1 2

Npy

N

N

y max y

s.t.

k k

y Y

1,2, ,k pMOLP

k

Iy min y

s.t. y

k k

Y

I Ny y y , 1, 2, ,k k k k p

Ny Y

p

Ny

Ny

MOLP

Ny

MOLP

MOLP

t

N

max

s.t.

c y

y Y

Ny Y

Ny Y

0s

M

t t

,

t

max

s.t.

max

s.t.

p

p

M

y s

s

c y 1 s

y Y

1 s

y s Y

s 0

sy

s

y

( , )y s

s

y Y

t

1

N

max

s.t.

z

c y

y Y

2

t

t tmax,

s.t.

max

s.t.

p

Mpz

s

c y 1 sy s

y Y

1 s

y s Y

s 0

NY

NY

*y

*y*Yy

*( , )0y

2

* *t( , ) .z 0y yc

1 2 2

*( , )z z z 0y

2 1z z

* *( , )y s

*0s

* *( , )y s

*0s*Yy* *( , ) 0y s

M

2 2

* ** *( , ) ( , ),z z 0y ys s

* *( , )y s

2 1z z

*( , )0y

*s

*yNY

*y

2 2 1 1

* * *t ( , ) ( ) .z z z z 0y y yc

2 1z z

t

WN

max

s.t.

c y

y Y

WNy Y

WNy Y

M

tmax (s),

s.t.

max s

s

s.t. s1

s 0

p

Ms

c yy

y Y

y Y

s

tc y

MOLPi

N(y )i

ic eiei

i

N t

, , ,

t

,

y max y

s.t.

max

s.t.

,

i i p

p

M

x y x s

x s

1 s

Cx y

Ax b

x 0

1 s

Cx y s

Ax b

x 0 s 0

y

KKT

N t

, , ,

t t

max y

s.t.

i i py M

x y x s1 s

Cx y

Ax b

x 0

Cx y s

Ax b

v C w A 0

t t

t t

t t

t

( ) 0

( ) 0

( ) 0

, ,

p

p

v 1

v C w A x

v 1 s

w b Ax

x 0 s 0 w 0

0K

t t t t, , ( ) 0 v C w A 0 x 0 v C w A x

t t t t, , ( ) 0p p v 1 s 0 v 1 s

t, , ( ) 0 w 0 Ax b w b Ax

t t , ( ),

{0,1}, 1,2, ,

n

j

K K

p j n

0 v C w A p 0 x 1 p

t t , ( ),

{0,1}, 1,2, ,

p p

i

K K

q i p

0 v 1 q 0 s 1 q

, ( ),

{0,1}, 1,2, ,i

K K m

t i m

0 w t 0 b Ax 1 t

s 0

Min -11 -11 -12 -9 - +9x 9xx x x x2 3 4 5 6 7

Min -11 -11 -9 -12 - +99xx x x x x1 3 4 5 76

Min -11 -11 -9 -9 - -12x x x x 12x x1 2 4 5 6 7

s.t. + + + + + =1x x x x x x x1 2 3 4 5 6 7

, , , , , , 0x x x x x x x1 2 3 4 5 6 7

N(0, 0, 0).y

yMax -M( + + )s s s1 2 31

s.t. = -11 -11 -12 -9 - +y 9x 9xx x x x2 3 4 5 6 71

= -11 -11 -9 -12 - +9y 9xx x x x x1 3 4 5 762

= -11 -11 -9 -9 - -12y x x x x 12x x1 2 4 5 6 73

+ + + + + + =1x x x x x x x1 2 3 4 5 6 7

, , , , , , 0x x x x x x x1 2 3 4 5 6 7

Max + +s s s1 2 3

s.t. = -11 -11 -12 -9y s x x x2 3 4 511

- +9x 9xx 6 7

= -11 -11 -9 -12 - +9y s 9xx x x x x1 3 4 5 72 62

= -11 -11 -9 -9 - -12y s x x x x 12x x1 2 4 5 6 733

+ + + + + + =1x x x x x x x1 2 3 4 5 6 7

, , , , , , 0x x x x x x x1 2 3 4 5 6 7

K

yMax 1

s.t. -11 11 12 9y 9x 9xx x x x2 3 4 5 6 71

-11 11 9 12 9y 9xx x x x x1 3 4 5 762

-11 11 9 9 12y x x x x 12x x1 2 4 5 6 73

1x x x x x x x1 2 3 4 5 6 7

, , , , , , 0x x x x x x x1 2 3 4 5 6 7

-11 11 12 9y 9x 9xx x x x2 3 4 5 6 7 11

-11 11 9 12 9y 9xx x x x x1 3 4 5 76 22

-11 11 9 9 12y x x x x 12x x1 2 4 5 6 7 33

1x x x x x x x1 2 3 4 5 6 7

0 11 12

s

s

s

v

1 3 1

0 11 111 3 2

0 11 111 2 3

0 12 9 91 2 3 4

0 9 12 91 2 3 5

0 9 9 121 2 3 6

0 9 9 121 2 3 7

1, 1, 11 2 3

0 (1 )x1 1

0 (1 )x2 2

0 (1 )x3 3

0 (1 )x4 4

0 x5

w K pv

w K pv v

w K pv v

w K pv v v

w K pv v v

w K pv v v

w K pv v v

v v v

K p

K p

K p

K p

(1 )5

0 (1 )x6 6

0 (1 )x7 7

, , , , , , {0,1}.2 3 4 5 6 71

K p

K p

K p

p p p p p p p

MOLP

MOLP

[1] Armand, P., Malivert, C., (1991).

