ROBÔ LOCALIZADOR DE SERES HUMANOS

60
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTOS ACADÊMICOS DE ELETRÔNICA E INFORMÁTICA CURSO DE ENGENHARIA DE COMPUTAÇÃO AGNALDO CESAR COELHO ANDRÉ LUIZ CONSTANTINO BOTTA BIANCA ALESSANDRA VISINESKI ALBERTON RICHARD CLEVERTON WAGNER ROBÔ LOCALIZADOR DE SERES HUMANOS MONOGRAFIA DE OFICINA DE INTEGRAÇÃO II CURITIBA 2012

description

O projeto baseia-se na construção de um robô móvel autônomo que possa entrar em áreas com pouca ou nenhuma luminosidade, guiando-se a partir de um sonar, com o objetivo de diferenciar, por meio de um sensor de calor por infravermelho, seres humanos de outros corpos.

Transcript of ROBÔ LOCALIZADOR DE SERES HUMANOS

Page 1: ROBÔ LOCALIZADOR DE SERES HUMANOS

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁDEPARTAMENTOS ACADÊMICOS DE ELETRÔNICA E INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

AGNALDO CESAR COELHOANDRÉ LUIZ CONSTANTINO BOTTA

BIANCA ALESSANDRA VISINESKI ALBERTONRICHARD CLEVERTON WAGNER

ROBÔ LOCALIZADOR DE SERES HUMANOS

MONOGRAFIA DE OFICINA DE INTEGRAÇÃO II

CURITIBA

2012

Page 2: ROBÔ LOCALIZADOR DE SERES HUMANOS

AGNALDO CESAR COELHOANDRÉ LUIZ CONSTANTINO BOTTA

BIANCA ALESSANDRA VISINESKI ALBERTONRICHARD CLEVERTON WAGNER

ROBÔ LOCALIZADOR DE SERES HUMANOS

Monografia de Oficina de Integração II apresentadaao Curso de Engenharia de Computação da Universi-dade Tecnológica Federal do Paraná como requisitoparcial para aprovação.

Orientador: Miguel Antonio Sovierzoski

CURITIBA

2012

Page 3: ROBÔ LOCALIZADOR DE SERES HUMANOS

AGRADECIMENTOS

Agradecemos ao professor orientador Miguel Antonio Sovierzoski por ter nos auxi-

liado durante o projeto. E também, aos professores da disciplina de Oficina de Integração II:

Hugo Vieira Neto e Mário Sérgio Teixeira de Freitas, que sempre estiveram dispostos a nos

auxiliar da melhor maneira possível.

Page 4: ROBÔ LOCALIZADOR DE SERES HUMANOS

RESUMO

COELHO, AGNALDO; BOTTA, ANDRÉ; ALBERTON, BIANCA; WAGNER, RICHARD.ROBÔ LOCALIZADOR DE SERES HUMANOS. 54 f. Monografia de Oficina de Integração II– Curso de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba,2012.

O projeto baseia-se na construção de um robô móvel autônomo que possa entrar em áreas compouca ou nenhuma luminosidade, guiando-se a partir de um sonar, com o objetivo de diferenciar,por meio de um sensor de calor por infravermelho, seres humanos de outros corpos.

Palavras-chave: Robô, Arduino, Sensor Piroelétrico, Sonar, Localizador, Locomoção.

Page 5: ROBÔ LOCALIZADOR DE SERES HUMANOS

ABSTRACT

COELHO, AGNALDO; BOTTA, ANDRÉ; ALBERTON, BIANCA; WAGNER, RICHARD.ROBOT HUMAN BEINGS FINDER. 54 f. Monografia de Oficina de Integração II – Curso deEngenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2012.

The project is based on the construction of an autonomous mobile robot that can go into areaswith a low light, or even without it, guided by a sonar, in order to differentiate, using infraredsensors, humans from objects.

Keywords: Robot, Arduino, Pyroelectric Sensor, Sonar, Finder, Movement.

Page 6: ROBÔ LOCALIZADOR DE SERES HUMANOS

LISTA DE FIGURAS

–FIGURA 1 Robô autônomo para trabalhos de solda presente em linha de montagem. 11–FIGURA 2 Diagrama de Blocos do Robô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–FIGURA 3 Princípio de funcionamento do motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–FIGURA 4 Variação da corrente de um motor com a carga . . . . . . . . . . . . . . . . . . . . . . . 16–FIGURA 5 Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–FIGURA 6 Componentes de um servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–FIGURA 7 Controle do servomotor utilizando sinais PWM. . . . . . . . . . . . . . . . . . . . . . 18–FIGURA 8 Potência irradiada versus comprimento de onda . . . . . . . . . . . . . . . . . . . . . . 19–FIGURA 9 Espectro eletromagnético . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–FIGURA 10 Sensor piroelétrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20–FIGURA 11 Exemplo de sinal gerado pelo sensor PIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21–FIGURA 12 Polaroid SLR 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22–FIGURA 13 Detecção de objetos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24–FIGURA 14 Aferição de distância em uma superfície inclinada . . . . . . . . . . . . . . . . . . . . 24–FIGURA 15 Teste prático de desempenho do sonar HC-SR04 . . . . . . . . . . . . . . . . . . . . . 25–FIGURA 16 Buzzer piezoelétrico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26–FIGURA 17 Controle PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27–FIGURA 18 Bateria Li-PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28–FIGURA 19 Arranjo da bateria Li-PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29–FIGURA 20 Baterias Li-PO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31–FIGURA 21 Circuito regulador com LM7805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33–FIGURA 22 Kit Tamiya dois motores e caixa de redução . . . . . . . . . . . . . . . . . . . . . . . . . 35–FIGURA 23 Circuito Integrado L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36–FIGURA 24 Servomotor modelo Hextronik HXT900. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37–FIGURA 25 Sensor PIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38–FIGURA 26 Arduino UNO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39–FIGURA 27 Chassi Kit Tamiya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40–FIGURA 28 Placa de circuito impresso utilizada neste projeto. . . . . . . . . . . . . . . . . . . . . 40–FIGURA 29 Circuito de ligação do sensor ao Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41–FIGURA 30 Chassi: elementos da base de madeira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43–FIGURA 31 Primeira estrutura do robô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43–FIGURA 32 Estrutura do robô utilizando peças LEGO . . . . . . . . . . . . . . . . . . . . . . . . . . . 44–FIGURA 33 Fluxograma para o código fonte do Robô . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Page 7: ROBÔ LOCALIZADOR DE SERES HUMANOS

LISTA DE TABELAS

–TABELA 1 Especificações da Bateria Li-PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29–TABELA 2 Comparação entre as seis tecnologias de baterias recarregáveis mais uti-lizadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32–TABELA 3 Especificações do servomotor utilizado. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37–TABELA 4 Especificações do sonar HC-SR04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38–TABELA 5 Orçamento do Robô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Page 8: ROBÔ LOCALIZADOR DE SERES HUMANOS

LISTA DE SIGLAS

DC Direct CurrentAC Alternate CurrentPWM Pulse Width ModulationPCI Placa de Circuito Impresso

Page 9: ROBÔ LOCALIZADOR DE SERES HUMANOS

SUMÁRIO

1 INTRODUÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.1 JUSTIFICATIVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.2 DELIMITAÇÃO DO PROBLEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.3 MOTIVAÇÃO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4 OBJETIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.1 Objetivo Geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.2 Objetivos Específicos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.5 MÉTODOS DE PESQUISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.6 VISÃO GERAL DO SISTEMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 FUNDAMENTAÇÃO TEÓRICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1 MOTORES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.1 Motores DC: funcionamento e caixas de redução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.1.3 Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2 SENSOR DE CALOR POR INFRAVERMELHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 SONAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.3.1 Geração e Recepção do Sinal de Ultrassom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3.2 Vantagens dos Sonares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.3.3 Principais Problemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.4 BUZZERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.5 PLACA DE CIRCUITO IMPRESSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.6 CONTROLE PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272.7 FONTE DE ENERGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.7.1 Especificações da Bateria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.7.2 Vantagens e Desvantagens no Uso de Bateria Li-PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.7.3 Regulagem Série de Tensão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 DESENVOLVIMENTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1 COMPONENTES UTILIZADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1.1 Motor DC e Caixa de Redução . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1.2 Ponte H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.1.3 Servomotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363.1.4 Sensor de Calor por Infravermelho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.1.5 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.1.6 Plataforma Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.1.7 chassi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.2 MONTAGEM DA PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.3 LIGAÇÃO DO SENSOR PIR AO ARDUINO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.4 FIXAÇÃO DO SENSOR PIR AO SERVOMOTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.5 INTEGRAÇÃO DO SONAR AO ROBÔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.6 MONTAGEM MECÂNICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423.7 SOFTWARE DESENVOLVIDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Page 10: ROBÔ LOCALIZADOR DE SERES HUMANOS

4 CONSIDERAÇÕES FINAIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.1 DIFICULDADES ENCONTRADAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.1.1 Sonar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464.1.2 Utilização do Servomotor ao invés de um motor de passo . . . . . . . . . . . . . . . . . . . . . . . . 474.1.3 Sensor de Calor por Infravermelho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.1.4 Locomoção do Robô . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.2 PROJETOS FUTUROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Apêndice A -- ORÇAMENTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Apêndice B -- DIAGRAMA DE GANTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Apêndice C -- CÓDIGO FONTE DO ROBÔ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Page 11: ROBÔ LOCALIZADOR DE SERES HUMANOS

10

1 INTRODUÇÃO

Robótica é uma área multidisciplinar da ciência que trata de sistemas compostos por

partes mecânicas e controlados por circuitos eletrônicos que operam segundo um algoritmo.

