RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA...

100
UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ODONTOLOGIA DE PIRACICABA THAYSE RODRIGUES DE SOUZA RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA VI, ALFA-AMILASE SALIVAR, CAPACIDADE TAMPÃO, FLUXO SALIVAR E CÁRIE DENTAL EM CRIANÇAS RELATIONSHIP AMONG SALIVARY CARBONIC ANHYDRASE VI ACTIVITY, ALPHA-SALIVARY AMYLASE, BUFFERING CAPACITY, SALIVARY FLOW RATE AND DENTAL CARIES IN CHILDREN Piracicaba 2016

Transcript of RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA...

UNIVERSIDADE ESTADUAL DE CAMPINAS

FACULDADE DE ODONTOLOGIA DE PIRACICABA

THAYSE RODRIGUES DE SOUZA

RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA VI,

ALFA-AMILASE SALIVAR, CAPACIDADE TAMPÃO, FLUXO

SALIVAR E CÁRIE DENTAL EM CRIANÇAS

RELATIONSHIP AMONG SALIVARY CARBONIC ANHYDRASE VI

ACTIVITY, ALPHA-SALIVARY AMYLASE, BUFFERING CAPACITY,

SALIVARY FLOW RATE AND DENTAL CARIES IN CHILDREN

Piracicaba

2016

THAYSE RODRIGUES DE SOUZA

RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA VI,

ALFA-AMILASE SALIVAR, CAPACIDADE TAMPÃO, FLUXO

SALIVAR E CÁRIE DENTAL EM CRIANÇAS

RELATIONSHIP AMONG SALIVARY CARBONIC ANHYDRASE VI

ACTIVITY, ALPHA-SALIVARY AMYLASE, BUFFERING CAPACITY,

SALIVARY FLOW RATE AND DENTAL CARIES IN CHILDREN

Piracicaba

2016

Tese apresentada à Faculdade de Odontologia de

Piracicaba da Universidade Estadual de Campinas

como parte dos requisitos exigidos para a obtenção

do título de Doutora em Odontologia, na Área de

Odontopediatria.

Thesis presented to the Piracicaba Dental School of

the University of Campinas in partial fulfillment of

the requirements for the degree of Doctor in

Dentistry in Pediatric Dentistry Area.

Orientador: Profa. Dr

a. Marinês Nobre dos Santos Uchôa

ESTE EXEMPLAR CORRESPONDE À VERSÃO FINAL DA

TESE DEFENDIDA PELA ALUNA THAYSE RODRIGUES DE

SOUZA E ORIENTADA PELA PROFa. DR

a MARINÊS

NOBRE DOS SANTOS UCHÔA.

DEDICATÓRIA

À Deus por me guiar nos diversos caminhos que se abriram para mim... Por me

iluminar nas decisões mais difíceis... Por ser minha fortaleza, refúgio e morada espiritual e

por sempre estar comigo em qualquer lugar que eu vá.

AGRADECIMENTOS ESPECIAIS

Aos meus pais Ana Dalva e Antônio Rodrigues por terem me dado a oportunidade de

estudar e sempre me guiarem a este caminho... Por sempre me apoiarem em minhas decisões

e pelo carinho e amor sustentadores. Obrigada não só por me dar a vida, mas principalmente

por me ensinar a vivê-la.

Ao meu querido esposo Jorge Leão pelo amor, carinho, incentivo e companheirismo

fundamental... Por sua mão sempre estendida a me ajudar, por ser parte de mim, parte de

quem eu sou e por tornar meus dias imensamente felizes.

À minha orientadora, Profa. Dra. Marinês Nobre dos Santos Uchôa, por ter me

aceitado como sua orientanda, pela edificante orientação, por me proporcionar mais uma

experiência da pesquisa científica e sempre acreditar em minha dedicação e empenho, por

todos os ensinamentos e compreensão quando mais precisei.

Às crianças que fizeram parte dessa pesquisa... Meus amores, vocês foram

fundamentais e me deram incentivo a cada dia... Obrigada pelo olhar de pureza, felicidade e

carinho que me passavam em cada dia de coleta.

À Força Aérea Brasileira nas pessoas do Coronel Médico Laerte Lobato de Moraes,

diretor do Hospital de Aeronáutica de Belém e Tenente-Coronel Luiz Fernando da Costa

Tavares, chefe da Divisão Odontológica, pela compreensão e apoio no seguimento de meu

curso de doutorado.

À minha irmã Thalyta Souza e às famílias Souza, Rodrigues e Leão pelo enorme

carinho apoio e por sempre torcerem pelas minhas conquistas.

AGRADECIMENTOS

À Universidade Estadual de Campinas, na pessoa do reitor Prof. Dr. José Tadeu

Jorge, à Faculdade de Odontologia de Piracicaba FOP-UNICAMP, na pessoa do seu diretor

Prof. Dr. Guilherme Elias Pessanha Henriques, à Comissão de Pós-Graduação da FOP-

UNICAMP na pessoa da presidente Profa. Dr

a. Cínthia Pereira Machado Tabchoury e da

Coordenadora do Programa de Pós-Graduação em Odontologia Profa. Dr

a. Juliana Trindade

Clemente Napimoga, pela participação dessa conceituada instituição no meu crescimento

científico.

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) pelo apoio

financeiro concedido durante o desenvolvimento dessa tese.

Às Profas

. Dras

., Fernanda Miori Pascon, Maria Beatriz Duarte Gavião, Regina

Maria Puppin Rontani do Departamento de Odontologia infantil, por terem me recebido tão

bem quando cheguei à faculdade, por todos os conhecimentos passados, tanto os conteúdos

relacionados à Odontopediatria quanto àqueles relacionados ao ensino e à pesquisa.

A todos os professores do Programa de Pós-Graduação em Odontologia da FOP-

UNICAMP e aqueles professores convidados a ministrar diversas aulas que engrandeceram

nossos conhecimentos científicos principalmente no campo do ensino e pesquisa.

Aos professores colaboradores, Prof. Dr. Sérgio Line e Prof. Dr. Marcelo Marques

pelo desenvolvimento do protocolo de visualização da atividade da enzima anidrase carbônica

VI que possibilitou a execução desse projeto de tese.

Ao técnico do laboratório de Odontopediatria, Marcelo Corrêa Maistro, pelo auxílio

fundamental nas etapas laboratoriais da pesquisa.

À Secretaria Municipal de Educação do município de Piracicaba por ter permitido a

realização da pesquisa.

Às diretoras das creches visitadas por terem me acolhido tão bem na ocasião da coleta

de dados e amostras da pesquisa.

À Professora Dra. Thais Manzano Parisotto pela ajuda fundamental, pelas

orientações e por sempre estar disposta a ajudar na execução da pesquisa.

À Professora Dra. Cínthia Pereira Machado Tabchoury e Prof. Dra. Maria Beatriz

Duarte Gavião membros da banca de pré-qualificação pelas sugestões para execução desse

trabalho.

Ao Prof. Dr. Natanael Barbosa e Prof. Dr. Milton Duarte, do Departamento de

Cariologia da Universidade Federal de Alagoas- Faculdade de Odontologia pelo exemplo de

pesquisadores, por terem me iniciado na pesquisa científica na graduação em Odontologia,

tendo sido fundamentais na escolha dos caminhos no ensino e pesquisa. Ao Prof. Dr. Luiz

Alcino Monteiro Gueiros e Prof. Dr. Jair Carneiro Leão do Departamento de

Estomatologia da Universidade Federal de Pernambuco- Faculdade de Odontologia, meus

orientadores do mestrado pelos conhecimentos passados e que foram fundamentais para a

subida de mais um degrau em minha formação acadêmica.

À Maria Elisa dos Santos, Eliane Melo Franco de Souza, Érica A. Pinho Sinhoreti

e Raquel Q. M. Cesar Sacchi e Roberta C. Morales dos Santos, pela ajuda e atenção nas

etapas administrativas e a todos os funcionários da FOP-UNICAMP, pela colaboração.

Às amigas Lívia Pagotto e Fabiana Furtado por terem me acolhido tão bem na

cidade na ocasião de minha chegada pela amizade e companhia diária.

Às amigas Lívia Pagotto e Bruna Raquel por o auxílio em etapas da pesquisa.

À amiga Andréia Alves, pela mão estendida não só para aprender, mas também

ajudar. Obrigada pela companhia nas muitas horas esperando as bandas da anidrase e pela

amizade.

Aos colegas e amigos: Maria Carolina S. Marquezin, Marina S. Leme, Bárbara

Lucas, Ana Bheatriz M. Montes, Filipe Martins, Alexsandra S. Iwamoto, Ariany B.

Carvalho, Bruna R. Zancopé, Lívia P. Rodrigues, Luciana T. Inagaki, Vanessa

Benetello, Micaella Cardoso, Natalia Martins, Darlle Araújo, Thais Varanda e Lenita

Lopes pelo convívio e amizade durante essa importante etapa.

Aos amigos da Força Aérea Brasileira em especial às Tenentes Patrocínio, Paola,

Flávia Carvalho, Camilla Pinto, Camila Rocha, Kobayashi, Luciane Bertoldi, Cibelle, Glauce

Vaz , Thayanna e Valéria pela amizade e carinho.

Às amigas Cíntia Priscila, Talita França e Samantha Mendonça pela amizade e

torcida.

EPÍGRAFE

“Bom mesmo é ir a luta com

determinação, abraçar a vida com paixão,

perder com classe e vencer com ousadia,

porque o mundo pertence a quem se atreve (e

tem fé) e a vida é muito para ser

insignificante.” Augusto Branco

RESUMO

As enzimas anidrase carbônica VI (AC VI) e α-amilase estão presentes na saliva. AC

VI é responsável por catalisar a principal reação tamponante da cavidade bucal. A enzima α-

amilase é responsável pela formação da película, biofilme e no metabolismo do amido. Não

há relatos na literatura que tenham investigado longitudinalmente a relação entre a AC VI e

cárie dental ou transversalmente a atividade de α-amilase logo após um desafio cariogênico. A

tese foi apresentada em dois Capítulos. Os objetivos do Capítulo 1 foram: Determinar o fluxo

salivar estimulado (FSE), capacidade tampão (CT) e a atividade de AC VI na saliva de

crianças com cárie e livres de cáries antes e após o bochecho com solução de sacarose a 20%

e investigar a relação entre essas variáveis e a cárie dental longitudinalmente após um ano e

no Capítulo 2: Investigar a atividade de α-amilase na saliva de crianças com cárie e livres de

cáries antes e após o bochecho com uma solução de sacarose a 20% e sua relação com FSE,

CT e a cárie dental transversalmente. No Capítulo 1 foram alocadas 47 crianças de 48 a 78

meses de idade, divididos em três grupos após cálculo do incremento de cárie após um ano:

grupo livre de cárie (LC, n=10), grupo com cárie (C, n=20) e grupo de cárie paralisada (CP,

n=17). No Capítulo 2, 38 crianças de 48 a 77 meses de idade, divididas em dois grupos: com

cárie (C, n=20) e livres de cárie (LC, n=18). A atividade da AC VI foi quantificada por

zimografia. O FSE foi expresso em mL/min. A CT foi medida pelo método de Ericsson por

meio de um eletrodo de pH conectado a um peagâmetro. A análise de α-amilase foi realizada

por ensaio enzimático. Os dados de AC VI foram submetidos ao teste de Wilcoxon e

Kruskall-Wallis para comparações pareadas dos valores antes e depois do bochecho e

comparação entre grupos respectivamente. Os dados de FSE e CT foram submetidos aos

testes acima mencionados nos dois Capítulos. Os dados da atividade de α-amilase foram

submetidos aos testes T de Student pareado e independente. Foi realizado também análise de

correlação de Spearman (α=0.05). Os resultados do Capítulo 1 mostraram que a atividade de

AC VI apresentou um decréscimo significativo após o bochecho nos grupos LC no baseline e

após um ano e no grupo CP somente após um ano (p= 0.037, p=0.028 e p=0.027,

respectivamente). Não se observou mudanças na atividade de AC VI no grupo CL antes e

depois do bochecho nos dois períodos do estudo. A atividade de AC VI antes do bochecho no

baseline exibiu correlação negativa significativa como índice de cárie no baseline antes e

depois do bochecho e após um ano antes do bochecho no grupo C (r=-0.609, p=0.004 e r=-

0.516, p=0,020, r= -0.545, p=0.013, respectivamente). Uma correlação negativa significativa

foi encontrada entre o índice de cárie nos dois tempos do estudo e CT após o bochecho após

um ano (r=-0.345, p=0.017 e r=-0.303, p=0.038, respectivamente). Os resultados do Capítulo

2 mostraram que o grupo C exibiu um aumento significativo na atividade de α-amilase após o

bochecho diferindo significativamente do grupo LC (p=0.024 e p=0.019). Observou-se nos

dois Capítulos aumento do FSE após o bochecho e diminuição dos valores de CT após o

bochecho com sacarose. Conclui-se que a atividade de AC VI exerce possível participação no

controle de pH bucal após um desafio cariogênico, principalmente em crianças com cárie.

Sugere-se ainda, uma possível participação da α-amilase como facilitadora do processo de

cárie devido ao aumento de sua atividade quando as crianças com cárie foram submetidas a

um desafio cariogênico.

Palavras-chave: Anidrase carbônica VI, fluxo salivar, capacidade tampão da saliva, cárie

precoce da infância.

ABSTRACT

The carbonic anhydrase VI (CAVI) and α-amylase (SAA) enzymes are present in

saliva. AC VI is responsible for catalyzing the main reaction buffering the oral cavity. SAA is

associated with the pellicle and biofilms formation and starch metabolism. There are no

reports in the literature that have longitudinally investigated the relationship between AC VI

and dental caries and a cross-sectional study to investigate the SAA activity after a cariogenic

challenge. The objectives of the Chapter 1 of this thesis were: Determine the stimulated

salivary flow (SSFR), buffer capacity (BC) and CA VI activity in the saliva of children with

caries and caries-free before and after rinsing with a sucrose solution to 20% and to

investigate the relationship of these variables with dental caries in a longitudinal study of one

year of follow-up. And of the Chapter 2: Investigate the SAA activity in saliva of children

with caries and caries-free before and after rinsing with a sucrose solution at 20% and its

relationship with SSFR, BC and dental caries in a cross-sectional study. Were allocated to the

study of Chapter 1 47 children 48-78 months age, divided into three groups after calculation

of caries increment after one year: caries free group (CF), caries lesion group (CL) and

arrestment caries group (AC). And in Chapter 2, 38 children aging 48-77 months old, divided

into two groups: caries lesion group (CL) and caries free group (CF). The activity of CA VI

was quantified by zymography. The SSFR was expressed in mL/min. The BC was measured

by Ericsson’s method. The SAA activity was analyzed by the enzyme kinetic assay. Wilcoxon

test and the Kruskal-Wallis test for paired comparisons of the values of CAVI before and after

the rinses and comparison between groups respectively. To SSFR and BC data were

employed the tests mentioned above in the two Chapters. The Student t test paired and

independent were employed to the SAA data. It was also performed Spearman correlation

analysis (α = 0.05). The results of chapter 1 show that CA VI activity significantly decreased

after the cariogenic challenge at the CF group in baseline and follow-up and at AC group only

at the follow-up (p= 0.037, p=0.028 e p=0.027, respectively). No change in CA VI activity

was found at the two periods of the study in CL group. Salivary CA VI activity before rinse at

the baseline shows also a negative correlation with dental caries at the baseline before and

after rinse and at the follow-up before the rinse in the CL group (r=-0.609, p=0.004 e r=-

0.516, p=0,020, r= -0.545, p=0.013, respectively). A negative correlation was found between

dental caries at baseline as well at follow-up and BC after rinse at follow-up (r=-0.345,

p=0.017 e r=-0.303, p=0.038 respectively). The results of Chapter 2 shows that the CL group

exhibited a significant increase on SAA activity after rinse (p=0.001), and significantly

differed from CF group (p=0.033). The results of the two Chapters show a significant increase

and decrease of SSFR and BC respectively after the sucrose rinse solution in both groups. It is

concluded that the AC VI activity possible participates on the oral pH control after a

cariogenic challenge, particularly in children with caries. It is also suggested possible

involvement of SAA as a facilitator of the decay process due to the increase of its activity

when the children were submitted to a cariogenic challenge in the group of children with

caries.

KEY-WORDS: Carbonic anhydrase VI, salivary flow, salivary buffer capacity, early childhood

caries.

LISTA DE ILUSTRAÇÕES

FIGURA 1. Exame clínico para avaliação do índice de cárie em pré-escolares do

município de Piracicaba-SP (Capítulo 1 e 2)

91

FIGURA 2. Cárie precoce da infância (Capítulo 1 e 2) 92

FIGURA 3. Forma de coleta de saliva estimulada (capítulos 1 e 2) 93

FIGURA 4. Bochecho com solução de sacarose 20% (Capítulos 1 e 2) 94

FIGURA 5. Material utilizado na coleta de saliva (Capítulos 1 e 2) 95

FIGURA 6. Metodologia de avaliação da capacidade tampão (Capítulos 1 e 2) 95

FIGURA 7. Metodologia de avaliação da atividade do fluxo salivar estimulado

(Capítulos 1 e 2)

96

FIGURA 8. Metodologia de avaliação da atividade da enzima Anidrase Carbônica VI

(Capítulo 1)

97

FIGURA 9. Metodologia de avaliação da atividade da enzima α-amilase salivar

(Capítulo 2)

99

LISTA DE ABREVIATURAS E SIGLAS

CPI Cárie precoce da infância

AC VI Anidrase carbônica VI

AC II Anidrase carbônica II

CPOD Índice de cariados, perdidos e obturados

FSE Fluxo salivar estimulado

CT Capacidade tampão

CA VI Carbonic anhydrase VI

SSFR Stimulated salivary flow rate

CF Caries free group

CL Caries lesions group

AC Arrested caries group

CO2 Gás carbônico

HCO3-

Íon Bicarbonato

WHO+ECL World Health Organization diagnostic

criteria and the early caries lesions

IQR Interquatile range

dmfs+ ECL Decayed, missing and filled surfaces plus

early caries lesions

CA II Carbonic anhydrase II

AC II Anidrase Carbônica II

SAA Salivary α-amylase

GtF B Glucosiltransferase B

SUMÁRIO

1. INTRODUÇÃO 17

2. ARTIGOS 23

2.1 Artigo: Relationship among dental caries and salivary carbonic anhydrase VI

activity, buffer capacity and flow rate – A longitudinal study in children

23

2.2 Artigo: Sucrose increases salivary α-amylase activity in saliva of children- A

cross-sectional study

46

3. DISCUSSÃO 69

4. CONCLUSÃO 77

REFERÊNCIAS 78

APÊNDICE – Produção bibliográfica da aluna 85

ANEXOS 86

Anexo 1 - Certificado do Comitê de Ética em Pesquisa da FOP- UNICAMP 86

Anexo 2 - Autorização da Secretaria Municipal de Saúde de Piracicaba-SP para

realização da pesquisa

87

Anexo 3 - Ficha clínica utilizada na coleta de dados 88

Anexo 4 - Declaração 89

Anexo 5- Confirmação de envio do artigo para publicação – Caries Research 90

17

1 INTRODUÇÃO

A cárie precoce da infância (CPI), uma apresentação agressiva da cárie dental, tem

início com lesões de manchas brancas nas faces vestibulares de incisivos decíduos superiores

ao longo da margem gengival (AAPD, 2008). A doença em crianças é associada a fatores

como, hábitos alimentares inapropriados, alto consumo de carboidratos, medidas de higiene

bucal deficientes e baixo poder socioeconômico (Parisotto et al., 2010). Se não tratada, a

doença pode destruir a dentição decídua, causar dor e desconforto, infecção aguda,

insuficiências nutricionais, problemas de fala e aprendizagem (AAPD, 2008, Parisotto et al.,

2010).

