O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh...

18
Campus da FEUP Rua Dr. Roberto Frias, 378 4200 - 465 Porto Portugal T +351 222 094 000 F +351 222 094 050 [email protected] © 2006 O Desafio da O Desafio da Microgera Microgeraç ão ão e das e das Microredes Microredes J. A. Peças Lopes 31 Março 2008 Sessões Técnicas OE 2 © 2006 Introduction Driving forces for the future development of the electric power systems: 1) Environmental issues 2) Replacement of old infrastructures (generation and grid) 3) Security of Supply 4) Increase quality of service (more automation and remote control) 5) Electricity market liberalization (energy and services). 1) Increase renewable generation, exploit clean coal technologies, CCGT and others 2) Increase Distributed Generation 3) Built new central generation (increase efficiency and flexibility of operation) 4) Interoperability of national grids: allow for a wider geographical market implementation, allow for long distance electricity transportation, efficient management of cross border flows, strength security of supply through enhanced transfer capabilities 5) Demand Side Management (increase load consumption efficiency) 6) Regulatory issues (harmonization of regulatory frameworks)

Transcript of O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh...

Page 1: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

Campus da FEUPRua Dr. Roberto Frias, 3784200 - 465 PortoPortugal

T +351 222 094 000F +351 222 094 050

[email protected]

© 2006

O Desafio daO Desafio da MicrogeraMicrogeraççãoãoe das e das MicroredesMicroredes

J. A. Peças Lopes

31 Março 2008Sessões Técnicas OE

2© 2006

Introduction

• Driving forces for the future development of the electric power systems:

– 1) Environmental issues

– 2) Replacement of old infrastructures (generation and grid)

– 3) Security of Supply

– 4) Increase quality of service (more automation and remote control)

– 5) Electricity market liberalization (energy and services).

– 1) Increase renewable generation, exploit clean coal technologies, CCGT and others

– 2) Increase Distributed Generation

– 3) Built new central generation (increase efficiency and flexibility of operation)

– 4) Interoperability of national grids: allow for a wider geographical market implementation, allow for long distance electricity transportation, efficient management of cross border flows, strength security of supply through enhanced transfer capabilities

– 5) Demand Side Management (increase load consumption efficiency)

– 6) Regulatory issues (harmonization of regulatory frameworks)

Page 2: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

3© 2006

New Paradigmas

• The vision

From the SmartGrids document EU Commission

4© 2006

Microgeneration technologies

• Microwind generators (rural areas / urban environments)

• Solar PV

• Micro CHP (domestic Stirling engines, microturbines)

• Fuel cells

• +

• Storage energy systems: (batteries, flywheels)

Page 3: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

5© 2006

Microgeneration technologies: Micro-wind turbines

6© 2006

Microgeneration technologies: Micro-wind turbines

Page 4: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

7© 2006

Microgeneration technologies

• Solar PV

8© 2006

Microgeneration technologies: BIPV

Other solutions: surfaces coating (Glasses, Roofs, etc.) with thin films.

Page 5: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

9© 2006

Micro CHP (Stirling engines)

• Packaged as a domestic boiler for mass market

10© 2006

Microgeneration - Microturbines

• Microturbine of 80 kW

In general the microturbine is

connected to the grid through an

electronic converter.

1,5 kHz to 4kHz

(single shaft)

Page 6: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

11© 2006

Fuel-Cells

• Different Types (PEM, SOFC, Alkaline, PAC…)

12© 2006

Energy storage - flywheels

• Key element for the operation of a microgrid

Page 7: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

13© 2006

Microgenerators grid interface

• The general model of a microgenerator can be of the followingtype

Inverter

14© 2006 14

PV

Wind Gen

MicroGrid: A Flexible Cell of the Electric Power System

Microturbine

Fuel Cell

Storage DeviceMGCC

MC

MC

MC

MC

MC

LC

LC

LC

LC

LC

MG Hierarchical Control:

• MGCC, LC, MC

• Communication infrastructure

Page 8: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

15© 2006

The MicroGrid Concept

• A Low Voltage distribution system with small modular generation units providing power and heat to local loads

• A local communication infrastructure

• A hierarchical management and control system

Operation Modes:

• Interconnected Mode

• Emergency ModeMV

LV

MGCCMC

LC

Fuel CellMC

PV

MC

MC

LCLC

LC

MC

LC

ACDC

ACDC

ACDC

ACDC

Microturbine

Wind Generator

MC StorageACDC

Microturbine

PV

ACDC

MC

16© 2006

Normal interconnected mode

• Managing the microgrid

Page 9: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

17© 2006 17

MicroGrid Black Start

MV

LV

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Fault in the upstream MV network followed byunsuccessful MG islanding

18© 2006 18

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Page 10: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

19© 2006

MV

LV

19

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

20© 2006 20

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Page 11: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

21© 2006 21

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

22© 2006 22

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Page 12: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

23© 2006 23

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

24© 2006 24

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Page 13: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

25© 2006 25

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

26© 2006 26

MicroGrid Black Start

Storage Device

Microturbine

PV

Fuel Cell

Wind Gen

Page 14: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

27© 2006 27

Results from Simulations – Long Term Dynamics

• An Overview of the Service Restoration Procedure

90 100 110 120 130 140 150 160 170 180 190 200 210 22049.6

49.8

50

50.2

50.4Fr

eque

ncy

(Hz)