Determination of the efficient set in multiobjective linear programming.

Journal of Optimization Theory and

Applications, 70, 467-489.

[2] Benson, H. P., (1984). Optimization

over the efficient set. Journal of

Mathematical Analysis and Applications,

98, 562-580.

[3] Benson, H. P., Lee, D., McClure, J. P.,

(1998). Global optimization in practice:

An application to interactivemultiple

objective linear programming. Journal of

Global Optimization, 12, 353-372.

[4] Benson, H. P., Sun, E., (2002). A

weight set decomposition algorithm for

finding all efficient extreme points in the

outcome set of a multiple objective linear program. European Journal of

Operational Research, 139, 26-41.

[5] Calvete, H. I., Gal𝑒′, C., Mateo, P. M.,

(2008). A new approach for solving

linear bilevel problems usin ggenetic

algorithms. European Journal of

Operational Research, 188,14-28.

[6] Deb, K., Chaudhuri, S., Miettinen, K.,

(2006). Towards estimating nadir

objective vector using evolutionary

approaches. In: Keijzer, M. et al. (Eds.),

2006 Genetic and Evolutionary

Computation Conference (GECCO2006),

Seattle,Washington, USA, 1, 643-650.

[7] Dempe, S., (2002). Foundations of

Bilevel Programming. Kluwer Academic

Publishers.

[8] Dessouky, M. I., Ghiassi, M., Davis, W.

J., (1986). Estimates of the minimum

nondominated criterion values in

multiple-criteria decision-making.

Engineering Costs and Production

Economics, 10, 95-104.

[9] Dyer, J.S., Fishburn, P. C., Steuer, R. E.,

Wallenius, J., Zionts, S., (1992). Multiple

criterion decision making, multi attribute

utility theory: The next ten years.

Management Science, 38, 645-654.

[10] Ecker, J. G., Hegner, N. S., Kouada, I.

A., (1980). Generating all maximal

efficient faces for multiple objective linear programs. Journal of Optimization

Theory and Applications, 30, 353-381.

[11] Ehrgott, M., (2005). Multicriteria

optimization. Springer, Second Edithion,

Berlin, Germany.

[12] Ehrgott, M., Tenfelde-Podehl, D.,

(2003). Computation of ideal and nadir

values and implications for their use in

MCDM methods. European Journal of

Operational Research, 151,119-139.

[13] Horst, R., Thoai, N. V., Yamamoto, Y.,

Zenke, D., (2007). On optimization over

the efficient set in linear multi criteria programming. Journal of Optimization

Theory and Applications, 134,433-443.

[14] Isermann, H., (1977). The

enumeration of the set of all efficient solutions for a linear multiple objective

program. Operational Research

Quarterly, 28,711-725.

[15] Isermann, H., Steuer, R. E., (1987).

Computational experience concerning payoff tables and minimum criterion

values over the efficient set. European

Journal of Operational Research, 33, 91-

97.

[16] Jorge, J. M., (2005). A bilinear

algorithm for optimizing a linear function over the efficient set of a multiple

objective linear programming problem.

Journal of Global Optimization, 31, 1-6.

[17] Korhonen, P., Salo, S., Steuer, R. E.,

(1997). A heuristic method for estimating

nadir criterion values in multiple objective linear programming.

Operations Research, 45, 751-757.

[18] Leschine, T. M., Wallenius, H.,

Verdini, W. A. (1992). Interactive

multiobjective analysis and assimilative

capacity based ocean disposal decision.

European Journal of Operational

Research, 56, 278-289.

[19] Lv, Y., Hu, T., Wang, G., Wan, Z.,

(2007). A penalty function method based

on Kuhn-Tucker condition for solving

linear bilevel programming. Applied

Mathematics and Computation, 188, 808-

813.

[20] Metev, B., Vassilev, V., (2003). A

Method for Nadir Point Estimation in MOLP Problems. Cyberneticsand

Information Technologies, 3, 15-24.

[21] Pourkarimi, L., Zarepisheh, M.,

(2007). A dual-based algorithm for

solving lexicographic multiple objective programs. European Journal of

Operational Research, 176, 1348-1356.

[22] Reeves, G. R., Reid, R. C., (1988).

Minimum values over the efficient set in multiple objective decision making.

European Journal of Operational

Research, 36, 334-338.

[23] Shi, C., Lu, J., Zhang, G., (2005). An

extended Kuhn-Tucker approach for linear bilevel programming. Applied

Mathematics and Computation, 162, 51-

63.

[24] Shi, C., Lu, J., Zhang, G., Zhou, H.,

(2006). An extended branch and bound

algorithm for linear bilevel programming.

Applied Mathematics and Computation,

180, 529-537.

[25] Shi, C., Zhou, H., Lu, J., Zhang, G.,

Zhang, Z., (2007). The Kth-best approach

for linear bilevel multi follower programming with partial shared

variables among followers. Applied

Mathematics and Computation, 188,

1686-1698.

[26] Tu, T. V., (2000). Optimization over

the efficient set of a parametric multiple

objective linear programming problem.

European Journal of Operational

Research, 122, 570-583.

[27] Yamamoto, Y., (2002). Optimization

over the efficient set: Overview. Journal

of Global Optimization, 22, 285-317.

[28] Yan, H., Wei, J., (2005). Constructing

efficient solutions structure of

multiobjective linear programming.

Journal of Mathematical Analysis and

Applications, 307, 504-523.