A prevalência da CPI é alta e sua severidade aumenta com a idade. Além disso, uma

pesquisa longitudinal recentemente realizada demonstrou que pré-escolares com CPI

apresentaram risco 17 e 24 vezes maiores de desenvolverem novas lesões de manchas brancas

ativas e de apresentarem lesões de cárie cavitadas, respectivamente (Parisotto et al., 2012).

Levantamentos epidemiológicos evidenciaram também, que no Brasil a doença apresenta-se

como um problema de saúde pública (Ferreira et al., 2007, Moimaz et al., 2016). No último

relatório de saúde bucal, Projeto SB Brasil 2010 (Ministério da Saúde), apenas 46,6% das

crianças brasileiras aos cinco anos de idade apresentou-se livre de cárie na dentição decídua e

43,5% aos 12 anos, já na dentição permanente (Ministério da Saúde, 2010).

A cárie dental é uma doença biofilme-sacarose dependente resultado do desequilíbrio

do biofilme no meio ambiente bucal o que contribue assim para a agregação e metabolismo

bacteriano na superfície dos dentes (Marsh, 2009, Sheiham e James, 2015). Neste aspecto, a

saliva é um fator de proteção fundamental que participa do processo de cárie tanto na dentição

decídua quanto na permanente (Laine et al., 2014). A saliva tem em sua composição vários

mecanismos de defesa, que incluem imunoglobulinas (IgA, IgG e IgM), proteínas aglutinantes

e várias enzimas (lactoferrina, lisozima, e peroxidades) oriundas do plasma e de células

acinares, que interferem no crescimento microbiano (Kivela et al., 1999a, Gao et al., 2016).

Não apenas a composição da saliva, mas também fatores como o fluxo salivar e a

capacidade tampão são extremamente importantes na dinâmica do processo de cárie (Cunha-

Cruz et al., 2013). O fluxo salivar é o parâmetro salivar mais importante neste processo, pois a

atividade cariostática ou eficácia de praticamente todos os outros parâmetros salivares

(capacidade tampão salivar, agentes antimicrobianos) dependem do fluxo salivar (Lagerlof e

Oliveby, 1994, Tenovuo, 1997, Laine et al., 2014).

18

O fluxo salivar normal é um fator altamente protetor contra a cárie, uma vez que

geralmente está associado ao pH e à capacidade tampão salivar elevados, pois provoca um

aumento de todos os componentes salivares. Por outro lado, há uma correlação mais fraca

entre uma baixa capacidade tampão da saliva e o aumento do índice de cárie (Leone e

Oppenheim, 2001). No entanto, já foi demonstrada uma clara relação inversa entre a

capacidade tampão salivar e suscetibilidade à cárie (Ericsson, 1959). Estudos previamente

realizados mostraram que crianças com cárie apresentavam baixos valores de capacidade

tampão (Bhayat et al., 2013, Kuriakose et al., 2013). No entanto, a presença de baixos valores

de capacidade tampão ainda não é considerada fator de risco para a ocorrência da doença cárie

(Gao et al., 2016).

Para evitar que o pH diminua a um nível crítico, a saliva contém mecanismos

tamponantes específicos (Llena-Puy, 2006). A capacidade tampão da saliva envolve três

sistemas tamponantes que são o bicarbonato, o fosfato e as proteínas salivares, de forma que

esses três sistemas trabalham em diferentes intervalos de pH. Enquanto que a atividade

tampão ótima dos sistemas bicarbonato e fosfato ocorre em valores de pKa 6.1-6.3 e 6.8-7.2,

respectivamente, o sistema de proteínas salivares atua de forma efetiva em valores de pKa em

torno de 4,0 (Bardow et al., 2000, Cheaib et al., 2012). No entanto, a concentração destas

macromoléculas na saliva é baixa, e em condições normais, estas, não são muito importantes

como substâncias tampão na saliva (Fejerskov e Kidd, 2007).

O sistema tampão mais importante em condições de estimulação salivar é o sistema

bicarbonato, que é responsável por 70 a 90% da capacidade tampão da saliva total. Baseia-se

no equilíbrio do ↑CO2 + H2O ↔ H2CO3↔ HCO3-

+ H+ onde a concentração de bicarbonato

tende a aumentar com a estimulação do fluxo salivar (Lilienthal, 1955, Izutsu, 1981, Bardow

et al., 2000). Uma característica importante e exclusiva deste sistema é a conversão do gás

carbônico do estado dissolvido para o estado volátil. Quando o ácido é adicionado essa

conversão de estados aumenta a eficácia da neutralização, não havendo acúmulo de produtos

finais, mas a completa remoção de ácido, o que é conhecido como “fase tampão”(Kivela et

al., 1999a). Esta reação na cavidade oral e no trato alimentar alto é catalisada pela enzima

anidrase carbônica VI (AC VI) que está presente na saliva (Kivela et al., 1999a, Kimoto et al.,

2006).

As anidrases carbônicas são metaloenzimas de zinco que participam da manutenção da

homeostase do pH em vários tecidos e fluidos biológicos do corpo humano catalisando a

19

reação de hidratação reversível do dióxido de carbono, CO2 + H2O ↔ HCO3-

+ H+ (Sly e Hu,

1995, Pastorekova et al., 2004). Dentre as 16 isoenzimas isoladas de mamíferos, pelo menos

duas (AC II e AC VI) estão envolvidas na fisiologia salivar, uma vez que expressas nas

glândulas salivares de humanos, participam da regulação do pH no meio bucal (AC VI) e da

secreção de bicarbonato na saliva (AC II) (Kadoya et al., 1987, Parkkila et al., 1990, Supuran

e Scozzafava, 2007). Em humanos, a AC VI é produzida unicamente pelas células acinares

serosas das glândulas parótidas e submandibulares e é secretada na saliva, seguindo o ritmo

circadiano, com baixa concentração durante o sono, aumentando rapidamente ao acordar e

após a primeira refeição (Parkkila et al., 1990, Parkkila et al., 1995). Tal secreção é muito

semelhante à da enzima α-amilase salivar, e uma correlação positiva foi encontrada entre o

nível de atividade de α-amilase salivar e a concentração de AC VI, sugerindo-se que as duas

enzimas poderiam ser secretadas pelos mesmos grânulos e mecanismos secretórios (Parkkila

et al., 1995, Kivela et al., 1999b).

O papel fisiológico da AC VI salivar tem sido esclarecido nos últimos anos (Leinonen

et al., 1999, Kivela et al., 1999b, Kivela et al., 2003, Kimoto et al., 2006, Frasseto et al.,

2012). Pesquisas previamente realizadas demonstraram que a AC VI salivar pode ser

considerada uma proteína anti-cárie na saliva (Leinonen et al., 1999, Kimoto et al., 2006).

Quando da exposição do biofilme à sacarose, ocorre uma queda do pH no intervalo de poucos

minutos, o que pode levar à dissolução do mineral do esmalte. Esse femômeno continua

ocorrendo até que o pH retorne ao valor acima do pH crítico do esmalte (Dawes, 2008). O

mecanismo pelo qual esta isoenzina atua no controle do pH, sugere que a AC VI liga-se a

película de esmalte e facilita a neutralização ácida pelo bicarbonato salivar (Leinonen et al.,

1999). No biofilme dental, a AC VI fica situada em sítios ideais para catalisar a reação

reversível de conversão de bicarbonato salivar e íons de hidrogênio fornecidos por bacterias

cariogênicas, em dióxido de carbono e água (HCO3 + H+ ↔ CO2 + H2O) (Leinonen et al.,

1999, Kimoto et al., 2006). O estudo de Kimoto et al. (2006) evidenciou a presença desta

enzima no biofilme dental, sendo mostrado uma diminuição do pH do biofilme, quando a

cavidade bucal era submetida a um bochecho com solução de acetazolamida, inibidor

específico da enzima AC VI. Esses autores sugerem que pelo mecanismo catalisador exercido

pela enzima, a AC VI seja capaz de prover uma maior neutralização dos ácidos do biofilme

dental.

20

A literatura aponta que ao catalisar o sistema tampão mais importante da cavidade

bucal, o mecanismo de ação de AC VI protege a superfície dental pela neutralização dos

ácidos nesse micro ambiente. Pesquisas nessa área tem indicado ainda resultados

inconclusivos. Algumas têm indicado uma correlação negativa entre a concentração salivar

AC VI e a experiência de cárie (Szabo, 1974, Kivela et al., 1999b). O estudo realizado por

Szabó (1974) mostrou que a saliva de crianças de 7 a 14 anos de idade e livres de cárie,

expressava uma maior concentração da AC VI do que aquela de crianças com cárie.

Posteriormente, Kivela et al. (1999b) mostraram também que baixas concentrações de AC VI

na saliva pareciam estar associadas a um aumento na prevalência de cárie, particularmente em

adultos jovens com a higiene bucal negligenciada. Por outro lado, ao investigar a atividade da

AC VI antes e após um bochecho de sacarose a 20%, Frasseto et al. (2012), observaram que a

variação da atividade da isoenzima foi significativamente maior na saliva de pré-escolares

com cárie quando comparada aqueles livres de cárie. Esses autores observaram também uma

correlação negativa entre a variação da atividade da isoenzima e o índice de cárie.

Encontraram ainda, maior atividade da enzima antes do bochecho no grupo com cárie

(p=0.051). Os resultados de Ozturk et al. (2008) e Yarat et al. (2011), não mostraram

diferença significativa na concentração de AC VI entre grupos com e sem cárie, no entanto,

Ozturk et al. (2008) encontraram uma correlação negativa significativa entre a concentração

de proteínas total e o índice CPOD de adultos jovens, sugerindo a diminuição na concentração

de proteínas protetoras na saliva de indivíduos com cárie.

Resultados contraditórios também são encontrados na literatura. Culp et al. (2013),

encontraram marcada contribuição da deleção do gene que transcreve a AC VI na redução de

cáries em ratos. Por outro lado Li et al. (2015) encontraram a presença significativa do

genótipo polimórfico do gene rs17032907, transcritor de AC VI em indivíduos com

susceptibilidade à cárie. Ainda, a análise da literatura relacionada à AC VI evidencia que, com

exceção da pesquisa realizada por Frasseto et al. (2012) e Aidar et al. (2013) que analisaram a

atividade de AC VI, todas determinaram apenas a concentração da AC VI na saliva ou

biofilme. No entanto, uma alta concentração de AC VI na saliva ou biofilme não

necessariamente significa que toda isoenzima presente nestes meios esteja ativa e assim, possa

exercer o seu efeito. Além disso, não se tem conhecimento de pesquisas longitudinais que

tenham investigado a atividade da AC VI no início e na progressão da cárie dentária em

crianças. Dessa forma, a determinação da atividade de AC VI na saliva pode fornecer

21

evidências adicionais dos efeitos desta isoenzima na dinâmica do processo de cárie no que

concerne o seu início e progressão.

Um dos componentes mais abundantes da saliva é a enzima α-amilase, que é

produzida e secretada pelas células epiteliais acinares das glândulas salivares, principalmente

as glândulas parótidas. A enzima exerce na saliva atividade hidrolítica, responsável pela

quebra inicial de amido em carboidratos de baixo peso molecular, que são substratos

fermentados por várias espécies de bactérias presentes na cavidade bucal (Rogers et al.,

2001). Linhas de evidência apontam para a participação da α-amilase na formação do biofilme

dental, uma vez que esta enzima é um constituinte abundante da película adquirida

(Scannapieco et al., 1989, Douglas, 1990, Scannapieco et al., 1995, Vacca-Smith et al., 1996,

Rogers et al., 1998, Rogers et al., 2001, Hannig et al., 2004). Estes autores sugeriram também

que a enzima pode modular a colonização bacteriana no biofilme, pois atua na película

adquirida como um receptor de alta afinidade para espécies de estreptococos que são

colonizadores iniciais dos tecidos dentais, incluindo S. gordonii, S. mitis, S. parasanguis, S.

crista, S. salivarius e S. sanguis. No biofilme, esta enzima facilita a hidrólise do amido e

forneceria glicose adicional para o metabolismo de microorganismos em estreita proximidade

com a superfície do dente (Scannapieco et al., 1993, Vacca-Smith et al., 1996, Rogers et al.,

2001). Ainda, essa ligação da α-amilase com microorganismos orais em solução, contribui

também para a depuração bacteriana (clearance) da cavidade oral (Scannapieco et al., 1993).

Tem sido demonstrado que a presença de amido aumenta o potencial cariogênico da sacarose

e o biofilme formado a partir dessa combinação exibiria diferenças em sua composição e

estrutura, resultando na síntese de maior quantidade de glucosiltransferase B e polissacarídeos

insolúveis. Isto aumentaria também a aderência de bactérias cariogênicas como S. mutans e

levaria, consequentemente, a maior perda mineral durante os desafios cariogênicos (Ribeiro et

al., 2005, Duarte et al., 2008).

A maioria dos estudos encontrados na literatura investiga a quantidade de proteínas

totais e sua relação com a ocorrência de cárie (Kargul et al., 1994, Dodds et al., 1997,

Tulunoglu et al., 2006, Roa et al., 2008, Preethi et al., 2010). Poucos estudos investigam

especificamente a relação da enzima α-amilase com a ocorrência de cáries, sendo a literatura

ainda inconclusiva (Fiehn et al., 1986, Liang et al., 1999, de Farias e Bezerra, 2003, Bardow

et al., 2005, Vitorino et al., 2006, Shimotoyodome et al., 2007, Bhalla et al., 2010, Kejriwal et

al., 2014, Singh et al., 2015). Os estudos que avaliam a saliva de crianças são escassos na

22

literatura (de Farias e Bezerra, 2003, Bhalla et al., 2010, Grychtol et al., 2015, Singh et al.,

2015). Embora a enzima seja responsável pela quebra do amido, há também na literatura

relato que pode haver um sinergismo entre a atividade de α-amilase e a presença de sacarose,

de forma que a atividade da enzima no biofilme seria maior naquele formado na presença de

sacarose (Dodds e Edgar, 1986). No entanto, não há na literatura estudos em crianças que

tenham avaliado a atividade da enzima imediatamente após um desafio cariogênico

considerando crianças com cárie e livres de cárie.

Além da participação dessa enzima como mediador no processo de cárie, também é

descrito na literatura a possível participação da mesma na capacidade tampão realizada por

proteínas, de modo que a α-amilase seria responsável por 35% da capacidade tampão de

proteínas em faixa de pH de 4 a 5 (Cheaib e Lussi, 2013).

A partir do que foi exposto, torna-se relevante investigar como as enzimas α-amilase e

AC VI se comportariam na saliva de crianças com cáries submetidos a um desafio

cariogênico. Crianças com cárie estão sujeitas a modificações bioquímicas e microbiológicas

importantes na saliva e no biofilme, decorrentes da alta exposição à sacarose, bem como a

composição de proteínas da saliva e taxa de formação e aparência ultraestrutural da película

difere entre dentes decíduos e permanentes (Nobre dos Santos et al., 2002, Parisotto et al.,

2010, Grychtol et al., 2015). O estudo dos componentes salivares individualmente irá guiar o

estudo da influência destes na comunidade microbiana de biofilmes e sua participação no

processo de cárie (Nyvad, 2013). A modificação da atividade destas enzimas, ao ser o meio

bucal exposto à sacarose também deve ser pesquisada em virtude de ser esse o principal

substrato bacteriano, grande causador da cárie dental (Sheiham e James, 2015). Portanto os

objetivos desta tese foram no Capítulo 1, investigar o comportamento da enzima AC VI, fluxo

salivar, capacidade tampão antes e após um desafio cariogênico em crianças com cárie dental

em um estudo longitudinal, e no Capítulo 2, Investigar o comportamento da enzima α-

amilase, fluxo salivar e capacidade tampão antes e após um desafio cariogênico em crianças

com cárie dental em um estudo transversal. Os capítulos serão apresentados em formato

alternativo segundo a Resolução CCPG 001/2015 e encontram-se nas normas de publicação

das revistas Archives of Oral Biology e Caries Research respectivamente.

23

2 ARTIGOS

2.1 Relationship between dental caries and salivary carbonic anhydrase VI activity,

buffer capacity and flow rate – A longitudinal study in children

Artigo submetido ao periódico Archives of Oral Biology (Anexo 5)

Souza TRa, Zancopé BR

a, Parisotto TM

b , Rocha Marques M

c, Nobre-dos-Santos M

d*

a DDS, MS, student of Department of Pediatric Dentistry, Piracicaba Dental School,

University of Campinas, Piracicaba- SP, Brazil

b DDS, MS, PhD of the Laboratory of Microbiology and Molecular Biology, Sao Francisco

University Dental School, Bragança Paulista, SP, Brazil.

c DDS, MS, Professor of Department of Morphology, Piracicaba Dental School, University of

Campinas, Piracicaba- SP, Brazil.

dDDS, MS, PhD, Professor of the Department of Pediatric Dentistry, Piracicaba Dental

School, University of Campinas, Piracicaba- SP, Brazil.

Running Title: Salivary carbonic anhydrase VI and dental caries in children.

*Corresponding Author: Prof. Marinês Nobre dos Santos, Av. Limeira, 901 Zip Code: 13414-

903, Piracicaba-SP, Brazil, email: [email protected], phone number: +55-19-21065290,

Fax:+55-19-21065218

24

Abstract

Objective: To investigate the relationship among dental caries and salivary carbonic

anhydrase VI (CA VI) activity, buffering capacity (BC) and stimulated salivary flow rate

(SSFR) in 48 to 78 month-old children. Design: After dental examination and caries diagnosis

of 47 children, saliva was collected to evaluate SSFR, BC and CA VI activity before and after

a 20% sucrose rinse at baseline and after one year of follow-up. Children were divided into

three groups: caries free children (CF), children presenting caries lesions (CL), and children

with arrested caries (AC). Presence of clinically visible biofilm in the upper incisors was

verified. The activity of CA VI was quantified by zymography. The SSFR was expressed in

mL/min and BC was measured using the Ericsson method. Wilcoxon and Kruskall-Wallis

tests were used for comparisons. The Spearman correlation analysis was used for comparison

between dental caries and independent variables and between BC and CA VI activity (α =

0.05). Results: At baseline, CA VI activity decreased significantly after the cariogenic

challenge in CF children (p=0.037). No change in this parameter was noted for CL group at

baseline and follow-up (p=0.825 and p=0.232, respectively). At follow-up, CA VI activity

decreased significantly only at CF and AC group (p=0.028 and 0.027 respectively). The SSFR

significantly increased after cariogenic challenge in all groups at baseline (p<0.05). At the

follow-up SSFR was higher only at the AC group (p=0.001). BC decreased in all groups after

cariogenic challenge at the baseline and follow-up (p<0.05) and values before rinse at

baseline were negatively correlated to CA VI activity after rinse. At baseline, we found a

moderate negative correlation between the salivary CA VI activity before and after sucrose

rinse and dental caries in CL group (p=0.004 and 0.020 respectively). At follow-up, the same

trend was noted only before sucrose rinse (p=0.013). Conclusion: In summary, this study

demonstrated the participation of CA VI on the BC of saliva and suggest that children who

had caries at baseline and continued to develop caries CA VI activity remains active after

cariogenic challenge as a protection mechanism.