Nem todos os robôs possuem a capacidade de locomoção, porém um robô que possua tal ca-

pacidade poderá deslocar-se para o ponto em que suas habilidades sejam mais eficientes. (SI-

EGWART; NOURBAKHSH, 2004)

O advento da robótica foi um marco na indústria: a capacidade de executar com grande

precisão e velocidade uma mesma função repetidas vezes impulsionou a produção de bens em

larga escala. A figura 1 exibe a imagem de um braço mecânico autônomo de soldagem, um

dos equipamentos pertencentes a esta revolução na indústria manufatureira. No campo da ele-

trônica, a robótica auxilia a produção de componentes cada vez menores e com maior quali-

dade.(SIEGWART; NOURBAKHSH, 2004)

Os robôs têm sido aplicados nas mais diversas áreas possíveis, como na exploração

de ambientes inóspitos, no espaço e em extremas profundidades marinhas, na realização de

intervenções cirúrgicas, na inspeção de áreas de risco (áreas vulcânicas, minas abandonadas,

acidentes em usinas nucleares, etc.) e até mesmo no auxílio ao resgate de pessoas feridas.

(RIBEIRO et al., 2012)

1.1 JUSTIFICATIVA

Em ambientes inóspitos, com risco à vida para equipes de salvamento, o uso de robôs

autônomos pode fazer a diferença entre a vida e a morte de uma vítima. Este projeto teve o

intuito, atentando-se ao tempo dedicado e à gama de conhecimentos por parte dos integrantes,

de viabilizar um mecanismo, na forma de um robô móvel autônomo, capaz de auxiliar o pro-

cesso de resgate em situações de desastres, procurando seres humanos que estejam perdidos ou

feridos, facilitando assim, as buscas.

Page 12: ROBÔ LOCALIZADOR DE SERES HUMANOS

11

Figura 1: Robô autônomo para trabalhos de solda presente em linha de montagem.

Fonte: (SIEGWART; NOURBAKHSH, 2004)

1.2 DELIMITAÇÃO DO PROBLEMA

Robótica móvel autônoma abrange um leque enorme de possibilidades de estudo. A

locomoção do robô já caracteriza um desafio por si mesma (SIEGWART; NOURBAKHSH,

2004), afinal, este pode utilizar para sua locomoção rodas, esteiras, pernas, entre outros, que

necessitam de motores, os quais podem ser de diversos tipos, cada um apresentando vantagens

e desvantagens para cada aplicação. Além disso, é necessário um algoritmo que trate as in-

formações recebidas pelo robô e decida que ações devem ser tomadas pelo mesmo. Todos os

conhecimentos necessários para a elaboração deste projeto e os componentes utilizados estão

descritos ao longo do desenvolvimento deste trabalho.

1.3 MOTIVAÇÃO

Os integrantes da equipe almejavam um projeto que envolvesse robótica móvel autô-

noma, além do uso de sensores, item obrigatório da disciplina, proporcionando a todos os inte-

grantes um aprendizado abrangente com uma temática desafiadora.

1.4 OBJETIVOS

1.4.1 OBJETIVO GERAL

Desenvolver um robô móvel autônomo capaz de identificar fontes de calor, em especial

seres humanos, em ambientes que apresentem pouca ou nenhuma luminosidade. O termo “ser

humano” será utilizado neste documento para restringir fontes de calor ao enfoque deste pro-

Page 13: ROBÔ LOCALIZADOR DE SERES HUMANOS

12

jeto. Após a detecção da pessoa, o robô se aproximará dela até atingir uma distância mínima,

previamente definida, para então, emitir um aviso sonoro indicando a conclusão de sua meta.

1.4.2 OBJETIVOS ESPECÍFICOS

• Implementar um sistema de controle de locomoção, empregando um sonar, baseado na

aferição da distância entre o robô, portador do sensor, e o meio.

• Distinguir objetos de seres humanos por meio de um sensor de calor por infravermelho.

• Deslocar-se até o alvo tendo em vista a orientação do mesmo segundo os dados obtidos

pelo sensor de calor por infravermelho.

1.5 MÉTODOS DE PESQUISA

O projeto dividiu-se em duas etapas principais, sendo que na primeira etapa o funci-

onamento dos componentes utilizados foram estudados individualmente, e na segunda etapa,

integrou-se os componentes até o estado final do robô.

• Inicialmente definiu-se os componentes prioritários do projeto. Distribuiu-se a pesquisa

teórica sobre cada componente entre os integrantes da equipe, possibilitando que cada

membro suprisse um aspecto do projeto e instruísse os outros integrantes sobre a forma

correta de utilização do componente em questão. Paralelamente, o grupo se reunia du-

rante as aulas de Oficinas de Integração 2 e no laboratório do DAELN para testar cada

componente, como exposto no Diagrama de Gantt (apêndice B).

• Com o término da primeira etapa, todos os componentes, individualmente, estavam fun-

cionando como esperado. Assim sendo, iniciou-se a etapa de integração entre eles. O

software de controle do robô começou a ser desenvolvido, visando a coordenação de to-

dos os dispositivos envolvidos.

Como fonte de informações, o projeto utilizou principalmente os datasheets dos com-

ponentes, livros sobre robótica aplicada e tutoriais disponíveis na Internet. Embora as informa-

ções contidas na rede nem sempre sejam confiáveis, os tutoriais utilizados em conjunto com os

datasheets se mostram de grande valia para a compreensão do funcionamento dos componen-

tes.

Page 14: ROBÔ LOCALIZADOR DE SERES HUMANOS

13

1.6 VISÃO GERAL DO SISTEMA

De modo geral, o sistema funciona de acordo com o diagrama de blocos exposto na

figura 2.

O robô guia-se utilizando as informações coletadas pelo sonar e pelo sensor de calor

por infravermelho, que são processadas pelo Arduino. Este controla a direção que o robô deve

seguir e para onde o sensor de calor por infravermelho deve ser direcionado pelo servomotor.

Quando o robô está próximo de uma pessoa, o buzzer emite um sinal sonoro.

Os motores DC, controlados pelo Arduino por meio da ponte H, são responsáveis pela

locomoção do robô. Cada um deles está acoplado a uma caixa de redução, de modo a aumentar

o torque aplicado nas esteiras.

Figura 2: Diagrama de Blocos do Robô

Fonte: Autoria própria

A fundamentação teórica dos componentes utilizados está no capítulo 2. Os detalhes

do desenvolvimento e da implementação do sistema estão no capítulo 3.

Page 15: ROBÔ LOCALIZADOR DE SERES HUMANOS

14

2 FUNDAMENTAÇÃO TEÓRICA

2.1 MOTORES

De acordo com Kosow (1982), motor elétrico é um dispositivo que transforma energia

elétrica em energia mecânica, sendo os motores elétricos o principal responsável por movimen-

tar robôs, braços mecânicos e outros dispositivos usados em mecatrônica.

Basicamente, há dois tipos de motores: de corrente contínua DC e de corrente alternada

AC. Os demais são variações desses dois tipos (motor de passo, servomotores, entre outros).

2.1.1 MOTORES DC: FUNCIONAMENTO E CAIXAS DE REDUÇÃO

Motores elétricos possuem duas estruturas magnéticas principais: o rotor e o estator.

(HONDA, 2012)

O rotor é a parte rotatória do motor. É constituído por um material ferromagnético

envolvido em um enrolamento, chamado de enrolamento de armadura, que é alimentado por

um sistema mecânico de comutação que gira junto ao eixo do motor e cuja função é inverter a

fase da corrente de rotação. (HONDA, 2012)

O estator constitui-se na parte estática do motor, montada ao redor do rotor de forma

que este possa girar livremente. Ele é composto por imãs permanentes e sua função é produzir

um campo magnético fixo que interage com o enrolamento do rotor. (HONDA, 2012)

Considerando um estator composto por ímãs permanentes e um rotor composto por

uma bobina, conforme apresenta a figura 3. Pelo rotor circula corrente em um sentido, gerando

um campo magnético. Se o sentido da corrente for invertido, a orientação do campo magnético

é alterada. (HONDA, 2012)

Assim, com a bobina na horizontal (figura 3(a)), ocorre uma atração entre os pólos

opostos do rotor e do estator, gerando um torque que força a rotação da bobina (figura 3(b)) até

o instante em que os pólos da bobina estejam alinhados com os pólos opostos do estator (figura

Page 16: ROBÔ LOCALIZADOR DE SERES HUMANOS

15

Figura 3: Princípio de funcionamento do motor.

Fonte: (HONDA, 2012)

3(c)). Nesta situação, o sistema está em equilíbrio e não há torque algum atuando. Para mudar

isto, é necessário inverter o sentido da corrente no rotor e, consequentemente, da polaridade da

bobina, de forma que ocorra uma repulsão entre o estator e o rotor e haja torque atuando sobre

o sistema novamente (figura 3(d)). (HONDA, 2012)

Quando a bobina estiver novamente na horizontal, ocorre uma atração entre os pólos

opostos do rotor e do estator, continuando a rotação da bobina no mesmo sentido em que ela

iniciou, até que ela gire 180°, quando reinicia-se o ciclo. (HONDA, 2012)

Existem vários tipos de motores DC, tais como os de imã permanente, sem escovas

ou de relutância variável. Podem ser encontrados em uma ampla faixa de tensões nominais,

sendo os mais comuns entre tensões de 1,5 a 12 V. A corrente que o motor exige depende de

sua potência e também da “carga” ou massa movimentada, como é possível observar na figura

4. (BRAGA, 2000b)

Os motores funcionam a altas velocidades, geralmente na faixa de 3000 a 10000 rpm, e

possuem baixo torque, que é a força angular que um motor pode empregar a uma certa distância

de seu eixo. Para conseguir um torque maior, é necessário acoplar uma caixa de redução ao

Page 17: ROBÔ LOCALIZADOR DE SERES HUMANOS

16

Figura 4: Variação da corrente de um motor com a carga

Fonte: (BRAGA, 2000b)

motor, tendo como custo uma diminuição da velocidade de rotação final da carga. (JONES et

al., 1999)

A relação entre os tamanhos e o número de dentes das engrenagens fornece a taxa de

redução da velocidade e do aumento da força obtida. (BRAGA, 2000b)

A maioria dos motores DC possuem dois terminais de alimentação. Aplicando-se uma

tensão sobre os terminais, obtém-se a rotação do motor em um sentido. Ao inverter a polaridade

da tensão, inverte-se também o sentido de rotação do motor. Esse tipo de motor é largamente

empregado em projetos pequenos. (BRAGA, 2000b)

2.1.2 PONTE H

Para realizar o controle sobre os motores DC, utiliza-se um circuito composto por

transistores de potência chamado de ponte H. (BRAGA, 2000a)

A figura 5 apresenta uma ponte H básica. O sistema funciona partindo do princípio

que sempre dois transistores de lados opostos estarão conduzindo, sendo que para fazer o motor

funcionar, as únicas configurações possíveis de operação de transistores é Q1 e Q4 ou Q2 e Q3,

com apenas um par conduzindo corrente por vez. Assim se Q1 e Q4 estão conduzindo, o motor

gira em um sentido, e se Q2 e Q3 estão conduzindo, o motor gira no sentido oposto devido à

inversão no sentido da corrente.(BRAGA, 2000a)

2.1.3 SERVOMOTOR

O servomotor é um dispositivo eletromecânico que, ao receber um sinal elétrico de

controle, rotaciona seu eixo até a posição angular desejada. Sua estrutura possui um sistema

eletrônico de controle e um potenciômetro que permite controlar o ângulo do eixo do servo-

Page 18: ROBÔ LOCALIZADOR DE SERES HUMANOS

17

Figura 5: Ponte H básica

Fonte: Autoria própria

motor. O servomotor possui um limitador responsável em manter o ângulo de rotação do eixo

dentro do intervalo de 0° a 180° (PICTRONICS, 2007). A figura 6 exibe os elementos que

compõem um servomotor.

