projeto subestação

134
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA PROJETO DE GRADUAÇÃO ESTUDO E PROJETO ELÉTRICO BÁSICO DE UMA SUBESTAÇÃO FABIANO DE SOUSA VITÓRIA – ES NOVEMBRO/2007

Transcript of projeto subestação

Page 1: projeto subestação

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROJETO DE GRADUAÇÃO

ESTUDO E PROJETO ELÉTRICO BÁSICO DE UMA SUBESTAÇÃO

FABIANO DE SOUSA

VITÓRIA – ES NOVEMBRO/2007

Page 2: projeto subestação

FABIANO DE SOUSA

ESTUDO E PROJETO ELÉTRICO BÁSICO DE UMA SUBESTAÇÃO

Parte manuscrita do Projeto de Graduação do aluno Fabiano de Sousa, apresentado ao Departamento de Engenharia Elétrica do Centro Tecnológico da Universidade Federal do Espírito Santo, para obtenção do grau de Engenheiro Eletricista.

VITÓRIA – ES NOVEMBRO/2007

Page 3: projeto subestação

FABIANO DE SOUSA

ESTUDO E PROJETO ELÉTRICO BÁSICO DE UMA SUBESTAÇÃO

COMISSÃO EXAMINADORA:

___________________________________ Prof. Dr. Paulo José Mello Menegáz Orientador

___________________________________ Prof. Dr. Wilson Correia Pinto de Aragão Filho Examinador

___________________________________ Prof. Dr. Wilson Obed Emmerich Examinador

Vitória - ES, 23 de novembro de 2007

Page 4: projeto subestação

DEDICATÓRIA

Dedico este projeto aos meus pais, José Luiz e Ozélia e meu irmão Vinícius, sem os quais nada teria sido possível.

i

Page 5: projeto subestação

AGRADECIMENTOS

Agradeço aos meus mestres, que me estimularam a buscar o conhecimento

necessário à minha formação, aos projetistas da empresa Petra Engenharia que muito

me ensinaram sobre subestações elétricas, em especial ao supervisor Waldomiro Tuzi,

que sempre esteve disposto a me ensinar, aos meus amigos que sempre me apoiaram e

incentivaram, tornando possível o desenvolvimento deste trabalho, e esta universidade

que me acolheu nos últimos cinco anos e fez de mim um profissional.

ii

Page 6: projeto subestação

LISTA DE FIGURAS

Figura 1 – Subestação 500kV – Furnas – Ibiúna, SP ..................................................11

Figura 2 – Subestação Elevadora da Usina Termoelétrica de Piratininga...................11

Figura 3 – Exemplos de Barramentos Simples............................................................13

Figura 4 – Exemplo de Barramentos Principal e Trasnferência ..................................14

Figura 5 – Exemplo de Barramento Duplo com uso de Disjuntor de Interligação .....14

Figura 6 – Exemplo de Barramento em Anel Contínuo ..............................................15

Figura 7 – Exemplo de Barramento em Anel Seccionado...........................................15

Figura 8 – Exemplo de Barramento em Anel Modificado ..........................................15

Figura 9 – Transformador 500kVA .............................................................................17

Figura 10 – Enrolamentos de Transformador..............................................................17

Figura 11 – Bucha de Transformador..........................................................................20

Figura 12 – Bucha Capacitiva......................................................................................20

Figura 13 – Distribuição de tensão da bucha capacitiva .............................................20

Figura 14 – Transformadores de Corrente...................................................................22

Figura 15 – Transformadores de Potencial ..................................................................23

Figura 16 – Pára-Raios ................................................................................................24

Figura 17 – Chaves Secionadoras................................................................................25

Figura 18 – Disjuntores de 138kV...............................................................................28

Figura 19 – Disjuntores de SF6 até 800kV..................................................................29

Figura 20 – Unidade Capacitiva ..................................................................................30

Figura 21 – Esquemático de uma unidade capacitiva com fusível externo (A) e com

fusível interno (B)........................................................................................................30

Figura 22 – Banco de Capacitores ...............................................................................31

Figura 23 – Banco de Capacitores Série da SE São João do Piauí..............................32

Figura 24 – Diagrama de Blocos de um Relé Digital..................................................39

Figura 25 – Amostras de Sinais Analógicos................................................................40

Figura 26 – Alternativas de amostragem e conversão analógico-digital de um relé

digital ...........................................................................................................................41

iii

Page 7: projeto subestação

Figura 27 – Estrutura de um sistema digital integrado de proteção, controle e

medição........................................................................................................................42

Figura 28 – Relé Siemens 7SA522..............................................................................44

Figura 29 – Relé ABB da série IED670 ......................................................................44

Figura 30 – Relés da linha L90 da GE.........................................................................45

Figura 31 – Rede de comunicação simplificada ..........................................................48

Figura 32 – Entradas de 138kV ...................................................................................53

Figura 33 – Ligação a quatro chaves ...........................................................................54

Figura 34 – Ligação dos Transformadores ..................................................................54

Figura 35 – Ligação à barra de 69kV ao transformador e às linhas alimentadoras.....55

Figura 36 – Painel de proteção da Entrada 1 ...............................................................56

Figura 37 – Painel de proteção do Transformador T1.................................................56

Figura 38 – Painel de proteção das Saídas 1 e 2..........................................................57

Figura 39 – Detalhe da caixa de junção 1L1CXTC1 do TC de medição ....................59

Figura 40 – Detalhe da caixa de junção do TP ............................................................60

Figura 41 – Borne Conector modelo OTTA-6 ............................................................60

Figura 42 – Chave Teste ..............................................................................................61

Figura 43 – Esquemático de uma Chave Teste............................................................62

Figura 44 – Relé 7SA6115 ..........................................................................................63

Figura 45 – Relé 7SA6475 ..........................................................................................63

Figura 46 – Saídas Digitais BO1, BO2 e BO3 ............................................................65

Figura 47 – Vista superior de um painel......................................................................69

Figura 48 – Bloco de Atraso de Tempo.......................................................................72

Figura 49 – Exempo de aplicação do Bloco de Atraso de Tempo ..............................73

Figura 50 – Bloco Set-Reset ........................................................................................74

Figura 51 – Exemplo de aplicação do Bloco Set-Reset...............................................75

iv

Page 8: projeto subestação

LISTA DE TABELA

Tabela 1 – Tabela ANSI ..............................................................................................34

Tabela 2 – Comparação entre Relés Convencionais e Digitais ...................................38

Tabela 3 – Características principais dos relés utilizados no exemplo de caso...........52

v

Page 9: projeto subestação

SUMÁRIO

DEDICATÓRIA........................................................................................................... I

AGRADECIMENTOS ...............................................................................................II

LISTA DE FIGURAS............................................................................................... III

LISTA DE TABELA ..................................................................................................V

SUMÁRIO ................................................................................................................. VI

RESUMO................................................................................................................ VIII

1 INTRODUÇÃO:...............................................................................................9

2 SUBESTAÇÕES:............................................................................................11

2.1 Definição:..........................................................................................................11

2.2 Classificação: ....................................................................................................12

2.3 Barramentos: .....................................................................................................13

2.4 Principais Equipamentos de uma SE: ...............................................................16

2.4.1 Transformadores:.....................................................................................16

2.4.2 Reatores em Derivação:...........................................................................17

2.4.3 Buchas: ....................................................................................................18

2.4.4 Transformadores de Corrente:.................................................................21

2.4.5 Transformadores de Potencial:................................................................22

2.4.6 Pára-Raios: ..............................................................................................23

2.4.7 Chaves: ....................................................................................................24

2.4.8 Disjuntores: .............................................................................................26

2.4.9 Capacitores em Derivação:......................................................................29

2.4.10 Capacitores Série:..................................................................................31

3 PROTEÇÃO DE SISTEMAS ELÉTRICOS:..............................................33

3.1 Relés:.................................................................................................................33

3.2 Arquitetura de um relé digital: ..........................................................................38

3.2.1 Entradas Analógicas: ...............................................................................39

3.2.2 Entradas Discretas: ..................................................................................39

3.2.3 Interface analógico-digital:......................................................................39

3.2.4 Processador digital: .................................................................................41

vi

Page 10: projeto subestação

3.2.5 Portas seriais e paralelas:.........................................................................42

3.2.6 Fonte de alimentação:..............................................................................42

3.3 Sistemas digitais integrados:.............................................................................42

3.4 Exemplos de Relés Digitais: .............................................................................43

3.4.1 Siemens: ..................................................................................................43

3.4.2 ASEA BROWN BOVERI – ABB: .........................................................44

3.4.3 General Electric:......................................................................................45

4 AUTOMAÇÃO E PROJETO:......................................................................46

5 PROJETO ELÉTRICO DE UMA SE:.........................................................51

5.1 Diagrama Unifilar: ............................................................................................53

5.2 Diagrama Trifilar: .............................................................................................58

5.3 Diagrama Funcional:.........................................................................................64

5.4 Desenhos Construtivos: ....................................................................................69

5.5 Diagramas de Fiação e de Interligação: ............................................................70

5.6 Lista de Cabos:..................................................................................................71

5.7 Diagramas Lógicos: ..........................................................................................71

6 CONCLUSÕES: .............................................................................................76

ANEXO I – DIAGRAMA UNIFILAR.....................................................................77

ANEXO II – DIAGRAMA ESQUEMÁTICO ........................................................79

ANEXO III – DIAGRAMA CONSTRUTIVO .....................................................113

ANEXO IV – DIAGRAMA DE FIAÇÃO .............................................................121

ANEXO V – DIAGRAMA DE INTERLIGAÇÃO...............................................123

ANEXO VI – LISTA DE CABOS ..........................................................................125

ANEXO VII – DIAGRAMA LÓGICO..................................................................127

ANEXO VIII – PROJETO ARQUITETÔNICO .................................................129

7 REFERÊNCIAS: ..........................................................................................131

vii

Page 11: projeto subestação

RESUMO

Neste Projeto de Graduação será apresentado o que é uma subestação, seus

principais equipamentos, informações sobre relés digitais e por fim será explicado com

um exemplo de caso de estudo que é o projeto elétrico de uma subestação, fazendo uso

de conhecimento adquirido pelo estudante durante o curso, em pesquisas e no estágio.

viii

Page 12: projeto subestação

9

1 INTRODUÇÃO:

Um sistema elétrico de potência necessita de grandes unidades geradoras para

suprir uma grande quantidade de consumidores (residências, lojas, indústrias, etc.). No

entanto, estas unidades geradoras geralmente não se localizam próximas aos centros

consumidores, sendo necessária a utilização de linhas de transmissão para conduzir a

energia gerada até eles e, muitas vezes, fazer a interligação com outras unidades

geradoras. Além disso, os níveis de tensão ideais para geração, transmissão e

distribuição são diferentes um dos outros.

As subestações elétricas, ou SEs, são parte importante no sistema elétrico, pois

são nelas que começam e/ou terminam as linhas e ainda convertem os níveis de tensão

para os ideais, técnica e economicamente, através do uso de transformadores. São

nelas também que são instalados os equipamentos para proteção das linhas bem como

os equipamentos para manobras, que aumentam a confiabilidade do sistema.

Apesar de sua importância, no Brasil, as SEs não receberam grandes

investimentos até meados da década de noventa. A partir daí, as concessionárias

começaram a investir intensamente na melhoria e automação de suas subestações, com

o objetivo de aumentar a confiabilidade do sistema, reduzir custos operacionais,

melhorar a qualidade das previsões de investimentos e melhorar os índices de

qualidade.

O projeto de uma subestação é dividido em quatro partes: Projeto Civil,

Projeto Eletromecânico, Projeto Elétrico e Projeto Arquitetônico.

Este trabalho tem como objetivo estudar sobre o Projeto Elétrico, que trata de

toda parte de proteção e controle da subestação, e é uma das partes de um projeto de

SEs que mais sofreram mais mudanças com a automação. Nas demais partes

dificilmente se encontra algo específico, mas pode-se encontrar distribuído em

literaturas sobre outros assuntos, como por exemplo, dimensionamento de

equipamentos elétricos, dimensionamento de malha de aterramento, cálculos de

estruturas etc.

Este trabalho abordará, no Capítulo 2, o conceito de subestação e suas

classificações. No Capítulo 3, serão vistos de forma sucinta os principais

Page 13: projeto subestação

10

equipamentos que formam uma SE. No Capítulo 4, falaremos sobre proteção focando

no relé que é o principal equipamento com esta finalidade e o relé digital utilizados na

automação de uma SE. No Capítulo 5, será abordado o assunto de automação de SEs,

sendo que no Capítulo 6 será apresentado o Projeto Elétrico de uma SE.

Page 14: projeto subestação

11

2 SUBESTAÇÕES:

2.1 Definição:

Uma Subestação, também chamada de SE, é formada por um conjunto de

máquinas, aparelhos e circuitos que têm a finalidade de adequar os parâmetros de

tensão e corrente das linhas e sistemas as quais está ligada, a níveis econômica e

tecnicamente viáveis bem como a de permitir a distribuição de energia nas mesmas.

Na figura 1 temos uma foto de uma subestação de 500kV de furnas localizada no

município de Ibiúna em São Paulo, e na figura 2 temos uma foto da subestação da

Elevadora da Usina Termoelétrica de Piratininga.

Figura 1 – Subestação 500kV – Furnas – Ibiúna, SP

Figura 2 – Subestação Elevadora da Usina Termoelétrica de Piratininga

Page 15: projeto subestação

12

2.2 Classificação:

As SEs podem ser classificadas com base em diversos parâmetros, como

veremos a seguir:

Quanto à função que devem exercer: • Elevadoras: localizam-se na saída das usinas e elevam a tensão para níveis

compatíveis com o transporte econômico; • Abaixadoras: ficam na periferia das cidades e destinam-se a diminuir os

níveis de tensão, evitando os inconvenientes da alta tensão, para a população, como rádio-interferência, campos magnéticos intensos, faixa de passagem larga, etc.;

• Distribuição: abaixam o nível de tensão para que fique compatível com a distribuição de energia urbana. Elas podem pertencer às concessionárias ou aos consumidores;

• Manobras: fazem chaveamentos de linhas de transmissão; • Conversoras: associadas a sistemas de transmissão de corrente contínua

(Retificadoras e Inversoras).

Quanto ao nível de tensão de operação: • Alta Tensão (AT): tensão nominal abaixo de 230kV; • Extra Alta Tensão (EAT): tensão nominal igual ou acima de 230kV.