Key Words: carbonic anhydrase VI, children, caries

25

Introduction

Dental caries is a dynamic process caused by acids produced by bacteria inside a

adherent biofilm that causes many cycles of demineralization and remineralization

(Featherstone, 2008). The disease is one of the most common chronic disease of childhood, a

serious public health problem in both developing and industrialized countries (Colak,

Dulgergil, Dalli, & Hamidi, 2013). Among the several factors involved in the multifactorial

etiology of dental caries, dietary sugars were recognized as the major cause of caries process

because they provide a substrate for cariogenic oral bacteria to flourish and to generate

enamel-demineralizing acids (Sheiham & James, 2015).

In the caries dynamic process, saliva is a protective factor against hard tissue loss and

is essential for the maintenance of oral health. Saliva contains inorganic compounds and

multiple proteins that affect conditions in the oral cavity and locally on the tooth surfaces. In

addition, its neutralizing and remineralizing properties are important for healthy tooth

structures (Dawes, 2003). In this regard, factors as the salivary flow rate and the buffering

capacity act as protective in the carious process and have direct influence on the evaluation of

the caries risk (Leone & Oppenheim, 2001; Tenovuo, 1997). To prevent the pH from

decreasing to a critical level, saliva contains specific buffer mechanisms such as bicarbonate,

phosphate and some protein systems, which have a buffering effect that neutralizes acids that

oral cavity is exposed (Fejerskov & Kidd, 2007).

The main buffering system in stimulated saliva is the carbonic acid/bicarbonate buffer

that is based on the equilibrium HCO-3

+ H+ ↔H2CO3↔ CO2 + H2O, and is catalyzed by the

isoenzyme carbonic anyhydrase VI (Breton, 2001). This enzyme is part of a group of

isoenzymes that participate in a variety of physiological processes on the body that involve

pH regulation, CO2 and HCO3-

transport, ion transport, and water and electrolyte balance by

catalyzing the reversible reaction described above (Kivela, Parkkila, Parkkila, Leinonen, &

Rajaniemi, 1999a). CA VI is the only secreted isoenzyme of the CA family. It is secreted into

saliva by serous acinar cells of the human parotid and submandibular glands (Parkkila et al.,

1990). The presence of the enzyme was proved and quantified at the saliva and the presence

of CA VI in the biofilm and its ability to connect to it and keep its activity in this place also

was suggested. In this regard, early investigations suggested that in this site the enzyme

catalyze the conversion of salivary bicarbonate and microbe-delivered hydrogen ions to

26

carbon dioxide and water (Leinonen, Kivela, Parkkila, Parkkila, & Rajaniemi, 1999; Parkkila,

Parkkila, Vierjoki, Stahlberg, & Rajaniemi, 1993). Therefore, by this mechanism, this

enzyme would protect teeth by catalyzing the most important buffer system in the oral cavity,

thus accelerating the removal of acid (H+) from the local microenvironment of the tooth

surface (Kivela, Parkkila, Parkkila, & Rajaniemi, 1999b). Later, it was suggested the role of

CA VI in regulating dental biofilm pH (Kimoto, Kishino, Yura, & Ogawa, 2006).

The participation of CA VI on the caries process is not completely elucidated and

literature shows conflicting results. Most of studies that investigated the role of CA VI on

dental caries just determined the salivary concentration of CA VI, however, a high

concentration of this isoenzyme in saliva does not necessarily mean that all enzyme is active

in the middle (Aidar et al., 2013). Studies show a negative correlation between the CA VI

salivary levels and caries and raised the hypothesis that CA VI present in saliva protected

enamel surfaces from caries. (Kivela et al., 1999b; Szabo, 1974). However, a previous

investigation found no evidence of the relationship between the concentration of the

isoenzyme and dental caries (Ozturk et al., 2008). Later evidence demonstrated that the

activity of CA VI was higher in saliva of preschool children with caries, highlighting the

relevance of the isoenzyme being active in those subject who are frequently expose to

cariogenic challenges (Frasseto et al., 2012). Although some of the previously cited studies

have shown that CA VI isoenzyme is present in saliva, the results of its relationship with

caries are conflicting and needs to be further investigated. Studies evaluating the behavior of

this isoenzyme over time have not been reported in the literature. Thus, the aim of this follow-

up study was to investigate the relationship among dental caries and salivary carbonic

anhydrase VI activity, buffering capacity and stimulated salivary flow rate in 48 to 78 month-

old children.

Materials and methods

Ethical Considerations

This study was approved by the Ethics Committee in Research of Piracicaba Dental

School University of Campinas (UNICAMP) under protocol no. 014/2012. The Secretaria

Municipal de Saúde of Piracicaba city of the State of Sao Paulo selected the two urban

nurseries that could be used on the research. The procedures were explained to the parents of

the subjects involved, and an informed written consent was obtained prior to the investigation.

27

At baseline and follow-up evaluations, children received a kit containing a toothbrush,

fluoride toothpaste (1100 ppm F) and oral hygiene instructions. In addition, children who

needed dental treatment were referred to receive comprehensive dental care at the Pediatric

Dentistry Department of Piracicaba Dental School-University of Campinas.

Subjects

Three hundred children attending public pre-schools in the fluoridated (0.7 ppm F)

urban area of Piracicaba, São Paulo state, were invited to take part in this study. At baseline,

104 children of both genders 53 (50.97 %) girls and 51 (49.03 %) boys of low socioeconomic

level aging 48 to 78 months were allocated for the study. After a one-year of follow-up, 47

children (27 boys and 20 girls), mean age 72.3 months, remained in the cohort (55.8% of

dropout rate) (Fig.1). This occurred because most of children, who were seven years old at

follow-up, moved from their original pre-school and could not be found. After clinical

examination, children were divided into three groups:

Caries free children, CF group (n=10): decayed, missing and filled surfaces

plus early caries lesion=0 (dmft+ ECL), children who were caries-free at the

beginning of the study and remained caries-free after one year;

Children presenting caries lesions, CL group (n=20): dmft+ECL ≥1. Children

who had one or more caries lesions at the beginning of the study and continued

to develop caries after one year;

Children with arrested caries or that had negative caries increment after one

year, AC group (n=17).

Children with and without caries lesions were included in the study. The exclusion

criteria of the study were children with systemic diseases, those who were under antibiotic

therapy or taking medications for central nervous system diseases, children presenting

communication or neuromotor difficulties as well as those with severe fluorosis, dental

hypoplasia, children who refused the procedures or whose parents refused to sign the

informed consent document were also excluded.

28

Calibration of the Examiner, Clinical examination and Caries Assessment

The examination considered all components of the World Health Organization

diagnostic criteria and the early caries lesions (WHO+ECL) (Assaf, de Castro Meneghim,

Zanin, Tengan, & Pereira, 2006). Dental examinations of each child were performed at

baseline and after 1 year from the start of the study by only one examiner (T.R.S.) after

calibration following cross-infection control measures. At first, clinical slides were used to

train the examiner regarding the use of the WHO + ECL criteria. A clinical training session,

using a gold standard for criteria, was held to achieve an acceptable level of agreement before

the intraexaminer reliability assessment. The entire time spent on the calibration process (eg,

theoretical discussions, training, and calibration exercises) was 30 hours. Intraexaminer

reliability (Kappa calculation) regarding all components of the diagnostic criteria was

assessed by re-examination of approximately 10% of children (both at baseline and at follow-

up), with a 1-week-interval period. Kappa values at baseline and follow-up for the tooth

surfaces were 0.82 and 0.80, respectively.

The examination was carried out with a focusable flashlight, a mirror and a ball-ended

probe. Gauze was employed in order to dry or clean teeth, favoring the identification of early

caries lesions. The units of evaluation used in the clinical examinations were d, m, f and s

(decayed, missing and filled surfaces). Findings were recorded by a dental assistant.

Presence of visible biofilm examination

The presence of visible biofilm was observed on buccal surfaces of the four upper

incisors by visual examination (Alaluusua & Malmivirta, 1994) and recorded in the clinical

record as 0 for no visible biofilm and 1 for presence of visible biofilm.

Salivary Flow Rate and Buffering Capacity Determination

To avoid influence of the circadian rhythms, saliva samples were collected in the

morning between 9 and 11 a.m., 2h after eating, drinking or chewing gum. Before sampling,

children were left to relax for 5min. Each allocated children was instructed to chew a piece of

parafilm weighing approximately 0.18g Parafilm® (Sigma Chemical Company, Missouri,

USA) and to deposit whole saliva in a Falcon® tube (BD Biosciences, California, USA) for 5

min as previously described (Dawes & Kubieniec, 2004). If the secretion rate was low, the

29

collection was continued further for a maximum of 10 min and saliva was deposited in a

sterile graduated ice-cooled container to prevent sample warming (Kirstila, Hakkinen,

Jentsch, Vilja, & Tenovuo, 1998). All subjects were instructed to swallow at time zero. SSFR

was calculated by measuring the total volume of saliva and dividing it by the collection time,

and was expressed as mL/min (Ericsson & Hardwick, 1978). After the first saliva collection, a

second collection of stimulated saliva was performed 5 minutes after a rinse with 5 ml of a

20% sucrose solution for 1 min (Frasseto et al, 2012). This procedure was performed to

determine the effects that exposure of the oral environment to a cariogenic challenge would

have on the salivary flow and buffering capacity, as well as on the activity of the CA VI

isoenzyme.

After collection, saliva samples were immediately transported to the laboratory in a

box containing ice sealed with plastic film to prevent the carbon dioxide elimination. BC of

saliva was determined by Ericsson method (Ericsson, 1959). Thus, 0.5 mL of saliva was

placed in a tube with 1.5 mL of HCl (0.005 mol/L), the tube was shaken mixed for 30 seconds

using a vortex (AP 56, Phoenix) and a waiting period of 20 min was adopted for carbon

dioxide elimination and the solution pH was measured. Buffering capacity was assessed using

an electronic pH meter (Orion Analyzer Model 420A, USA).

After calculating the SSFR, and BC, saliva samples were centrifuged at 5.000 rpm for

10 min at 4oC, and stored in 2.0 mL microtubes, and were frozen at –40°C for later

determination of CA VI activity.

Quantification of CA VI Activity in Saliva

The determination of CA VI activity was performed by the zymography method using

a modified protocol (Aidar et al., 2013; Kotwica et al., 2006). After being thawed, 100 μL of

saliva was added to 100 μL of Tris buffer. The solution was stirred before being placed on

acrylamide gel at 30% and bisacrylamide at 0.8%. After that, 10 μL of this sample was placed

in each channel of the gel, which remained for 1h: 50min at 140 V and at 4°C. After

electrophoresis, the gel was stained with 0.1% bromothymol blue for 10 min. CA VI activity

was observed after immersing the gel in distilled deionized water saturated with CO2. The

gels were photographed, and images were quantified using the Image J software (Collins,

2007) was used to calculated the luminescence in area of the band, which expressed CA VI

activity in numerical values (pixels/area).

30

Statistical analysis

The dependent variable was dental caries. The independent variables were: SSFR, BC

and CA VI activity, before and after a sucrose rinse as well as presence of biofilm visible at

the upper incisors. Data normality was checked using the Shapiro-Wilk test. Descriptive

analysis by inferential statistics was performed and percentages, medians and interquatile

ranges (IQR) were calculated for quantitative data of each independent variable before and

after a 20% sucrose solution rinse (SSFR, BC and CAVI activity). Comparisons inside each

group at baseline and follow-up before and after sucrose rinse were performed using the

Wilcoxon test. Comparisons between the three groups were done using the Kruskal-Wallis

test. Association between biofilm presence and dental caries at baseline and follow-up was

determined using Fisher test. The Spearman correlation coefficient was calculated between

SSFR, BC and CAVI activity and caries index at baseline and follow-up, also between BC

and CA VI activity. We considered the 5% level of significance. Data were analyzed using the

Statistical Package for Social Science 13.0 (SPSS Inc., IL, USA).

Results

The means and standard deviations of numbers of surfaces affected by caries at

baseline and at follow-up in the studied population was 4.2 ± 4.8 and 5.3 ± 6.2 respectively

(p=0.005, Wilcoxon test). The 1-year caries increment was 1.1 ± 2.5. In the CL group and AC

group the mean numbers at baseline and follow-up were 6.5 ± 5.6 and 9.9 ± 6.5 / 3.94 ± 3.3

and 3.0 ± 3.2 respectively (p<0.005, Wilcoxon test). We also found a positive association

between biofilm presence and caries at baseline and follow-up (p=0.037 and p=0.066

respectively for Fisher test).

Data of figure 2 demonstrate that at baseline after sucrose rinse, the SSFR significantly

increased in the three investigated groups (p = 0.030; p=0.024 and p=0.002 for the CF group,

CL group and AC group respectively). The same trend of result was found for the whole

sample (p <0.001). At follow-up, results showed that the SSFR significantly increased only

for the whole sample as well as for the AC group (p= 0.010 and p= 0.001, respectively).

Data of figure 3 demonstrate that at the baseline in all groups as well as in the whole

sample, BC significantly decreased after sucrose rinse (p= 0.005, p= 0.001, p= 0.005 and

p<0.001 for CF, CL, AC group and for the whole sample, respectively. At follow-up, we

31

noticed the same decreases in BC after sucrose rinse (p= 0.047, p= 0.003, p=0.001, p<0.001

respectively for the same).

Table 1 shows that at baseline, a significant decrease in CA VI activity occurred after

sucrose rinse for the whole sample as well as for the CF group (p= 0.015 and p= 0.037

respectively). On the other side, at this time no change in this parameter was noted for the CL

group (p= 0.825). At follow-up, after sucrose rinse, the CA VI activity was significantly lower

for the whole sample, as well as for the CF and AC groups (p=0.03, p=0.028 and p=0.027

respectively). However, no change in CA VI activity was found for the CL group (p=0.232)

(Table 2). We could not find any difference among groups related to CA VI activity and its

variation at baseline and follow-up (Table 1 and 2).

Correlations between dental caries and variable characteristics at baseline and follow-

up are shown in Table 3. The results demonstrate that at baseline, variables that showed a

significant negative correlations with dental caries were BC after rinse (r = -0.345 and p =

0.017) and CA VI activity before rinse (r = -0.305 and p = 0.037). At follow-up, BC after

sucrose rinse was the only variable that showed a negative correlation with caries. (r = -0.308

and p = 0.038).

Table 4 shows that for the CL group, there is a significant negative moderate

correlation between dental caries and CA VI activity before and after sucrose rinse at baseline

(r = -0.609 p = 0.004 and r=-0.516 p=0.020 respectively). At follow-up a significant negative

correlation between dental caries and CA VI activity before sucrose rinse was also found (r =

-0.545 p = 0.013).

Table 5 reveals the correlations between BC and CA VI activity before and after

sucrose rinse at baseline and follow-up. A negative correlation between BC before sucrose

rinse and CA VI activity before sucrose rinse was detected at follow-up (r=-0.366, p=0.011)

but not at baseline. This table also reveals a negative correlation between BC after sucrose

rinse and CA VI activity before sucrose rinse only at follow-up (r=-0.378, p=0.009).

Discussion

Our study investigated for the first the time behavior of CA VI activity in whole

saliva of children before and 5 minutes after a cariogenic challenge in caries-free children, as

well as in those with caries and with arrested caries after one year of follow-up. The results of

the present study showed that the CA VI activity exhibits a different behavior when submitted

32

to a cariogenic challenge whether children were caries-free, had only arrested caries or had

caries.

At baseline and follow-up, the CF group as well as the AC group at the follow-up

showed significant decreases in the CA VI activity after sucrose rinse. These results were

expected and can partially be explained if we consider that caries-free children as well as

those having arrested caries are less frequently submitted to pH drops as a consequence of low

acid production after the cariogenic challenge which decreased enzyme activity, since the acid

is also a substrate for the reaction. Carbonic anhydrase VI catalyzes the reaction of HCO-3

+

H+ ↔H2CO3↔ CO2 + H2O in both directions and it is possible that it may neutralize the

media (Leinonen et al., 1999). This result is in accordance with the negative correlation

between the BC before rinse and activity CA VI after rinse and at the baseline and the supply

of H+ ions as a substrate for the reaction catalyzed by CA VI. On the other hand, early

investigations found no association between salivary pH, BC and CA VI concentration in

saliva (Kivela et al., 1997; Parkkila et al., 1993). However, it is important to notice that it is

known the CA VI isoenzyme catalyzes the reaction that balances pH in the oral cavity after a

cariogenic challenge, so the results of this study was expected.

Another result of this study was that at the two periods of study, the CL group (dmft >

0) showed no change in CA VI activity after sucrose rinse. Children having caries are

frequently exposed to high daily sugar consumption and it is known that this sugar

consumption pattern is significantly correlated with early childhood caries (Nobre dos Santos,

Melo dos Santos, Francisco, & Cury, 2002; Parisotto et al., 2010). In the presence of a sugar-

rich diet and a greater acid formation by metabolism of dental biofilm microbiota in this

group, there is a possibility that salivary CA VI activity remained unchanged after the sucrose

rinse to provide a higher protection against dental caries. The suggested mechanism would be

that that in these individuals salivary CA VI would neutralize greater amounts of acid mainly

in the form of latic, acetic, formic and propionic produced by the microbial metabolism in the

mouth and over dental surfaces. This acid neutralization would be accomplished via

conversion of salivary bicarbonate and microbe-delivered hydrogen ions to carbon dioxide

and water catalyzed by salivary CA VI (Leinonen et al., 1999). In line with this assumption,

in this group, we found a moderate negative correlation between CA VI activity before as

well as after sucrose rinse and dental caries (Table 4). A further explanation for this finding,

could be that if the CO2 + H2O ↔ H+ + HCO

3– reaction is fueled by HCO

3- provided by

33

salivary CA II supply and H+ delivery by the microbial metabolism of carbohydrates, the

reaction would work in a reverse way by neutralizing the salivary pH and this fact may have a

role in children with caries. And this was confirmed by the essential feature of this buffer

system under the conditions prevailing in the oral cavity is the phase conversion of carbon

dioxide from a dissolved state into a volatile gas (Kivela et al., 1999a). In the other side, in

caries-free subjects and in those who had arrested caries at baseline and at follow-up, after the

cariogenic challenge, there was a significant reduction in the CA VI activity probably as

consequence of a low acid production of in the oral environment since these individuals are

less frequently exposed to cariogenic carbohydrates and consequently, to regular pH falls in

saliva and dental biofilm (Nobre dos Santos et al., 2002, Parisotto et al., 2010). In this way,

acid buffering in the oral environment provided by CA VI activity would not be so necessary

in these individuals. In this regard, previous investigations suggested that the isoenzyme

participates not only in preventing caries development by always maintaining the pH of oral

cavity at a level higher than the critical one, but also appears to be active during the

occurrence of a cariogenic challenge in individuals with the disease already installed.