Figura 6: Componentes de um servomotor.

Fonte: Adaptado de Pictronics (2007)

O controle do ângulo do servomotor é determinado pelo sinal PWM recebido pelo

circuito de controle deste. O sinal deve ter amplitude de 5 V. A cada 20 ms é verificado o sinal

de entrada. Conforme a largura do pulso recebido, que pode variar de 1 a 2 ms, a posição do

eixo do servomotor é alterada. A figura 7 apresenta este comportamento. Por exemplo, se o

pulso aferido pelo servomotor possuir largura de 1,5 ms, o circuito de controle verifica se a

posição do eixo está em 90°. Caso positivo, nenhuma ação será executada. Do contrário, o eixo

será rotacionado até a posição desejada (PICTRONICS, 2007).

Page 19: ROBÔ LOCALIZADOR DE SERES HUMANOS

18

Figura 7: Controle do servomotor utilizando sinais PWM.

Fonte: Adaptado de Pictronics (2007).

2.2 SENSOR DE CALOR POR INFRAVERMELHO

De acordo com a lei de Stefan-Boltzmann, quando um corpo está em equilíbrio térmico

com o meio, este emite e absorve radiação em uma mesma taxa, cuja potência irradiada (Pr)

é proporcional à área da superfície (A) e à quarta potência da sua temperatura absoluta (T),

resultando na equação 1 (TIPPLER; MOSCA, 2009):

Pr = eσAT 4. (1)

Desta equação tem-se que σ = 5,6703× 10−8 W(m2K4)

. A constante “e” é a emissividade da

superfície, que depende da composição do material e assume valores entre 0 e 1. O valor

máximo indica que o objeto é um corpo negro, sendo este um caso especial por ser o modelo

ideal, tornando possível calcular teoricamente as características de radiação do mesmo.

De acordo com a lei do deslocamento de Wien, o comprimento de onda emitido por

um corpo negro é inversamente proporcional à temperatura, como mostra a figura 8. Corpos

a altas temperaturas emitem radiações dentro do espectro visível. Na temperatura ambiente a

emissão fica dentro do espectro infravermelho, conforme apresenta a figura 9. A emissão de

radiação do corpo humano é mais intensa quando está em um comprimento de onda de 9,4

µm, ou seja, em um valor na região do infravermelho no espectro eletromagnético. (GLOLAB

CORPORATION, 2003).

Page 20: ROBÔ LOCALIZADOR DE SERES HUMANOS

19

Figura 8: Potência irradiada versus comprimento de onda.

Fonte: (BRAGA, 2009)

O termo piroelétrico é derivado da palavra “piro” que em grego significa fogo, ou

seja, um sensor piroelétrico (sensor PIR) é um detector de calor. Este sensor é constituído de

eletretos, materiais que apresentam cargas elétricas naturalmente em suas superfícies, gerando

pólos elétricos no material. Neste tipo de material a variação da carga elétrica ocorre conforme

a radiação infravermelha incidente sobre o mesmo (BRAGA, 2010).

O sensor possui uma janela com um filtro óptico para permitir somente a passagem de

radiações na faixa de comprimentos de onda de 8 a 14 µm. Esta janela permite que a radiação

incida sobre dois elementos sensores que estão conectados a um transistor FET. Este circuito

fica dentro de um encapsulamento TO5, como mostrado na figura 10.

Para cancelar o ruído gerado por vibrações, mudanças de temperatura e luz solar, os

elementos sensores são conectados de forma a gerar uma tensão simétrica. Quando um elemento

sensor detecta algum ser humano, ele gera um pulso positivo, enquanto o outro gera um pulso

negativo. A partir do sinal gerado pelo sensor é possível determinar o sentido em que a fonte de

calor se moveu em relação ao sensor. Um exemplo do funcionamento do sensor é mostrado na

figura 11 (GLOLAB CORPORATION, 2003).

Page 21: ROBÔ LOCALIZADOR DE SERES HUMANOS

20

Figura 9: Espectro eletromagnético.

Fonte: Adaptado de Out Of This World (2012)

Figura 10: Sensor piroelétrico.

Fonte: (BRAGA, 2009)

2.3 SONAR

O efeito piezoelétrico foi descoberto por Pierre Curie em 1880 e consiste na variação

das dimensões físicas de certos materiais quando sujeitos a campos elétricos e vice-versa, ou

seja, ao aplicar uma força mecânica o material gera uma diferença de potencial elétrico. Curie

Page 22: ROBÔ LOCALIZADOR DE SERES HUMANOS

21

Figura 11: Exemplo de sinal gerado pelo sensor PIR.

Fonte: Adaptado de Glolab Corporation (2003)

utilizou em seus experimentos, principalmente, turmalina, quartzo, topázio, cana-de-açúcar e

sal de La Rochelle (FETALMED.NET, 2012; GENESIS-ULTRASOUND.COM, 2010). Esta

tecnologia possui diversas aplicações, entre elas a emissão de ondas ultrassônicas.

Uma das empresas pioneiras na utilização de ultrassom é a Polaroid. Esta usava um

sonar na câmera Polaroid SLR 680 (figura 12) para determinar a distância de um objeto ou

pessoa, por meio da medição do tempo decorrido entre a transmissão de um trem de pulsos

ultrassônicos e o recebimento de seu eco. Desta maneira, a câmera ajustava o foco automatica-

mente (SEATTLE ROBOTICS, 2004; BROWN COMPUTER SCIENCE, 2002; BACKYARD

ROBOTS, 2012).

2.3.1 GERAÇÃO E RECEPÇÃO DO SINAL DE ULTRASSOM

Ondas sonoras são ondas longitudinais. Quando elas se propagam em um meio, as

moléculas do meio movem-se para frente e para trás ao longo da linha de propagação, alterna-

damente, comprimindo ou expandindo o meio (TIPPLER; MOSCA, 2009, p. 502).

O ultrassom é um som com uma faixa de frequências superior a 20 kHz, que corres-

Page 23: ROBÔ LOCALIZADOR DE SERES HUMANOS

22

Figura 12: Polaroid SLR 680.

Fonte: (SLEEPSLEEP, 2009)

ponde ao limiar da audição humana1 (TIPPLER; MOSCA, 2009, p. 514, p. 518). Sons de alta

frequência tendem a se dispersarem menos e não se propagarem tanto quanto os sons audí-

veis (BACKYARD ROBOTS, 2012; SENSORWIKI.ORG, 2011; MASSA, 1999a). Para gerar

um sinal de ultrassom é aplicada uma tensão elétrica controlada, momentânea e oscilante no

tempo, em um cristal piezoelétrico. Deste modo, o cristal se expande e contrai com a ten-

são, ressonando na frequência desejada, gerando ondas (energia) acústicas. O eco destas ondas

é detectado por outro receptor piezoelétrico que as converte em energia elétrica novamente

(SENSORWIKI.ORG, 2011; MIGATRON CORP., 2010; BROWN COMPUTER SCIENCE,

2002).

Utilizando este efeito, os transdutores ultrassônicos medem o tempo de voo2 entre

o início de um trem de ondas, gerados pelo cristal piezoelétrico, e o retorno de seus ecos.

Conhecendo o tempo de voo e tendo a velocidade do som no ar como parâmetros pode-se

calcular a distância percorrida de ida e volta do sinal (MASSA, 1999b; BROWN COMPUTER

SCIENCE, 2002; JONES et al., 1999, p. 144).

A velocidade do som no ar é

v =

√γRTM

(2)

onde T é a temperatura em Kelvin, γ é uma a constante adimensional e vale 75 para o ar, R =

8,3145 j/(mol× K) é a constante universal dos gases e M é a massa molar do ar, correspondendo

a 29 × 10−3 kg/mol. À temperatura ambiente a velocidade de propagação do som no ar é de

aproximadamente 340 m/s (TIPPLER; MOSCA, 2009, p. 505).

A maioria dos sonares operam com frequências entre 40 e 250 kHz. Por exemplo, os

1O ouvido humano é mais sensível em cerca de 4 kHz para todos os níveis de intensidade.2Após o transdutor transmissor do sonar emitir o som ultrassônico o transdutor receptor, provavelmente, rece-

berá de volta parcelas refletidas deste som (eco). Tempo de voo é o tempo necessário para que isto ocorra.

Page 24: ROBÔ LOCALIZADOR DE SERES HUMANOS

23

sensores da Hitechnic e o HC-SR04, emitem um pulso curto de 40 kHz através do transdutor

transmissor. No instante seguinte, uma parcela pequena da energia sonora transmitida é refletida

por um obstáculo e é detectada pelo transdutor receptor3. Então o receptor envia o sinal para um

microcontrolador que, por fim, calcula a distância do obstáculo ao sensor, utilizando a equação

2 (BROWN COMPUTER SCIENCE, 2002; MASSA, 1999a).