Quanto ao tipo de instalação: • Céu Aberto: são construídas em locais amplos, ao ar livre, e requerem o

emprego de aparelhos e máquinas próprias para funcionamento em condições atmosféricas diversas;

• Em Interiores: os equipamentos são colocados no interior de construções, e não estão sujeitos a intempéries;

• Blindadas: os equipamentos são completamente protegidos, e o espaço necessário pode ser reduzido, chegando a até 10% do espaço de uma SE convencional. São normalmente usadas em áreas urbanas, densamente povoadas, onde o preço do terreno seja muito alto e de difícil aquisição. Podem ser isoladas em óleo, com material sólido, ou em gás (SF6 – Hexafluoreto de Enxofre). As principais vantagens são a baixa manutenção e a segurança da manutenção. Em contrapartida, necessita de um treinamento de pessoal diferenciado e as operações de chaveamento de equipamentos não podem ser visualizadas, mas apenas supervisionadas por indicadores.

Quanto à forma de operação:

Page 16: projeto subestação

13

• Com operador: exige alto nível de treinamento de pessoal. Quanto ao uso de computadores na supervisão e operação local, em geral, a sua viabilidade só se justifica para instalações de maior porte. Atualmente este tipo já está praticamente em desuso;

• Semi-automática: com computadores locais ou intertravamentos eletromecânicos que impedem operações indevidas por parte do operador local;

• Automatizada: com supervisão à distância por intermédio de computadores. Atualmente as concessionárias têm todas ou quase todas as subestações já automatizadas.

2.3 Barramentos:

A configuração dos barramentos de uma SE influi de forma decisiva na

flexibilidade, tanto da sua operação quanto da sua manutenção. A possibilidade de se

atender a todos os consumidores, mesmo durante um defeito, é uma característica

bastante desejável em uma SE. Os barramentos podem ser classificados quanto à sua

continuidade e quanto ao arranjo.

Quanto à continuidade: • Barramentos Contínuos: não existem chaves ou disjuntores particionando ou

interrompendo o barramento; • Barramentos Seccionados: o barramento é constituído por duas ou mais

seções interligadas por chaves ou disjuntores, onde cada seção pode atender a um ou mais consumidores.

Quanto ao arranjo: • Barramentos Simples: a SE possui uma só barra de AT e/ou BT. Só são

usados em pequenas SEs (figura 3);

Figura 3 – Exemplos de Barramentos Simples

• Barramentos Principal e de Transferência: este é o tipo de arranjo utilizado na maioria das SEs, pois oferece um bom plano de manutenção,

Page 17: projeto subestação

14

principalmente devido à existência do disjuntor de interligação de barras, que pode substituir qualquer outro. Por ter dois barramentos, existe a possibilidade de manutenção de um deles, mantendo-se as cargas em outro, ainda que com limitações. A figura 4 apresenta um exemplo deste tipo de barramento;

Figura 4 – Exemplo de Barramentos Principal e Trasnferência

• Barramento Duplo: utiliza-se da possibilidade de separação das LT’s em

dois barramentos distintos (figura 5). Normalmente, o disjuntor de interligação de barras também é utilizado. Este esquema impede, assim, a retirada das duas LT’s devido a algum defeito em um dos barramentos. Consequentemente, a confiabilidade do sistema aumenta e o risco de perda da estabilidade do mesmo diminui;

Figura 5 – Exemplo de Barramento Duplo com uso de Disjuntor de Interligação

• Barramento em Anel: nesta configuração há uma boa flexibilidade para

manutenção dos disjuntores, sem interrupção do fornecimento de energia. Os tipos contínuos (figura 6) são normalmente contidos em cabines, até 34,5kV, com disjuntores removíveis, porque qualquer defeito no barramento tiraria toda SE de serviço. Já os tipos seccionados (figura 7), oferecem a possibilidade de manutenção em qualquer trecho dos mesmos. Neste caso, para isolamento de um defeito, haverá sempre a necessidade de se acionar

Page 18: projeto subestação

15

dois disjuntores simultaneamente. Isto, teoricamente, aumenta o risco de falhas. Um caso particular do barramento em anel é o chamado “Anel Modificado” (figura 8). Neste caso, dependendo da posição da linha, até três disjuntores precisam ser acionados para isolamento do defeito.

Figura 6 – Exemplo de Barramento em Anel Contínuo

Figura 7 – Exemplo de Barramento em Anel Seccionado

Figura 8 – Exemplo de Barramento em Anel Modificado

Page 19: projeto subestação

16

2.4 Principais Equipamentos de uma SE:

Como dito anteriormente uma SE é formada por um conjunto de máquinas e

equipamentos. Os principais são transformador, reatores em derivação, buchas,

transformadores de corrente, transformadores de potencial, pára-raios, chaves,

disjuntores, capacitores em derivação e capacitores série. A seguir será descrito cada

um de forma resumida.

2.4.1 Transformadores:

Um sistema de corrente alternada opera, em cada uma de suas partes, com a

tensão mais conveniente, tanto do ponto de vista técnico quanto do econômico. Esta

flexibilidade é obtida através dos transformadores, também chamados de trafos.

Sendo o transformador um componente que transfere energia (potência) de um

circuito elétrico para outro, o transformador toma parte nos sistemas de potência para

ajustar a tensão de saída de um estágio do sistema à tensão de entrada do seguinte. O

transformador poderá também assumir outras funções, como isolar eletricamente

circuitos entre si, ajustar a impedância do estágio seguinte à do anterior, ou todas estas

finalidades citadas ao mesmo tempo.

A classificação dos transformadores de potência pode ser feita segundo o

número de fases e quanto aos seus enrolamentos.

Quanto ao número de fases, eles podem ser:

Monofásicos; Trifásicos.

A escolha entre transformadores trifásicos ou bancos trifásicos depende de

estudos técnico-econômicos, que devem considerar os fatores: custos de investimento

e de energia não fornecida, confiabilidade (necessidade de unidades de reserva),

limitações de transporte e de capacidade de fabricação.

Quanto aos enrolamentos temos:

Transformadores de dois ou mais enrolamentos: possuem dois ou mais enrolamentos isolados eletricamente uns dos outros (primário, secundário terciário);

Page 20: projeto subestação

17

Autotransformadores: possui apenas um enrolamento, com ramificações para obter outros níveis de tensão. A figura 9 apresenta um transformador trifásico, enquanto a Figura 10 mostra

os enrolamentos.

Figura 9 – Transformador 500kVA

Figura 10 – Enrolamentos de Transformador

2.4.2 Reatores em Derivação:

Em sistemas de potência, os reatores em derivação são empregados para

controlar as tensões nos barramentos, em regime permanente, compensando a

capacitância das linhas de transmissão no período de carga leve, e para a redução das

Page 21: projeto subestação

18

sobrecorrentes, nos surtos de manobra. Para atender estas funções, a característica

“tensão x corrente” deve ser linear até um determinado valor de tensão. Isto é

conseguido com reatores com núcleo de ar ou reatores com núcleo de ferro e

entreferros, sendo estes últimos os de maior utilização em sistemas de potência.

Os reatores em derivação podem ser de ligação permanente ou manobráveis,

através de disjuntores, e eles podem ser classificados de acordo com a sua localização,

quanto ao número de fases e segundo o tipo de núcleo.

Quanto à sua localização, temos:

Reatores de linha: instalados diretamente nas linhas de transmissão; Reatores de barra: instalados na barra da subestação; Reatores de terciário: instalados no terciário de transformadores.

Quanto ao número de fases, podem ser classificados em:

Monofásicos; Trifásicos.

A escolha entre reatores trifásicos e bancos trifásicos depende de estudos

técnico-econômicos, que devem considerar os seguintes fatores:

Custos de investimento; Confiabilidade (necessidade de unidade reserva); Limitações de transporte (peso e altura máxima); Limitações de capacidade de fabricação.

Em geral, nos sistemas brasileiros, os reatores de alta tensão são formados por

bancos trifásicos em estrela aterrada. Os reatores de terciário são trifásicos, em estrela

não aterrada.

Com relação ao tipo de núcleo, estes podem ser:

Núcleo de ar; Núcleo de ferro.

2.4.3 Buchas:

As buchas são empregadas para a passagem de um condutor de alta tensão

através de uma superfície aterrada, como o tanque de um transformador ou de um

reator.

Page 22: projeto subestação

19

As buchas devem ser capazes de transportar as correntes dos equipamentos em

regime normal de operação e de sobrecarga, de manter o isolamento, tanto para a

tensão nominal quanto para as sobretensões, e de resistir a esforços mecânicos.

As buchas, de acordo com suas funções, podem ser classificadas em:

Buchas de terminais de linha; Buchas de terminais de neutro; Buchas de terciário.

As buchas para transformadores e reatores, figura 11, são do tipo para exterior-

imersa, ou seja, uma extremidade é destinada a exposição às intempéries e a outra à

imersão no óleo isolante.

As buchas de terminais de linha são, em geral, de papel impregnado com óleo,

com repartição capacitiva, providas de derivação de ensaio e, eventualmente de

derivação de tensão. Nas buchas capacitivas (figura 12) são colocados cilindros

condutores concêntricos na direção axial, para formarem superfícies equipotenciais e

melhorar a distribuição de tensão (figura 13). A derivação de ensaio é uma conexão

feita a uma das últimas camadas condutoras, conforme aparece na figura 12, que

permite medições do isolamento e serve como capacitor de acoplamento, para

medições de descargas parciais, sendo acessível externamente e quando não está sendo

utilizada é aterrada. A derivação de tensão é uma conexão feita a uma das camadas

condutoras, que se constituem em uma fonte de tensão quando a bucha se acha em

funcionamento, é acessível externamente e quando não está sendo utilizada é aterrada.

As buchas de terciários e de neutro podem ser de papel impregnado com resina,

papel aglutinado com resina, de cerâmica, etc., com ou sem repartição capacitiva.

Page 23: projeto subestação

20

Figura 11 – Bucha de Transformador

Figura 12 – Bucha Capacitiva

Figura 13 – Distribuição de tensão da bucha capacitiva

Page 24: projeto subestação

21

2.4.4 Transformadores de Corrente:

Os medidores e relés de proteção do tipo corrente alternada são atuados por

correntes e tensões supridas por transformadores de corrente e de potencial. Estes

transformadores proporcionam isolamento contra a alta tensão do circuito de potência.

Eles são chamados de transformadores de instrumentos e suprem os relés e medidores

com quantidades proporcionais aos circuitos de potência, mas suficientemente

reduzidas, de forma que estes instrumentos podem ser fabricados relativamente

pequenos, do ponto de vista de isolamento.

Os transformadores de corrente (figura 14), também chamados de TC’s, têm

seu enrolamento primário ligado em série com o circuito de alta tensão. A impedância

do transformador de corrente, vista do lado do enrolamento primário, é desprezível,

comparada com a do sistema ao qual estará instalado, mesmo que se leve em conta a

carga que se coloca em seu secundário. Desta forma, a corrente que circulará no

primário dos transformadores de corrente é ditada pelo circuito de potência, chamado

de circuito primário.

Quanto à função, os TC’s dividem-se em dois grupos:

TC’s para serviço de medição: possuem maior precisão e possuem um núcleo dimensionado de tal forma que ele sature não permitindo que a corrente no secundário ultrapasse o valor nominal e assim protege os equipamentos de medição;

TC’s para serviço de proteção: possuem uma menor precisão, e o secundário pode ultrapassar o valor nominal, quando numa situação de falta, para o sistema de proteção atuar instantaneamente ou depois de alguns instantes dependendo da intensidade e duração da falta.

Os TC’s para serviço de proteção subdividem-se em duas classes:

Classe A: possui alta impedância interna, isto é, aquele cuja reatância de dispersão do enrolamento secundário possui valor apreciável;

Classe B: possui baixa impedância interna, isto é, aquele cuja reatância de dispersão do enrolamento secundário possui valor desprezível.

Os TC’s são também classificados de acordo com a sua construção:

Tipo enrolado: TC cujo enrolamento primário é constituído de uma ou mais espiras e envolve mecanicamente o núcleo do transformador;

Page 25: projeto subestação

22

Tipo barra: TC cujo enrolamento primário é constituído por uma barra montada permanentemente através do núcleo do transformador;

Tipo janela: TC sem primário próprio, construído com uma abertura através do núcleo por onde passa um condutor formando o circuito primário;

Tipo bucha: TC tipo janela projetado para ser instalado sobre uma bucha de um equipamento elétrico;

Tipo com núcleo dividido: TC tipo janela em que parte do núcleo é separável ou basculante, para facilitar o enlaçamento do condutor primário;

Tipo com vários enrolamentos primários: TC com vários enrolamentos primários distintos e isolados separadamente;

Tipo de vários núcleos: TC com vários enrolamentos secundários isolados separadamente e montados cada um em seu próprio núcleo, formando um conjunto com um único enrolamento primário, cujas espiras, ou espira, enlaçam todos os secundários.

Figura 14 – Transformadores de Corrente

2.4.5 Transformadores de Potencial:

Normalmente em sistemas acima de 600V, as medições de tensão não são

feitas diretamente da rede primária, mas sim, através de equipamentos denominados

transformadores de potencial, ou TP’s, figura 15. Estes equipamentos têm como

finalidades isolar o circuito de baixa tensão (secundário) do circuito de alta tensão

(primário) e de reproduzir os efeitos transitórios e de regime permanente aplicados ao

circuito de alta-tensão, o mais fielmente possível, no circuito de baixa tensão.

Quanto ao tipo, os TP’s podem ser:

Transformadores indutivos (TPI): é como um transformador de força conectado a uma pequena carga;

Page 26: projeto subestação

23

Transformadores capacitivos (TPC) ou Divisores capacitivos: são constituídos basicamente de dois capacitores cujas funções são o de divisor de tensão e de acoplar a comunicação via “carrier” ao sistema de potência;

Divisores resistivos: são como os capacitivos, mas usando resistores; Divisores mistos (capacitivo e resistivo): como o próprio nome diz, são um

misto de dos dois anteriores. Os divisores resistivos e mistos, normalmente, não são utilizados em sistemas

de potência, sendo sua aplicação nos circuitos de ensaio e pesquisa em laboratório. Para tensões entre 600V 69kV, os transformadores indutivos são dominantes,

para tensões entre 69kV e 138kV não existe preferência e para tensões superiores a 138kV os capacitivos são dominantes.

Figura 15 – Transformadores de Potencial

2.4.6 Pára-Raios:

Os pára-raios são equipamentos responsáveis por funções de grande

importância nos sistemas elétricos de potência, contribuindo decisivamente para a sua

finalidade, economia e continuidade de operação.