(Frasseto et al., 2012; Leinonen et al., 1999).

Our study, did not notice any difference in the results of CA VI activity among groups

neither before nor after the cariogenic challenge. Regarding before rinse data our results are in

accordance with Ozturk et al. (2008) who also did not find any difference in CA VI

concentration between caries and caries-free young adults. However, different findings were

obtained by Frasseto et al. (2012). These authors found a higher CA VI activity in the caries

group than in the caries-free group before sucrose rinse (p=0.0516). Concerning CA VI

activity after sucrose rinse, our results are in line with Frasseto et al. (2012).

Another result of this study was that at baseline and at follow-up, there was no

difference among groups concerning the variation of CAVI activity. Our data are not in line

with the results found by Frasseto et al. (2012), who detected that variation of CA VI activity

was significantly higher in the CL group than in the CF group. A possible explanation for

these findings could be the large inter-individuals variation of CA VI concentration and

activity as pointed out in several studies (Frasseto et al., 2012; Kivela, Laine, Parkkila, &

Rajaniemi, 2003; Parkkila, Parkkila, & Rajaniemi, 1995).

Based on the findings regarding the CA VI behavior in the oral environment, the

isoenzyme should not be interpreted as a factor that favors the decay process, but as protective

34

salivary protein acting in an attempt neutralize the pH of acid produced as previously

demonstrated by Kimoto et al. (2006). This mechanism would be most important especially in

subjects having caries to whom the enzyme would be more active after a cariogenic challenge,

as a catalyst agent in the buffering reaction of bicarbonate in saliva. The findings of this study

suggest that the CA VI behavior did not change with pH drop in the oral cavity at CL group.

In line with this thought, the recent data of a genetic study that suggest that salivary CA VI

plays an important role in protecting teeth from caries (Li, Hu, Zhou, Xie, & Zhang, 2015).

The results of the present study also showed a moderate negative correlation between

CA VI activity before rinse and dental caries at the baseline as well as at follow-up in the CL

group (Table 5). There is a possibility that in these subjects the higher enzyme activity would

act better to control oral pH under normal conditions before and after the cariogenic

challenge, in the oral cavity. These results are in agreement with Kivela et al. (1999b), who

claimed that this correlation with CA VI concentration was most significant in subjects with

poor oral hygiene. In line with this assumption, our results showed a significant association

between dental caries and biofilm presence. In the other side, our results differed from those

obtained by Ozturk et al. (2008) and Frasetto et al., (2012) who did not find any correlation

between dental caries and CA VI concentration and activity respectively.

Saliva is believed to be one of the most important host factors and an essential

mediator controlling the speed and direction of the cariogenic pathway (Gao, Jiang, Koh, &

Hsu, 2016). Our study also showed that at baseline the SSFR increased significantly after

sucrose rinse in the three groups. The results are in line Frasseto et al. (2012). However, at

follow-up this change was noted only in the AC group. These findings can be explained if we

consider the mechanical and gustatory stimulation promoted by rinse and the stimulus of the

salivary glands provided by sucrose (Proctor, 2016). These results also are in accordance with

found by Dawes & Kubieniec (2004). We did not found any difference among groups

regarding SSFR at baseline and follow-up and any correlation between caries and SSFR at

baseline or at follow-up. In line with this assumption, previous studies have shown that in

individuals with normal salivary flow rates, the relationship between salivary flow and caries

has little or no predictive value for the occurrence of disease (Lenander-Lumikari &

Loimaranta, 2000).

Salivary pH and buffering capacity are known to be central factors protecting teeth

from caries and could be considered a moderate risk factor for its prevalence and incidence

35

(Gao et al., 2016; Kivela et al., 1999b). Concerning BC, we noticed a significant decrease in

all groups at baseline and follow-up after sucrose rinse. This result is in line with those

obtained by Frasseto et al. (2012) for biofilm pH after sucrose rinse in caries and caries-free

children. Moreover, we also found a significant negative correlation between BC after sucrose

rinse and dental caries at baseline as well as at follow-up. For baseline data, similar results

were found by Kivella et al. (1999b) and are in line with previous studies (Kuriakose,

Sundaresan, Mathai, Khosla, & Gaffoor, 2013; Ruiz Miravet, Montiel Company, & Almerich

Silla, 2007; Singh et al., 2015; Yildiz, Ermis, Calapoglu, Celik, & Turel, 2016). However,

these authors did not perform sucrose rinse in their investigation. We did not find any

difference among groups concerning BC. For baseline data, these results are in agreement

with previous investigations (Peres et al., 2010; Yarat et al., 2011).

In summary, this study suggests that the enzyme CA VI provides a protective role

when the oral cavity environment is submitted to cariogenic challenge. In addition, a low CA

VI activity showed to correlate with caries prevalence before cariogenic challenge mainly in

caries children. Our findings demonstrate the importance of this enzyme as a participant of the

mouth physiology in controlling saliva after cariogenic challenges. In conclusion, this study

demonstrated that CA VI isoenzyme remains active in saliva of children with caries after

cariogenic challenge with sucrose and suggests the participation of CA VI on the BC of

saliva.

Funding

The study was supported by FAPESP (2012/02516-1 and 2012/15834-1).

Competing Interests

The authors reported no conflict of interest. The authors alone were responsible for the

content and the writing of the paper.

Ethical Approval

The protocol was approved by the local Bioethics Committee of Piracicaba

Dental School, University of Campinas, Piracicaba, SP, Brazil (Protocols #014/2012).

36

Acknowledgements

This paper was based on a thesis submitted by the first author to Piracicaba Dental

School, University of Campinas, in partial fulfillment of the requirements for a DDS degree in

Dentistry (Pediatric Dentistry area). This study was supported by FAPESP (2012/02516-1 and

2012/15834-1). We thank the Secretary of Education and Health of Piracicaba-SP/Brazil for

collaborating with this research. We specially thank the volunteers and their parents for

participating in this research.

37

Referências Bibliográficas

Aidar, M., Marques, R., Valjakka, J., Mononen, N., Lehtimaki, T., Parkkila, S., & Line, S. R.

(2013). Effect of genetic polymorphisms in CA6 gene on the expression and catalytic

activity of human salivary carbonic anhydrase VI. Caries Res, 47(5), 414-420.

Alaluusua, S., & Malmivirta, R. (1994). Early plaque accumulation--a sign for caries risk in

young children. Community Dent Oral Epidemiol, 22(5 Pt 1), 273-276.

Assaf, A. V., de Castro Meneghim, M., Zanin, L., Tengan, C., & Pereira, A. C. (2006). Effect

of different diagnostic thresholds on dental caries calibration - a 12 month evaluation.

Community Dent Oral Epidemiol, 34(3), 213-219.

Breton, S. (2001). The cellular physiology of carbonic anhydrases. JOP, 2(4 Suppl), 159-164.

Colak, H., Dulgergil, C. T., Dalli, M., & Hamidi, M. M. (2013). Early childhood caries

update: A review of causes, diagnoses, and treatments. J Nat Sci Biol Med, 4(1), 29-

38.

Collins, T. J. (2007). ImageJ for microscopy. Biotechniques Physiologist, 43, 25-30.

Dawes, C. (2003). What is the critical pH and why does a tooth dissolve in acid? J Can Dent

Assoc, 69(11), 722-724.

Dawes, C., & Kubieniec, K. (2004). The effects of prolonged gum chewing on salivary flow

rate and composition. Arch Oral Biol, 49(8), 665-669.

Ericsson, Y. (1959). Clinical investigations of the salivary buffering action. Acta Odontol

Scand, 17, 131–165.

Ericsson, Y., & Hardwick, L. (1978). Individual diagnosis, prognosis and counselling for

caries prevention. Caries Res, 12 Suppl 1, 94-102.

Featherstone, J. D. (2008). Dental caries: a dynamic disease process. Aust Dent J, 53(3), 286-

291.

Fejerskov, O., & Kidd, E. (2007). Dental caries - The disease and its clinical management.

São Paulo: Santos.

Frasseto, F., Parisotto, T. M., Peres, R. C., Marques, M. R., Line, S. R., & Nobre Dos Santos,

M. (2012). Relationship among salivary carbonic anhydrase VI activity and flow rate,

biofilm pH and caries in primary dentition. Caries Res, 46(3), 194-200.

Gao, X., Jiang, S., Koh, D., & Hsu, C. Y. (2016). Salivary biomarkers for dental caries.

Periodontol 2000, 70(1), 128-141.

38

Kimoto, M., Kishino, M., Yura, Y., & Ogawa, Y. (2006). A role of salivary carbonic

anhydrase VI in dental plaque. Arch Oral Biol, 51(2), 117-122.

Kirstila, V., Hakkinen, P., Jentsch, H., Vilja, P., & Tenovuo, J. (1998). Longitudinal analysis

of the association of human salivary antimicrobial agents with caries increment and

cariogenic micro-organisms: a two-year cohort study. J Dent Res, 77(1), 73-80.

Kivela, J., Laine, M., Parkkila, S., & Rajaniemi, H. (2003). Salivary carbonic anhydrase VI

and its relation to salivary flow rate and buffer capacity in pregnant and non-pregnant

women. Arch Oral Biol, 48(8), 547-551.

Kivela, J., Parkkila, S., Metteri, J., Parkkila, A. K., Toivanen, A., & Rajaniemi, H. (1997).

Salivary carbonic anhydrase VI concentration and its relation to basic characteristics

of saliva in young men. Acta Physiol Scand, 161(2), 221-225.

Kivela, J., Parkkila, S., Parkkila, A. K., Leinonen, J., & Rajaniemi, H. (1999a). Salivary

carbonic anhydrase isoenzyme VI. J Physiol, 520 Pt 2, 315-320.

Kivela, J., Parkkila, S., Parkkila, A. K., & Rajaniemi, H. (1999b). A low concentration of

carbonic anhydrase isoenzyme VI in whole saliva is associated with caries prevalence.

Caries Res, 33(3), 178-184.

Kotwica, J., Ciuk, M. A., Joachimiak, E., Rowinski, S., Cymborowski, B., & Bebas, P.

(2006). Carbonic anhydrase activity in the vas deferens of the cotton leafworm -

Spodoptera littoralis (Lepidoptera: Noctuidae) controlled by circadian clock. J Physiol

Pharmacol, 57 Suppl 8, 107-123.

Kuriakose, S., Sundaresan, C., Mathai, V., Khosla, E., & Gaffoor, F. M. (2013). A

comparative study of salivary buffering capacity, flow rate, resting pH, and salivary

Immunoglobulin A in children with rampant caries and caries-resistant children. J

Indian Soc Pedod Prev Dent, 31(2), 69-73.

Leinonen, J., Kivela, J., Parkkila, S., Parkkila, A. K., & Rajaniemi, H. (1999). Salivary

carbonic anhydrase isoenzyme VI is located in the human enamel pellicle. Caries Res,

33(3), 185-190.

Lenander-Lumikari, M., & Loimaranta, V. (2000). Saliva and dental caries. Adv Dent Res, 14,

40-47.

Leone, C. W., & Oppenheim, F. G. (2001). Physical and chemical aspects of saliva as

indicators of risk for dental caries in humans. J Dent Educ, 65(10), 1054-1062.

39

Li, Z. Q., Hu, X. P., Zhou, J. Y., Xie, X. D., & Zhang, J. M. (2015). Genetic polymorphisms

in the carbonic anhydrase VI gene and dental caries susceptibility. Genet Mol Res,

14(2), 5986-5993.

Nobre dos Santos, M., Melo dos Santos, L., Francisco, S. B., & Cury, J. A. (2002).

Relationship among dental plaque composition, daily sugar exposure and caries in the

primary dentition. Caries Res, 36(5), 347-352.

Ozturk, L. K., Furuncuoglu, H., Atala, M. H., Ulukoylu, O., Akyuz, S., & Yarat, A. (2008).

Association between dental-oral health in young adults and salivary glutathione, lipid

peroxidation and sialic acid levels and carbonic anhydrase activity. Braz J Med Biol

Res, 41(11), 956-959.

Parisotto, T. M., Steiner-Oliveira, C., Duque, C., Peres, R. C., Rodrigues, L. K., & Nobre-dos-

Santos, M. (2010). Relationship among microbiological composition and presence of

dental plaque, sugar exposure, social factors and different stages of early childhood

caries. Arch Oral Biol, 55(5), 365-373.

Parkkila, S., Kaunisto, K., Rajaniemi, L., Kumpulainen, T., Jokinen, K., & Rajaniemi, H.

(1990). Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II,

and I in human parotid and submandibular glands. J Histochem Cytochem, 38(7), 941-

947.

Parkkila, S., Parkkila, A. K., & Rajaniemi, H. (1995). Circadian periodicity in salivary

carbonic anhydrase VI concentration. Acta Physiol Scand, 154(2), 205-211.

Parkkila, S., Parkkila, A. K., Vierjoki, T., Stahlberg, T., & Rajaniemi, H. (1993). Competitive

time-resolved immunofluorometric assay for quantifying carbonic anhydrase VI in

saliva. Clin Chem, 39(10), 2154-2157.

Peres, R. C., Camargo, G., Mofatto, L. S., Cortellazzi, K. L., Santos, M. C., Nobre-dos-

Santos, M., . . . Line, S. R. (2010). Association of polymorphisms in the carbonic

anhydrase 6 gene with salivary buffer capacity, dental plaque pH, and caries index in

children aged 7-9 years. Pharmacogenomics J, 10(2), 114-119.

Proctor, G. B. (2016). The physiology of salivary secretion. Periodontol 2000, 70(1), 11-25.

Ruiz Miravet, A., Montiel Company, J. M., & Almerich Silla, J. M. (2007). Evaluation of

caries risk in a young adult population. Med Oral Patol Oral Cir Bucal, 12(5), E412-

418.

Sheiham, A., & James, W. P. (2015). Diet and Dental Caries: The Pivotal Role of Free Sugars

Reemphasized. J Dent Res, 94(10), 1341-1347.

40

Singh, S., Sharma, A., Sood, P. B., Sood, A., Zaidi, I., & Sinha, A. (2015). Saliva as a

prediction tool for dental caries: An in vivo study. J Oral Biol Craniofac Res, 5(2), 59-

64.

Szabo, I. (1974). Carbonic anhydrase activity in the saliva of children and its relation to caries

activity. Caries Res, 8(2), 187-191.

Tenovuo, J. (1997). Salivary parameters of relevance for assessing caries activity in

individuals and populations. Community Dent Oral Epidemiol, 25(1), 82-86.

Yarat, A., Ozturk, L. K., Ulucan, K., Akyuz, S., Atala, H., & Isbir, T. (2011). Carbonic

anhydrase VI exon 2 genetic polymorphism in Turkish subjects with low caries

experience (preliminary study). In Vivo, 25(6), 941-944.

Yildiz, G., Ermis, R. B., Calapoglu, N. S., Celik, E. U., & Turel, G. Y. (2016). Gene-

environment Interactions in the Etiology of Dental Caries. J Dent Res, 95(1), 74-79.

41

Figure captions

Fig. 1. Subjects allocation and disposition. * The division of groups was done after the

follow-up period of study. The comparisons at the baseline were done with the disposition of

groups adopted at the end of the study to all comparisons.

Fig. 2. Stimulated salivary flow rate before (BR) and after rinse (AR) at the baseline (T0) and

follow-up (T1) in caries free, arrestment caries and caries group.

42

Fig. 3. Buffer capacity before (BR) and after rinse (AR) at the baseline (T0) and follow-up

(T1) in caries free, arrestment caries and caries group.

43

Tables

Table 1. Medians and interquartile ranges (IQR) of CA VI activity before and after a 20%

sucrose solution rinse and its variation (Δ) at baseline.

Groups Before rinse After rinse p value* Δ CA VI

All children (n=47) 0.69 (0.73) 0.40 (0.50) 0.015 -0.05 (0.39)

CF (n=10) 0.89 (0.58) 0.50 (0.50) 0.037 -0.11 (0.43)

CL (n=20) 0.51 (0.74) 0.44 (0.47) 0.825 0.01(0.28)

AC (n=17) 0.71 (0.68) 0.29 (0.44) 0.076 -0.19 (0.51)

p** 0.25 0.81 0.252

CF: caries free group. CL: caries lesion group. AC: arrestment caries group. Δ CA VI: variation of CA VI activity, difference

between CAVI activity after rinse and before rinse at the baseline and follow-up. IQR: Interquatile range. p values derived

from Wilcoxon* and Kruskal-Wallis** test.

Table 2. Medians and interquartile ranges (IQR) of CA VI activity before and after a 20%

sucrose solution rinse and its variation (Δ) at follow-up.

Groups Before rinse After rinse p value* Δ CA VI

All children (n=47) 0.42 (0.69) 0.26 (0.36) 0.03 -0.09 (0.42)

CF (n=10) 0.28 (0.34) 0.24 (0.32) 0.028 -0.11 (0.2)

CL (n=20) 0.36 (0.8) 0.38 (0.49) 0.232 -0.07 (0.31)

AC (n=17) 0.46 (0.68) 0.23 (0.36) 0.027 -0.16 (0.5)

p** 0.98 0.532 0.715

CF: caries free group. CL: caries lesion group. AC: arrestment caries group. Δ CA VI: variation of CA VI activity, difference

between CAVI activity after rinse and before rinse at the baseline and follow-up. IQR: Interquatile range. p values derived

from Wilcoxon* and Kruskal-Wallis** test.

44

Table 3. Spearman correlation coefficients (r) and probabilities of statistical significance (p)

between dental caries and independent variables.

Variables Dental Caries

Baseline Follow-up

r p value r p value

SSFR BR baseline -0.009 0.951 -0.082 0.585

SSFR AR baseline -0.054 0.717 -0.111 0.459

SSFR BR Follow-up -0.110 0.461 -0.213 0.151

SSFR AR Follow-up -0.107 0.475 -0.223 0.132

BC BR baseline -0.055 0.712 -0.152 0.306

BC AR baseline -0.161 0.281 -0.239 0.105

BC BR Follow-up -0.183 0.218 -0.198 0.183

BC AR Follow-up -0.345 0.017 -0.303 0.038

CAVI BR baseline -0.305 0.037 -0.286 0.051

CAVI AR baseline -0.201 0.175 -0.106 0.478

CAVI BR Follow-up 0.77 0.605 0.075 0.614

CAVI AR Follow-up 0.169 0.256 0.137 0.359

Δ CAVI baseline 0.164 0.272 0.268 0.068

Δ CAVI Follow-up 0.079 0.597 0.056 0.707

SSFR: stimulated salivary flow rate. BC: buffer capacity. CAVI: carbonic anhydrase activity. Δ CAVI: variation of CAVI

activity. BR: before rinse. AR: after rinse.