Segundo Massa (1999b), quanto maior for o diâmetro do transdutor em comparação

com o comprimento de onda de som, mais estreito será o feixe ultrassônico. De acordo com

o exemplo citado pelo autor, se o diâmetro é o dobro do comprimento de onda, o ângulo total

do feixe será de aproximadamente 30°, mas se o diâmetro ou a frequência é aumentada em 10

vezes, o ângulo total do feixe será reduzido em cerca de 6°. Geralmente utiliza-se um sensor

com o padrão de radiação mais estreito possível e que seja capaz de detectar apenas o elemento

desejável (MASSA, 1999b).

Devido ao fato das ondas de ultrassom serem atenuadas muito rapidamente pelo meio

de propagação, pode-se inclusive estimar a distância medindo-se a intensidade do eco (SEN-

SORWIKI.ORG, 2011).

2.3.2 VANTAGENS DOS SONARES

A principal vantagem dos sonares está na possibilidade de realizar medidas de dis-

tância sem a necessidade de tocar o objeto que está sendo analisado. Um objeto passando em

qualquer lugar dentro do intervalo predefinido será detectado e, consequentemente, gerará um

sinal de saída, conforme a figura 13. A distância de um objeto em movimento pode ser atu-

alizada em intervalos muito pequenos de tempo, geralmente acima de 50 ms. Além do mais,

sonares são confiáveis em qualquer condição de luminosidade e podem ser utilizados tanto em

ambientes abertos quanto fechados, são resistentes a perturbações externas tais como vibra-

ção, radiação infravermelha e eletromagnética. Também são relativamente rápidos a ponto de

evitar a colisão de um robô e permitem detectar objetos pequenos a distâncias longas quando

comparado a outros sensores, como por exemplo o medidor de distância por infravermelho

(SENSORWIKI.ORG, 2011; BACKYARD ROBOTS, 2012; MIGATRON CORP., 2010).

2.3.3 PRINCIPAIS PROBLEMAS

Se a superfície do obstáculo a ser analisada estiver inclinada em relação à face do

sensor, como mostra a figura 14, este irá aferir a distância do ponto mais próximo dentro do cone

3Em muitos sonares é utilizado o mesmo transdutor para a transmissão e recepção.

Page 25: ROBÔ LOCALIZADOR DE SERES HUMANOS

24

Figura 13: Objeto dentro da área de visão do ultrassom (esquerda) e objeto fora da linha de visão(direita).

Fonte: (MIGATRON CORP., 2010)

de 30°, ignorando a medida central ou, em alguns casos, o eco da onda emitida não é recebido,

pois esta é refletida para outra direção. No entanto, o feixe ultrassônico não está confinado

em um cone estreito, figura 15. Observa-se em datasheets de sonares a ocorrência de lóbulos

laterais, que se refletidos antes podem levar a uma interpretação confusa da informação do

tempo de voo. Alguns transdutores são projetados de modo a minimizar ou mesmo eliminar os

lóbulos laterais secundários, com isto evitando a detecção de elementos indesejados (BROWN

COMPUTER SCIENCE, 2002; MASSA, 1999b).

Figura 14: Aferição de distância em uma superfície inclinada.

Fonte: Adaptado de Brown Computer Science (2002)

Alguns elementos importantes do ambiente são percebidos apenas quando o sonar está

muito próximo a eles. Isto acontece porque a largura do feixe ultrassônico é relativamente

extensa, conforme figura 15 (BROWN COMPUTER SCIENCE, 2002).

Ressonâncias provenientes do transmissor forçam o receptor a uma pausa momentâ-

nea antes de começar a escutar o eco. Com isto, ocorre uma “zona morta” imediatamente à

frente do sonar, em que os objetos não podem ser detectados porque desviam a onda antes de

o receptor estar operando. Existe um limite de tempo máximo e mínimo para se aguardar pelo

Page 26: ROBÔ LOCALIZADOR DE SERES HUMANOS

25

Figura 15: Teste prático de desempenho do sonar HC-SR04.

Fonte: Adaptado de ITead Studio (2010)

sinal de retorno do trem de pulsos. O tempo de espera mínimo limita a velocidade com que

sucessivas medições podem ser realizadas sem o risco de conflitos (BACKYARD ROBOTS,

2012; SENSORWIKI.ORG, 2011).

Todavia, para o caso em que o sonar estima a distância através da atenuação de in-

tensidade, citado na seção 2.3.1, deve-se tomar cuidado, pois alguns materiais absorvem mais

ondas ultrassônicas que outros, e estes irão refletir menos energia acústica. A intensidade do

eco também é afetada pela geometria do obstáculo. Estes fatores complicam, especialmente,

a utilização da atenuação para medir a distância de objetos arbitrários (SENSORWIKI.ORG,

2011; MASSA, 1999b).

Se o sensor for fixado em um local no qual fique girando constantemente deve-se

limitar a sua velocidade de rotação durante o período de leitura. Ao movê-lo rapidamente é

provável que se obtenha leituras erradas, pois há um tempo mínimo de 50 ms necessário para

enviar e receber a onda ultrassônica. Se a medição for feita em varias direções é recomendado

a utilização de mais sensores, porém fixos (BACKYARD ROBOTS, 2012).

Outra fonte de erro na medição com sonares está na variação da velocidade do som

devido a mudança da temperatura. Por meio da equação 2, nota-se que a velocidade do som

no ar depende diretamente da temperatura. Portanto, a precisão máxima é alcançada quando a

compensação de temperatura é utilizada no sensor. Além da temperatura, a umidade relativa do

ar também influencia na velocidade do som. Ademais, correntes de ar igualmente atrapalham,

pois podem criar fronteiras invisíveis que refletem as ondas ultrassônicas e ainda alteram ale-

Page 27: ROBÔ LOCALIZADOR DE SERES HUMANOS

26

atoriamente a velocidade do som no ar, fazendo com que os valores computados pelo sensor

variem de pulso para pulso (SENSORWIKI.ORG, 2011; MASSA, 1999b).

2.4 BUZZERS

Assim como alto-falantes, buzzers produzem sons. Porém, diferentemente daqueles,

estes emitem sons em uma única frequência, independente da tensão aplicada (SHAMIEH;

MCCOMB, 2005).

Um tipo comum de buzzer é o buzzer piezoelétrico (figura 16). Seu diafragma é fixado

a um cristal piezoelétrico. Quando uma tensão elétrica é aplicada ao cristal, ele expande e

contrai (mesmo efeito piezoelétrico observado no sonar, seção 2.3.1). Isto, faz com que o

diafragma vibre, e assim, gere ondas sonoras com frequências, geralmente, entre 2 a 4 kHz

(SHAMIEH; MCCOMB, 2005).

No robô, emprega-se um buzzer piezoelétrico para alertar quando ele se encontra a

15 cm de um ser humano ou de qualquer outra fonte de calor, indicando que o objetivo foi

alcançado.

Figura 16: Buzzer piezoelétrico.

Fonte: (SHAMIEH; MCCOMB, 2005)

2.5 PLACA DE CIRCUITO IMPRESSO

Placas de circuito impresso (PCI) viabilizam um meio de sustentação mecânica e in-

terligação entre seus terminais para o funcionamento dos componentes de um circuito. São

produzidas com um material isolante, geralmente, fibra de vidro ou fenolite, tendo de uma a

oito camadas de cobre. Os modelos mais comuns possuem apenas camadas nas superfícies ex-

ternas da placa, a de camada simples em apenas um dos lados e a de camada dupla em ambos os

lados. Ao corroer-se esta camada de cobre da PCI, formam-se trilhas e ilhas que permitem uma

conexão elétrica entre componentes elétricos e eletrônicos (SABER ELETRÔNICA, 2010).

Os modelos mais comuns de PCI disponíveis para protótipos são as placas virgens,

Page 28: ROBÔ LOCALIZADOR DE SERES HUMANOS

27

nas quais é necessário criar manualmente as trilhas e corroê-las antes de ser utilizada para a

montagem do circuito. Outro modelo genérico de PCI, possibilita a montagem de qualquer

tipo de circuito unindo as ilhas durante o processo de solda para formar conexões entre os

componentes (SABER ELETRÔNICA, 2010).

2.6 CONTROLE PWM

Modulação por largura de pulso (PWM) refere-se à regulação do pulso retangular de

tensão aplicado a um determinado componente ou circuito, de forma a controlar a potência

média aplicada. (BRAGA, 2012)

Em componentes digitais, o controle por PWM é utilizado para obter uma tensão média

pela modulação por largura de pulso. O princípio de funcionamento baseia-se no fato de que a

tensão média aplicada é igual à área sob a curva de tensão × tempo do pulso emitido. Assim,

alterando-se a porcentagem de tempo em que o sinal está no nível lógico ALTO (figura 17) mas

mantendo-se o período, obtém-se uma variação na tensão do componente digital. (HIRZEL,

2012)

Figura 17: Exemplos da utilização de controle PWM

Fonte: Adaptado de Hirzel (2012)

Page 29: ROBÔ LOCALIZADOR DE SERES HUMANOS

28

2.7 FONTE DE ENERGIA

Para a alimentação do robô é utilizada uma bateria de polímero de lítio (Li-PO), fi-

gura 18. A equipe optou por utilizar este tipo de bateria devido à potência, massa e tamanho

adequados, bem como a fácil adaptação na base do robô. Se fossem utilizadas baterias Ni-MH

(níquel-metal-hidreto), por exemplo, seriam necessárias nove pilhas para obter potência seme-

lhante, totalizando uma massa de 30 g × 9 = 270 g, 90 g a mais que a Li-PO. Além disso, as

pilhas Ni-MH ocupariam mais espaço devido à necessidade de suporte apropriado. A tabela 1,

seção 2.7.1, apresenta as especificações da bateria Li-PO utilizada.

Figura 18: Bateria de polímero de lítio (Li-PO) utilizada na alimentação do robô.