90 100 110 120 130 140 150 160 170 180 190 200 210 220-20

0

20

40

Act

ive

Pow

er (k

W)

90 100 110 120 130 140 150 160 170 180 190 200 210 220

0

20

40

60

Time (s)

Act

ive

Pow

er (k

w)

MG main storage

SSMT 1SSMT 2SSMT 3

load connection

PVs connectionWG connection

Motor load start up

28© 2006

Multi-microgrids

• Microgrids

– DFIM

– Fuel Cell

– Microturbine

– Storage(VSI)

– PV

• Large VSI

• Large DFIM

• Hydro

• CHP

• Small Diesel

• Sheddable Loads

HV Network

VSI

Diesel

DFIM

MicroGrid

MicroGrid

MicroGrid

CapacitorBank

Hydro

CHP

SheddableLoads

Page 15: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

29© 2006

Some results from an impact analysis study

• Investigation of the impact of microgeneration on the

Portuguese Electrical Distribution System

– quantify overall benefits of microgrids in terms of

energy losses and avoided CO2 emissions

– quantify the impact of a widespread deployment of

microgrids on the future replacement and investment

strategies investment deferral

30© 2006

Methodology

• Hence, typical networks at the distribution level were identified (HV,

MV and LV)

• For each network it was necessary to define:

– load scenarios

– microgeneration scenarios

• For each network, load and microgeneration do:

– Calculate losses, by solving load-flows (with and without microgeneration integration)

– Estimate the amount of avoided CO2 emissions

– Evaluate benefits from investment deferral

For 1 year

For 25 years

Page 16: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

31© 2006

Diferential

HV 5,15 134 127 7UMV 7,35 456 422 33RMV 4,79 304 289 15ULV 11,35 1237 1097 140RLV 7,55 825 763 62Total 8,72 2956 2698 258

Loss Rate (%) 7,0 6,4 0,6CO2 (ton) 1093653 998330 95324

Energy Loss Reduction (%)

Energy Loss per Network Type

(without µG) (GWh)

Energy Loss per Network Type (with µG)

(GWh)

Results

• 10% Microgeneration Penetration

Considering:370 tonCO2/GWh(ERSE reference value)

0.05 €/kWh(average energy cost) 12,9 M€ avoided costs in losses

32© 2006

Results

• 10% Microgeneration Penetration

Savings resulting from the reduction in the average annual energy losses for a time span of 25 years, at the present time

Avoided interests due to postponing for 25 years the line and transformer investments

∑=

−−

⎥⎦

⎤⎢⎣

⎡+⋅

+++

⋅n

ii

a

aii

a

ic

ttI

ttC

11

11

1

0 )1()1()1(1 12,882 0,207

2 12,924 0,0003 12,967 0,1994 13,010 0,0005 13,053 0,1916 13,096 0,0007 13,140 0,1848 13,183 0,0009 13,227 0,177

10 13,271 0,00011 13,315 0,17112 13,359 0,00013 13,403 0,16414 13,448 0,00015 13,492 0,15816 13,537 0,00017 13,582 0,15218 13,627 0,00019 13,672 0,14720 13,718 0,00021 13,763 0,14122 13,809 0,00023 13,854 0,13624 13,900 0,00025 13,946 0,131 Total

Total 335,181 0,207 1,953 337,3403

Energy Loss Reduction (106

euros)Line Loading Reduction

(106 euros)YearLine Loading Reduction Year 1

(106 euros)

Page 17: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

33© 2006

Daily Load Diagram

• 10% Microgeneration Penetration

0 5 10 15 20 250

1000

2000

3000

4000

5000

6000

7000

8000

9000

Hours

Load

(MW

)

Winter Scenario

Without uGWith uGuG

0 5 10 15 20 250

1000

2000

3000

4000

5000

6000

7000

8000

Hours

Load

(MW

)

Summer Scenario

Without uGWith uGuG

Maximum μG contribution: 337 MW

μG contribution at peak load: 248 MW

Maximum μG contribution: 204 MW

μG contribution at peak load: 86 MW

Avoided energy generation : 1272 GWh (in year 2005)

With 534 MW of installed capacity in μG (100.000 - 150.000 installations)

34© 2006

Conclusions - Benefits

• Consequences of the SmartGrid concept

From Goran Strback

Page 18: O Desafio daMicrogeração e das Microredes · 370 tonCO 2 /GWh (ERSE reference value) 0.05 €/kWh (average energy cost) 12,9 M€ avoided costs in losses

35© 2006

Conclusions - Benefits

• Large technical, economic and environmental benefits can be achieved by using microgeneration:

– Considerable amount of loss network reduction;

– Better voltage profiles;

– Reliability improvements;

– Increased economic performance of the distribution activity

• investment deferral network reinforcement costs;

• avoided costs in network losses.

– Avoided CO2 emissions

Specific and fair new remuneration schemes must be identified

Beneficiaries: Microgenerators, consumers, DSOs, society

36© 2006

Conclusions - Benefits

• Society benefits (less tangible benefits related to energy policy):

– increased security of power systems,

– diversification of primary energy sources,

– reduction on energy external dependence),

– potential economic benefits (new economic activities, increase in job creation,

improvements in social cohesion and environmental sustainability).

• Additional opportunities for electric power manufacturers will be created:

• Competitiveness in the electric power industry will increase

• Research is the Key element for the development of this SmartGridconcept