Table 4. Spearman correlation coefficients (r) and probabilities of statistical significance (p)

between dental caries and CA VI activity in the caries lesion group.

Variables Dental caries

Baseline Follow-up

r p value r p value

CA VI / Before rinse -0.609 0.004 -0.545 0.013

CA VI / After rinse -0.516 0.020 -0.382 0.096

CAVI: carbonic anhydrase VI activity.

45

Table 5. Spearman correlation coefficients (r) and probabilities of statistical significance (p)

between means of BC at baseline and CA VI activity before and after rinse at baseline and

follow-up.

Correlation analysis variable

Baseline Follow-up

r p value r p value

BC BR x CA VI BR -0.112 0.453 -0.366 0.011

BC BR x CAVI AR -0.397 0.006 -0.089 0.553

BC AR x CA VI BR -0.043 0.774 -0.378 0.009

BC AR x CAVI AR -0.095 0.527 -0.110 0.462

BC: buffer capacity. CAVI: Carbonic anhydrase VI activity. BR: Before rinse. AR: After rinse.

46

2.2 Sucrose increases salivary α-amylase activity in saliva of children: a cross-sectional

study

Artigo submetido ao periódico Caries Research (Anexo 6)

Souza TR1, Rodrigues LP

1, Parisotto TM

2, Nobre-dos-Santos M

3*

1 DDS, MS, student of Department of Pediatric Dentistry, Piracicaba Dental School,

University of Campinas, Piracicaba- SP, Brazil

2 DDS, MS, PhD of the Department of Pediatric Dentistry, Piracicaba Dental

School, University of Campinas, Piracicaba-SP, Brazil

3DDS, MS, PhD, professor of the Department of Pediatric Dentistry, Piracicaba Dental

School, University of Campinas, Piracicaba- SP, Brazil.

Short Title: Salivary amylase activity and dental caries

Corresponding Author: Prof. Marinês Nobre dos Santos, Av. Limeira, 901 Zip Code: 13414-

903, Piracicaba-SP, Brazil, email: [email protected], phone number: +55-19-21065290,

Fax:+55-19-21065218

47

Declaration of Interests

The authors deny any conflicts of interest related to this study.

__________________________

Marinês Nobre dos Santos

48

Abstract

Objective: To investigate the influence of a cariogenic challenge on the salivary amylase

activity (SAA) and the relationship among dental caries, SAA, stimulated salivary flow rate

(SSFR) and buffering capacity (BC) in children. Subjects and Methods: After dental

examination and caries diagnosis 38 children aging 48 to 77 months-old were divided into

two groups: caries free group (CF, n=18) and caries lesion group (CL, n=20). Saliva samples

were collected before and after a 20% sucrose mouth rinse. The activity of SAA was

quantified by enzyme kinetic assay. The SSFR was expressed in mL/ min. The BC was

electronically measured with a pH meter. Wilcoxon and Mann Whitney tests were applied for

comparisons of SSFR and BC data. Independent T test and paired T test were used for SAA

data. Correlations between caries and independent variables were performed using the

Spearman correlation analysis. Results: After sucrose rinse, SSFR significantly increased

(p=0.03 for CF and p=0.038 for CL) and BC significantly decreased (p= 0.009 for CF and

p=0.005 for CL) in both groups. CL group exhibited a significant increase in SAA activity

after sucrose rinse (p=0.024). In this group, after sucrose rinse, SAA activity was significantly

higher than in CF group (p=0.019). We found a positive correlation between caries and SAA

(r= 0.317, p= 0.052). Conclusion: These results suggest that a cariogenic challenge with

sucrose increases the SAA activity in saliva of children having caries.

Key Words: alpha-amylase, children, caries, saliva

49

Introduction

Scientific evidence suggested that dental caries is a biofilm-sugar-dependent disease

[Sheiham and James, 2015], but other factors are involved on its development such as dietary

habits, microorganisms count, oral hygiene and socioeconomic factors [Chaffee et al., 2015;

Parisotto et al., 2015]. Moreover, the protective functions of saliva, like clearance promoted

by salivary flow and pH stability, mainly due to bicarbonate and phosphate buffer systems as

well as the salivary proteins [Dodds et al., 2005] are considered important factors in

modulating the caries process development [Fejerskov and Kidd, 2007].

Among salivary proteins, α-amylase (46-60 kDa) is one of the most plentiful

components in human saliva. It is mainly secreted by the parotid-gland and accounts for 10–

20% of the total protein content [Arhakis et al., 2013]. This enzyme has a biological function

of hydrolytic activity and it is responsible for the initial break down of starch to low

molecular fermentable carbohydrates, such as glucose and maltose, which are fermentable

substrates for many oral bacterial species like S. mutans, the major pathogen of dental caries,

non-mutans streptococci and Actinomyces [Rogers et al., 2001]. Furthermore, early

investigation suggested a possible participation of α-amylase on the protein buffering capacity

with a positive correlation between salivary protein buffering capacity and the amylase

concentration [Cheaib and Lussi, 2013].

The presence of dietary sugars as a fundamental causes of dental caries not only in

children but for all life should be considered [Sheiham and James, 2015]. Fermentable

carbohydrates such mainly as sucrose it also serves as a substrate for the synthesis of

extracellular and intracellular polysaccharides in dental plaque and are considered caries

predictors [Paes Leme et al., 2006; Parisotto et al., 2010]. The combination of sucrose and

starch produces biofilms with more biomass and acidogenicity, and a higher content of water-

insoluble polysaccharides and highest mineral loss and lactobacillus count [Ribeiro et al.,

2005; Duarte et al., 2008]. Also it was demonstrated that the presence of starch hydrolysates

increases the glucan production by GtF B in vitro [Vacca-Smith et al., 1996]. Several lines of

evidence indicated that since the SAA is an abundant constituent of the acquired enamel

pellicle it may modulate bacterial colonization by binding to hydroxyapatite and acting as an

adherence receptor for amylase binding bacteria to the tooth surface. Moreover, this protein

binds with high affinity to a number of the oral streptococci that are early colonizers of the

tooth, including Streptococcus gordonii, S. mitis, S. parasanguis, S. crista and S. salivarius. In

50

solution this binding also contributes to bacterial clearance from oral cavity [Douglas, 1983;

Rogers et al., 2001].

Studies indicate that particularly S. gordonii has in its surface amylase-binding protein

(20-kDa protein) coding by an amylase-binding protein A gene and amylase may also serve as

an adherence receptor with high-affinity for these amylase-binding bacteria [Rogers et al.,

2001]. Bound to bacteria in biofilm, α-amylase may facilitate dietary starch hydrolysis to

provide additional glucose and maltose for metabolism by plaque microorganisms in close

proximity to the tooth surface. This causes local pH to fall below a critical value resulting in

demineralization of tooth tissues [Rogers et al., 2001]. In this way, in presence of α-amylase

the pH fall produced by cultures of streptococci in vitro incubated with cooked starch is

around 3.9 to 4.4, values that were closer to that observed for the metabolism of glucose,

sucrose and maltose for the same bacteria, which suggests that cooked starch is potentially

more acidogenic in presence of the enzyme [Aizawa et al., 2009]. Moreover, previous work

showed that α-amylase activity was higher in dental plaque of adults subjects on a high

sucrose supplemented diet than of subjects on the low one [Dodds and Edgar, 1986]. In

addition, starch fermentation may be enhanced by exposure of plaque to sucrose. This may be

explained by a synergistic effect between starch and sucrose or the fact that sweetened starch

is more retentive than sucrose alone. Thus, a synergistic effect between sucrose and starch

may be due to the enhanced fermentation of starch by plaque-bound α-amylase with a

subsequent increase in caries activity [Scannapieco et al., 1993].

Regarding the relationship between salivary α-amylase and dental caries, the activity

of this protein was demonstrated to be higher in saliva of 4 and 8 years old children with

active caries as compared with the caries-free one [Singh et al., 2015]. In the same way, was

found that parotid saliva samples of caries rampant group had a significantly higher level of

α-amylase than saliva of the caries-resistant children [Balekjian et al., 1975]. In addition,

higher concentrations of α-amylase were detected in saliva of caries susceptible young adults

[Vitorino et al., 2006]. In another side, other authors did not find any difference in levels of

the enzyme in comparison between caries free and caries subjects [de Farias and Bezerra,

2003; Shimotoyodome et al., 2007].

In face of the controversial findings published in the literature, regarding the

relationship between α-amylase and caries, the role of salivary α-amylase in children should

be further investigated [de Farias and Bezerra, 2003]. Furthermore, studies investigating the

51

behavior of salivary α-amylase immediately after a cariogenic challenge with 20% sucrose

solution and its relationship with salivary buffer capacity (BC), stimulated salivary flow rate

(SSFR) and caries in children are highly necessary in face to be sucrose the main substrate at

the caries process and that causes major biochemical and physiological changes during the

process of biofilm formation, which enhance its caries-inducing properties [Sheiham and

James, 2015]. This would provide further evidence of the effect of this enzyme in the

dynamics of dental caries process and the effect that a sucrose rinse would have on SAA

activity. Considering the above, the aims of this study were to investigate the influence of a

cariogenic challenge on the salivary amylase activity as well as to examine the relationship

among dental caries, SAA, SSFR and BC in children.

Materials and Methods

Ethical Considerations

The present investigation was approved by Piracicaba Dental School/ University of

Campinas Ethic Committee in Research (Protocol 014/ 2012) and was in full accordance with

the World Medical Association Declaration of Helsinki. The procedures were explained to the

parents of the involved subjects, and an informed written consent was obtained prior to

investigation.

Sample

The study was conducted with children of Piracicaba city, state of São Paulo, Brazil a

city with water fluoridation (0.7 ppm F). Children who participated in the study received a

new toothbrush and dentifrice, as well as oral health preventive instructions.

A convenience sample of thirty eight children, aging 48 to 77 months age, from both

genders were selected and divided into two groups: Group I (CF, n=18), caries-free children,

being 11 girls and 7 boys, mean age; and Group II (CL, n=20) children with caries, being 9

girls and 11 boys mean age. There were no differences between gender and age in the selected

groups (p>0.05).

Children with syndromes or chronic systemic diseases, severe fluorosis, dental

hypoplasia, using braces, under antibiotic therapy or taking medications for central nervous

system diseases, and having communication or neuromotor difficulties were excluded from

the study. Children whose parents refused to sign the informed terms of consent and those

52

who did not collaborate with the necessary procedures for the clinical examinations were also

excluded from the study.

Calibration of the Examiner

Calibration was assessed by reexaminations of 10% of the children with a 1-week

interval to avoid dental examiner memorization. The intra-examiner reliability was calculated

using Kappa statistics and recorded as 0.82.

Oral examination

Dental examination was performed by only one examiner, using the visual/tactile

method based on diagnostic criteria of the World Health Organization with additional

measurement of the early caries lesions and following rigorously strict cross-infection control

measures [Assaf et al., 2006]. The examination was carried out using a head focusable flash-

light, a mirror and a ball-ended probe to remove debris to enhance visualization and confirm

questionable findings. Gauze was employed in order to dry or clean teeth, favoring the

identification of early caries lesions.

Saliva samples collection

Two samples of stimulated saliva was collected from each children: The first one

before and the second one after five minutes of a 20% sucrose solution rinse to determine the

effect of sucrose on the salivary flow rate, the BC as well as on SAA. To control the circadian

rhythm, saliva samples were collected in the morning between 9 and 11 a.m., 2h after eating,

drinking or chewing gum. Before sampling, children were left to relax for 5min. Each

allocated children was instructed to chew a piece of approximately 0.18 g of Parafilm®

(Sigma Chemical Company, Missouri, USA) for 5 min as previously described and the

produced saliva was deposited in a sterile graduated ice- cooled container to prevent sample

warming [Kirstila et al., 1998; Dawes and Kubieniec, 2004]. SSFR was calculated by

measuring the total volume of saliva and dividing it by the collection time for each child, and

expressed in milliliters per minute. The samples were codified, stored in sealed tubes in an

icebox at 0o C, and immediately transported for the biochemical assays.

53

Buffering capacity determination

Salivary buffering capacity was assessed according to a modified method of Ericsson

[Ericsson, 1959], by adding 1.5 mL of 5 mM HCl to a tube containing 0.5 mL of stimulated

saliva. Then, the tube was shaken for 30 seconds and opened to release CO2 dissolved in the

saliva and after a waiting period of 20 minutes, the pH was determined using a pH electrode

connected to a pH meter (Orion Analyzer Model 420A, USA).

Amylase activity determination

For analysis of α-amylase activity, saliva samples were initially centrifuged at 5000

rpm for 10 min at 4o C. The SAA activity was performed by enzyme kinetic assay with

spectrophotometry technique using Amylase SL Elietch Kit (Eli Tech, Seppim S.A.SEES,

France) according to manufacturer instructions. Saliva samples were diluted in a saline

solution 1:9 (0.9%) NaCl and the reactions were processed at 37oC for 2 min of incubation

and 3 min of reading was performed with absorbance reading at 450 nm in a

spectrophotometry (Evolution 260, Thermo Scientific, USA). Data were expressed as U/mL.

Statistical analysis

Statistical analysis was performed using SPSS version 13.0 (SPSS Inc., IL, USA).

Data distribution of was checked for normality using the Shapiro-Wilk test. Differences inside

each group (before and after sucrose rinse) regarding SSFR and BC values were analyzed by

Wilcoxon test, and differences among groups were analyzed using U Mann- Whitney test. For

results of SAA activity the comparison within groups were analyzed by paired T test, and the

comparison among groups were analyzed by independent T test. The level of significance was

regarded as p<0.05. Correlations between dental caries and independent variables were

determined using the Spearman correlation coefficient (α = 0.05).

54

Results

Medians and interquartile ranges of variables SSFR and BC are presented in Table 1

and 2. Table 1 shows that the two groups of children presented a significant increase in the

SSFR after sucrose rinse (p=0.03 for CF group and p=0.038 for CL group), however, no

difference was found between the two analyzed groups. Table 2 shows a statistically

significant decrease in BC after sucrose rinse for the two analyzed groups (p= 0.009 for CF

group and p=0.005 for CL group). As for the SSFR, we did not find any difference between

analyzed groups.

Means and standard deviations of the SAA are presented at Table 3. It was noticed a

significant increase in α-amylase activity after sucrose rinse only in the CL group (p=0.024).

In addition, we found that after the sucrose rinse, α-amylase activity was significantly higher

in CL than in CF group (p=0.019). However, no difference between groups was detected

before sucrose rinse (p=0.955). The correlations between dental caries and analyzed variables

are shown in Table 4. This table shows a positive correlation between caries and activity of

salivary α-amylase after sucrose rinse (p=0.052). Mean and standard deviation of dental caries

in the investigated children was 4.03± 5.58.

Discussion

The present study investigated for the first time the effect that a high cariogenic

challenge (20% sucrose rinse) would have on behavior of salivary α-amylase activity in

children with or without caries. Literature shows studies that evaluate the amount of total

protein and its relationship with caries. Some of them have found a greater amount of total

protein in saliva of individuals with caries experience [Tulunoglu et al., 2006; Preethi et al.,

2010]. Others found no difference in total protein of saliva of groups with and without decay

[Shimotoyodome et al., 2007; Roa et al., 2008]. Studies involving the participation of children

to investigate the relationship between caries and amylase activity are scarce [de Farias and

Bezerra, 2003; Bhalla et al., 2010; Grychtol et al., 2015; Singh et al., 2015].

Our results showed that after sucrose rinse, the α-amylase activity significantly

increased only in the CL group. Moreover, after cariogenic challenge the α-amylase activity

was significantly higher in CL group than in the CF group. In the same way, Dodds and Edgar

[1986] found a higher amylase activity in biofilm of adults who had a high sucrose diet and a

rinse with starch during the period of study in comparison with control adults. These authors

55

have shown that the cariogenic potential of starch in plaque appears to be affected by the

level of sucrose in the diet.

The finding that exposure of oral environment to a cariogenic challenge increased the

activity of the enzyme only in caries lesion group, leads us to suggest that the subject sucrose

exposure influences the enzyme activity. This finding is relevant because it highlights the

importance of sucrose presence as a synergistic agent to the SAA that has starch as substrate.

A possible explanation for this mechanism could be that in the presence of sucrose, the starch

metabolism would increase in consequence of a higher amylase activity and thus provide

more starch hydrolysis to cariogenic bacteria. Possibly, the caries lesion group had higher

enzyme concentration in saliva and biofilm and when these subjects were submitted to a

cariogenic challenge, it may have increased the enzyme activity. In line with this assumption,

after sucrose rinse, we found a positive correlation between dental caries and amylase activity.

Another result of our study was that before sucrose rinse, the caries-free and caries

lesion group showed no difference in the salivary α-amylase activity. These finding is in line

with early work previously reported [Dodds and Edgar, 1986; de Farias and Bezerra, 2003;

Bhalla et al., 2010], but these authors did not use a rinse with sucrose to after evaluate the

enzyme activity. In the other side, a higher amylase activity in saliva was found in literature in

caries active than in caries-free subjects [Singh et al., 2015]. The diversity of findings on

literature could be explained by various methologies employed for this analyze [Fiehn et al.,

1986; Liang et al., 1999; de Farias and Bezerra, 2003; Vitorino et al., 2006; Shimotoyodome

et al., 2007; Grychtol et al., 2015]. The enzyme kinetic method is the standard technique for

measuring α-amylase activity [Rohleder and Nater, 2009].

Despite of these results, until now there is not sufficient evidence to establish any

salivary proteins as a biomarker for this disease and is still is uncertain how salivary

components, and in this case salivary amylase, behaves in the caries dynamic process [Gao et

al., 2016].

Were evaluated the SSFR and BC. The salivary flow rate and composition are well

recognized as important protective factors that modify the caries process and plays an

important role in the assessment of caries risk [Leone and Oppenheim, 2001]. Regarding the

SSFR, results of our study found no difference among groups before and after sucrose rinse.

In addition, no correlation between SSFR and caries experience was evidenced. These results

56

corroborated with the previous findings [Leonor et al., 2009] who evaluated stimulated

salivary flow rate in 7 years-old children of and found that the caries index was not

significantly associated with the high or low SSFR patterns.

Concerning the caries risk assessment the salivary flow rate and BC parameters have

good specificity and low sensitivity [Leone and Oppenheim, 2001]. As expected, we found a

significant increase in salivary flow rate in both groups after sucrose rinse, that could be

explained by stimulation the salivary glands caused by chewing and presence of sucrose rinse

[Proctor, 2016]. This result is in line with previous investigations [Dodds et al., 2005;

Frasseto et al., 2012]. In addition, we did not detect any correlation between salivary flow rate

and caries, in agreement to results of a systematic review [Leone and Oppenheim, 2001]. The

reason as why we chose to evaluate the SSFR instead of the non stimulated salivary flow rate

was mainly because despite of unstimulated salivary flow be more effective on clearance, this

saliva is mainly composed by contribution of submandibular glands. Parotid saliva increases

dramatically during stimulation, and it is main role is to produce copious, highly buffered,

fluid to protect against extrinsic insult (for instance, acid) [Dodds et al., 2005]. Thus, the BC

is more evidenced in the SSFR, as well as the presence of amylase is more manifested in the

parotid secretion when the secretion doubles [Jenkins, 1978; Hannig et al., 2005].