Os equipamentos de uma subestação podem ser solicitados por sobretensões

provenientes de ocorrências no sistema ou de descargas atmosféricas. Com o objetivo

de impedir que estes equipamentos sejam danificados, é necessária a instalação de

dispositivos de proteção contra sobretensões, sendo os pára-raios os equipamentos

mais adequados para esta finalidade. Atuam como limitadores de tensão, impedindo

Page 27: projeto subestação

24

que valores acima de um determinado nível pré-estabelecido possam alcançar os

equipamentos para os quais fornecem proteção.

De uma forma geral, pode-se afirmar que se trata de um equipamento bastante

simples do ponto de vista construtivo. Um pára-raios é constituído de um elemento

resistivo não-linear associado ou não a um centelhador em série. Em operação normal,

o pára-raios é semelhante a um circuito aberto. Quando ocorre uma sobretensão, o

centelhador dispara e uma corrente circula pelo resistor não-linear impedindo que a

tensão nos seus terminais ultrapasse um determinado valor. É possível a eliminação do

centelhador, utilizando-se somente o resistor não-linear se o material não-linear

apresentar uma característica suficientemente adequada para esta finalidade. Os

elementos utilizados no componente não-linear são o carboneto de Silício (SiC) e o

óxido de zinco (ZnO). Na figura 16, vemos exemplos de pára-raios.

Figura 16 – Pára-Raios

2.4.7 Chaves:

As chaves, figura 17, podem desempenhar diversas funções nas subestações,

sendo a mais comum, a de secionamento de circuitos por necessidade operativa, ou por

necessidade de isolar componentes do sistema (equipamentos ou linhas) para a

realização de manutenção nos mesmos. Neste último caso, as chaves abertas, que

isolam o componente em manutenção, devem ter uma suportabilidade entre terminais

às solicitações dielétricas de forma que o pessoal de campo possa executar o serviço de

manutenção em condições adequadas de segurança.

Page 28: projeto subestação

25

As chaves podem ser classificadas da seguinte maneira, de acordo com as

funções que desempenham em SEs de alta tensão:

Secionadoras ou Seccionadoras: • Funcionar como “By-pass” de equipamentos: disjuntores e capacitores série

para a execução de manutenção ou por necessidade operativa; • Isolar equipamentos: disjuntores, capacitores, barramentos,

transformadores, reatores, geradores ou linhas para a execução de manutenção;

• Manobrar circuitos: transferência de circuitos entre os barramentos de uma subestação.

Os secionadores somente podem operar quando houver uma variação de

tensão insignificante entre seus terminais ou nos casos de restabelecimento ou

interrupção de correntes insignificantes.

Chaves de terra: • Aterrar componentes do sistema em manutenção: linhas de transmissão,

barramentos ou bancos de capacitores em derivação. Chaves de operação em carga: • Abrir e/ou fechar determinados circuitos em carga: reatores, capacitores,

geradores e circuitos de distribuição. Chaves de aterramento rápido: • Aterrar componentes energizados do sistema no caso de defeitos em reatores

não manobráveis ligados a linhas de transmissão sem esquemas de proteção com transferência de disparo, ou no caso de linhas terminadas por transformador sem disjuntor no outro terminal da linha e para proteção de geradores contra sobretensões e auto-excitação. Estas chaves necessitam de tempos de operação extremamente rápidos, exigindo, acionamento com explosivos. Este tipo de chave é raramente aplicado nas redes.

Figura 17 – Chaves Secionadoras

Page 29: projeto subestação

26

2.4.8 Disjuntores:

O disjuntor, figuras 18 e 19, é um dispositivo que pode interromper um

circuito mesmo em condições anormais de tensão ou corrente. Vemos, por sua

definição, que é um equipamento complexo, sendo ele a alma da proteção dos sistemas

elétricos, pois sobre o mesmo atua todo o esquema de releamento de proteção

assegurando assim a continuidade do fornecimento de energia.

A principal função dos disjuntores é a interrupção de correntes de falta tão

rapidamente quanto possível, de forma a limitar a um mínimo os possíveis danos aos

equipamentos pelos curtos-circuitos.

Além das correntes de falta, o disjuntor deve ser capaz de interromper

correntes normais de carga, correntes de magnetização de transformadores e reatores e

as correntes capacitivas de bancos de capacitores e linhas em vazio.

O disjuntor deve ser capaz também de fechar circuitos elétricos, não só

durante condições normais de carga, como na presença de curtos-circuitos, o que pode

ocorrer no caso de religamento. Algumas falhas podem ser temporárias, como por

exemplo, um galho de árvore que cai sobre a linha de distribuição, fecha curto-circuito

e cai no chão retirando o curto, e por este motivo é feito tentativas de religar o sistema

algumas vezes, mas caso o defeito persista é feito o desligamento definitivamente.

As funções mais frequentemente desempenhadas pelos disjuntores são, em

primeiro lugar, a condução de correntes de carga na posição fechada, seguindo-se o

isolamento entre duas partes de um sistema elétrico. Os disjuntores são, em geral,

chamados a mudar de uma condição para outra ocasionalmente, e a desempenhar a

função de abrir faltas ou fechar circuitos sob falta apenas muito raramente.

Os disjuntores devem ser mecanicamente capazes de abrir correntes de 20 a 50

vezes a sua corrente nominal, em tempos tão curtos quanto 2 ciclos (aproximadamente

33,3 ms), após terem permanecido na posição fechada por vários meses. Esta

exigência impõe cuidados especiais no projeto do equipamento, no sentido de reduzir a

um mínimo as massas das partes móveis e de garantir a mobilidade das válvulas,

ligações mecânicas, etc.

Page 30: projeto subestação

27

Os disjuntores podem ser classificados conforme a construção dos pólos

(entende-se por pólo de um disjuntor, o conjunto de dispositivos de abertura e

fechamento associado a cada fase do circuito), dos meios de interrupção do arco e do

mecanismo de acionamento.

Quanto à construção o disjuntor pode-se ter:

Pólos Juntos: uma só carcaça abriga os três pólos. É geralmente encontrado em disjuntores a seco ou grande volume de óleo;

Pólos Separados: com uma carcaça para cada pólo, é encontrado em qualquer tipo. Possui vantagem de maior facilidade de transporte, característica importante em EAT.

Quanto aos meios de interrupção do arco, tem-se:

Disjuntores a Óleo: há dois tipos básicos, a saber: os disjuntores a grande volume de óleo e de pequeno volume de óleo. No primeiro tipo, os contatos ficam no centro de um grande tanque contendo óleo, que é usado tanto para a interrupção das correntes quanto para prover um isolamento para a terra. No disjuntor de pequeno volume de óleo, o óleo serve principalmente para a extinção do arco, e não necessariamente para a isolação entre as partes vivas e a terra.

Disjuntores a Ar Comprimido: a extinção do arco é obtida a partir da admissão nas câmaras de ar comprimido que, soprando sobre a região entre os contatos, determina o resfriamento do arco e sua compressão. A reignição do arco em seguida à ocorrência de um zero de corrente é prevenida pela exaustão dos produtos ionizados do arco da região entre os contatos pelo sopro de ar comprimido. A intensidade e a rapidez do sopro de ar garantem o sucesso do disjuntor nas “corridas” enérgicas (liberação x absorção de energia) e dielétrica (tensão de restabelecimento x suportabilidade dielétrica).

Disjuntores a Gás SF6: o SF6, hexafluoreto de enxofre, é um dos gases mais pesados conhecidos, e à pressão atmosférica apresenta uma rigidez dielétrica 2,5 vezes superior à do ar, mas aumenta rapidamente com o aumento da pressão. Os primeiros disjuntores a SF6 eram do tipo “dupla pressão” baseado no funcionamento dos disjuntores de ar comprimido. Estes foram substituídos pelos disjuntores do tipo “puffer” (ou “impulso”) também denominados de “pressão única”, porque o SF6 permanece no disjuntor, durante a maior parte do tempo, a uma pressão de 3 a 6 bars, servindo ao isolamento entre as partes com potenciais diferentes. Os disjuntores a SF6 têm sido largamente utilizados devido à sua confiabilidade e baixa manutenção.

Disjuntores a Vácuo: nestes disjuntores, o arco que se forma entre os contatos é bastante diferente dos arcos em outros tipos de disjuntor, sendo basicamente mantido por íons de material metálico vaporizado proveniente dos contatos. A intensidade da formação desses vapores metálicos é diretamente proporcional à intensidade de corrente e, consequentemente, o plasma diminui quando esta

Page 31: projeto subestação

28

decresce e se aproxima de zero. Atingido o zero de corrente, o intervalo entre os contatos é rapidamente desionizado pela condensação dos vapores metálicos sobre os eletrodos. A ausência de íons após a interrupção dá aos disjuntores a vácuo características quase ideais de suportabilidade dielétrica.

Seco (Sopro Magnético): encontram sua maior utilização em cubículos blindados, sendo, normalmente, do tipo extraível. Quanto ao método de extinção do arco voltaico, no momento que o disjuntor abre, o arco formado é empurrado na direção dos contatos de umas bobinas laterais, sob ação do sopro provocado por um êmbolo empurrado dentro de um cilindro. As bobinas, ao se energizarem pela ação do próprio arco, criam um campo magnético que repulsa as partículas ionizadas do arco para dentro de barreiras isolantes, secionando o mesmo. A interrupção é, portanto, por alongamento e secionamento do arco.

Quanto ao mecanismo de acionamento, tem-se:

Mecanismo Manual; Mecanismo de Acionamento à Distância; • Solenóide; • Motor e Mola; • Pneumático; • Hidráulico.

Figura 18 – Disjuntores de 138kV

Page 32: projeto subestação

29

Figura 19 – Disjuntores de SF6 até 800kV

2.4.9 Capacitores em Derivação:

O planejamento do sistema elétrico brasileiro tem optado pela instalação de

grandes blocos de compensação reativa capacitiva, com o objetivo de se diminuir os

custos e otimizar o desempenho do sistema. O objetivo básico de uma compensação

reativa capacitiva é de compensar o fator de potência das cargas, refletindo-se,

principalmente, nos seguintes pontos:

Aumenta a tensão nos terminais da carga; Melhora a regulação de tensão; Reduz as perdas na transmissão; Reduz o custo do sistema.

Uma unidade capacitiva, demonstrada na figura 20, é o conjunto formado por

associação série/paralelo de capacitores individuais, figura 21. Estas unidades possuem

um resistor interno de descarga que tem por objetivo reduzir a tensão nominal do

sistema até 50V ou menos, num determinado tempo (normalmente 5 minutos), após o

capacitor ter sido desligado da fonte de tensão. Outro ponto de relevante importância é

quanto à localização dos fusíveis, internos (figura 21A) ou externos (figura 21B), nas

unidades. Existe hoje em dia uma forte tendência para a utilização de unidades

capacitivas com fusíveis internos em decorrência dos seguintes argumentos:

Page 33: projeto subestação

30

Com o uso de fusíveis internos cada capacitor individual que forma a unidade capacitiva possui seu próprio fusível, dessa forma quando um capacitor individual se danifica, o seu respectivo fusível queima, e a unidade ainda pode continuar operando, sem grande desequilíbrio de fase.

Para que uma unidade não exploda, considera-se como limitação a utilização de no máximo 3100kVAr em paralelo. Este tipo de problema pode ser contornado usando-se fusíveis limitadores de corrente (custo elevado) ou fusíveis internos.

Um banco econômico para uma classe de tensão se deve ao número mínimo de unidades que se pode colocar em paralelo. Este número é dado pela limitação, que na saída de uma unidade não poderá causar uma sobrelevação de tensão superior a 10%. Desta forma, para se obter um banco com MVAr baixo, teria que se usar latas com um valor menor de kVAr, ficando assim a instalação mais cara. Este problema também é atenuado utilizando-se fusíveis internos.

A principal vantagem do fusível externo é a facilidade visual de localização do

elemento defeituoso, sendo a sua troca feita com relativa simplicidade.

A figura 22 mostra um banco de capacitores em derivação.

Figura 20 – Unidade Capacitiva

Figura 21 – Esquemático de uma unidade capacitiva com fusível externo (A) e com fusível interno (B)

Page 34: projeto subestação

31

Figura 22 – Banco de Capacitores

2.4.10 Capacitores Série:

Os capacitores série são utilizados em sistemas de transmissão para diminuir a

reatância série das linhas e, por conseguinte, a distância elétrica entre as barras

terminais.

A utilização de capacitores série apresenta as seguintes vantagens:

Aumento da capacidade de transmissão de potência da linha; Aumento da estabilidade do sistema; Diminuição das necessidades de controle da tensão, pois propicia menor queda

de tensão ao longo da linha; Melhor divisão de potência entre linhas, reduzindo as perdas globais do

sistema; Economia nos custos, quando comparados com alternativas tecnicamente

possíveis.

Como equipamento elétrico, o capacitor série apresenta a peculiaridade de ser,

na realidade, um sistema composto por diversos outros equipamentos que têm a função

exclusiva de proteger as unidades capacitivas contra sobretensões.

Na figura 23 temos uma foto de um banco de capacitores série.

Page 35: projeto subestação

32

Figura 23 – Banco de Capacitores Série da SE São João do Piauí

Page 36: projeto subestação

33

3 PROTEÇÃO DE SISTEMAS ELÉTRICOS:

A Proteção de Sistemas Elétricos é exercida por um conjunto de

equipamentos, sendo o principal o relé, que tem por finalidade proteger o sistema de

falhas internas ou externas, evitando ou minimizando danos a este.

A proteção deve considerar os seguintes aspectos:

Operação normal: • Inexistência de falhas do equipamento; • Inexistência de erros do pessoal de operação; • Inexistência de incidentes (tempestades, raios, terremoto, furacão, etc.);

Proteção contra falhas elétricas: • Isolamento adequado; • Coordenação do isolamento; • Uso de cabos pára-raios; • Instruções de operação e manutenção;

A limitação dos defeitos devidos às falhas: • Limitação da corrente de curto-circuito; • Projeto capaz de suportar efeitos mecânicos e térmicos da corrente de

defeito; • Existência de circuitos múltiplos e geradores de emergência; • Existência de releamento e disjuntores; • Aumento do fluxo de carga e reajuste de relés; • Mudança na operação.

O uso da proteção minimiza o custo de reparação de estragos, a probabilidade

de o defeito propagar-se, o tempo que o equipamento fica inativo e a perda de renda.

Os equipamentos da proteção devem obedecer a dois princípios gerais, que são

o de não atuar se o defeito não existe e o de atuar de acordo com o defeito,

considerando-se a forma, a intensidade e a localização deste.