Fonte: (HOBBY KING, 2011)

2.7.1 ESPECIFICAÇÕES DA BATERIA

Na tabela 1 observa-se que a tensão nominal da bateria é de 11,1 V (três células4). Os

fabricantes utilizam XS para especificar a quantidade X de células em série. Para determinar

a tensão da bateria basta multiplicar a tensão de cada célula pelo número total de baterias em

série. No caso desta bateria, especificada como 3S, o cálculo será: 3 × 3,7 V = 11,1 V5.

Para especificar a quantidade Y de blocos em paralelo os fabricantes utilizam YP. Na tabela

1 verifica-se na especificação da tensão 1P, ou seja, há somente um bloco na configuração da

bateria. Para alterar a capacidade da bateria é necessário alterar o valor de Y. Ao dobrar o

valor de Y a capacidade da bateria também dobrará (LIPOL BATTERY, 2011; MOORE, 2008;

RCHELICOPTERFUN.COM, 2012).4Cada bateria é formada por no mínimo uma célula, conforme figuras 19 e 20.5A tensão nominal de uma célula é de 3,7 V, porém, ela pode variar de 3,0 V, quando descarregada, até 4,2 V

quando totalmente carregada (LIPOL BATTERY, 2011).

Page 30: ROBÔ LOCALIZADOR DE SERES HUMANOS

29

Tabela 1: Especificações da Bateria Li-PO utilizada na alimentação robô.

Tensão 3S1P / 3 Células / 11,1 VCapacidade 2200 mAh

Descarga 20 C Constante / 25-30 C BurstMassa 180 g

Dimensões 102 × 37 × 24 mm

Fonte: Adaptado de Hobby King (2011).

A seguir encontram-se alguns exemplos de como determinar a tensão e capacidade de

baterias Li-PO.

• 1S2P = 2 células (tensão de uma única célula, dobro da capacidade);

• 2S1P = 2 células (dobro da tensão, capacidade de uma célula);

• 2S3P = 6 células (dobro da tensão, três vezes a capacidade).

A figura 19 apresenta as formas de disposição das células da bateria.

Figura 19: Arranjo da bateria Li-PO. As células em série determinam a tensão e os blocos emparalelo determinam a capacidade de corrente.

Fonte: Adaptado de Moore (2008)

A classificação C, observada na tabela 1, descreve o quão rápido uma bateria Li-PO

pode ser descarregada. Ela indica a máxima taxa de descarga contínua das células e determina

a quantidade de corrente que pode ser consumida sem que ocorra superaquecimento. Para

determinar a corrente que a bateria pode fornecer, deve-se multiplicar a capacidade em mAh da

Li-PO pela sua classificação C. No caso da bateria utilizada, tem-se:

2200 mAh×20 C = 40.000 mA = 40 A,

Page 31: ROBÔ LOCALIZADOR DE SERES HUMANOS

30

onde a capacidade em mAh indica o quanto de carga (dispositivo que utiliza a bateria) ou dre-

nagem a bateria aguentaria, por uma hora, até que esta ficasse totalmente descarregada. Como

exemplo, esta bateria seria completamente descarregada em uma hora com uma carga de 2200

mAh ligada à ela (LIPOL BATTERY, 2010a; MOORE, 2008; RCHELICOPTERFUN.COM,

2012).

Para determinar o valor necessário da classificação C, em um sistema qualquer, é pre-

ciso conhecer o consumo de corrente contínua do sistema e também a capacidade desejada. Se

o consumo é de 1 A a partir de um bloco de 2200 mAh, basta dividir a corrente pela capacidade:

1000 mA2200 mAh

≈ 0,5 C.

Por segurança e também para aumentar a vida útil da bateria é recomendável utilizar

um valor de C sempre maior do que o calculado (LIPOL BATTERY, 2010a).

2.7.2 VANTAGENS E DESVANTAGENS NO USO DE BATERIA LI-PO

Seguem algumas das principais vantagens da bateria Li-PO:

• Não possui “efeito memória”, ou seja, não perde a capacidade de carga devido a ciclos

parciais de descarga (MOORE, 2008);

• Quando não está em uso, a Li-PO perde aproximadamente 10% de sua carga em um

mês, em temperatura ambiente. Por outro lado, baterias de níquel perdem cerca de 20

a 30% durante o mesmo período e nas mesmas condições (LIPOL BATTERY, 2010b;

BUCHMANN, 2012);

• A bateria é leve, uma vez que no processo de fabricação são empregados eletrólitos ge-

lificados, o que permite a utilização de embalagens simples e sem cascos metálicos. Em

muitos casos, Li-POs oferecem cerca de quatro vezes a capacidade de energia para seu

peso, quando comparado com outros tipos de baterias (LIPOL BATTERY, 2010b; BU-

CHMANN, 2001, 2012);

• Formato flexível. Os fabricantes não estão vinculados a formatos de célula padrão, qual-

quer tamanho razoável pode ser produzido economicamente (BUCHMANN, 2012).

Um dos motivos da leveza e da flexibilidade das baterias Li-PO pode ser visto na

figura 20. A imagem mostra a célula de uma bateria Li-PO de 5000 mAh aberta. Esta possui

mais de dois metros de película de plástico muito fino (o polímero), com ânodo de carbono fino

Page 32: ROBÔ LOCALIZADOR DE SERES HUMANOS

31

(a) Bateria Li-PO aberta. (b) Li-PO com duas células.

Figura 20: Baterias Li-PO.

Fonte: (RCHELICOPTERFUN.COM, 2012)

revestido e catodos num padrão alternado na parte frontal e traseira da película de polímero. Esta

película é então dobrada em um formato de sanfona, sendo depois selada em uma embalagem

de alumínio junto com um gel “oleoso” (eletrólito) (RCHELICOPTERFUN.COM, 2012).

Entre algumas desvantagens citadas por Buchmann (2012) nas baterias Li-PO estão:

• Cara para produzir;

• Menor densidade de energia em relação à tecnologia de íons de lítio.

Segue a legenda para a tabela 2, que mostra as características das seis baterias recar-

regáveis mais utilizadas. Isidor Buchmann, o responsável por estes dados, também escreveu o

livro Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers

que está em sua terceira edição.

A = Densidade de energia (Wh / kg).

B = Resistência Interna (inclui circuitos periféricos) em mΩ.

C = Ciclo de vida (até 80% da capacidade inicial).

D = Tempo de carga rápida.

E = Tolerância de sobrecarga.

F = Auto-descarga / Mês (temperatura ambiente).

G = Tensão da Célula (nominal).

H = Temperatura de Operação (somente descarga).

I = Exigência de Manutenção.

J = Custo Típico da Bateria (dólares).

Page 33: ROBÔ LOCALIZADOR DE SERES HUMANOS

32

K = Custo por Ciclo (dólares).

L = Uso Comercial desde.

C.A. = Chumbo-ácido.

A.R. = Alcalina Reutilizável.

Tabela 2: Comparação das características entre as seis tecnologias de baterias recarregáveis maisutilizadas em termos da densidade de energia, ciclo de vida, custo, entre outros. Os números sãobaseados em avaliações médias de baterias disponíveis comercialmente no momento da publicação.Ver legenda abaixo da tabela.

NiCd NiMH C.A. Li-ion Li-PO A.R.

A 45-80 60-120 30-50 110-160 100-130 80 (inicial)

B 100-200/6V 200-300/6V <100/12V 150-250/7,2V 200-300/7,2V 200-2000/6V

C 1500 300 a 500 200 a 300 500 a 1000 300 a 500 50 (até 50%)

D Típico 1h 2-4h 8-16h 2-4h 2-4h 2-3h

E moderada baixa alta muito baixa baixa moderada

F 20% 30% 5% 10% 10% 0,3%

G 1,25 V 1,25 V 2 V 3,6 V 3,6 V 1,5 V

H -40 a 60°C -20 a 60°C -20 a 60°C -20 a 60°C 0 a 60°C 0 a 65°C

I 30-60 dias 60-90 dias 3-6 meses não neces. não neces. não neces.

J $50 (7,2 V) $60 (7,2 V) $25 (6 V) $100 (7,2 V) $100 (7,2 V) $5 (9 V)

K $0,04 $0,12 $0,10 $0,14 $0,29 $0,10-0,50

L 1950 1990 1970 1991 1999 1992

Fonte: Adaptado de Buchmann (2012)

2.7.3 REGULAGEM SÉRIE DE TENSÃO

A regulagem de tensão é utilizada para estabilizar a tensão fornecida pela bateria, pro-

porcionando um fornecimento limpo de energia a uma tensão predeterminada e estável (COOK,

2010).

O LM7805 é um regulador série de tensão que, assim como outros reguladores série,

dissipa a tensão em excesso, que é a diferença de tensão entre a entrada e a saída, em forma

de calor. A potência dissipada é proporcional à tensão em excesso e à corrente através do

regulador, seguindo a relação Potência = Tensão × Corrente. Por exemplo, o regulador de

tensão LM7805 do robô recebe 11,1 V e dissipa 6,1 V (vezes a corrente) como calor. Neste caso,

Page 34: ROBÔ LOCALIZADOR DE SERES HUMANOS

33

tem-se 511,1 = 45% de eficiência, ou seja, mais da metade da potência da bateria é desperdiçada

(COOK, 2010).

Uma alternativa a este regulador seria a utilização de uma fonte chaveada (conver-

sor de energia) com eficiência acima de 80%. Porém devido ao pouco tempo disponível e ao

conhecimento limitado da equipe sobre o assunto, optou-se por utilizar o LM7805.

A figura 21 apresenta uma possível configuração para um circuito regulador utilizando

o LM7805. A entrada do regulador VR1 é o primeiro pino do lado esquerdo. A saída é o

terceiro pino (lado direito) e o pino do meio é o comum (GND).

Figura 21: Circuito regulador com LM7805.

Fonte: Adaptado de Cook (2010)

Os capacitores C1 e C2 tem a função de armazenar e liberar energia elétrica para

suavizar ruídos, picos e quedas de tensão. De acordo com as especificações dos fabricantes, o

LM7805 tem um desempenho aceitável mesmo não usando capacitores. Sem estes o regulador

ainda fornecerá 5 V na saída, mas pode não reagir tão rápido a mudanças no fornecimento de

energia e com isto a saída pode não ser suficientemente limpa, como o esperado para uma saída

regulada (COOK, 2010).