The mean of salivary flow rates observed in the present study were above the levels

considered strong indicators for caries risk (below 0.5mL/min to 7 years old), however, in

children, the SSFR has been estimated to range from 0.1 and 6 mL / min showing a wide inter

- and intra-individual variations as we found in this study [Leonor et al., 2009]. Regarding BC

the results of the present study showed a statistically significant decrease in BC after sucrose

rinse for the CL as well as for the CF group. BC was determinate five minutes after the

cariogenic challenge. After this time, was demonstrated that saliva and biofilm exhibit the

greatest decreased in pH in reason the acid production. This decrease and subsequent increase

in reason of buffer mechanisms in pH is termed the “Stephan curve” [Stephan and Miller,

1943; Dawes, 2008]. We found no correlation between caries and BC, agreeing with other

authors [Faine et al., 1992; Wiktorsson et al., 1992; O'Sullivan and Curzon, 2000; Leone and

Oppenheim, 2001].

In summary, the results of this study suggest that a rinse with a 20% sucrose solution

increases activity of SAA in saliva mainly in children having caries and that this salivary

protein plays a role in tooth decay in these subjects. Additionally, this study allow to highlight

57

the importance of oral biochemistry in the caries process, showing that the identification of

other factors, that are not yet established in the literature, can influence the carious process.

The identification of subjects at risk of developing aggressive caries could conceivably be

done through compositional analysis of saliva. We further emphasize the potential of salivary

molecules to exhibit influence on the caries process, and the participation of salivary α-

amylase in hydrolysis of dietary starch into fermentable carbohydrates by cariogenic bacteria.

However, further researches using larger sample size to confirm these findings are needed. In

the same way, longitudinal investigations to assess whether changes in the subject caries

profile would be accompanied by alterations in enzyme activity after follow-up. We also

suggest investigations to evaluate how the enzyme behaves in dental biofilm in the presence

of sucrose or in subjects under a high sucrose exposure.

Acknowledgements

This paper was based on a thesis submitted by the first author to Piracicaba Dental

School, University of Campinas, in partial fulfillment of the requirements for a DDS degree in

Dentistry (Pediatric Dentistry area). We thank the Secretary of Education and Health of

Piracicaba-SP/Brazil for collaborating with this research. We specially thank the volunteers

and their parents for participating in this research. The study was supported by FAPESP

(2012/02516-1 and 2012/15834-1).

58

References

Aizawa S, Miyasawa-Hori H, Nakajo K, Washio J, Mayanagi H, Fukumoto S, Takahashi N:

Effects of alpha-amylase and its inhibitors on acid production from cooked starch by

oral streptococci. Caries Res 2009;43:17-24.

Arhakis A, Karagiannis V, Kalfas S: Salivary alpha-amylase activity and salivary flow rate in

young adults. Open Dent J 2013;7:7-15.

Assaf AV, de Castro Meneghim M, Zanin L, Tengan C, Pereira AC: Effect of different

diagnostic thresholds on dental caries calibration - a 12 month evaluation. Community

Dent Oral Epidemiol 2006;34:213-219.

Balekjian AY, Meyer TS, Montague ME, Longton RW: Electrophoretic patterns of parotid

fluid proteins from caries-resistant and caries-susceptible individuals. J Dent Res

1975;54:850-856.

Bhalla S, Tandon S, Satyamoorthy K: Salivary proteins and early childhood caries: A gel

electrophoretic analysis. Contemp Clin Dent 2010;1:17-22.

Chaffee BW, Cheng J, Featherstone JD: Baseline caries risk assessment as a predictor of

caries incidence. J Dent 2015;43:518-524.

Cheaib Z, Lussi A: Role of amylase, mucin, iga and albumin on salivary protein buffering

capacity: A pilot study. J Biosci 2013;38:259-265.

Dawes C: Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc

2008;139 Suppl:18S-24S.

Dawes C, Kubieniec K: The effects of prolonged gum chewing on salivary flow rate and

composition. Arch Oral Biol 2004;49:665-669.

de Farias DG, Bezerra AC: Salivary antibodies, amylase and protein from children with early

childhood caries. Clin Oral Investig 2003;7:154-157.

Dodds MW, Edgar WM: Effects of dietary sucrose levels on pH fall and acid-anion profile in

human dental plaque after a starch mouth-rinse. Arch Oral Biol 1986;31:509-512.

Dodds MW, Johnson DA, Yeh CK: Health benefits of saliva: A review. J Dent 2005;33:223-

233.

Douglas CW: The binding of human salivary alpha-amylase by oral strains of streptococcal

bacteria. Arch Oral Biol 1983;28:567-573.

59

Duarte S, Klein MI, Aires CP, Cury JA, Bowen WH, Koo H: Influences of starch and sucrose

on streptococcus mutans biofilms. Oral Microbiol Immunol 2008;23:206-212.

Ericsson H: Clinical investigations of salivary buffering action. Acta Odontol Scand

1959;17:131-165.

Faine MP, Allender D, Baab D, Persson R, Lamont RJ: Dietary and salivary factors

associated with root caries. Spec Care Dentist 1992;12:177-182.

Fejerskov O, Kidd E: Dental caries - the disease and its clinical management. São Paulo,

Santos, 2007.

Fiehn NE, Oram V, Moe D: Streptococci and activities of sucrases and alpha-amylases in

supragingival dental plaque and saliva in three caries activity groups. Acta Odontol

Scand 1986;44:1-9.

Frasseto F, Parisotto TM, Peres RC, Marques MR, Line SR, Nobre Dos Santos M:

Relationship among salivary carbonic anhydrase vi activity and flow rate, biofilm ph

and caries in primary dentition. Caries Res 2012;46:194-200.

Gao X, Jiang S, Koh D, Hsu CY: Salivary biomarkers for dental caries. Periodontol 2000

2016;70:128-141.

Grychtol S, Viergutz G, Potschke S, Bowen WH, Hoth-Hannig W, Leis B, Umanskaya N,

Hannig M, Hannig C: Enzymes in the in-situ pellicle of children with different caries

activity. Eur J Oral Sci 2015.

Hannig C, Hannig M, Attin T: Enzymes in the acquired enamel pellicle. Eur J Oral Sci

2005;113:2-13.

Jenkins GN: The physiology and biochemistry of the

mouth, ed 4th. Oxford, Blackwell Scientific Publications, 1978.

Kirstila V, Hakkinen P, Jentsch H, Vilja P, Tenovuo J: Longitudinal analysis of the

association of human salivary antimicrobial agents with caries increment and

cariogenic micro-organisms: A two-year cohort study. J Dent Res 1998;77:73-80.

Leone CW, Oppenheim FG: Physical and chemical aspects of saliva as indicators of risk for

dental caries in humans. J Dent Educ 2001;65:1054-1062.

Leonor SP, Laura SM, Esther IC, Marco ZZ, Enrique AG, Ignacio MR: Stimulated saliva

flow rate patterns in children: A six-year longitudinal study. Arch Oral Biol

2009;54:970-975.

Liang H, Wang Y, Wang Q, Ruan MS: Hydrophobic interaction chromatography and

capillary zone electrophoresis to explore the correlation between the isoenzymes of

60

salivary alpha-amylase and dental caries. J Chromatogr B Biomed Sci Appl

1999;724:381-388.

O'Sullivan EA, Curzon ME: Salivary factors affecting dental erosion in children. Caries Res

2000;34:82-87.

Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA: The role of sucrose in cariogenic

dental biofilm formation--new insight. J Dent Res 2006;85:878-887.

Parisotto TM, Steiner-Oliveira C, Duque C, Peres RC, Rodrigues LK, Nobre-dos-Santos M:

Relationship among microbiological composition and presence of dental plaque, sugar

exposure, social factors and different stages of early childhood caries. Arch Oral Biol

2010;55:365-373.

Parisotto TM, Stipp R, Rodrigues LK, Mattos-Graner RO, Costa LS, Nobre-Dos-Santos M:

Can insoluble polysaccharide concentration in dental plaque, sugar exposure and

cariogenic microorganisms predict early childhood caries? A follow-up study. Arch

Oral Biol 2015;60:1091-1097.

Preethi BP, Reshma D, Anand P: Evaluation of flow rate, ph, buffering capacity, calcium,

total proteins and total antioxidant capacity levels of saliva in caries free and caries

active children: An in vivo study. Indian J Clin Biochem 2010;25:425-428.

Proctor GB: The physiology of salivary secretion. Periodontol 2000 2016;70:11-25.

Ribeiro CC, Tabchoury CP, Del Bel Cury AA, Tenuta LM, Rosalen PL, Cury JA: Effect of

starch on the cariogenic potential of sucrose. Br J Nutr 2005;94:44-50.

Roa NS, Chaves M, Gomez M, Jaramillo LM: Association of salivary proteins with dental

caries in a colombian population. Acta Odontol Latinoam 2008;21:69-75.

Rogers JD, Palmer RJ, Jr., Kolenbrander PE, Scannapieco FA: Role of streptococcus gordonii

amylase-binding protein in adhesion to hydroxyapatite, starch metabolism, and

biofilm formation. Infect Immun 2001;69:7046-7056.

Rohleder N, Nater UM: Determinants of salivary alpha-amylase in humans and

methodological considerations. Psychoneuroendocrinology 2009;34:469-485.

Scannapieco FA, Torres G, Levine MJ: Salivary alpha-amylase: Role in dental plaque and

caries formation. Crit Rev Oral Biol Med 1993;4:301-307.

Sheiham A, James WP: Diet and dental caries: The pivotal role of free sugars reemphasized. J

Dent Res 2015;94:1341-1347.

61

Shimotoyodome A, Kobayashi H, Tokimitsu I, Hase T, Inoue T, Matsukubo T, Takaesu Y:

Saliva-promoted adhesion of streptococcus mutans mt8148 associates with dental

plaque and caries experience. Caries Res 2007;41:212-218.

Singh S, Sharma A, Sood PB, Sood A, Zaidi I, Sinha A: Saliva as a prediction tool for dental

caries: An in vivo study. J Oral Biol Craniofac Res 2015;5:59-64.

Stephan RM, Miller BF: A quantitative method for evaluating physical and chemical agents

which modify production of acids in bacterial plaques on human teeth. Dent Res

1943;22:45-51.

Tulunoglu O, Demirtas S, Tulunoglu I: Total antioxidant levels of saliva in children related to

caries, age, and gender. Int J Paediatr Dent 2006;16:186-191.

Vacca-Smith AM, Venkitaraman AR, Quivey RG, Jr., Bowen WH: Interactions of

streptococcal glucosyltransferases with alpha-amylase and starch on the surface of

saliva-coated hydroxyapatite. Arch Oral Biol 1996;41:291-298.

Vitorino R, de Morais Guedes S, Ferreira R, Lobo MJ, Duarte J, Ferrer-Correia AJ, Tomer

KB, Domingues PM, Amado FM: Two-dimensional electrophoresis study of in vitro

pellicle formation and dental caries susceptibility. Eur J Oral Sci 2006;114:147-153.

Wiktorsson AM, Martinsson T, Zimmerman M: Salivary levels of lactobacilli, buffer capacity

and salivary flow rate related to caries activity among adults in communities with

optimal and low water fluoride concentrations. Swed Dent J 1992;16:231-237.

62

Legends

Table 1. Medians and interquartile ranges of stimulated salivary flow rate (mL/min) before

and after a 20% sucrose rinse.

Table 2. Medians and interquartile ranges of salivary buffering capacity before and after a

20% sucrose rinse.

Table 3. Means and standard deviations of salivary α-amylase (U/mL) before and after a 20%

sucrose rinse.

Table 4. Spearman correlation coefficients and probabilities of statistical significance between

dental caries and independent variables before and after a 20% sucrose rinse .

Figure 1. Salivary activity of α-amylase in the caries lesion group before and after rinse with a

20% sucrose solution.

Figure 2. Salivary activity of α-amylase after a 20% sucrose rinse, comparison between

caries-free and caries lesion group.

63

Tables

Table 1.

Groups Before rinse After rinse p*

Caries-free (n=18) 0.75 (0.58) 0.87 (0.45) 0.030

Caries lesion (n=20) 0.69 (0.9) 0.88 (0.73) 0.038

p** 0.851 0.637

p values from Wilcoxon* and U Mann-Whitney** test.

64

Table 2.

Groups Before rinse After rinse p*

Caries-free (n=18) 5.04 (1.35) 4.05 (1.04) 0.009

Caries lesion (n=20) 4.55 (1.48) 3.9 (0.84) 0.005

p** 0.654 0.393

p values from Wilcoxon* and U Mann-Whitney** test.

65

Table 3.

Groups Before rinse After rinse p*

Carie-free(n=18) 1999.02 ±717.13 1934.56 ± 528.62 0.688

Caries lesion (n=20) 1985.19 ± 783.75 2387.37 ± 605.55 0.024

p** 0.955 0.019

p values from Paired T test * and Independent T Test** test.

66

Table 4.

Variables

r p

SSFR Before rinse -0.075 0.657

SSFR After rinse -0.192 0.310

BC Before rinse -0.064 0.703

BC After rinse -0.209 0.209

SAA Before rinse 0.058 0.729

SAA After rinse 0.317 0.052

SSFR: stimulated salivary flow rate. BC: buffer capacity. SAA: salivary α-amylase activity.

67

Illustrations

Figure 1.

(U/mL)

BR AR

p = 0,024

68

Figure 2.

(U/mL)

CF CL

p = 0,019

69

3 DISCUSSÃO

A saliva é um importante fluido biológico, têm em sua composição várias proteínas

que participam da proteção dos tecidos orais (Leone e Oppenheim, 2001, Dodds et al., 2005).

Fatores como o fluxo salivar e a capacidade tampão influem na avaliação do risco de cárie,

bem como a presença de componentes orgânicos e inorgânicos na saliva participam do

processo da doença (Leone e Oppenheim, 2001, Van Nieuw Amerongen et al., 2004, Chaffee

et al., 2015). É descrito na literatura que a secreção salivar e seus componentes poderiam ser

usados no diagnóstico de indivíduos cárie susceptíveis, situação em que as moléculas

presentes na saliva refletiriam a atividade bacteriana e na susceptibilidade à doença cárie

desde o seu início até sua progressão (Lagerlof e Oliveby, 1994).

Diferenças na composição salivar no que tange a concentração de proteínas entre

indivíduos livres de cárie e cárie-susceptíveis podem prover uma explicação diferente e mais

satisfatória para a diferença na susceptibilidade inter-indivídual à cárie, que irão confirmar

diferenças genéticas encontradas e irão ser somadas com os vários fatores associados ao

desenvolvimento da doença. Embora fatores genéticos relacionados à estrutura do esmalte

dental ou a microbiota bucal afetem a susceptibilidade à cárie, eles não podem explicar o

porquê de indivíduos livres de cárie neutralizarem ácidos mais eficientemente (Levine, 2011).

No entanto, apesar dos avanços em pesquisas relacionadas a proteínas presentes na saliva, não

há ainda na literatura evidências suficientes que relacione qualquer componente salivar ao

aumento da susceptibilidade à cárie dental (Leone e Oppenheim, 2001).

Foram estudadas nesta tese, a atividade, antes e depois de um bochehco com sacarose,

de duas importantes enzimas presentes na saliva, a AC VI e a α-amilase salivar, por meio de

um estudo longitudinal e transversal, respectivamente. Esta tese abordou aspectos

modificadores do processo de cárie e que influem consequentemente na atividade da

comunidade bacteriana do biofilme participando da acidificação e neutralização do meio

ambiente oral e assim influindo na ocorrência de progressão da cárie dental. Demonstrou-se

pelos resultados desta tese e pela discussão dos mesmos, que estas enzimas desempenham

papéis relevantes na dinâmica do processo de cárie.

O Capítulo 1 desta tese abordou a enzima AC VI, presente na saliva e no biofilme

dental. É sugerido na literatura que esta enzima participa da regulação do pH no meio bucal

70

catalisando o sistema tampão mais importante da cavidade bucal (ácido-carbônico/

bicarbonato) e assim agiria na proteção da superfície dental pela neutralização dos ácidos na

saliva e biofilme dental, o que seria fator de importância primária para a manutenção da

homeostase bucal. No entanto, resultados divergentes são encontrados na literatura. A maioria

dos estudos que envolvem a avaliação desta enzima na saliva e/ou biofilme analisa a

concentração da enzima por meio de técnicas diversas dentre elas, métodos de Krebs,

Roghton, Lowry e Verpoorte, técnicas imunofluorométricas, de imunocoloração,

imunobloting, imunoistoquímica, zimografia, técnicas colorimétricas e imunofluorescência.

Somente Frasseto et al. (2012) avaliaram a atividade da enzima. Deve-se considerar o fato de

que nem toda a concentração enzimática disponível em determinado meio estará

necessariamente ativa. Fatores como a concentração do substrato, o pH do meio, íons e

moléculas inibidores enzimáticos podem modular ou regular a atividade enzimática de forma

negativa ou positiva (Aidar et al., 2013). Na forma negativa a fração ativa da enzima ficaria

inibida deixando de exercer sua ação catalítica. Pelo fato de a fração ativa ser aquela a exercer

a função catalítica, também avaliou-se neste estudo a atividade enzimática de AC VI. Alguns

resultados da literatura apontam para a associação significativa entre uma baixa concentração

de AC VI na saliva e o aumento do índice de cárie (Szabo, 1974, Kivela et al., 1999b). A

literatura mostra ainda que a enzima está presente e ativa na película adquirida e que controla

o pH no biofilme (Leinonen et al., 1999, Kimoto et al., 2006). No entanto, ainda é incerto se a

atividade da enzima influi no processo de cárie em virtude de haver apenas um estudo na

literatura que avaliou a relação da atividade enzimática de AC VI e a prevalência de cárie em

crianças em um estudo transversal (Frasseto et al., 2012).

Nosso estudo, mostrado no Capítulo 1, avaliou o comportamento da atividade de AC

VI na saliva total de crianças antes e imediatamente após um desafio cariogênico, simulado

por meio de um bochecho com solução de sacarose a 20%. Os dados resultantes foram

correlacionados com medidas de fluxo salivar estimulado (FSE), capacidade tampão (CT) e

índice de cárie. Todas as análises foram repetidas após um ano de seguimento. Este foi o

primeiro estudo empregando esse delineamento experimental. Após um ano, os grupos foram

comparados segundo o status de cárie atual. Os resultados mostraram que a enzima

pesquisada exibe comportamento diferente quando submetida a um desafio cariogênico de

acordo com o índice de cárie. Após o desafio cariogênico, a atividade de AC VI no grupo

livre de cárie nos dois tempos do estudo e no grupo de crianças que tiveram cárie paralisada

após um ano (quando apresentou incremento de cárie negativo ou zero) exibiu um decréscimo

71

em sua atividade. Provavelmente, esse decréscimo pode explicado pelo fato de que após o

bochecho as crianças exibiram valores de pH mais altos e então houve menor disponibilização

de substrato para a reação catalisada pela enzima em questão. Consequentemente, a atividade

de AC VI foi menor. Estes dados estão de acordo com a correlação negativa encontrada entre

os valores de capacidade tampão antes do bochecho e a atividade de AC VI após o bochecho.