3.1 Relés:

O relé de proteção é um dispositivo destinado a detectar anormalidades no

sistema elétrico, atuando diretamente sobre um equipamento ou um sistema, retirando

de operação os equipamentos ou componentes envolvidos com a anormalidade e/ou

Page 37: projeto subestação

34

acionando circuitos de alarme, quando necessário. Por outro lado, também pode ser o

elemento que, satisfeitas certas condições de normalidade, irá dar a permissão para a

energização de um equipamento ou de um sistema.

As funções do relé de proteção são a de medir grandezas do sistema, comparar

os valores medidos com os valores dos ajustes aplicados, operar (ou não) em função

do resultado dessa comparação, acionar a operação de disjuntores ou de relés

auxiliares e de sinalizar sua atuação via indicador de operação visual e/ou sonoro.

Inicialmente, os relés utilizados eram os chamados relés eletromecânicos e

constituem-se basicamente de partes mecânicas, circuitos magnéticos e circuitos

elétricos. Eles possuem basicamente um elemento de operação (bobina) e um jogo de

contatos. O elemento de operação capta a informação de corrente e/ou tensão através

dos Transdutores primários (TP’s/TC’s), analisa a grandeza medida e transforma o

resultado num movimento dos contatos se necessário. Existem os mais variados tipos

de relés eletromecânicos sendo que cada tipo realiza uma função. Estas funções de

proteção dos relés são representadas por números, que são definidos pela nomenclatura

da ANSI (American National Standards Institute) e apresentada na tabela 1.

Tabela 1 – Tabela ANSI

Número Descrição 01 Elemento Principal 02 Relé de Partida ou Fechamento Temporizado 03 Relé de Verificação ou Interbloqueio 04 Contator Principal 05 Dispositivo de Interrupção 06 Disjuntor de Partida 07 Disjuntor de Anodo 08 Dispositivo de Desconexão da Energia de Controle 09 Dispositivo de Reversão 10 Chave de Sequência das Unidades 11 Reservada para Futura Aplicação 12 Dispositivo de Sobrevelocidade 13 Dispositivo de Rotação Síncrona 14 Dispositivo de Subvelocidade 15 Dispositivo de Ajuste ou Comparação de Velocidade ou Frequência 16 Reservada para Futura Aplicação 17 Chave de Derivação ou de Descarga 18 Dispositivo de Aceleração ou Desaceleração 19 Contator de Transição Partida-Marcha 20 Válvula Operada Eletricamente

Page 38: projeto subestação

35

21 Relé de Distância 22 Disjuntor Equalizador 23 Dispostivo de Controle de Temperatura 24 Reservada para Futura Aplicação 25 Dispositivo de Sincronização ou de Conferência de Sincronismo 26 Dispositivo Térmico do Equipamento 27 Relé de Subtensão 28 Reservada para Futura Aplicação 29 Contator de Isolamento 30 Relé Anunciador 31 Dispositivo de Excitação em Separado 32 Relé Direcional de Potência 33 Chave de Posicionamento 34 Chave de Sequência, Operada por Motor 35 Dispositivo para Operação das Escovas ou para Curtocircuitar Anéis Coletores 36 Dispositivo de Polaridade 37 Relé de Subcorrente ou Subpotência 38 Dispositivo de Proteção de Mancal 39 Reservada para Futura Aplicação 40 Relé de Campo 41 Disjuntor ou Chave de Campo 42 Disjuntor ou Chave de Operação Normal 43 Dispositivo ou Seletor de Transferência Manual 44 Relé de Sequência de Partida das Unidades 45 Reservada para Futura Aplicação 46 Relé de Reversão ou Balanceamento de Corrente de Fase 47 Relé de Sequência de Fase de Tensão 48 Relé de Sequência Incompleta 49 Relé Térmico para Máquina ou Transformador 50 Relé de Sobrecorrente Instantâneo 51 Relé de Sobrecorrente de Tempo 52 Disjuntor de Corrente Alternada 53 Relé para Excitatriz ou Gerador CC 54 Disjuntor de Corrente Contínua, Alta Velocidade 55 Relé de Fator de Potência 56 Relé de Aplicação de Campo 57 Dispositivo para Aterramento ou Curto Circuito 58 Relé de Falha de Retificação 59 Relé de Sobretensão 60 Relé de Balanço de Tensão 61 Relé de Balanço de Corrente 62 Relé de Interrupção ou Abertura Temporizada 63 Relé de Pressão de Nível ou de Fluxo, de Líquido ou Gás 64 Relé de Proteção de Terra 65 Regulador (Governador) 66 Dispositivo de Intercalação ou Escapamento de Operação 67 Relé Direcional de Sobrecorrente CA 68 Relé de Bloqueio 69 Dispositivo de Controle Permissivo 70 Reostato Eletricamente Operado 71 Reservada para Futura Aplicação

Page 39: projeto subestação

36

72 Disjuntor de Corrente Contínua 73 Contator de Resistência de Carga 74 Relé de Alarme 75 Mecanismo de Mudança de Posição 76 Relé de Sobrecorrente CC 77 Transmissor de Impulsos 78 Relé de Medição de Ângulo de Fase, ou de Proteção Contra Falta de Sincronismo 79 Relé de Religamento CA 80 Reservada para Futura Aplicação 81 Relé de Subfrequência 82 Relé de Religamento CC 83 Relé de Seleção de Controle ou de Transferência Automática 84 Mecanismo de Operação 85 Relé Receptor de Onda Portadora ou Fio-Piloto 86 Relé de Bloqueio 87 Relé de Proteção Diferencial 88 Motor Auxiliar ou Motor Gerador 89 Chave Secionadora 90 Dispositivo de Regulação 91 Relé Direcional de Tensão 92 Relé Direcional de Tensão e Potência 93 Contator de Variação de Campo 94 Relé de Desligamento, ou de Disparo Livre

95 a 99 Usados para Aplicações Específicas, não Cobertos pelos Números Anteriores

Os relés mais utilizados na proteção de uma SE são:

Sobrecorrente instantâneo (50): opera (em poucos ciclos) quando o valor de corrente excede certo limite;

Sobrecorrente temporizado e instantâneo (51/50): pode operar pelo elemento temporizado e instantâneo. O elemento instântaneo opera quando a corrente atinge valores muito altos;

Sobretensão (59): opera quando a tensão excede determinado limite; Subtensão (27): opera quando a tensão cai abaixo de certo valor; Diferencial de transformador, gerador e barra (87): opera por comparação de

corrente; Direcional (67): opera quando os valores de correntes e tensões se modificam

acentuadamente, um em relação ao outro; Relé de Religamento (79): opera para comandar o religamento de um disjuntor; Relé de pressão (63): opera para defeitos internos do transformador e para

baixos níveis de pressão em equipamentos encapsulados (SF6); Relé de distância (21): opera para defeitos em linhas de transmissão de alta

tensão; Relé de subfrequência (81): opera quando a freqüência cai abaixo de

determinado valor ajustado no relé; Relé de sincronismo (25): permite o fechamento do disjuntor caso as tensões

em seus pólos possuam aproximadamente o mesmo módulo, fase e freqüência.

Page 40: projeto subestação

37

Atualmente estes relés são usados em SEs antigas onde ainda não foi

necessária sua substituição. Subestações novas ou que foram automatizadas utilizam

os relés digitais.

Os primeiros trabalhos na área digital surgiram nos anos 60, quando os

computadores começaram a substituir ferramentas tradicionais na análise dos sistemas

de potência. Resolvidos os problemas de cálculo de curto-circuito, fluxo de potência e

estabilidade, as atenções voltaram-se para os relés de proteção. Mas logo ficou claro

que o desenvolvimento tecnológico dos computadores desta época ainda não podia

atender às necessidades das funções de proteção, nem era economicamente atraente. O

interesse sobre o assunto ficou então restrito à área acadêmica, onde os pesquisadores

mantiveram o desenvolvimento dos algoritmos de proteção.

Com a evolução rápida dos computadores, a sofisticada demanda dos

programas de proteção pôde ser atendida com velocidade e economia pelos atuais

microcomputadores. A tecnologia digital tem se tornado base da maioria dos sistemas

de uma subestação, atuando nas funções de medição, comunicação, proteção e

controle. Desta forma, além das funções de proteção, o relé digital pode ser

programado para desempenhar outras tarefas, como por exemplo, medir correntes e

tensões dos circuitos.

Outra importante função deste tipo de relé é o autodiagnóstico, ou auto-teste.

Esta função faz com que o relé realize uma supervisão contínua de seu hardware e

software, detectando grande parte das anormalidades que possam surgir, podendo ser

reparado antes que opere incorretamente ou deixe de fazê-lo na ocasião certa.

Os relés digitais apresentam, ainda, as seguintes vantagens:

Oscilografia e análise de seqüência de eventos: a habilidade dos sistemas de proteção em armazenar amostras de quantidades analógicas e o status de contatos em um intervalo de tempo possibilita a análise de perturbações.

Localização de defeitos: o principal benefício obtido é a redução do número de faltas permanentes, através da manutenção corretiva em pontos indicados pela reincidência de faltas transitórias, tais como as causadas por queimadas, descargas atmosféricas ou isoladores danificados.

Detecção de defeitos incipientes em transformadores: a maioria dos defeitos internos em transformadores começa com descargas parciais que podem ser detectadas através da monitoração do espectro de freqüência de TC’s ligados nestes transformadores.

Page 41: projeto subestação

38

Monitoração de disjuntores: o tempo de abertura e fechamento de um disjuntor também pode ser monitorado através dos relés usados para disparo e religamento.

Existem vários fabricantes de relés digitais, sendo alguns deles: GENERAL

ELECTRIC (GE), SIEMENS, ASEA BROWN BOVERI (ABB), ALSTON, MERLIN

GERIN e AEG.

Quanto à tecnologia os relés digitais apresentam as seguintes vantagens em

relação à convencional.

Tabela 2 – Comparação entre Relés Convencionais e Digitais

TECNOLOGIA CONVENCIONAL TECNOLOGIA DIGITAL Menor confiabilidade Maior confiabilidade Implementação individualizada Implementação integrada Não integrável Integrável Testes no campo Testes na bancada Estagnada Em evolução

3.2 Arquitetura de um relé digital:

Na Figura 24 apresentamos o diagrama de blocos de um relé digital. No relé se

aplicam sinais analógicos provenientes dos transdutores primários de corrente e

potencial (TP’s e TC’s), e sinais discretos, que refletem o estado de disjuntores, chaves

e outros relés. Estes sinais recebem um processamento nos subsistemas

correspondentes antes de sua aplicação ao microcomputador, que constitui o elemento

principal do relé. Os sinais analógicos passam adicionalmente por um conversor

analógico-digital antes de entrar na unidade central de processamento (CPU). Os sinais

discretos de saída do relé recebem processamento no subsistema de saídas discretas,

que geralmente inclui relés eletromecânicos auxiliares para provê-lo de saídas tipo

contato. O relé realiza também a função de sinalização de sua operação (bandeirolas) e

de seu estado funcional mediante dispositivos de sinalização (geralmente tipo

luminoso) visíveis no exterior. A maioria dos relés digitais dispõe também de

capacidade de comunicação com outros equipamentos digitais, mediante portas seriais

e paralelas.

Page 42: projeto subestação

39

Figura 24 – Diagrama de Blocos de um Relé Digital

3.2.1 Entradas Analógicas:

Funções do subsistema de entradas analógicas:

Condicionar os sinais de tensão e corrente, provenientes dos transdutores primários, a valores adequados para conversão analógica –digital;

Isolar eletricamente os circuitos eletrônicos do relé dos circuitos de entrada; Proteger o relé contra sobretensões transitórias; Fazer a filtragem dos sinais analógicos de entrada. Este filtro é necessário para

limitar o espectro de freqüência desses sinais a uma freqüência não maior do que a metade da freqüência de amostragem a ser utilizada no relé.

3.2.2 Entradas Discretas:

Funções do subsistema de entradas discretas:

Condicionar os sinais para sua aplicação ao processador (o que pode incluir uma fonte de alimentação auxiliar para verificar o estado dos contatos);

Prover o isolamento elétrico necessário entre as entradas e os circuitos eletrônicos, e proteger o relé contra sobretensões transitórias.

3.2.3 Interface analógico-digital:

Na interface analógico-digital se levam em conta os processos de amostragem

e conversão analógico-digital dos sinais analógicos. O relógio de amostragem gera

pulsos de curta duração e de certa freqüência, que marcam os instantes de amostragem.

Em cada um deles se faz a conversão do valor instantâneo do sinal analógico para uma

palavra digital, que será aplicada ao processador.

Page 43: projeto subestação

40

Existem diferentes formas para amostragem de sinais analógicos. Nos relés

digitais, a mais utilizada consiste em tomar amostras com espaçamentos uniformes

durante todo o ciclo do sinal (Figura 25). A freqüência de amostragem (fm=1/Δt) , é da

ordem de 240Hz a 2kHz.

Figura 25 – Amostras de Sinais Analógicos

Neste tipo de amostragem existem duas alternativas: uniforme no tempo ou no

ângulo.

Na amostragem uniforme no tempo, o intervalo de tempo (Δt) entre amostras é

constante, isto é, a freqüência de amostragem fm é constante. É também conhecida

como amostragem assíncrona. No momento, é a mais utilizada.

No caso da amostragem uniforme em ângulo, o ângulo é constante e é dado

por: θ=wo*Δt, onde wo é a freqüência angular do sinal. Este tipo de amostragem é

conhecida como síncrona, pois é sincronizada com o cruzamento do zero pelo sinal

amostrado. Se wo variar, é necessário variar o valor de Δt e, portanto o valor de fm.

Este inconveniente prático reduz a aplicação desta alternativa.

Na realidade se faz necessária mais de uma conversão em cada instante de

amostragem, pois o relé tem vários sinais analógicos de entrada. As alternativas para

resolver este problema, são:

Multiplexar os sinais de entrada e aplicá-los seqüencialmente ao conversor AD (Figura 26-a);

Amostrar cada sinal separadamente, de forma simultânea, e reter os valores das amostras para sua conversão e transmissão ao processador (Figura 26-b);

Utilizar conversores AD independentes nos distintos canais de entrada (Figura 26-c).

Page 44: projeto subestação

41

(a)

(b)

(c)

Figura 26 – Alternativas de amostragem e conversão analógico-digital de um relé digital

3.2.4 Processador digital:

O processador do relé digital é encarregado de executar os programas de

proteção, controlar diversas funções de tempo e realizar tarefas de autodiagnósticos e

de comunicação com os periféricos.