Se a tensão da bateria cair um pouco por um curto instante de tempo, o capacitor C1

terá então uma tensão ligeiramente maior que a da bateria. Desse modo, a energia armazenada

Page 35: ROBÔ LOCALIZADOR DE SERES HUMANOS

34

em forma de campo elétrico auxiliará no fornecimento de corrente, mantendo a tensão estável

na entrada de VR1. A capacitância de C1 é pequena, porque o seu papel principal é suprir rapi-

damente estas pequenas quedas de tensão e não armazenar grandes quantidades de energia. A

função de C2 é basicamente a mesma de C1, com a diferença de que ele ajuda a manter a saída

do regulador de tensão (VR1) em 5 V quando o circuito do robô, temporariamente, necessita

de energia acima daquela que o regulador pode fornecer. Resumindo, C1 e C2 são eficientes o

bastante para absorver picos (carregando) e suprir quedas (descarga para complementar a ali-

mentação), mas suas capacidades relativas ao armazenamento de energia são pequenas (COOK,

2010).

O diodo D1 tem a função de proteger contra correntes reversas, provenientes de ba-

terias e capacitores, uma vez que este tipo de corrente pode danificar o LM7805. No entanto,

deve-se atentar à pequena queda de tensão que ocorre no diodo, lembrando que a tensão de

entrada do LM7805 deve ser no mínimo 7 V. Logo a tensão da bateria deve ser maior que 7,45

V para uma configuração com um diodo 1N5817. Ao invés do clássico diodo 1N4002 é usado

o 1N5817, porque a queda de tensão deste é menor. No pior caso, de acordo com o verificado

em datasheets, a queda no 1N5817 é de apenas 0,45 V contra 1,1 V do 1N4002 (COOK, 2010).

Page 36: ROBÔ LOCALIZADOR DE SERES HUMANOS

35

3 DESENVOLVIMENTO

Este capítulo apresenta o desenvolvimento do projeto, desde a montagem do chassi e

integração dos componentes até a confecção do software de controle. De modo geral, o sistema

funciona de acordo com o diagrama de blocos da figura 2, como observado na seção 1.6.

3.1 COMPONENTES UTILIZADOS

Nesta seção encontram-se as especificações dos componentes utilizados.

3.1.1 MOTOR DC E CAIXA DE REDUÇÃO

Para realizar a movimentação do robô, foi utilizado o kit Tamiya Twin-motor Gearbox

(figura 22), o qual é composto por duas caixas de redução acopladas a dois motores Mabuchi

FA-130.

Figura 22: Kit Tamiya Twin-motor Gearbox, com dois motores e caixa de redução

Fonte: (TAMIYA, 1995)

Os motores operam em tensões entre 1,5 e 3 V, sendo que em 3 V eles operam com

correntes de até 2,1 A, conforme o esforço realizado, e possuem um torque de 36 g×cm. (TA-

Page 37: ROBÔ LOCALIZADOR DE SERES HUMANOS

36

MIYA, 1995)

As caixas de redução permitem duas configurações de velocidade: redução de 58:1,

que seria a velocidade padrão definida pela Tamiya, e redução de 203:1, que proporciona uma

velocidade menor. (TAMIYA, 1995) A opção escolhida foi 203:1 pois proporciona aos motores

um maior torque.

3.1.2 PONTE H

Para realizar o controle dos motores DC, optou-se por utilizar o circuito integrado

L293D ao invés de confeccionar uma ponte H com componentes discretos.

Figura 23: Circuito Integrado L293D

Fonte: (UNIVERSITY OF APPLIED SCIENCES POTSDAM, 2011)

O circuito integrado L293 é composto por duas pontes H e suas especificações de cor-

rente e tensão de saída variam conforme o tipo de circuito. O tipo escolhido foi “D”, devido

ao fato de possuir diodos de proteção que evitam que o componente seja danificado pela força

eletromotriz gerada pelo enrolamento do motor (indutância), opondo-se à variação da corrente.

Esses circuitos possuem dois pinos de alimentação: um para o funcionamento lógico do com-

ponente (Vcc1), que pode variar entre 4,5 V e 7 V, e outro que fornece a tensão de saída dos

motores e pode operar entre Vcc1 e 36V. (TEXAS INSTRUMENTS, 2002)

Embora os motores utilizem na movimentação do robô cerca de 800 mA, a corrente

máxima de saída do L293D é de 600 mA, porém suporta picos de corrente de até 1,2 A (TEXAS

INSTRUMENTS, 2002). Como este CI é composto por transistores de efeito de campo, foi

possível utilizar as duas pontes H do circuito em paralelo, com um componente para cada motor,

pois isto aumenta a corrente máxima de saída para 1,2 A, tornando possível a alimentação do

motor sem danificar o componente.

3.1.3 SERVOMOTOR

Neste projeto utilizou-se o servomotor modelo “Hextronik HXT900 - 9g Micro Servo”,

mostrado na figura 24, cujas especificações técnicas são apresentadas na tabela 3.

Page 38: ROBÔ LOCALIZADOR DE SERES HUMANOS

37

Figura 24: Servomotor modelo Hextronik HXT900.

Fonte: (SERVODATABASE, 2012)

Tabela 3: Especificações do servomotor utilizado.

Controle analógicoTorque 4,8 V: 1,60 kg × cm

Velocidade 4,8 V: 0,12 s / 60°Massa 9,1 g

Ciclo de Pulso 20 ms

Fonte: Adaptado de ServoDatabase (2012).

Foi utilizada a classe “Servo”, presente na biblioteca padrão do Arduino, que provê

uma interface que possibilita o controle do servomotor fornecendo-se apenas o ângulo desejado

como parâmetro para o qual este será deslocado.

3.1.4 SENSOR DE CALOR POR INFRAVERMELHO

Devido à necessidade de um circuito de apoio ao sensor piroelétrico, optou-se pela

utilização de um sensor PIR vendido comercialmente, figura 25(a). Este sensor necessita apenas

da alimentação externa de corrente contínua de tensão entre 10 a 16 V. A leitura do sensor é

feita através dos pinos de contatos do relé presente na placa, operando no modo normalmente

fechado. Quando um ser humano é detectado, o contato é aberto. A figura 25(b) apresenta a

placa e os ajustes da mesma.

Como o ângulo de abertura do sensor é de 100° (SULTON ELETRÔNICOS, 2012),

foi adicionada uma máscara para reduzir o ângulo de detecção do robô para que o sensor apenas

acuse objetos a sua frente. Após a inserção da máscara no sensor observou-se que ele passou a

gerar falsas detecções e não acusar outras. O problema foi resolvido eliminando a lente Fresnel

presente na caixa de proteção do sensor.

Page 39: ROBÔ LOCALIZADOR DE SERES HUMANOS

38

(a) Sensor utilizado no robô. (b) Apresentação da placa.

Figura 25: Sensor PIR.

Fonte: (SULTON ELETRÔNICOS, 2012)

3.1.5 SONAR

O sonar empregado no robô é o HC-SR04. Um dos principais motivos da escolha

deste, pela equipe, é devido a seu custo benefício, pois seu preço é razoavelmente baixo e suas

especificações básicas (tabela 4) são suficientes para que o robô se locomova sem colidir com

objetos. Outro fator que favoreceu a escolha do HC-SR04 foi o fato do mesmo possuir uma

biblioteca de funções disponibilizada na plataforma Arduino.

A tabela 4 expõe as principais características do sonar HC-SR04.

Tabela 4: Especificações do sonar HC-SR04.

Tensão de Operação DC 5 VCorrente de Operação 15 mA

Frequência de Operação 40 kHzAlcance Máximo 4 mAlcance Mínimo 2 cm

Ângulo 15 grausDimensões 45 × 20 × 15 mm

Fonte: Adaptado de ELEC Freaks (2010).

Page 40: ROBÔ LOCALIZADOR DE SERES HUMANOS

39

3.1.6 PLATAFORMA ARDUINO

Para o processamento dos dados obtidos e controle dos componentes utilizados, optou-

se por utilizar a plataforma open-source Arduino. Ele pode tanto receber como enviar dados

para sensores, motores, circuitos, alto-falantes, entre outros, sendo que estes dados podem ser

tanto sinais analógicos quanto digitais.

Dentre os vários modelos de Arduino, foi escolhido o modelo UNO (figura 26) por

ter o melhor custo beneficio para pequenos projetos e por atender às necessidades do projeto.

Ele utiliza o microcontrolador ATmega328 e possui seis entradas analógicas e quatorze entra-

das/saídas digitais, das quais seis podem ser utilizadas como saídas PWM. (ARDUINO, 2012)

Figura 26: Arduino UNO

Fonte: (ARDUINO, 2012)

Esta plataforma pode ser alimentada por fontes, baterias ou até mesmo pela conexão

USB via computador. A tensão de alimentação recomendada está na faixa de 7 a 12 V. A tensão

máxima de operação dos pinos é de 5 V, enquanto a corrente máxima é de 40 mA. (ARDUINO,

2012)

Outras vantagens apresentadas por esta plataforma é que seu software possui suporte

para Windows, Mac OS X e Linux. A linguagem de programação é feita em Processing, uma

linguagem derivada do Java. A suíte de desenvolvimento para o Arduino pode ser baixada

gratuitamente no site oficial do Arduino1. (ARDUINO, 2012)

3.1.7 CHASSI

Para realizar a locomoção do robô, optou-se por utilizar um conjunto de esteiras ao

invés de rodas, devido ao fato de já existirem kits prontos para serem utilizados e de elas serem

muito mais adaptáveis aos tipos de terreno em que forem utilizadas do que as rodas. O kit

1http://arduino.cc

Page 41: ROBÔ LOCALIZADOR DE SERES HUMANOS

40

utilizado é o Tamiya Tracked Vehicle Chassis Kit (item 70108) e pode ser observado na figura

27.