Outros autores não encontraram correlação entre a capacidade tampão e a concentração de AC

VI na saliva (Parkkila et al., 1993, Kivela et al., 1997). No entanto, a literatura aponta uma

ação da enzima como catalisadora da reação tampão mais importante da cavidade bucal

(Kivela et al., 1999a) e, portanto seria esperada associação entre essas variáveis. Ainda, deve-

se salientar que os autores acima mencionados investigaram a concentração da isoenzima.

Observou-se também que no grupo com cárie, os valores de atividade de AC VI

mantiveram-se elevados após o bochecho nos dois períodos do estudo. Isto pode ser explicado

pelo fato de que o decréscimo no pH bucal após o desafio cariogênico nestes indivíduos seria

de maior magnitude, já que é evidenciado na literatura que crianças com CPI em torno da

faixa etária estudada são significativamente mais expostas diariamente aos açucares da dieta

(Nobre dos Santos et al., 2002). Assim, devido aos desafios cariogênicos frequentes e quedas

constantes do pH bucal em razão da presença de uma microbiota cariogênica estabelecida,

haveria maior disponibilidade de íons H+, derivados do metabolismo bacteriano, bem como de

íons HCO3-

, derivados das glândulas salivares pela ação da enzima AC II devido ao aumento

do fluxo salivar. Portanto, haveria mais substrato para a reação catalisada por AC VI, na

tentativa de neutralizar o meio ácido. A partir da situação encontrada, podemos verificar que a

enzima neste momento (após o bochecho) não exibiu decréscimo em sua atividade neste

grupo, o que seria importante no processo de cárie, pois a enzima estaria mais ativa durante a

ocorrência do desafio cariogênico, um papel chave na tentativa de retorno do pH a valores

normais num momento considerado crítico. No entanto, não foram encontradas diferenças

relacionadas aos valores de atividade de AC VI entre os grupos, o que já foi observado na

literatura também por outros autores (Ozturk et al., 2008). Nossos resultados diferem daqueles

encontrados por de Frasseto et al. (2012) que observaram uma maior atividade da AC VI no

grupo com cárie antes do desafio cariogênico (p=0.0516). Esses autores, no entanto, também

não avaliaram a capacidade tampão nem reavaliaram os indivíduos após um ano para

confirmar os achados encontrados. Ainda no Capítulo 1, encontramos uma correlação

negativa entre a atividade da enzima AC VI antes e depois do bochecho e a prevalência de

cárie no baseline no grupo de crianças com cárie. Este resultado pode indicar que a

72

manutenção de níveis altos de atividade da enzima em condições normais estaria relacionada

a uma menor prevalência de cárie em crianças, em razão da manutenção de valores elevados

de pH favorecidos pela ação da enzima. Esses dados corroboram os achados de Kivela et al.

(1999b), que encontraram uma correlação negativa significativa entre a concentração da

enzima e a cárie e em indivíduos com higiene oral pobre. Já Ozturk et al. (2008) não

encontraram nenhuma correlação entre essas variáveis. Resultados contrários ao de Frasseto

et al. (2012) os quais encontraram uma atividade significativamente maior em crianças com

cárie. Observou-se ainda uma correlação negativa entre a capacidade tampão antes do

bochecho e atividade de AC VI após o bochecho o que nos leva a considerar, que a enzima

estudada desempenha um papel protetor no processo de cárie.

Os resultados deste capítulo sugerem que a enzima é responsável pela manutenção da

homeostase do pH da cavidade bucal como agente protetor, catalisando o sistema tampão

mais importante em situações de estimulação salivar. Atua, portanto, de sobremaneira quando

o meio bucal é submetido a um desafio cariogênico, principalmente no grupo de indivíduos

com cárie por apresentarem mais frequentemente baixos valores de pH e consequentemente,

por haver no meio maior concentração de íons H+. Resultados estes que concordam com a

corrente da literatura que acredita que a enzima atua constantemente para equilibrar as

oscilações de pH que acontecem frequentemente na cavidade bucal.

O Capítulo 2 desta tese abordou a relação da enzima α-amilase e a cárie dental em

crianças. Esta enzima pode promover um papel importante no processo de cárie como

facilitadora da colonização e metabolismo de espécies de estreptococos na película dental,

levando a formação do biofilme dental e consequentemente a cárie dental. Por ser um

constituinte da película adquirida, esta enzima atua como receptor para a adesão de micro-

organismos a superfície dental, onde hidrolisam o amido, dando origem a carboidratos de

baixo peso molecular que são metabolizados em ácidos por bactérias cariogênicas (Rogers et

al., 2001). Os resultados relacionados a esta enzima evidenciaram que após a exposição do

ambiente oral a um desafio cariogênico, sua atividade mostrou-se significativamente maior

somente no grupo com cárie. Isso confirmou alguns achados da literatura sobre a possível

participação desta enzima no processo de cárie e a sua ação como influenciadora deste

processo em indivíduos com a doença já instalada (Vitorino et al., 2006, Singh et al., 2015).

Observou-se também que os resultados do Capítulo 2 corroboraram com achados

semelhantes na literatura que indicavam uma maior atividade da enzima no biofilme de

73

adultos quando o meio bucal foi exposto à dieta altamente sacarogênica (Dodds e Edgar,

1986). Scannapieco et al. (1993) explana em sua revisão de literatura que haveria um efeito

sinérgico entre sacarose e amido devido ao metabolismo de bactérias cariogênicas em

biofilmes nos quais a enzima α-amilase estivesse presente com um aumento subsequente da

atividade de cárie. Tem sido demonstrado que a combinação amido e sacarose é mais

cariogênica que a sacarose sozinha, por ser esta combinação responsável por produzir

biofilmes com maior massa e acidogenicidade, maior conteúdo de polissacarídeos insolúveis e

alta contagem de lactobacilos e por promover consequentemente maior perda mineral no

tecido dental (Ribeiro et al., 2005, Duarte et al., 2008).

No presente estudo utilizou-se um bochecho com sacarose a 20% e mediu-se a

atividade da enzima 5 minutos após o desafio cariogênico. Possivelmente, as crianças do

grupo cárie que tinham uma alta concentração da enzima na saliva quando submetida a um

desafio cariogênico, exibiram um aumento da atividade da enzima, dados que relacionam o

aumento da atividade da enzima com a presença da sacarose e com o status dental do

indivíduo neste Capítulo. Assim, o aumento da atividade da enzima em indivíduos com o

processo de cárie instalado, favoreceria a progressão do processo de cárie por promover

carboidratos de baixo peso molecular para o metabolismo bacteriano no biofilme derivados do

metabolismo do amido, fato que foi comprovado por Vacca-Smith et al. (1996). Estes autores

evidenciaram um aumento da produção de glucanos pela enzima glucosiltransferase B em

presença de hidrolisados do amido. Este mecanismo seria acelerado na presença de sacarose

no ambiente bucal devido ao possível sinergismo existente entre amido e sacarose,

evidenciada há tempos por Dodds e Edgar (1986).

Os achados deste Capítulo nos levam a acreditar que a maior atividade de α-amilase

salivar em indivíduos com cárie favorece o processo de cárie por fornecer substrato para o

metabolismo de bactérias cariogênicas, produzindo assim polissacarídeos insolúveis

contribuindo para o aumento da biomassa do biofilme e ácidos orgânicos o que culminaria na

desmineralização dos tecidos dentais. Ainda, esta enzima estaria em posição privilegiada na

película e biofilme dental e estaria mais ativa em indivíduos com cárie após serem submetidos

a um bochecho com sacarose a 20%.

74

Os resultados da atividade da enzima antes do bochecho corroboram com os resultados

de alguns autores que também não encontraram diferenças significativas na atividade da

enzima entre os grupos com e sem cárie (de Farias e Bezerra, 2003, Bhalla et al., 2010,

Grychtol et al., 2015). No entanto, similarmente ao nosso estudo o grupo cárie exibiu uma

maior atividade da enzima, embora não significativa (de Farias e Bezerra, 2003, Grychtol et

al., 2015). Com o desafio cariogênico, a atividade da enzima exibiu um comportamento

diferente dos valores apresentados antes do bochecho. Encontramos um aumento significativo

da atividade da enzima no grupo com cárie. Nossos resultados corroboraram com os

resultados de outros autores (Fiehn et al., 1986, Vitorino et al., 2006, Singh et al., 2015). No

entanto, nenhum desses estudos utilizou um bochecho com solução de sacarose antes das

análises para simular um desafio cariogênico e avaliar a dinâmica da atividade da enzima

antes e depois do bochecho que traduziria o que ocorre constantemente na cavidade bucal e

que indicasse a participação da sacarose na atividade da amilase, já que esta enzima está

presente na saliva e no biofilme dental.

Apesar de não existir evidência suficiente que comprove a relação entre qualquer

componente salivar como biomarcador para cárie dentária (Martins et al., 2013), o presente

estudo realizado mostrou que as enzimas estudadas (anidrase carbônica VI e α-amilase

salivar) exercem papel relevante no processo de cárie. Portanto, torna-se importante para o

entendimento da doença cárie no que tange o seu início, desenvolvimento e susceptibilidade

individual, entender o papel de cada componente salivar, em especial as proteínas da saliva

de crianças, principalmente naquelas acometidas por formas mais severas da doença. Estudos

que envolvam uma amostra maior, fazem-se necessários para comprovar os resultados aqui

descritos. Adicionalmente, um estudo longitudinal que avalie a a atividade da enzima α-

amilase, também se faz necessário para avaliar se os efeitos do tempo e da mudança do índice

de cárie modificariam a atividade desta enzima, bem como a inclusão da análise da atividade

da enzima no biofilme dental. De semelhante relevância, os fatores genéticos associados com

a expressão fenotípica destas proteínas e que também podem estar envolvidos na secreção

destas, que não foram estudados e que podem ter influenciado os resultados do presente

estudo devem ser investigados.

Abordou-se ainda em ambos os capítulos desta tese a análise do FSE e da CT, dois

parâmetros importantes para a avaliação do risco de cárie (Leone e Oppenheim, 2001). No

Capítulo 1 nosso estudo mostrou que o FSE aumentou significativamente após o desafio

75

cariogênico na amostra total pesquisada e nos grupos avaliados. Estes resultados concordam

com aqueles obtidos por Frasseto et al. (2012). No follow-up, apenas no grupo de crianças

com cárie paralisada observou-se este comportamento. O aumento do fluxo salivar após o

bochecho pode ser explicado tanto pelo estímulo gustatório promovido pela exposição do

meio bucal à sacarose bem como ao estímulo mecânico promovido pela ação de bochecho

(Proctor, 2016).

Nós observamos após um ano aumento significativo nos valores de FSE, isso pode ser

explicado pelo desenvolvimento e maturação das glândulas salivares com a idade reportado

em outros estudos (Tukia-Kulmala e Tenovuo, 1993, Torres et al., 2006, Leonor et al., 2009).

Também observou-se uma grande variação inter-individual dos valores de FSE o que também

concorda com achados prévios (Tukia-Kulmala e Tenovuo, 1993, Tenovuo, 1997).

Adicionalmente, não foram encontradas diferenças nos valores de FSE entre os grupos

avaliados, dados que corroboram com os resultados de outros autores, no entanto, estes

autores não avaliaram esta variável após um período de seguimento (Frasseto et al., 2012,

Yildiz et al., 2016). Ainda nesse estudo, não encontramos correlação entre o FSE e o índice de

cárie nem no baseline nem após um ano, resultados semelhantes aos encontrados por Leone et

al. (2001) em uma revisão sistemática.

O fluxo salivar pode ser considerado um dos fatores mais importantes na avaliação do

risco de cárie, pois a atividade cariostática ou a eficácia de praticamente todos os outros

fatores dependem do fluxo salivar (Gao et al., 2016). Os estudos têm mostrado que em

indivíduos com fluxo salivar normal, a avaliação do fluxo salivar tem pouco ou nenhum valor

preditivo de cárie (Lenander-Lumikari e Loimaranta, 2000, Gao et al., 2016). Por outro lado,

quando expresso em valores baixos é um forte indicador de aumento do risco de cárie, pois

nesses indivíduos as propriedades mecânicas, de limpeza e capacidade tampão na cavidade

bocal estarão comprometidas.

Quando avaliados os valores de CT, não encontramos nessa amostra diferença

significativa entre os grupos avaliados, dados que corroboram com os estudos de Peres et al.

(2010) e Yarat et al. (2011), no entanto, foi encontrado nos três grupos um decréscimo

significativo nos valores de CT nos dois tempos do estudo, após o desafio cariogênico,

similarmente ao que foi observado no estudo transversal de Frasseto et al. (2012).

Observamos ainda uma correlação significativa entre a CT após o bochecho no follow-up e o

índice de cárie no baseline e follow-up. Resultados similares foram também encontrados por

76

Frasseto et al. 2012 no baseline, único estudo que empregou um desafio cariogênico. No

entanto, esses autores obtiveram essa correlação entre o pH do biofilme e a cárie dental.

Estudos previamente realizados encontraram relação inversa entre a presença de cárie a

capacidade tampão, no entanto, sem que tenha sido empregado o desafio cariogênico para

aferição da capacidade tampão (Kivela et al., 1999b, Ruiz Miravet et al., 2007, Kuriakose et

al., 2013, Singh et al., 2015, Yildiz et al., 2016).

No Capítulo 2 também não encontramos diferenças entre os grupos quanto aos valores

de FSE e CT. Encontramos um aumento significativo do FSE e uma diminuição significativa

na CT nesta amostra após o desafio cariogênico.

Abordamos nos dois Capítulos a análise da saliva, uma vez que tal fluido biológico se

mostra de fundamental importância no entendimento do processo de cárie. No campo da

pesquisa é um material que facilmente pode ser obtido, de coleta indolor e têm em sua

composição uma série de proteínas que podem influir no processo de cárie, além de que a

partir da saliva pode ser extraído o DNA do indivíduo. Portanto, a atenção tem se voltado

cada vez mais para pesquisas envolvendo a coleta de saliva, a avaliação das proteínas que a

compõe e a expressão dessas na célula por meio da avaliação do DNA o que pode fornecer

informações importantes sobre o metabolismo do biofilme e avaliação de indivíduos

susceptíveis à cárie. Ainda, estudos em crianças são importantes, pois a composição de

aminoácidos, taxa de formação e aparência ultraestrutural da película difere entre dentes

decíduos e permanentes (Grychtol et al., 2015). A investigação crescente dos componentes

salivares permitirá a melhor compreensão de todos os componentes envolvidos no processo

de cárie, seja como elementos protetores ou elementos de risco para o desenvolvimento da

doença.

Esta tese evidencia a participação e importância das proteínas AC VI e α-amilase

salivar no processo de cárie. A primeira agiria como catalisador da reação tamponante mais

importante da cavidade bucal e a segunda em virtude de sua atividade aumentada após um

desafio cariogênico teria ação hidrolítica sobre o amido na cavidade bucal. Sua presença na

película e biofilme ligada a bactérias cariogênicas facilitaria a disponibilização de substrato

para bactérias cariogênicas, o que seria fundamental no processo de cárie.

77

4 CONCLUSÕES

A enzima AC VI exerce possível participação no controle de pH bucal após um

desafio cariogênico com solução de sacarose a 20%, principalmente em crianças com

cárie. A correlação negativa entre índice de cárie e atividade de AC VI evidenciada no

grupo com cárie sugere o efeito protetor da enzima no processo de cárie por sua

participação no mecanismo tamponante da saliva em crianças com a doença já

instalada;

A enzima α-amilase exibiu aumento de sua atividade após desafio cariogênico com

bochecho com solução de sacarose a 20% em crianças com cárie. A atividade da

enzima também foi significativamente maior após o bochecho em crianças com cárie,

o que sugere possível participação da enzima como facilitador do processo de cárie

devido ao aumento de sua atividade quando as crianças foram submetidas a um

desafio cariogênico;

As enzimas AC VI, α-amilase, CT e FSE podem ser componentes importantes no

processo da doença cárie.

78

REFERÊNCIAS *

1. AAPD. Policy on early childhood caries (ECC): classifications, consequences, and

preventive strategies. Pediatr Dent. 2008;30(7 Suppl):40-3.

2. Aidar M, Marques R, Valjakka J, Mononen N, Lehtimaki T, Parkkila S, et al. Effect of

genetic polymorphisms in CA6 gene on the expression and catalytic activity of human

salivary carbonic anhydrase VI. Caries Res. 2013;47(5):414-20.

3. Bardow A, Hofer E, Nyvad B, ten Cate JM, Kirkeby S, Moe D, et al. Effect of saliva

composition on experimental root caries. Caries Res. 2005 Jan-Feb;39(1):71-7.

4. Bardow A, Moe D, Nyvad B, Nauntofte B. The buffer capacity and buffer systems of

human whole saliva measured without loss of CO2. Arch Oral Biol. 2000 Jan;45(1):1-12.

5. Bhalla S, Tandon S, Satyamoorthy K. Salivary proteins and early childhood caries: A

gel electrophoretic analysis. Contemp Clin Dent. 2010 Jan;1(1):17-22.

6. Bhayat A, Ahmad MS, Hifnawy T, Mahrous MS, Al-Shorman H, Abu-Naba'a L, et al.

Correlating dental caries with oral bacteria and the buffering capacity of saliva in children in

Madinah, Saudi Arabia. J Int Soc Prev Community Dent. 2013 Jan;3(1):38-43.

7. Chaffee BW, Cheng J, Featherstone JD. Baseline caries risk assessment as a predictor

of caries incidence. J Dent. 2015 May;43(5):518-24.

8. Cheaib Z, Ganss C, Lamanda A, Turgut MD, Lussi A. Comparison of three strip-type

tests and two laboratory methods for salivary buffering analysis. Odontology. 2012

Jan;100(1):67-75.

9. Cheaib Z, Lussi A. Role of amylase, mucin, IgA and albumin on salivary protein

buffering capacity: a pilot study. J Biosci. 2013 Jun;38(2):259-65.

10. Cunha-Cruz J, Scott J, Rothen M, Mancl L, Lawhorn T, Brossel K, et al. Salivary

characteristics and dental caries: evidence from general dental practices. J Am Dent Assoc.

2013 May;144(5):e31-40.

11. Dawes C. Salivary flow patterns and the health of hard and soft oral tissues. J Am

Dent Assoc. 2008 May;139 Suppl:18S-24S.

12. de Farias DG, Bezerra AC. Salivary antibodies, amylase and protein from children

with early childhood caries. Clin Oral Investig. 2003 Sep;7(3):154-7.

13. Dodds MW, Edgar WM. Effects of dietary sucrose levels on pH fall and acid-anion

profile in human dental plaque after a starch mouth-rinse. Arch Oral Biol. 1986;31(8):509-12.

* De acordo com as normas da UNICAMP/FOP, baseadas na padronização do International Committee of Medical Journal Editors - Vancouver Group. Abreviatura dos periódicos em conformidade com o PubMed.