Possui as seguintes memórias:

RAM (Memória de Acesso Aleatório): é necessária como “buffer” para armazenar temporariamente os valores das amostras de entrada, para acumular resultados intermediários dos programas de proteção e para armazenar dados que serão guardados posteriormente em memória não volátil;

ROM (Memória Somente de Leitura, tipo não programável) ou PROM (Memória somente de Leitura, tipo Programável): são usadas para guardar os programas do relé. Estes programas são executados diretamente nestas memórias (excepcionalmente), ou são carregados nas memórias RAM para posterior execução;

EPROM (PROM apagável) ou EEPROM (PROM apagável eletricamente): são memórias usadas para armazenar os parâmetros de ajuste do relé e outros dados

Page 45: projeto subestação

42

importantes que não variam com grande freqüência. Uma alternativa a este tipo de memória pode ser uma RAM alimentada por bateria.

3.2.5 Portas seriais e paralelas:

Portas Seriais: permitem o intercâmbio de informações remotas, como ajustes dos parâmetros do relé à distância;

Portas Paralelas: são usadas para intercâmbio de informação em tempo real. O subsistema de saídas discretas processa a informação (palavra digital) de

uma porta paralela de saída do processador. Cada “bit” da palavra pode ser utilizado

para definir o estado de um contato de saída. Deve haver acoplamento ótico entre esta

porta e o relé auxiliar ou tiristor de saída do relé.

3.2.6 Fonte de alimentação:

O relé deve contar com uma fonte de alimentação independente, geralmente

do tipo comutável, para poder se conectar ao sistema de baterias da subestação.

3.3 Sistemas digitais integrados:

A tendência atual é a integração das funções de proteção, controle e medição

em todos os níveis de um sistema elétrico de potência.

A Figura 27 representa uma possível estrutura hierárquica com três níveis:

Figura 27 – Estrutura de um sistema digital integrado de proteção, controle e medição

Nível I: Onde estão os processadores digitais encarregados das seguintes

funções:

Proteção, controle e medição;

Page 46: projeto subestação

43

Receber informações dos equipamentos da subestação e enviar a estes os comandos de controle;

Realizar diagnósticos; Fazer a comunicação com o nível superior (Nível II).

Nível II: Corresponde ao computador da subestação, com as funções a seguir:

Retaguarda aos processadores do Nível I; Receber as informações provenientes dos processadores do nível I, processar e

armazenar dados; Realizar análises de seqüência de eventos; Desenvolver as comunicações com os níveis I e III.

Nível III: Neste nível está o computador central, de onde são originadas as

ações abaixo:

Controle de níveis do sistema; Coleta e processamento de dados; Análise de seqüência de eventos e outros; Registros oscilográficos; Elaboração de relatórios; Organização das comunicações com o nível inferior; Execução da maior parte das funções de proteção adaptativa.

A seguir serão apresentados alguns exemplos de relés digitais de alguns

fabricantes.

3.4 Exemplos de Relés Digitais:

3.4.1 Siemens:

Uma das linhas de relés digitais para SEs da Siemens é chamada de

“SIROTEC 4”. O modelo 7SA522, figura 28, é capaz de implementar as funções de

proteção de distância, de direcionalidade, de sobrecorrentes temporizada e instantânea,

de receptor de onda portadora, de bloqueio, de sobretensão, de subtensão, relé

freqüência, relé de religamento, de sincronismo, alarme, localização de falta, auto-

supervisão, medição, registro de eventos e de faltas e oscilografia. Possui entradas

analógicas para 1A ou 5A [1] e utiliza protocolos de rede PROFIBUS, Ethernet e DNP

3.0 [2].

Page 47: projeto subestação

44

Figura 28 – Relé Siemens 7SA522

3.4.2 ASEA BROWN BOVERI – ABB:

A série IED670 da ABB, figura 29, pode ser aplicada na proteção de linhas,

barras, transformadores, transformadores defasadores e grupos gerador transformador.

Tomando como exemplo o modelo RET670, constata-se que este possui as

funções de proteção diferencial, proteção diferencial de falta terra, proteção de

sobrecorrente instantânea, quatro estágios para sobrecorrente temporizada (usado para

curvas de seletividade), proteção de sobrefreqüência, proteção de subfrequência,

proteção de sobretensão, proteção de subtensão, religamento automático, verificação

de sincronismo, oscilógrafo e registros de medições e de eventos [3].

Figura 29 – Relé ABB da série IED670

Page 48: projeto subestação

45

3.4.3 General Electric:

A série L90 da General Electric (GE), figura 30, consiste de relés para

proteção de linhas de transmissão e engloba dentro de si as funções de proteção

diferencial de corrente, proteção direcional, proteção de sobrecorrente negativa,

religamento automático, verificação de sincronismo, proteção de sobretensão, proteção

de subtensão, medição integrada, relatório de eventos, oscilografia e localização de

falhas. Para comunicação estes relés usam redes com protocolos ModBus e DNP 3.0

[4].

Figura 30 – Relés da linha L90 da GE

Page 49: projeto subestação

46

4 AUTOMAÇÃO E PROJETO:

A estabilidade econômica a partir da segunda metade dos anos 90 trouxe como

conseqüência uma significativa mudança no padrão de consumo brasileiro. Para

atender à crescente demanda com uma energia elétrica de qualidade, aliada a uma

indispensável gestão empresarial com práticas de redução de custos, as

concessionárias de energia elétrica têm direcionado os seus investimentos à automação

de sistemas elétricos. Em contrapartida, a evolução tecnológica de hardware e software

tornou os sistemas de automação cada vez mais confiáveis, a preços mais acessíveis,

permitindo a utilização de tecnologia de ponta nos processos operacionais de energia

elétrica. Sintonizadas nessa nova realidade e buscando sempre a melhoria do seu nível

de competitividade, as concessionárias têm, estrategicamente, investido na

modernização de todos os seus segmentos, com prioridade para a automação das

subestações e redes de distribuição.

O relé digital, discutido anteriormente, é o principal equipamento que permitiu

a automação, uma vez que além de realizar as funções de proteção ele supervisiona as

chaves e disjuntores e ainda transmite as informações para os computadores através de

uma rede de dados. Além das funções de proteção ele pode comunicar-se com um

computador dentro da sala de comando que, por sua vez, comunica-se com uma sala

central de operação. Desta forma, a SE pode ser operada e supervisionada à distância,

não sendo necessário um operador local, o que reduz os custos de operação. O relé, em

conjunto com o computador, é capaz de operar rapidamente em situação de falta sem

que seja necessária a intervenção humana, tornando assim o sistema mais rápido e

confiável.

O projeto de uma SE pode ser dividido basicamente em quatro partes:

Projeto Civil; Projeto Eletromecânico; Projeto Elétrico; Projeto Arquitetônico.

Page 50: projeto subestação

47

O “Projeto Civil” trata da estrutura civil da casa de controle (onde se

localizam os relés, computadores e equipamentos de baixa tensão): muros, refrigeração

da sala, sistema hidráulico e demais estruturas de caráter da engenharia civil.

O “Projeto Eletromecânico” trata da elaboração dos circuitos de potência,

dimensionamento dos equipamentos elétricos (disjuntor, secionadoras, transformador,

etc.), dimensionamento da malha de terra, das estruturas de sustentação destas e

lançamento de canaletas, eletrocalhas, etc.

O “Projeto Elétrico” trata de toda parte de proteção e controle da subestação.

Esta etapa sofreu grandes mudanças com a vinda da automação. Antes, havia um

circuito de comando localizado em um painel e/ou mesa(s) de comando, e outro

circuito de proteção, cujos elementos principais eram os relés. Com a automação, estes

circuitos se tornaram um só, sendo concentrados em um único painel.

O “Projeto Arquitetônico” trata da rede lógica de comunicação dos relés

digitais entre si, com o(s) computador(es) e com a sala central de computadores. Sendo

assim, este tipo de projeto surgiu com a automação, já que antes não havia tal

integração. Atualmente, este projeto é elaborado pelos fabricantes dos relés, uma vez

que se tenha definido a quantidade destes e o método de transmissão de informação

(rede telefônica, fibra ótica, etc.). A figura 31 são representações simples de uma rede

de uma subestação e no Anexo VIII temos um exemplo de projeto arquitetônico.

Na automação das subestações e na supervisão e controle dos equipamentos

telecomandados na rede de distribuição, são implantadas diferentes soluções de

configuração do sistema, visando a um melhor aproveitamento da estrutura de

telecomunicações disponíveis nas concessionárias. As soluções de configuração

contam com equipamentos como a Unidade Terminal Remota (UTR) ou a Unidade de

Controle de Subestação (UCS). Cada configuração é montada a partir de um

equipamento ou de uma combinação entre equipamentos, de forma a atender as

necessidades do sistema de transmissão e/ou distribuição.

Page 51: projeto subestação

48

Figura 31 – Rede de comunicação simplificada

Page 52: projeto subestação

49

A UTR possui várias entradas analógicas e digitais, responsáveis pela coleta

de dados, de medição e de eventos. Da mesma forma, a UTR possui várias saídas

digitais. Essas saídas são conectadas aos circuitos de controle dos equipamentos de

manobra. A comunicação da UTR com os relés e contatos dos equipamentos no

campo, geralmente se dá por meio de cabos de cobre. Esta ligação física faz com que a

troca de informações entre equipamentos e UTR seja restrita apenas à presença ou

ausência de sinais elétricos nas interfaces de entrada e saída.

A UCS possui filosofia similar à da UTR. A diferença básica entre as duas

instalações consiste no fato da UCS interagir através de protocolo de comunicação

com os relés, o que a distingue das interligações por cabos de cobre presentes nas

configurações com UTR’s. Além das funções desenvolvidas pelas UTR’s, as

configurações com UCS’s possuem as seguintes características adicionais:

Links de fibra óptica ao invés do modo de interligação convencional por cabos

elétricos, permitindo a troca e transferência de todos os tipos de informação,

comandos, sinais digitais e analógicos, arquivos, sincronização de tempo, etc.;

Substancial simplificação de projetos elétricos, instalação, cabeamento e testes;

Instalação totalmente modular, o que garante uma maior confiabilidade, pois

apesar de integradas, as funções de controle e proteção funcionam de maneira

independente uma da outra;

Utilização de protocolo de comunicação entre os elementos do sistema, relés e a

unidade de controle de subestações, possibilitando um maior número de

informações subsidiando um controle operativo e análise de ocorrências muito

mais eficientes;

Funções de proteção com oscilografia e registro de eventos, localizadores de

falta e monitorização da qualidade de energia, que podem ser integradas a cada

módulo de controle, sem a necessidade dos sistemas tradicionais como

proteções de retaguarda ou sistemas de controle para essas funções;

Alteração remota de configuração e ajustes das unidades de proteção.

Page 53: projeto subestação

50

Os relés se comunicam com os computadores, chamados de IHM (Interface

Homem Máquina). Estes IHM’s são utilizados para controle local da SE. Pode ainda

ser usado outro para enviar informações para o Centro de Análise de Proteção (CAP).

Em casos onde a SE possui medição para faturamento há também comunicação com o

Centro de Análise de Qualidade de Energia (CAQ). Para que os equipamentos

possuam relógios exatamente iguais, a rede faz uso de um GPS, ou mais se for

necessário, para sincronismo de tempo dos relés e demais equipamentos da rede.

Pode haver ainda um sinal que venha do CAP e vá direto para os relés para

permitir a parametrização do relé à distância.

Page 54: projeto subestação

51

5 PROJETO ELÉTRICO DE UMA SE:

A partir daqui serão analisadas as etapas do projeto elétrico de uma subestação

e os documentos que o compõem, utilizando um exemplo de caso como estudo.

Para o projeto elétrico de uma SE, partimos de algumas informações já

definidas no projeto eletromecânico ou pelo cliente contratante do projeto. Fazem

parte destas informações o Diagrama Unifilar da SE (parte de potência), definição das

proteções que atuarão em cada “bay” e especificação dos equipamentos principais, tais

como, disjuntores, secionadoras, transformadores, religadores, reguladores, etc. Em

alguns casos, o cliente define também qual o modelo de relé digital, contator, cabo e

equipamentos internos ao painel utilizado, considerando seus padrões próprios ou

outros modelos já existentes em outras SEs de sua propriedade. Não havendo porém,

esta definição prévia, a escolha destes fica a cargo do projetista. Deve-se observar que,

apesar do Diagrama Unifilar e das proteções já estarem previamente definidas, o

projetista tem liberdade de fazer modificações conforme observe a necessidade durante

a realização do projeto.

Nos casos em que o projetista deve definir qual relé digital será utilizado,

deve-se observar alguns pontos no seu dimensionamento:

Funções de Proteção: o relé deve ser capaz de realizar todas as funções de

proteção planejadas;

Entradas Analógicas: o relé deve possuir entradas analógicas de tensão e

corrente em quantidade suficiente para receber todos os sinais necessários e

com o mesmo valor nominal do secundário dos TP’s e TC’s. Por exemplo,

podem haver TC’s com valor nominal do secundário de 1A ou 5A. O relé deve

possuir entradas analógicas de corrente no valor nominal de 1A ou 5A;

Quantidade de entradas e saídas digitais: o relé deve possuir entradas e saídas

digitais suficientes para receber todos os sinais e operar todos os equipamentos

do campo;

Alimentação: a alimentação de um relé digital é feita em corrente contínua, e

deve ser do mesmo valor nominal da alimentação do painel, geralmente 125V;

Page 55: projeto subestação

52

Fabricante: é essencial que se use em um projeto relés do mesmo fabricante

para que não haja problemas de comunicação entre eles. Deve ser observado se

a concessionária possui algum padrão na escolha do fabricante de seus relés.

Esta é uma prática comum, pois a central de operação comunica-se com várias

SEs e, com o uso de relés do mesmo fabricante, facilita-se a comunicação entre

os equipamentos. Outro motivo para se adotar sempre o mesmo fabricante é que

isso reduz o custo de treinamento do pessoal da operação, que só precisa

conhecer como comandar os relés de um único fabricante e não de vários.