Figura 27: Kit Tamiya Tracked Vehicle Chassis Kit

Fonte: Tamiya

Este kit contém cinco eixos metálicos para fixação das rodas, duas esteiras, um mo-

tor Mabuchi FA-130As, uma caixa de redução e uma plataforma de madeira de 16,3 cm de

comprimento, 6 cm de largura e 0,6 cm de altura.

3.2 MONTAGEM DA PCI

Neste projeto foi utilizada uma PCI que possui o mesmo padrão das matrizes de con-

tato, pois possibilitou a transferência do circuito da protoboard sem grandes alterações.

Figura 28: Placa de circuito impresso utilizada neste projeto.

Fonte: Autoria própria

Na placa primeiramente foram adicionadas as duas pontes H e os conectores. Em

Page 42: ROBÔ LOCALIZADOR DE SERES HUMANOS

41

seguida fixou-se o regulador de tensão e foram soldadas as interligações com os demais com-

ponentes (motores, sensores, Arduino e bateria).

A figura 28 exibe a disposição dos componentes na PCI.

3.3 LIGAÇÃO DO SENSOR PIR AO ARDUINO

O Sensor PIR foi conectado ao Arduino através de um contato normalmente fechado

do relé do sensor. O Arduíno lê os sinais do sensor como pulsos digitais, 0 V significa que não

há nada sendo detectado, 5 V indica uma detecção. Como o relé opera no modo normalmente

fechado, um dos contatos foi ligado ao GND e o outro foi ligado a uma entrada digital do

Arduino junto com um resistor de Pull-up para forçar o sistema a permanecer em nível lógico

ALTO durante o momento em que o relé é ativado. O esquema circuito de ligação entre o

Arduino e o PIR encontra-se na figura 29.

Figura 29: Circuito de ligação do sensor ao Arduino.

Fonte: Autoria própria

3.4 FIXAÇÃO DO SENSOR PIR AO SERVOMOTOR

O sensor PIR foi fixado em um servomotor de forma a permitir uma varredura ao redor

do robô no plano horizontal. O servo movimenta-se de 0° a 180°, sendo a posição 0° à esquerda

do robô, a frente fica a 90° e consequentemente a direita fica a 180°.

Inicialmente o servomotor é ajustado para a posição de 90°. Após esse momento é

iniciado o processo de varredura, fazendo o servo variar o ângulo entre os valores mínimo e

máximo e vice-versa. Quando o sensor PIR detecta um alvo, o servo é ajustado para voltar

na posição de 90° passando a não atuar mais, enquanto que o robô rotaciona em torno de seu

Page 43: ROBÔ LOCALIZADOR DE SERES HUMANOS

42

próprio eixo até o alvo ser localizado novamente, verificando periodicamente se o alvo está em

sua direção para executar correções na rota até a fonte de calor.

3.5 INTEGRAÇÃO DO SONAR AO ROBÔ

Para integrar o sonar ao robô, a equipe optou por interligar o sonar e o Arduino direta-

mente. A ligação entre ambos foi estabelecida conectando os pinos Trigger e Echo do sonar aos

pinos 12 e 13 (saída ou entrada digital) do Arduino, respectivamente. Já os pinos VCC e GND

do sonar foram conectados aos pinos +5 V e GND do Arduino, nesta ordem.

A figura 32 mostra o sonar fixado ao robô. Aquele foi encaixado na parte frontal

do robô com uma leve inclinação para baixo. Deste modo, conseguiu-se melhor leitura das

distâncias entre o robô e obstáculos.

3.6 MONTAGEM MECÂNICA

Inicialmente, montou-se o kit Tamiya Tracked Vehicle Chassis, cujas especificações

estão na seção 3.1.7. Este kit possui apenas um motor, permitindo a movimentação do robô

em uma única direção. Portanto, substituiu-se esse motor pelo kit Tamiya Twin-motor Gearbox,

cujas especificações estão na seção 3.1.1, que, por conter dois motores independentes, permite

que o robô realize mudança de direção e rotação sobre seu eixo.

Após fixados os motores DC e as caixas de redução na base de madeira e colocados

os eixos, as rodas e as esteiras, prendeu-se o Arduino em uma base de papelão sobre a base de

madeira, de forma que o cabo da bateria pudesse ser conectado sem encostar nos eixos traseiros

do chassi, conforme apresenta a figura 30.

Para envolvê-los, construiu-se uma caixa de papelão de dimensões 6,2× 16,2× 5,2

cm, sobre a qual estavam fixadas a bateria, o servomotor acoplado ao sensor de calor por infra-

vermelho, conforme detalhado na seção 3.4, e o sonar. No primeiro modelo do robô, colocou-se

o sensor de distância por ultrassom na parte de cima do chassi, conforme a figura 31. Porém,

verificou-se que quando os obstáculos estavam em determinadas posições em relação ao sonar,

as ondas sonoras emitidas pelo mesmo não retornavam e, portanto, o sensor indicava que não

existiam obstáculos próximos, o que fazia com que o robô colidisse.

Decidiu-se, portanto, fixar o sonar na caixa de papelão, de modo que este ficasse de

frente para os obstáculos, ao invés de inclinado para baixo. Isso diminuiu consideravelmente o

número de medidas erradas que o sensor estava enviando ao Arduino. Como este é um compo-

Page 44: ROBÔ LOCALIZADOR DE SERES HUMANOS

43

Figura 30: Chassi: elementos da base de madeira

Fonte: Autoria própria

Figura 31: Primeira estrutura do robô

Fonte: Autoria própria

nente muito sensível, foram colocadas proteções ao lado do mesmo, de modo que, caso o robô

viesse a colidir frontalmente com algum objeto, o sensor não sofresse danos.

O servomotor foi colocado dentro de um suporte de papelão na parte frontal do robô,

para que o sensor PIR, que está acoplado à ele, pudesse mover-se livremente.

Devido ao fato de os circuitos ficarem muito expostos, decidiu-se montar uma estrutura

auxiliar composta de peças auto ajustáveis da marca LEGO, de modo que apenas os sensores

ficassem expostos. A bateria, a placa de circuito impresso e o servomotor foram colocadas sobre

uma plataforma (figura 32(a)). Esta encontra-se fixada em apoios de peças LEGO que contém

o para-choque e o sonar. Por último, encaixou-se a estrutura destinada a cobrir o circuito,

Page 45: ROBÔ LOCALIZADOR DE SERES HUMANOS

44

conforme apresenta a figura 32(b).

(a) Plataforma de apoio à bateria e ao circuitocom peças LEGO

(b) Estrutura final do robô

Figura 32: Estrutura do robô utilizando peças LEGO

Fonte: Autoria Própria

3.7 SOFTWARE DESENVOLVIDO

No software há duas funções principais: o setup, que realiza as configurações iniciais

dos elementos a serem controlados e é executado uma única vez quando o Arduino é inici-

alizado, e o loop, cujos comandos são executados continuamente. A figura 33 apresenta o

fluxograma do código desenvolvido.

Como o objetivo do robô é encontrar seres humanos, o algoritmo é focado nos dados

recebidos pelo PIR. Enquanto este não detectou uma pessoa, o robô apenas explora o ambiente,

movimentando este sensor ao longo do eixo do servomotor, conforme explicitado na seção 3.4.

Para evitar que o robô colida com os obstáculos do ambiente, é verificado em cada

execução do loop a presença de elementos na sua frente. Quando detecta-se um obstáculo, o

algoritmo, por meio da função random, determina aleatoriamente se o robô se direcionará para

a esquerda ou para a direita.

Quando o alvo é encontrado, o servomotor posiciona o PIR na frente do robô. Este

Page 46: ROBÔ LOCALIZADOR DE SERES HUMANOS

45

passa a girar em torno do seu próprio eixo na direção para qual o sensor de calor estava virado,

até que a pessoa seja detectada novamente. O robô passa então mover-se para a frente.

Embora o ângulo de captação de ondas de infravermelho tenha sido reduzido colocando-

se com uma capa ao redor do PIR, o robô nem sempre se posiciona exatamente na direção da

pessoa. Então, a cada oito segundos o robô para de andar para a frente e volta a buscar o alvo,

de modo a corrigir sua rota.

Quando o ser humano já foi detectado pelo PIR e é encontrado um obstáculo, o robô

move-se milimetricamente para trás para movimentar este sensor. Isto torna possível determinar

se o obstáculo é uma pessoa. Em caso positivo, o buzzer emite um beep indicando que o objetivo

foi cumprido. Do contrário, o robô rotaciona em torno de seu eixo até que ele encontre a pessoa

novamente.

Figura 33: Fluxograma para o código fonte do Robô.

Fonte: Autoria própria

Page 47: ROBÔ LOCALIZADOR DE SERES HUMANOS

46

4 CONSIDERAÇÕES FINAIS

Considera-se que todos os objetivos propostos foram alcançados devido ao esforço de

todos os integrantes da equipe. O fato de possuir pouco conhecimento sobre mecânica e estar

sendo introduzidos os conceitos básicos de eletrônica ao mesmo tempo em que projetavam

o robô, não impediu o andamento do projeto. Muito pelo contrário: o grande interesse em

robótica e a vontade de produzir um protótipo autônomo que possuísse atribuições interessantes

impulsionaram a construção do mesmo.

Verificou-se que a realização de reuniões periódicas, onde os integrantes podiam dis-

cutir suas ideias e construir o robô em conjunto foi de fundamental importância para que os

objetivos fossem alcançados.

Ressalta-se aqui que a realização deste projeto foi de grande satisfação para todos

os integrantes da equipe, sendo esta uma disciplina de fundamental importância no curso de

Engenharia de Computação, pois proporcionou aos alunos a oportunidade de aplicar os conhe-

cimentos teóricos na produção de artefatos tecnológicos que interesse.

4.1 DIFICULDADES ENCONTRADAS

4.1.1 SONAR

Os maiores problemas obtidos nesse projeto foram com a utilização deste sensor. Um

dos primeiros problemas encontrados foi que, dependendo da geometria, inclinação ou do tipo

de superfície dos obstáculos, a onda emitida pelo transdutor transmissor não é refletida para o

transdutor receptor, o que faz com que o sensor não identifique objetos próximos, resultando

na colisão do robô. Como o sensor está localizado na frente do robô, optou-se por colocar

um “para-choque” para evitar a danificação de componentes, conforme descrito na seção 3.1.7.