79

14. Dodds MW, Johnson DA, Mobley CC, Hattaway KM. Parotid saliva protein profiles

in caries-free and caries-active adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.

1997 Feb;83(2):244-51.

15. Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent. 2005

Mar;33(3):223-33.

16. Douglas CW. Characterization of the alpha-amylase receptor of Streptococcus

gordonii NCTC 7868. J Dent Res. 1990 Nov;69(11):1746-52.

17. Duarte S, Klein MI, Aires CP, Cury JA, Bowen WH, Koo H. Influences of starch and

sucrose on Streptococcus mutans biofilms. Oral Microbiol Immunol. 2008 Jun;23(3):206-12.

18. Ericsson H. Clinical investigations of salivary buffering action. Acta Odontol Scand.

1959 Mar 19;17:131-65.

19. Fejerskov O, Kidd E. Dental caries - The disease and its clinical management. São

Paulo: Santos; 2007.

20. Ferreira SH, Beria JU, Kramer PF, Feldens EG, Feldens CA. Dental caries in 0- to 5-

year-old Brazilian children: prevalence, severity, and associated factors. Int J Paediatr Dent.

2007 Jul;17(4):289-96.

21. Fiehn NE, Oram V, Moe D. Streptococci and activities of sucrases and alpha-amylases

in supragingival dental plaque and saliva in three caries activity groups. Acta Odontol Scand.

1986 Feb;44(1):1-9.

22. Frasseto F, Parisotto TM, Peres RC, Marques MR, Line SR, Nobre Dos Santos M.

Relationship among salivary carbonic anhydrase VI activity and flow rate, biofilm pH and

caries in primary dentition. Caries Res. 2012;46(3):194-200.

23. Gao X, Jiang S, Koh D, Hsu CY. Salivary biomarkers for dental caries. Periodontol

2000. 2016 Feb;70(1):128-41.

24. Grychtol S, Viergutz G, Potschke S, Bowen WH, Hoth-Hannig W, Leis B, et al.

Enzymes in the in-situ pellicle of children with different caries activity. Eur J Oral Sci. 2015

Aug 28.

25. Hannig C, Attin T, Hannig M, Henze E, Brinkmann K, Zech R. Immobilisation and

activity of human alpha-amylase in the acquired enamel pellicle. Arch Oral Biol. 2004

Jun;49(6):469-75.

26. Izutsu KT. Theory and Measurement of the buffer value of bicarbonate in saliva. J

Theor Biol. 1981 Jun 7;90(3):397-403.

80

27. Kadoya Y, Kuwahara H, Shimazaki M, Ogawa Y, Yagi T. Isolation of a novel

carbonic anhydrase from human saliva and immunohistochemical demonstration of its related

isozymes in salivary gland. Osaka City Med J. 1987 Jul;33(1):99-109.

28. Kargul B, Yarat A, Tanboga I, Emekli N. Salivary protein and some inorganic element

levels in healthy children and their relationship to caries. J Marmara Univ Dent Fac. 1994

Sep;2(1):434-40.

29. Kejriwal S, Bhandary R, Thomas B, Kumari S. Estimation of levels of salivary mucin,

amylase and total protein in gingivitis and chronic periodontitis patients. J Clin Diagn Res.

2014 Oct;8(10):ZC56-60.

30. Kimoto M, Kishino M, Yura Y, Ogawa Y. A role of salivary carbonic anhydrase VI in

dental plaque. Arch Oral Biol. 2006 Feb;51(2):117-22.

31. Kivela J, Laine M, Parkkila S, Rajaniemi H. Salivary carbonic anhydrase VI and its

relation to salivary flow rate and buffer capacity in pregnant and non-pregnant women. Arch

Oral Biol. 2003 Aug;48(8):547-51.

32. Kivela J, Parkkila S, Metteri J, Parkkila AK, Toivanen A, Rajaniemi H. Salivary

carbonic anhydrase VI concentration and its relation to basic characteristics of saliva in young

men. Acta Physiol Scand. 1997 Oct;161(2):221-5.

33. Kivela J, Parkkila S, Parkkila AK, Leinonen J, Rajaniemi H. Salivary carbonic

anhydrase isoenzyme VI. J Physiol. 1999a Oct 15;520 Pt 2:315-20.

34. Kivela J, Parkkila S, Parkkila AK, Rajaniemi H. A low concentration of carbonic

anhydrase isoenzyme VI in whole saliva is associated with caries prevalence. Caries Res.

1999b May-Jun;33(3):178-84.

35. Kuriakose S, Sundaresan C, Mathai V, Khosla E, Gaffoor FM. A comparative study of

salivary buffering capacity, flow rate, resting pH, and salivary Immunoglobulin A in children

with rampant caries and caries-resistant children. J Indian Soc Pedod Prev Dent. 2013 Apr-

Jun;31(2):69-73.

36. Lagerlof F, Oliveby A. Caries-protective factors in saliva. Adv Dent Res. 1994

Jul;8(2):229-38.

37. Laine MA, Tolvanen M, Pienihakkinen K, Soderling E, Niinikoski H, Simell O, et al.

The effect of dietary intervention on paraffin-stimulated saliva and dental health of children

participating in a randomized controlled trial. Arch Oral Biol. 2014 Feb;59(2):217-25.

81

38. Leinonen J, Kivela J, Parkkila S, Parkkila AK, Rajaniemi H. Salivary carbonic

anhydrase isoenzyme VI is located in the human enamel pellicle. Caries Res. 1999 May-

Jun;33(3):185-90.

39. Lenander-Lumikari M, Loimaranta V. Saliva and dental caries. Adv Dent Res. 2000

Dec;14:40-7.

40. Leone CW, Oppenheim FG. Physical and chemical aspects of saliva as indicators of

risk for dental caries in humans. J Dent Educ. 2001 Oct;65(10):1054-62.

41. Leonor SP, Laura SM, Esther IC, Marco ZZ, Enrique AG, Ignacio MR. Stimulated

saliva flow rate patterns in children: A six-year longitudinal study. Arch Oral Biol. 2009

Oct;54(10):970-5.

42. Levine M. Susceptibility to dental caries and the salivary proline-rich proteins. Int J

Dent. 2011;2011:953412.

43. Liang H, Wang Y, Wang Q, Ruan MS. Hydrophobic interaction chromatography and

capillary zone electrophoresis to explore the correlation between the isoenzymes of salivary

alpha-amylase and dental caries. J Chromatogr B Biomed Sci Appl. 1999 Mar 19;724(2):381-

8.

44. Lilienthal B. An analysis of the buffer systems in saliva. J Dent Res. 1955

Aug;34(4):516-30.

45. Llena-Puy C. The role of saliva in maintaining oral health and as an aid to diagnosis.

Med Oral Patol Oral Cir Bucal. 2006 Aug;11(5):E449-55.

46. Marsh PD. Dental plaque as a biofilm: the significance of pH in health and caries.

Compend Contin Educ Dent. 2009 Mar;30(2):76-8, 80, 3-7; quiz 8, 90.

47. Martins C, Buczynski AK, Maia LC, Siqueira WL, Castro GF. Salivary proteins as a

biomarker for dental caries--a systematic review. J Dent. 2013 Jan;41(1):2-8.

48. Ministério da Saúde. Pesquisa Nacional de

Saúde Bucal - Resultados Principais. Brasil: Ministério da Saúde; 2010.

49. Moimaz SA, Borges HC, Saliba O, Garbin CA, Saliba NA. Early Childhood Caries:

Epidemiology, Severity and Sociobehavioural Determinants. Oral Health Prev Dent.

2016;14(1):77-83.

50. Nobre dos Santos M, Melo dos Santos L, Francisco SB, Cury JA. Relationship among

dental plaque composition, daily sugar exposure and caries in the primary dentition. Caries

Res. 2002 Sep-Oct;36(5):347-52.

82

51. Ozturk LK, Furuncuoglu H, Atala MH, Ulukoylu O, Akyuz S, Yarat A. Association

between dental-oral health in young adults and salivary glutathione, lipid peroxidation and

sialic acid levels and carbonic anhydrase activity. Braz J Med Biol Res. 2008

Nov;41(11):956-9.

52. Parisotto TM, Santos MN, Rodrigues LK, Costa LS. Behavior and progression of early

carious lesions in early childhood: a 1-year follow-up study. J Dent Child (Chic). 2012 Sep-

Dec;79(3):130-5.

53. Parisotto TM, Steiner-Oliveira C, Duque C, Peres RC, Rodrigues LK, Nobre-dos-

Santos M. Relationship among microbiological composition and presence of dental plaque,

sugar exposure, social factors and different stages of early childhood caries. Arch Oral Biol.

2010 May;55(5):365-73.

54. Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H.

Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II, and I in human

parotid and submandibular glands. J Histochem Cytochem. 1990 Jul;38(7):941-7.

55. Parkkila S, Parkkila AK, Rajaniemi H. Circadian periodicity in salivary carbonic

anhydrase VI concentration. Acta Physiol Scand. 1995 Jun;154(2):205-11.

56. Parkkila S, Parkkila AK, Vierjoki T, Stahlberg T, Rajaniemi H. Competitive time-

resolved immunofluorometric assay for quantifying carbonic anhydrase VI in saliva. Clin

Chem. 1993 Oct;39(10):2154-7.

57. Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state

of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem. 2004

Jun;19(3):199-229.

58. Preethi BP, Reshma D, Anand P. Evaluation of Flow Rate, pH, Buffering Capacity,

Calcium, Total Proteins and Total Antioxidant Capacity Levels of Saliva in Caries Free and

Caries Active Children: An In Vivo Study. Indian J Clin Biochem. 2010 Oct;25(4):425-8.

59. Proctor GB. The physiology of salivary secretion. Periodontol 2000. 2016

Feb;70(1):11-25.

60. Ribeiro CC, Tabchoury CP, Del Bel Cury AA, Tenuta LM, Rosalen PL, Cury JA.

Effect of starch on the cariogenic potential of sucrose. Br J Nutr. 2005 Jul;94(1):44-50.

61. Roa NS, Chaves M, Gomez M, Jaramillo LM. Association of salivary proteins with

dental caries in a Colombian population. Acta Odontol Latinoam. 2008;21(1):69-75.

83

62. Rogers J, Palmer AR, Kolenbrander P, Scannapieco F. Role of Streptococcus gordonii

amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm

formation 1. Infect Immun. 2001;69(11):7046-56.

63. Rogers JD, Haase EM, Brown AE, Douglas CW, Gwynn JP, Scannapieco FA.

Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in

Streptococcus gordonii. Microbiology. 1998 May;144 ( Pt 5):1223-33.

64. Rogers JD, Palmer RJ, Jr., Kolenbrander PE, Scannapieco FA. Role of Streptococcus

gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and

biofilm formation. Infect Immun. 2001 Nov;69(11):7046-56.

65. Ruiz Miravet A, Montiel Company JM, Almerich Silla JM. Evaluation of caries risk in

a young adult population. Med Oral Patol Oral Cir Bucal. 2007 Sep;12(5):E412-8.

66. Scannapieco F, Torres G, Levine M. Salivary alpha-amylase: role in dental plaque and

caries formation. Crit Rev Oral Biol Med. 1993;4(3-4):301-7.

67. Scannapieco FA, Bergey EJ, Reddy MS, Levine MJ. Characterization of salivary

alpha-amylase binding to Streptococcus sanguis. Infect Immun. 1989 Sep;57(9):2853-63.

68. Scannapieco FA, Torres GI, Levine MJ. Salivary amylase promotes adhesion of oral

streptococci to hydroxyapatite. J Dent Res. 1995 Jul;74(7):1360-6.

69. Sheiham A, James WP. Diet and Dental Caries: The Pivotal Role of Free Sugars

Reemphasized. J Dent Res. 2015 Oct;94(10):1341-7.

70. Shimotoyodome A, Kobayashi H, Tokimitsu I, Hase T, Inoue T, Matsukubo T, et al.

Saliva-promoted adhesion of Streptococcus mutans MT8148 associates with dental plaque

and caries experience. Caries Res. 2007;41(3):212-8.

71. Singh S, Sharma A, Sood PB, Sood A, Zaidi I, Sinha A. Saliva as a prediction tool for

dental caries: An in vivo study. J Oral Biol Craniofac Res. 2015 May-Aug;5(2):59-64.

72. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies.

Annu Rev Biochem. 1995;64:375-401.

73. Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry.

Bioorg Med Chem. 2007 Jul 1;15(13):4336-50.

74. Szabo I. Carbonic anhydrase activity in the saliva of children and its relation to caries

activity. Caries Res. 1974;8(2):187-91.

75. Tenovuo J. Salivary parameters of relevance for assessing caries activity in individuals

and populations. Community Dent Oral Epidemiol. 1997 Feb;25(1):82-6.

84

76. Torres SR, Nucci M, Milanos E, Pereira RP, Massaud A, Munhoz T. Variations of

salivary flow rates in Brazilian school children. Braz Oral Res. 2006 Jan-Mar;20(1):8-12.

77. Tukia-Kulmala H, Tenovuo J. Intra- and inter-individual variation in salivary flow

rate, buffer effect, lactobacilli, and mutans streptococci among 11- to 12-year-old

schoolchildren. Acta Odontol Scand. 1993 Feb;51(1):31-7.

78. Tulunoglu O, Demirtas S, Tulunoglu I. Total antioxidant levels of saliva in children

related to caries, age, and gender. Int J Paediatr Dent. 2006 May;16(3):186-91.

79. Vacca-Smith AM, Venkitaraman AR, Quivey RG, Jr., Bowen WH. Interactions of

streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-

coated hydroxyapatite. Arch Oral Biol. 1996 Mar;41(3):291-8.

80. Van Nieuw Amerongen A, Bolscher JG, Veerman EC. Salivary proteins: protective

and diagnostic value in cariology? Caries Res. 2004 May-Jun;38(3):247-53.

81. Vitorino R, de Morais Guedes S, Ferreira R, Lobo MJ, Duarte J, Ferrer-Correia AJ, et

al. Two-dimensional electrophoresis study of in vitro pellicle formation and dental caries

susceptibility. Eur J Oral Sci. 2006 Apr;114(2):147-53.

82. Yildiz G, Ermis RB, Calapoglu NS, Celik EU, Turel GY. Gene-environment

Interactions in the Etiology of Dental Caries. J Dent Res. 2016 Jan;95(1):74-9.

85

APÊNDICE

Produção bibliográfica da aluna Thayse Rodrigues de Souza durante o Mestrado.

1. Souza TR, Silva IHM, Carvalho AT, Gomes VB, Duarte AP, Leão JC, Gueiros LAM.

Juvenile Sjögren Syndrome: Distinctive Age, Unique Findings. Ped Dent. 2012 Sep;

34 (5):427-30.

2. Leão Filho JC, Braz AK, Souza TR, de Araújo RE, Pithon MM, Tanaka OM. Optical

coherence tomography for debonding evaluation: an in-vitro qualitative study. Am J

Orthod Dentofacial Orthop. 2013 Jan; 143(1):61-8.

3. Souza TR, Carvalho AT, Duarte AP, Porter SR, Leão JC, Gueiros LAM. Th1 and Th2

polymorphisms in Sjogren’s syndrome and rheumatoid arthritis. J Oral Pathol Med.

2014;43: 418-26.

86

ANEXOS

ANEXO 1 – Certificado do Comitê de Ética em Pesquisa da FOP- UNICAMP

87

ANEXO 2- Autorização da Secretaria Municipal de Saúde de Piracicaba-SP para

realização da pesquisa

88

ANEXO 3- Ficha clínica utilizada na coleta de dados

89

ANEXO 4- Declaração

Declaração

As cópias dos documentos de minha autoria já submetidos para publicação em revistas

científicas sujeitos a arbitragem, que constam da minha tese de Doutorado intitulada

“RELAÇÃO ENTRE A ATIVIDADE DA ANIDRASE CARBÔNICA VI, ALFA-AMILASE

SALIVAR, CAPACIDADE TAMPÃO, FLUXO SALIVAR E CÁRIE DENTAL EM

CRIANÇAS” não infringem os dispositivos da Lei nº 9.610/98, nem o direito autoral de

qualquer editora.

Piracicaba, 05 de Maio de 2016.

Autora: Thayse Rodrigues de Souza Leão

RG: 567954

Orientadora: Marinês Nobre dos Santos Uchôa

RG: 416.641

90

ANEXO 5- Confirmação de envio do artigo para publicação – Caries Research

91

ILUSTRAÇÕES

FIGURA 1. Exame clínico para avaliação do índice de cárie em pré-escolares do município de

Piracicaba-SP (Capítulo 1 e 2)

92

FIGURA 2. Cárie precoce da infância (Capítulo 1 e 2)

93

FIGURA 3. Forma de coleta de saliva estimulada (capítulos 1 e 2).

94

FIGURA 4. Bochecho com solução de sacarose 20% (Capítulos 1 e 2).

95

FIGURA 5. Material utilizado na coleta de saliva (Capítulos 1 e 2).

FIGURA 6. Metodologia de avaliação da capacidade tampão.

96

FIGURA 7. Metodologia de avaliação da atividade do fluxo salivar estimulado.

97

FIGURA 8. Metodologia de avaliação da atividade da enzima Anidrase Carbônica VI.

A: Bancada preparada para o preparo das soluções que dariam origem aos géis.

B: Preparo das amostras utilizadas na corrida eletroforética: Amostras centrifugadas por 10

minutos a 5000 rpm a 4º C.

C: Preparo das amostras adicionando 100 µl da amostra e 100µl do tampão da amostra.

D: Componentes utilizados do kit de eletroforese Mini protein tetra cell, Bio-Rad

E: Limpeza e montagem dos vidros no suporte, colocação do gel de corrida e de separação e

em seguida o pente.

F: Remoção do pente, visualização das lacunas onde serão colocadas as amostras preparadas

para a corrida.

G: Pipetagem de 10 µl de amostra preparada em cada lacuna.

H: Lacunas preenchidas.

I: Montagem do gel na cuba.

J: Colocação do tampão de corrida até a linha demarcada.

K: Cuba preparada e colocada em geladeira a -4°C.

L: Conexão da cuba ao aparelho.

M: Ajuste de voltagem, 140 Volts e tempo 1h:50min

N, O, P: Após a corrida realizada remoção do gel, feita marcação para identificar sequência

das amostras.

Q: Colocação cuidadosa do gel em recipiente contendo 250 ml de corante de azul de

bromotimol 0.1%.

98

R: Recipiente colocado em máquina agitadora por 10 min em velocidade 02.

S: Preparo de solução contendo 250 ml de água deionizada e 30g de gelo seco deixada por 10

min.

T, U: Imersão do gel em recipiente contendo água deionizada e gelo seco.

V: Posicionamento do gel. Fotografia com câmera Samsung Digital Variplan zoom 4.0 –

72mm, 18x.

99

FIGURA 9. Metodologia de avaliação da atividade da enzima Alfa-amilase salivar.

A: Centrífuga utilizada.

B: Amostras diluídas.

C: Espectofotômetro.

D: Cubetas para espectofotometria.