Para o exemplo de caso os relés escolhidos são os modelos 7SA6115,

7SA6325, 7SJ6475, 7UT6135 e 7UT6335 da Siemens com tensão de alimentação de

125Vcc. As características destes relés que determinaram suas escolhas estão descritos

na tabela 3: Tabela 3 – Características principais dos relés utilizados no exemplo de caso

Relé Funções Entradas de Tensão

Entradas de

Corrente

Entradas Digitais

Saídas Digitais

7SA6115 4 de 115V 4 de 5A 20 12

7SA6325 21, 25, 27, 50, 51, 59, 67, 77,

79, 81, 85 e 87 4 de 115V 4 de 5A 29 32

7SJ6475 14, 21, 25, 27, 37, 38, 46, 47, 48, 49, 50, 51, 59, 64, 66, 67,

79, 81 e 87 4 de 115V 4 de 5A 48 29

7UT6135 0 de 115V 8 de 5A 5 8

7UT6335 50, 51 e 87

4 de 115V 12 de 5A 21 24

Os principais documentos que compõem um Projeto Elétrico de uma SE são:

• Diagrama Unifilar (parte da proteção, que pode ser alterada pela necessidade); • Diagrama Trifilar; • Diagrama Funcional; • Diagrama de Fiação; • Diagrama de Interligação; • Lista de Cabos; • Diagramas Lógicos; • Desenhos Construtivos dos Painéis;

Page 56: projeto subestação

53

Em muitos casos, o Diagrama Trifilar e o Diagrama Funcional são reunidos

em um único documento chamado de Diagrama Esquemático.

A seguir serão apresentados os documentos que compõe o projeto de uma SE.

5.1 Diagrama Unifilar:

No Diagrama Unifilar, ou simplesmente Unifilar, tem-se as informações

básicas da parte de potência e da proteção da subestação. Conforme dito

anteriormente, a parte de potência já é definida previamente no projeto

eletromecânico. Muitas vezes, o cliente já sugere a parte de proteção na qual o

projetista pode se basear e modificar, caso seja necessário.

O Diagrama Unifilar do exemplo de caso deste trabalho é apresentado no

Anexo I. A partir das informações nele contidas, pode-se verificar que a SE em estudo

possui duas entradas de 138kV e previsão para uma terceira entrada conforme

mostrado na figura 32. As estradas são ligadas a um barramento duplo, através de uma

ligação a quatro chaves conforme mostrado na figura 33. Neste barramento é ligado o

primário de dois transformadores de três enrolamentos, dos quais apenas dois estão

sendo utilizados, o enrolamento de 138kV e o de 69kV, conforme figura 34. Estes

transformadores possuem ligação estrela aterrada nos dois enrolamentos utilizados. Os

secundários dos transformadores são ligados a dois barramentos em configuração de

“Barra Principal e de Transferência”, das quais saem quatro linhas alimentadoras

através de uma configuração a três chaves, figura 35. Estas informações serão

necessárias para o projeto elétrico no momento de criar os diagramas lógicos e os

intertravamentos elétricos.

Figura 32 – Entradas de 138kV

Page 57: projeto subestação

54

Figura 33 – Ligação a quatro chaves

Figura 34 – Ligação dos Transformadores

Page 58: projeto subestação

55

Figura 35 – Ligação à barra de 69kV ao transformador e às linhas alimentadoras

Da parte de proteção vemos que cada entrada possui um painel de proteção,

sendo eles chamados de P1 e P2, conforme a figura 36 Cada painel possui três relés

digitais. Além dos comando de manobra, estes relés têm as seguintes finalidades:

• 1L1MF1 e 2L1MF1: Fazem a função de proteção principal, que é aquela que atuará caso alguma de suas proteções sejam sensibilizadas. Estes relés terão ativas as funções de proteção 21P, 21N, 67, 67N, 50, 51, 50N, 51N, 85, 77, 79 e 25, além de funcionar como oscilógrafo e registrador de eventos.

• 1L1MF2 e 2L1MF2: Fazem a proteção de retaguarda. Estes têm as mesmas funções de proteção dos anteriores, mas só atuarão no caso de falha da proteção principal. A utilização de proteção principal e de retaguarda foi escolhida por se tratar de um setor de grande importância para o sistema e assim poder minimizar os danos no caso de haver falha na proteção principal.

• 1L1MF3 e 2L1MF3: Estes têm o objetivo de realizar as medições da linha como tensão, freqüência, e energia (kWh e VArh), e coordenar os demais relés de seus painéis.

Page 59: projeto subestação

56

Figura 36 – Painel de proteção da Entrada 1

Já os transformadores, possuem um painel cada, P3 e P4, figura 37 Cada

painel possui dois relés sendo responsáveis pela proteção de sobrecorrente (50 e 51) e

proteção diferencial (87), sendo que um deles também faz a função de conferência de

sincronismo (25), além de fazerem as funções de manobra nas chaves dos

transformadores T1 e T2.

Figura 37 – Painel de proteção do Transformador T1

Page 60: projeto subestação

57

No caso das linhas de saída, temos um painel para cada duas linhas sendo eles

P5 e P6. Cada painel possui dois relés, um para cada uma das linhas A figura 38

mostra o detalhe do painel P5 das Saídas 1 e 2. As proteções usadas aqui são as

mesmas das entradas.

Figura 38 – Painel de proteção das Saídas 1 e 2

Cada barramento (138kV e 69 kV) possui um painel (PB138kV e PB69kV)

com um relé cada, fazendo a proteção das barras. As proteções utilizadas para as

barras são de sobrecorrente (50 e 51) e diferencial (87).

Vale observar que as regras para a criar o código de identificação de cada

equipamento varia de concessionária para concessionária, pois cada uma possui suas

próprias regras.

As informações obtidas através do Diagrama Unifilar servirão de base para a

elaboração dos passos seguintes.

Page 61: projeto subestação

58

5.2 Diagrama Trifilar:

O Diagrama Trifilar, ou simplesmente Trifilar, demonstra o circuito de

potência do projeto (linhas, barras, TP’s, TC’s, transformadores, etc.) e a parte de

potência de qualquer outro equipamento existente na subestação. A diferença entre o

Unifilar e o Trifilar, é que o último traz um detalhamento por fase e uma quantidade

maior de detalhes que no primeiro.

Como dito anteriormente, é muito comum unir o Diagrama Trifilar com o

Funcional e chamá-los de Diagrama Esquemático (ou apenas Esquemático). O

Diagrama Esquemático do exemplo de caso, apresentado no Anexo II, refere-se ao

painel P1 e à Entrada 1. Os demais painéis não são apresentados, pois são semelhantes,

não sendo necessário analisar um por um. O Esquemático é dividido em cadernos, um

para cada painel, os quais são chamados de:

DE-001: Para o painel P1 e Entrada 1;

DE-002: Para o painel P2 e Entrada 2;

DE-003: Para o painel P3 e Transformador T1;

DE-004: Para o painel P4 e Transformador T2;

DE-005: Para o painel P5 e Saídas 01 e 02;

DE-006: Para o painel P6 e Saídas 03 e 04;

DE-007: Para o painel PB138kV e Barramento de 138kV;

DE-008: Para o painel PB69kV e Barramento de 69kV.

O Trifilar em estudo começa na folha quatro do caderno do Esquemático

(folha 80 do Anexo II) onde se encontram as barras, chaves secionadoras, o TC e a

caixa de ligação de TC da Entrada 1. Pode-se ver, como no Unifilar, que o TC possui

quatro enrolamentos, e que o de maior classe de precisão chega a uma caixa de junção

separada. Isto ocorre porque este enrolamento seria para medição de faturamento, que

não será usado neste exemplo, mas fica previsto para futura utilização (ver figura 39),

e a norma brasileira exige que assim o seja [5]. Depois da caixa partem os cabos que

vão para os relés digitais. Em proteção todos os circuitos que partem de TC’s são

chamados de circuitos de corrente. Note-se que é necessário identificar os bornes de

Page 62: projeto subestação

59

ligação dos equipamentos e esta informação é obtida no manual do equipamento. Isto

será necessário em todas as folhas do Diagrama Esquemático.

Figura 39 – Detalhe da caixa de junção 1L1CXTC1 do TC de medição

Na folha cinco do caderno do Esquemático (folha 81 do Anexo II), vê-se a

chegada da linha, com a representação dos pára-raios, TP e suas caixas de ligação. O

TP possui três enrolamentos e os contatos do enrolamento de maior precisão chegam a

uma caixa de junção separada pelo mesmo motivo que o do TC. Em proteção todos os

circuitos que partem de TP’s são chamados de circuitos de tensão. Há também na

caixa de junção, contatos das chaves Q1, Q2 e Q3 que serão utilizados no Diagrama

Unifilar para indicar que o circuito do TP foi desligado (ver figura 40).

Page 63: projeto subestação

60

Figura 40 – Detalhe da caixa de junção do TP

A folha seis do caderno do Esquemático (folha 82 do Anexo II), já começa a

demonstrar a chegada no painel. Observe que nenhum circuito entra ou sai do painel

sem passar por um borne. Estes bornes são como os da figura 41, cada ponto elétrico

possui dois contatos, um em cada lado, sendo que em cada um destes contatos só pode

haver no máximo dois cabos a fim de diminuir os riscos de mau contato.

Figura 41 – Borne Conector modelo OTTA-6

Ainda com relação aos bornes, pode-se ver que alguns são chamados de XA e

outros de XB, seguido do seu número. Os bornes XA são aqueles pertencentes aos

circuitos de corrente e os XB, aos de tensão. Vale observar que esta é uma regra válida

apenas para este projeto em estudo, pois a nomenclatura pode variar de acordo com o

projetista ou o padrão da empresa dona do projeto. Em alguns casos, é possível até que

Page 64: projeto subestação

61

não haja diferença de nomenclatura entre os bornes destes dois tipos de circuito

(tensão e corrente).

Ainda na folha seis do caderno do Esquemático há dois circuitos de tensão que

chegam dos TP’s das barras, que vêm do desenho DE-007, e após passar pelos bornes,

chegam a um relé auxiliar com o código de 43TPX, que tem função de realizar a

transferência de potencial. Em situação normal, as duas barras são energizadas com o

mesmo potencial, já que são interligadas pelo disjuntor AC1K4, e o relé recebe sinal

do TP da Barra 1, mas em uma situação atípica pode ser necessário retirar a Barra 1 de

funcionamento e operar apenas com a Barra 2. Neste caso é necessário que o relé

receba sinal do TP da Barra 2. O relé 43TPX faz essa função e sua ativação será vista

no Diagrama Funcional.

Tanto os circuitos de corrente como os de tensão passam por chaves antes de

irem para os relés digitais do painel. Estas chaves, que receberam o código de 1L1CT1

e 1L1CT2 na folha seis do caderno do Esquemático, são chamadas de Chave de Teste

ou Chave de Aferição (figuras 42 e 43), e, quando operadas manualmente, abrem os

contatos dos circuitos de tensão e curto-circuitam os contatos dos circuitos de corrente.

Elas são usadas em situações em que se necessite realizar algum tipo de interrupção no

circuito dentro do painel, evitando o risco de se abrirem os circuitos de corrente ou

curto-circuitar acidentalmente os circuitos de tensão.

Figura 42 – Chave Teste

Page 65: projeto subestação

62

Figura 43 – Esquemático de uma Chave Teste

Depois de passar pelas Chaves de Teste, os circuitos de tensão e de corrente

chegam ao relé digital 1L1MF1. Os relés digitais devem ser definidos nesta etapa, ou

anteriormente, para que seus contatos de tensão e corrente sejam aqui representados. A

escolha do relé deve levar em conta se o mesmo é capaz de realizar todas as funções

desejadas, se possui entradas de tensão e corrente suficientes, bem como a quantidade

de entradas e saídas digitais. Com relação a este último item, devem-se deixar sempre

alguns contatos livres como reserva pensando numa possível ampliação ou acréscimos

feitos por parte do contratante. No painel P1 do exemplo de caso, foram escolhidos os

relés da SIEMENS modelo 7SA6115, demonstrado na figura 44, para função de

proteção principal e retaguarda (1L1MF1 e 1L1MF2) e o modelo 7SJ6475,

demonstrado na figura 45, para a função de medição e controle.

Page 66: projeto subestação

63

Figura 44 – Relé 7SA6115

Figura 45 – Relé 7SA6475

Na folha sete do caderno do Esquemático (folha 83 do Anexo II),

apresentamos o mesmo procedimento descrito anteriormente aplicado ao relé

1L1MF2. O sinal do TP da barra já vem do 43TPX não sendo necessário representá-lo

novamente. Este relé também deverá receber sinais do mesmo TP e do TC da entrada,

Page 67: projeto subestação

64

porém de enrolamentos diferentes, pois, como foi dito anteriormente, ele opera como

proteção de retaguarda para o caso do relé principal falhar.

Na folha oito do caderno do Esquemático (folha 84 do Anexo II), no exemplo

de caso de estudo, temos a chegada dos sinais de tensão e de corrente do relé 1L1MF3,

que são os mesmos que chegam ao relé 1L1MF1, só que sem o sinal de tensão da

barra, uma vez que a função do relé 1l1MF3 é apenas de medição e operação do

sistema que o painel engloba.

5.3 Diagrama Funcional:

O Diagrama Funcional, ou simplesmente Funcional, é o principal desenho do

projeto elétrico. Nele, demonstramos toda lógica dos contatos e os intertravamentos

elétricos. Para a sua elaboração, necessita-se dos desenhos do fabricante dos

equipamentos envolvidos.

No Funcional, temos basicamente três tipos de circuitos que entram e saem do

painel, o de alimentação ou de força, os de controle e os de comando. Os circuitos de

alimentação são aqueles que levam alimentação para o painel, seja ela CA ou CC, e

que, no exemplo de caso, passam pelos bornes chamados de XE. Os circuitos de

comando são aqueles que saem do painel para agir sobre o sistema, e que, no exemplo

de caso, passam pelos bornes XC. Já os circuitos de controle são aqueles que chegam

ao painel trazendo informações do campo ou de outros painéis e, passam pelos bornes

XD.

No exemplo de caso, o funcional começa na folha dez do caderno do

Esquemático (folha 85 do Anexo II). Nesta folha e na seguinte temos a chegada da

alimentação CC ao painel P1, vinda do painel chamado de QDCC. Após passar pelos

bornes as alimentações seguem diretamente para os disjuntores de onde sairão para

suas respectivas cargas, similar ao que acontece em instalações elétricas de

residências, prédios e indústrias. Note que há dois circuitos trazendo alimentação para

o painel, um para alimentar os circuitos principais e outro para os circuitos de

emergência.

Page 68: projeto subestação

65

Na folha 12 do caderno do Esquemático (folha 87 do Anexo II), temos uma

representação das saídas digitais do relé 1L1MF1, contatos através dos quais este age

sobre o sistema, e o endereçamento da folha onde estes contatos estão sendo usados.

Esta representação não é obrigatória, mas pode ajudar em uma análise posterior do

documento e, ainda, auxiliar o projetista, para que não se engane e utilize o mesmo

contato em mais de um circuito. Observe que, a partir da folha mencionada, tem-se

uma barra com a função do circuito abaixo dela. Por exemplo, pode-se ver que a chave

BO1, figura 46, está sendo utilizada para TRIP (desligamento) por proteção.

Figura 46 – Saídas Digitais BO1, BO2 e BO3

Nas folhas treze e quatorze do caderno do Esquemático (folhas 88 e 89 do

Anexo II), temos a alimentação do relé nos contatos F1 e F2 e a representação das

entradas digitais do relé 1L1MF1, contatos através dos quais este recebe a informação

externa, e os circuitos que nelas sinalizam. Nas entradas BI1, BI2, BI3 e BI4, o relé

recebe a sinalização referente ao disjuntor 1L1K4, se está aberto, fechado, se é

permitido o religamento, e o comando para o fechamento. As entradas BI5 e BI6

recebem o estado atual da proteção, se normal ou transferida (situação em que o

disjuntor AC1K4 substitui o 1L1K4 por defeito ou manutenção neste e etc.). A entrada

BI7 é deixada como reserva para utilização futura assim como a BI20. A entrada BI8

recebe o sinal de Q2 que está na caixa de junção, para informar que o disjuntor do

Page 69: projeto subestação

66

secundário do TP está desligado, como foi referido no item do Diagrama Trifilar. As

entradas BI9 a BI14 recebem a informação da situação das secionadoras 1L1K1,

1L1K2 e 1L1K6, se abertas ou fechadas. A entrada BI15 recebe um sinal do relé

1L1MF2 de bloqueio de religamento. As entradas BI16 a BI19 recebem informação do

painel de proteção das barras, PB138kV, do estado do disjuntor AC1K4 e de falha

deste disjuntor.

Na folha quinze do caderno do Esquemático (folha 90 do Anexo II), temos a

bobina de acionamento dos relés auxiliares da proteção principal, 94PX1 e 94PX2, que

podem ser acionadas pelo relé digital, por motivo de proteção ou falha no disjuntor.

Nesta folha também encontramos uma bobina de relé ligada diretamente à

alimentação. Este relé, 27CC4, tem a função de sinalizar quando há falta de

alimentação neste circuito e deve ficar sempre no final deste. Toda alimentação terá no

final de seu circuito um relé 27CC.

Da folha 17 a 20 do caderno do Esquemático (folhas 91 a 94 do Anexo II), se

repete para o relé 1L1MF2 o que foi feito para o relé 1L1MF1, uma vez que ambos

realizam a mesma função, sendo um o principal e outro, o de retaguarda.

Nas folhas 22 e 23 do caderno do Esquemático (folhas 95 e 96 do Anexo II),

temos as saídas do relé 1L1MF3. Este relé, como foi dito anteriormente, tem a função

de realizar a medição e coordenar os outros relés do painel P1. Por este motivo, possui

mais entradas e saídas digitais que os anteriores.

Nas folhas 24 a 27 do caderno do Esquemático (folha 97 a 100 do Anexo II),

encontramos as entradas digitais do relé 1L1MF3. Este relé recebe nas suas entradas

BI1 a BI6 os sinais vindos diretamente do disjuntor 1L1K4, que indicam: disjuntor

aberto, fechado, perda de SF6, bloqueio por falta de SF6, mola descarregada e posição

da chave local como “local” ou “remota”. As entradas BI8 a BI11 recebem o sinal

referente à supervisão das bobinas de abertura do disjuntor, feita pelos relés SB1 e

SB2, e o sinal de supervisão de alimentação nestes circuitos. Nas entradas BI13 a BI

22, temos a sinalização do estado das secionadoras 1L1K1, 1L1K2, 1L1K5, 1L1K6 e

1L1K7 (abertas ou fechadas). Nas entradas BI25 a BI38, temos as mesmas

sinalizações do disjuntor 1L1K4 e das secionadoras só que referente ao disjuntor

Page 70: projeto subestação

67

AC1K4 e as secionadoras AC1K1 e AC1K2. Estes sinais vêm do painel PB138kV,

que é o painel responsável pela proteção destes equipamentos. Depois, nas entradas

BI39 e BI40 temos uma sinalização da proteção como normal ou transferida, mas

apenas para verificação, uma vez que este mesmo relé é que gera o sinal. Por fim, nas

entradas BI46 a BI48 temos uma sinalização de falha nos relés da outra linha de

entrada. O relés digitais possuem contatos especiais, que neste caso são chamados de

LSC, que ficam abertos enquanto o relé está funcionando. Se ele pára de funcionar por

algum motivo, este contato fecha sinalizando defeito.

É interessante observar que os contatos de sinalização das secionadoras e do

disjuntor são classificados como tipo ‘a’ ou ‘b’, e não ‘NA’ ou ‘NF’, como no caso de

contatores. Nos contatores seus contatos são classificados com normalmente abertos

ou fechados conforme o estado que tomam quando sua bobina não está energizada,

mas isto não ocorre com as secionadoras e com os disjuntores, quando estes

equipamentos são desenergizados eles mantêm seu último estado. Dessa forma, a

classificação adotada é de: contatos do tipo ‘a’, que são aqueles que estão abertos

quando os contatos principais estão abertos e fechados quando os contatos principais

estão fechados; e contatos do tipo ‘b’, que são aqueles que estão abertos quando os

contatos principais estão fechados e fechados quando os contatos principais estão

abertos.

Nas folhas 28 a 30 do caderno do Esquemático (folha 101 a 103 do Anexo II),

temos os relés auxiliares, cuja função é multiplicar os contatos de sinalização ou de

operação, de modo a não sobrecarregar um único contato do relé ou do equipamento,

ou ter que se utilizar mais de um contato para a mesma função. Na folha 28 do caderno

Esquemático temos o relé auxiliar 25X que pode ser acionado pelo relé principal ou

pelo relé de retaguarda para sinalizar sincronismo. O relé auxiliar 79AC1K4 que só

opera na situação de proteção transferida, transmitindo o sinal de religamento do

disjuntor AC1K4. O relé auxiliar 1L1K4AX que opera a abertura do disjuntor

principal por comando do relé 1L1MF3. O relé auxiliar 1L1K4FX que opera o

fechamento do disjuntor principal por comando do relé 1L1MF1 ou do relé 1L1MF2

caso a proteção esteja em normal, ou ainda pelo relé 1L1MF3 se o sincronismo

Page 71: projeto subestação

68

permitir. O relé auxiliar 1L1K4FX2 que é utilizado para sinalizar para os demais relés

que o relé 1L1MF3 está emitindo comando de fechamento do disjuntor. Encontramos

aqui também a bobina do relé 43TPX comentado no item de Diagrama Trifilar.

Nas folhas 29 do caderno do Esquemático (folha 102 do Anexo II),

encontramos o acionamento dos relés 43X1 e 43X2 que auxiliam no chaveamento de

situação da proteção (normal ou transferida), dos relés auxiliares para multiplicar os

contatos de sinalização de aberto ou fechado do disjuntor 1L1K4 e das secionadoras

(1L1K1, 1L1K2 e 1L1K6) e do relé auxiliar 68X que multiplica os contatos deste

disjuntor que sinaliza sua permissão para religamento.

Nas folhas 31, 32 e 33 do caderno do Esquemático (folha 104,105 e 106 do

Anexo II), vemos o acionamento do disjuntor 1L1K4. Na folha 31 do caderno do

Esquemático temos o sinal para fechamento deste disjuntor, que é feito pelos contatos

do relé auxiliar 1L1K4FX com a permissão do painel de proteção das barras que

poderá impedir o fechamento do disjuntor através dos contatos do relé auxiliar 86B.

Vemos também a ligação em série dos contatos ‘b’ das secionadoras 1L1K1, 1L1K2 e

1L1K5. Analisando o desenho de fabricante do disjuntor vemos que quando as três

secionadoras estiverem abertas elas acionarão o dispositivo anti-bombeamento do

equipamento, que impede que o disjuntor seja fechado enquanto o dispositivo estiver

acionado. Nas duas folhas seguintes temos os circuitos de “Abertura 1” e de “Abertura

2. Os disjuntores de potência possuem duas bobinas de abertura, por questões de

segurança, denominadas de “Abertura 1” e “Abertura 2”. As bobinas de abertura

podem ser acionada por sinal remoto, contatos do relé auxiliar 1L1K4AX, ou pelas

proteções principal ou de retaguarda quando, operando em proteção normal.

Nas folhas 34 a 37 do caderno do Esquemático (folha 107 a 110 do Anexo II),

temos o comando das quatro secionadoras feito diretamente pelo relé 1L1MF3.

Na folha 38 do caderno do Esquemático (folha 111 do Anexo II), temos os

arranjos responsáveis pela sinalização em outros painéis e o endereçamento das

páginas e cadernos onde são utilizados. Esta folha, assim como a de saídas digitais do

relé, não é essencial no projeto, mas auxilia na localização e análise posterior do

projeto.

Page 72: projeto subestação

69

Na folha 41 do caderno do Esquemático (folha 112 do Anexo II), tem-se o

circuito CA de iluminação e aquecimento do painel, acionados pelas chaves fim de

curso (iluminação) e pelo termostato (aquecimento), e a tomada para usos gerais.

5.4 Desenhos Construtivos:

Os Desenhos Construtivos, apresentados no Anexo III, são aqueles que

mostram a disposição dos equipamentos dentro do painel. São relativamente simples

de serem montados uma vez que o fabricante do painel fornece todos os seus desenhos

e vistas (como por exemplo o desenho que aparece na figura 47), sendo necessário ao

projetista apenas listar os equipamentos que aparecem nos Diagramas Trifilar e

Funcional, escolher um painel que os comporte, distribuí-los e discriminar a lista de

material. É óbvio que se devem seguir critérios para distribuição destes equipamentos.

Figura 47 – Vista superior de um painel

Page 73: projeto subestação

70

No exemplo de caso, a distribuição nos painéis foi feita da seguinte forma:

No painel móvel os relés digitais e as chaves teste;

Na chapa posterior ao painel móvel, foram colocados os relés biestáveis na

parte superior

Logo abaixo dos relés biestáveis foram colocados os disjuntores e os demais

relés auxiliares.

Na parte de trás do painel foram colocadas as réguas de bornes.

O Desenho Construtivo é utilizado para montagem do painel e criação do

diagrama de fiação permitindo que se escolha o melhor traçado.

5.5 Diagramas de Fiação e de Interligação:

Os Diagramas de Fiação e Interligação são documentos gerados apenas para

facilitar a montagem da SE, uma vez que quem faz a montagem não tem tempo para

analisar e entender o projeto, sendo sua elaboração relativamente simples.

O Diagrama de Fiação é apresentado no Anexo IV e mostra todas as ligações

internas ao painel. O Anexo V, por sua vez, apresenta o Diagrama de Interligação,

mostrando as ligações entre um painel e outro painel, cubículo, caixa de ligação ou

equipamento na área.

Existem várias formas de representar o Diagrama de Fiação, mas o mais

comum é na forma de tabela, onde as duas primeiras colunas são do equipamento e

seus terminais e as seguintes indicam a qual(is) terminal(is) está ligado. No caso de um

mesmo ponto elétrico que se liga a vários equipamentos, deve-se fazer uma ordem de

ligação que deixe o painel mais organizado e que tente economizar cabo,

interconectando os equipamentos mais próximos, lembrando que as bobinas dos relés

de supervisão de tensão devem ficar no final do circuito elétrico para sinalizar

qualquer falta de alimentação neste.

Para a montagem do Diagrama de Interligação, levanta-se todos os cabos e

depois se agrupa os que ligarem os mesmos equipamentos e tiverem a mesma função

(corrente, tensão, controle, comando, alimentação). O agrupamento pode ser em cabos

de 2, 3, 4 ou mais veias (cabos que compões o cabo principal), mas geralmente se

Page 74: projeto subestação

71

padroniza dois, três ou quatro tipos de cabos para evitar a necessidade de comprar

pedaços de cabos diferentes e facilitar a compra. É comum em alguns cabos deixar

algumas veias reservas para uso futuro.

5.6 Lista de Cabos:

A Lista de Cabos é apresentada no Anexo VI e é um documento gerado a

partir da Interligação. Neste documento listam-se todos os cabos que aparecem na

interligação bem como seus pontos de origem e destino, função, suas metragens e seus

tipos. Estas informações podem variar de projeto para projeto dependendo do padrão

do cliente.

A Lista de Cabos é utilizada para compra de cabos, mas principalmente para o

lançamento destes. Na montagem da SE o técnico utiliza esta lista junto com a rota

criada no projeto eletromecânico para fazer o lançamento. A própria rota de cabos é

criada com base neste documento, apesar do projetista experiente já ter uma idéia de

quais serão as principais rotas.

5.7 Diagramas Lógicos:

Os relés digitais podem realizar operações conforme a programação que

recebam. Os Diagramas Lógicos são a forma de reapresentar esta programação,

fazendo uso de lógica digital que utiliza as informações das entradas, variáveis

internas criadas pelo programador e comandos vindos do IHM para operar

equipamentos ou bloquear a operação quando a situação não permitir. No Anexo VII

encontra-se um exemplo deste diagrama para abertura de um disjuntor.

A representação é feita com o uso de portas lógicas digitais (E, OU, NÃO,

XOU, etc.) e algumas funções especiais. Entre estas funções especiais está o “bloco de

atraso de tempo”, representado na figura 48. Este bloco indica que quando sua entrada

muda para nível lógico “1” a saída só muda após algum tempo que é indicado na parte

superior do bloco, e quando a entrada muda para nível lógico “0” a saída muda

instantaneamente. Ele é utilizado para se evitar falsas sinalizações de defeito ou erro

durante algumas operações onde se esperam que elas possam ocorrer. Por exemplo, em

Page 75: projeto subestação

72

uma chave é utilizado um contato do tipo “a” para sinalizar que a chave está aberta e

um contato do tio “b” para sinalizar que ela está fechada. Caso as duas chaves enviem

um sinal com mesmo nível lógico ocorre o que é chamado de “Discordância de

Posição” ou “Posição Indefinida”, ou seja, há indicação de que a chave está fechada e

aberta ao mesmo tempo ou que não está nem fechada nem aberta. A primeira situação

pode ocorrer por falha nos contatos de sinalização, enquanto a segunda pode ocorrer

por falha nos contatos ou porque a chave não abriu completamente. De qualquer

modo, é um defeito que deve ser sinalizado, mas quando a chave está abrindo ou

fechando existe um momento em que os dois tipos de contato estão abertos. Esta

situação transitória irá se repetir todas as vezes que uma chave for operada, mas não é

um defeito. Nesta situação é usado o bloco de atraso de tempo com um intervalo de

tempo igual ao tempo de abertura da chave mais um intervalo de segurança para se ter

certeza que não haverá nenhuma sinalização de defeito neste momento.

Figura 48 – Bloco de Atraso de Tempo

A figura 49 mostra a aplicação deste bloco em um como o que acabou de ser

descrito, mas para o disjuntor 1L1K4. Esta imagem pode ser mais bem visualizada no

Anexo VII. Quando as sinalizações de aberto e fechado possuírem níveis lógicos

diferentes a porta XOU sinaliza que o disjuntor está em operação normal. Se o

disjuntor está em operação normal E está sendo sinalizado disjuntor aberto então

sinaliza disjuntor aberto. O mesmo ocorre para o disjuntor fechado. Caso as

sinalizações de aberto e fechado sejam iguais a sinalização de disjuntor em operação

normal vai para “0”. Este sinal é invertido pela porta NÃO e se permanecer por algum

tempo, que neste caso é 1 segundo, então é sinalizado posição indefinido.

Page 76: projeto subestação

73

Figura 49 – Exempo de aplicação do Bloco de Atraso de Tempo

Page 77: projeto subestação

74

Outro bloco utilizado é o “Set-Reset”, representado na figura 50. Este bloco é

similar ao flip-flop tipo SR e auxilia a elaboração da lógica em alguns casos,

permitindo que ela seja minimizada. Quando recebe nível lógico “1” no pino Set então

a saída vai para “1”, quando o Reset recebe “1” a saída vai para “0”. Quando as duas

entradas estão em zero, a saída permanece no nível lógico que estava e quando as duas

entradas estão em “1” então a prioridade é para o Reset (Saída em “0”).

Figura 50 – Bloco Set-Reset

Um exemplo de aplicação do bloco Set-Reset é visto na figura 48 que também

está no Anexo VII. Todos os comandos e sinalizações referem-se ao disjuntor 1L1K4.

A lógica pode ser colocada da seguinte forma: [(se o IHM ordenar o fechamento do

disjuntor E a chave do relé 1L1MF3 não estiver em operação local) OU (se a chave do

relé 1L1MF3 estiver em operação local e houver um comando manual para

fechamento)] E (a chave do disjuntor não estiver em local E o disjuntor não estiver

com algum sinal de falha acionado E a Secionadora 1L1K7 estiver aberta –

secionadora de aterramento da linha) então o bloco é setado e a ordem do disjuntor

fechar é dada. Se o disjuntor estiver fechado OU houver falha no comando do

disjuntor 1L1K4 OU o inverso de (a chave do disjuntor não estiverem local E o

disjuntor não estiver com algum sinal de falha acionado E a Secionadora 1L1K7

estiver aberta) o bloco é resetado e sai o comando de fechamento. A ordem de

fechamento é dada com um pulso de tensão e possível observar que se é dado o

comando de fechamento do disjuntor nos terminais do relé ele permanece até que o

disjuntor abra, sendo assim o comando de fechamento será apenas um pulso de tensão.

O comando de abertura é idêntico ao comando de fechamento. O sinal de falha do

Page 78: projeto subestação

75

comando gerado caso o comando de abertura ou o de fechamento fique acionado por

algum tempo.

Figura 51 – Exemplo de aplicação do Bloco Set-Reset

Page 79: projeto subestação

76

6 CONCLUSÕES:

Neste trabalho, foi apresentado um estudo breve sobre subestações, seus

principais equipamentos e arranjos de barramento comumente utilizados. Também foi

apresentado um resumo sobre proteção de uma SE e sobre o relé digital que, desde que

alcançou um nível maior de confiabilidade e de viabilidade econômica, tornou-se peça

chave na automação de subestações por permitir a unificação da proteção, comando e

medição, bem como a comunicação com um computador através de um protocolo de

rede. Foram definidas as partes que compõem o projeto de uma SE automatizada,

dentre as quais, destaca-se o Projeto Elétrico (objeto de estudo deste projeto), bem

como os documentos que o compõem. A fim de facilitar a sua compreensão, foi

realizado o projeto elétrico básico de uma SE como exemplo de caso. É importante

ressaltar que, durante a realização deste projeto, não foram abordados tópicos de

proteção tais como seletividade, uma vez que, na prática, as concessionárias de energia

já apresentam este estudo pronto quando da contratação do projeto da SE. É comum,

que as concessionárias repassem tais informações diretamente aos fabricantes dos relés

para que estes façam a sua devida parametrização a fim de atender à coordenação de

seletividade definida no estudo. No entanto, começa a surgir uma forte tendência para

que este estudo passe a ser feito pelo responsável pela elaboração do projeto elétrico.

Sugere-se como temas para futuros trabalhos, o estudo e a elaboração dos projetos

eletromecânico e arquitetônico de uma SE, bem como, os estudos relativos à definição

das proteções e da seletividade da mesma.

Page 80: projeto subestação

77

ANEXO I – DIAGRAMA UNIFILAR

Page 81: projeto subestação
Page 82: projeto subestação

79

ANEXO II – DIAGRAMA ESQUEMÁTICO

Page 83: projeto subestação
Page 84: projeto subestação
Page 85: projeto subestação
Page 86: projeto subestação
Page 87: projeto subestação
Page 88: projeto subestação
Page 89: projeto subestação
Page 90: projeto subestação
Page 91: projeto subestação
Page 92: projeto subestação
Page 93: projeto subestação
Page 94: projeto subestação
Page 95: projeto subestação
Page 96: projeto subestação
Page 97: projeto subestação
Page 98: projeto subestação
Page 99: projeto subestação
Page 100: projeto subestação
Page 101: projeto subestação
Page 102: projeto subestação
Page 103: projeto subestação
Page 104: projeto subestação

113

ANEXO III – DIAGRAMA CONSTRUTIVO

Page 105: projeto subestação
Page 106: projeto subestação
Page 107: projeto subestação
Page 108: projeto subestação
Page 109: projeto subestação
Page 110: projeto subestação
Page 111: projeto subestação
Page 112: projeto subestação

121

ANEXO IV – DIAGRAMA DE FIAÇÃO

Page 113: projeto subestação

Equip. Term. Equip. Term. Anilha Equip. Term. Anilha

1L1MF1 Q1 1L1CT1 1 1L1CT1-1 2,5 CZ 61L1MF1 Q2 1L1CT1 3 1L1CT1-3 2,5 CZ 61L1MF1 Q3 1L1CT1 5 1L1CT1-5 2,5 CZ 61L1MF1 Q4 1L1CT1 7 1L1CT1-7 2,5 CZ 61L1MF1 Q5 1L1CT1 9 1L1CT1-9 2,5 CZ 61L1MF1 Q6 1L1CT1 11 1L1CT1-11 2,5 CZ 61L1MF1 Q7 1L1CT1 13 1L1CT1-13 2,5 CZ 61L1MF1 Q8 1L1CT1 15 1L1CT1-15 2,5 CZ 61L1MF1 R13 1L1CT2 9 1L1CT2-9 1,5 CZ 61L1MF1 R14 1L1CT2 11 1L1CT2-11 1,5 CZ 61L1MF1 R15 1L1CT2 1 1L1CT2-1 1,5 CZ 61L1MF1 R16 1L1CT2 7 1L1CT2-7 1,5 CZ 61L1MF1 R17 1L1CT2 3 1L1CT2-3 1,5 CZ 61L1MF1 R18 1L1CT2 5 1L1CT2-5 1,5 CZ 61L1MF1 F1 1L1MF2 J11 1L1MF2-J11 1L1MF1 R4 1L1MF1-R4 1,5 CZ 131L1MF1 F2 72.4 4 72.4-4 1L1MF1 F10 1L1MF1-F10 1,5 CZ 131L1MF1 F3 XD 91 XD-91 1L1MF2 F3 1L1MF2-F3 1,5 CZ 381L1MF1 F4 XD 92 XD-92 1,5 CZ 381L1MF1 F5 1L1K4Y 14 1L1K4Y-14 1,5 CZ 131L1MF1 F6 1L1K4X 14 1L1K4X-14 1,5 CZ 131L1MF1 F7 D1 K D1-K 1,5 CZ 131L1MF1 F8 1L1K4FX2 14 1L1K4FX2-14 1,5 CZ 131L1MF1 F9 43X2 61 43X2-61 1,5 CZ 131L1MF1 F10 1L1MF1 F2 1L1MF1-F2 1L1MF1 R10 1L1MF1-R10 1,5 CZ 131L1MF1 J11L1MF1 J21L1MF1 J31L1MF1 J41L1MF1 J7 XC 72 XC-72 1,5 CZ 381L1MF1 J8 XC 71 XC-71 1,5 CZ 381L1MF1 J9 XC 73 XC-73 1,5 CZ 381L1MF1 J101L1MF1 J11 XD 33 XD-33 1L1MF2 F1 1L1MF2-F1 1,5 CZ 191L1MF1 J12 1L1MF1 K9 1L1MF1-K9 1,5 CZ 191L1MF1 K1 XD 14 XD-14 1,5 CZ 131L1MF1 K2 1L1K1Y 14 1L1K1Y-14 1,5 CZ 131L1MF1 K3 1L1K1X 14 1L1K1X-14 1,5 CZ 131L1MF1 K4 1L1K2Y 14 1L1K2Y-14 1,5 CZ 141L1MF1 K5 1L1MF1 R12 1L1MF1-R12 1L1MF1 K14 1L1MF1-K14 1,5 CZ 131L1MF1 K6 1L1K2X 14 1L1K2X-14 1,5 CZ 141L1MF1 K7 1L1K6Y 14 1L1K6Y-14 1,5 CZ 141L1MF1 K8 1L1K6X 14 1L1K6X-14 1,5 CZ 141L1MF1 K9 1L1MF2 J12 1L1MF2-J12 1,5 CZ 141L1MF1 K10 XD 6 XD-6 1,5 CZ 141L1MF1 K11 XD 7 XD-7 1,5 CZ 141L1MF1 K12 XD 9 XD-9 1,5 CZ 141L1MF1 K13 XD 10 XD-10 1,5 CZ 141L1MF1 K14 1L1MF1 K5 1L1MF1-K5 1L1MF1 K16 1L1MF1-K16 1,5 CZ 141L1MF1 K15 XD 12 XD-12 1,5 CZ 141L1MF1 K16 1L1MF1 K14 1L1MF1-K14 94PX1 A2 94PX1-A2 1,5 CZ 141L1MF1 K171L1MF1 K181L1MF1 R1 94PX1 A1 94PX1-A1 1L1MF1 R2 1L1MF1-R2 1,5 CZ 151L1MF1 R2 1L1MF1 R1 1L1MF1-R1 1L1MF1 R3 1L1MF1-R3 1,5 CZ 151L1MF1 R3 1L1MF1 R2 1L1MF1-R2 1,5 CZ 151L1MF1 R4 1L1MF1 F1 1L1MF1-F1 27CC4 A1 27CC4-A1 1,5 CZ 151L1MF1 R5 XD 87 XD-87 1L1MF1 R7 1L1MF1-R7 1,5 CZ 281L1MF1 R6 1L1MF2 R6 1L1MF2-R6 1,5 CZ 281L1MF1 R7 1L1MF1 R5 1L1MF1-R5 1L1MF2 R5 1L1MF2-R5 1,5 CZ 281L1MF1 R8 1L1MF2 R8 1L1MF2-R8 1,5 CZ 281L1MF1 R9 43X1 61 43X1-61 1,5 CZ 131L1MF1 R10 1L1MF1 F10 1L1MF1-F10 1L1MF1 R12 1L1MF1-R12 1,5 CZ 131L1MF1 R111L1MF1 R12 1L1MF1 R10 1L1MF1-R10 1L1MF1 K5 1L1MF1-K5 1,5 CZ 131L1MF1 Terra BG 2 BG-2 2,5 VD

1L1MF2 Q1 1L1CT3 1 1L1CT3-1 2,5 CZ 71L1MF2 Q2 1L1CT3 3 1L1CT3-3 2,5 CZ 71L1MF2 Q3 1L1CT3 5 1L1CT3-5 2,5 CZ 71L1MF2 Q4 1L1CT3 7 1L1CT3-7 2,5 CZ 71L1MF2 Q5 1L1CT3 9 1L1CT3-9 2,5 CZ 71L1MF2 Q6 1L1CT3 11 1L1CT3-11 2,5 CZ 71L1MF2 Q7 1L1CT3 13 1L1CT3-13 2,5 CZ 71L1MF2 Q8 1L1CT3 15 1L1CT3-15 2,5 CZ 71L1MF2 R13 1L1CT4 9 1L1CT4-9 1,5 CZ 71L1MF2 R14 1L1CT4 11 1L1CT4-11 1,5 CZ 71L1MF2 R15 1L1CT4 1 1L1CT4-1 1,5 CZ 7

FI-001PAINEL P1 - LINHA 1L1 - 138kV - FIAÇÃOSeção mm2

FL. do esq.

DE PARA PARA Cor

Page 114: projeto subestação

123

ANEXO V – DIAGRAMA DE INTERLIGAÇÃO

Page 115: projeto subestação
Page 116: projeto subestação

125

ANEXO VI – LISTA DE CABOS

Page 117: projeto subestação
Page 118: projeto subestação

127

ANEXO VII – DIAGRAMA LÓGICO

Page 119: projeto subestação
Page 120: projeto subestação

129

ANEXO VIII – PROJETO ARQUITETÔNICO

Page 121: projeto subestação
Page 122: projeto subestação

131

7 REFERÊNCIAS:

[1]SIEMENS, SIPROTEC 47SA522, Manual do fabricante

[2]https://www.easy-line.siemens.com/irj/portal/ptddss/public/en/global-

04/home

[3]ABB, Proteção e controle para redes de transmissão – Guia de seleção

IED670

[4]GE, Catálogo Relé diferencial de rede L90

[5]Procedimentos de Rede, Módulo 12: Medição para Faturamento – Operador

Nacional do Sistema (ONS)

[6]Subestações Elétricas, Centro Federal de Educação Tecnológica do ES

[7]Equipamentos Elétricos – Especificação e Aplicação em Subestações de

Corrente Alternada, Furnas/UFF, 1995

[8]Proteção de Sistemas Elétricos, Ligth, Editora Interciência, 2002

[9]Apostila de Proteção, Capítulo 8, disponível no endereço eletrônico

http://www.dee.ufrn.br/~marcos/arquivos/Prote%E7%E3o/Apost.%20prot.%20%2099

%20-%20Cap.%208%20-%20dig..pdf

[10] Automação e Digitalização de Usinas, Subestações e Redes de

Distribuição, Chesf – Companhia Hidro Elétrica do São Francisco.