Outro fator de erro na leitura deste sensor é a trepidação do robô devido ao movimento das

esteiras e à irregularidade de alguns pisos. Porém os erros das medidas não foram muito grandes

e a equipe optou por não tratar estes erros no algoritmo de locomoção.

Page 48: ROBÔ LOCALIZADOR DE SERES HUMANOS

47

Observou-se, conforme apresentado na seção 2.3.3, que após o sonar aferir uma dis-

tância, é necessário haver um tempo de espera, para que não haja conflitos entre sucessivas

medições. Isto porque ressonâncias provenientes do transmissor forçam o receptor a uma pausa

momentânea antes deste começar a escutar o eco. Fazendo com que exista uma “zona morta”

imediatamente à frente do sonar, em que os objetos não podem ser detectados porque desviam

a onda antes de o receptor estar operando.

Considera-se ainda que há momentos em que os obstáculos estão a mais de três metros

de distância do robô, o que gera uma interpretação errada do sensor: a demora em receber a

onda refletida é tratada como se o obstáculo estivesse a cerca de dois metros de distância. Isso

não foi um problema relevante, devido ao fato de que só importa ao robô aqueles objetos que

podem vir a colidir com ele, ou seja, os objetos muito próximos.

4.1.2 UTILIZAÇÃO DO SERVOMOTOR AO INVÉS DE UM MOTOR DE PASSO

Inicialmente, a equipe pretendia utilizar um motor de passo para realização da rotação

do sensor PIR. Entretanto, como seria necessário controlar para qual direção este estaria direcio-

nado, optou-se por utilizar o servomotor, uma vez que com ele é possível controlar com precisão

o ângulo desejado para a sua posição, sendo possível, inclusive, configurá-lo para sempre iniciar

com um ângulo predeterminado. Também é possível realizar esta tarefa com o motor de passo

porém para isto seria necessário acrescentar um sensor adicional para controlar a posição, com

isto, a lógica de controle seria mais complexa.

4.1.3 SENSOR DE CALOR POR INFRAVERMELHO

A primeira dificuldade em relação à utilização do sensor PIR adaptado de sensores de

presença é que o circuito é projetado para identificar corpos humanos apenas quando estes se

movimentam. Assim, se a pessoa estiver parada, como seria o caso de um ferido em operações

de busca, ela não é detectada pelo sensor. Portanto, a utilização do servomotor na rotação do

sensor também teve como objetivo fazer com que houvesse uma movimentação da pessoa, tendo

em vista o sensor PIR como referencial, sem a necessidade do robô alterar sua rota.

Destaca-se também como problema encontrado o ângulo de captação de movimento

do sensor: por este ângulo ser muito grande, perdia-se a precisão da localização do ser humano.

Foi necessária então a limitação do ângulo de “visão” do mesmo.

Um fator de erro provocado pela adaptação de sensores de presença é em relação a

sua identificação de fontes de calor: este sensor emite um sinal quando encontra um corpo

Page 49: ROBÔ LOCALIZADOR DE SERES HUMANOS

48

que emite uma quantidade mínima de radiação infravermelha predeterminada. Assim, fontes

de calor como fogueiras e animais de grande porte são interpretados como se fossem um ser

humano. O ideal seria utilizar uma câmera para buscar pessoas, conforme observado na seção

4.2, porém esta é uma solução de alto custo, sendo descartada pela equipe.

4.1.4 LOCOMOÇÃO DO ROBÔ

A principal dificuldade encontrada na locomoção do robô é o fato de este não percorrer

um caminho retilíneo. Apesar dos esforços da equipe em corrigir o alinhamento dos eixos liga-

dos aos motores, não foi possível sanar completamente este erro. Concluiu-se que a tendência

de o robô ir mais para um lado do que para o outro deve-se às diferenças entre as tensões de

operação dos motores, uma vez que há pequenas diferenças inerentes ao processo de fabricação,

e ao posicionamento das peças dentro das caixas de redução, pois em uma delas observou-se

que as engrenagens possuem maior liberdade de movimento do que na outra caixa de redução.

4.2 PROJETOS FUTUROS

Observa-se que apesar de o robô cumprir as especificações do projeto, surgiram várias

melhorias a serem realizadas que, por incluírem um acréscimo no custo de produção do robô

ou por demandarem muito tempo da equipe, não puderam ser realizadas. São elas: substituição

do sensor PIR por uma câmera térmica, que possui maior precisão na identificação do calor

emitido pelos corpos, podendo distinguir seres humanos de outras fontes de calor, ou até mesmo

uma câmera comum, utilizando técnicas de processamento de imagens na identificação de seres

humanos; utilização de pelo menos mais um sonar para abranger uma maior área ao redor

do robô, evitando assim a ocorrência de “pontos cegos” e erros de leitura do sonar quando a

geometria do objeto reflete o sinal para longe do sensor ou a superfície a ser analisada estiver

inclinada em relação à face do sensor ou dependendo da geometria do objeto, pode ocorrer

aferições erradas da distância medida pelo sonar. Essa melhoria também poderia evitar a perda

de precisão das medidas devido à trepidação do robô.

Tendo em vista que a motivação desde projeto é o auxílio à equipes de busca de so-

breviventes em desastres, sugere-se como trabalho futuro o mapeamento do caminho realizado

pelo robô até encontrar o alvo, bem como da área ao redor dele. Seria interessante também se,

ao invés de emitir um sinal sonoro quando encontrar o alvo, o robô enviasse, por comunicação

sem fio, a localização do ser humano para um computador ou outro dispositivo eletrônico, o que

poderia ser feito com o auxílio de um GPS, desde que em ambientes abertos.

Page 50: ROBÔ LOCALIZADOR DE SERES HUMANOS

49

REFERÊNCIAS

ARDUINO. Arduino UNO. Arduino, 2012. Disponível em:<http://arduino.cc/en/Main/ArduinoBoardUno>. Acesso em: 31 de maio de 2012.

BACKYARD ROBOTS. Ultrasonic Rangefinding. 2012. Disponível em:<http://www.backyardrobots.com/parts/sonar.shtml>. Acesso em: 4 de abril de 2012.

BRAGA, Newton C. Conheça as pontes H-H. Saber Eletrônica, v. 329, p. 44–47, Junho 2000.

BRAGA, Newton C. Motores DC e caixas de redução. Saber Eletrônica, v. 335, p. 18–21,Dezembro 2000.

BRAGA, Newton C. Sensor piroelétrico de presença. 2009. Disponível em:<http://www.newtoncbraga.com.br/index.php/artigos/54-dicas/363-sensor-piroeletrico-de-presenca-art001.html>. Acesso em: 29 de maio de 2012.

BRAGA, Newton C. Materiais piroelétricos e piezoelétricos. Eletrônica Total, v. 143, p. 39–41, Abril 2010.

BRAGA, Newton C. Controle DC PWM. 2012. Disponível em:<http://www.newtoncbraga.com.br/index.php/robotica/783-controle-dc-pwm-mec004.html>.Acesso em: 30 de maio de 2012.

BROWN COMPUTER SCIENCE. Ultrasonic Acoustic Sensing. Março 2002. Disponível em:<www.cs.brown.edu/people/tld/courses/cs148/02/sonar.html>. Acesso em: 3 de abril de 2012.

BUCHMANN, Isidor. Batteries in a Portable World. [S.l.]: Cadex Electronics Inc., 2001.

BUCHMANN, Isidor. What is the Best Battery? 2012. Disponível em:<http://batteryuniversity.com/learn/article/the_li_polymer_battery_substance_or_hype>.Acesso em: 2 de junho de 2012.

COOK, David. Intermediate Robot Building. 2. ed. [S.l.]: APRESS, 2010. 107-113 p.

ELEC FREAKS. [S.l.], 2010. Disponível em: <www.Elecfreaks.com>. Acesso em: 6 de junhode 2012.

FETALMED.NET. Efeito Piezoelétrico. 2012. Disponível em:<http://www.fetalmed.net/item/efeito-piezoeletrico.html>. Acesso em: 5 de abril de 2012.

GENESIS-ULTRASOUND.COM. Breakthrough in ultrasound physics comes from Pi-erre Curie. Agosto 2010. Disponível em: <http://www.genesis-ultrasound.com/ultrasound-physics.html>. Acesso em: 3 de abril de 2012.

GLOLAB CORPORATION. Infrared parts manual. 2003. Disponível em:<http://www.glolab.com/pirparts/pirmanual.PDF>. Acesso em: 29 de abril de 2012.

Page 51: ROBÔ LOCALIZADOR DE SERES HUMANOS

50

HIRZEL, Timothy. PWM. Arduino, 2012. Disponível em:<http://arduino.cc/it/Tutorial/PWM>. Acesso em: 29 de abril de 2012.

HOBBY KING. ZIPPY Flightmax 2200mAh 3S1P 20C. 2011. Disponível em:<www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=6306>. Acesso em: 2 dejunho de 2012.

HONDA, Flávio. Acionamento e Motores Elétricos. 2012. Disponível em:<http://www.ebah.com.br/content/ABAAAAS-QAC/motores-corrente-continua>. Acessoem: 17 de abril de 2012.

ITEAD STUDIO. [S.l.], Março 2010. Disponível em: <http://iteadstudio.com/application-note/arduino-library-for-ultrasonic-ranging-module-hc-sr04/>. Acesso em: 4 de abril de 2012.

JONES, Joseph L.; SEIGER, Bruce A.; FLYNN, Anita M. Mobile Robots: Inspiration toImplementation. 2. ed. [S.l.: s.n.], 1999.

KOSOW, Irvirng L. Máquinas Elétricas e Transformadores. 4. ed. [S.l.]: Globo, 1982.

LIPOL BATTERY. High rate discharge lithium polymer battery 3.7V 5C - 50C. 2010. Dis-ponível em: <http://www.lipolbattery.com/>. Acesso em: 2 de junho de 2012.

LIPOL BATTERY. LiPo batteries 3.7V 1000mAh - 2000mAh. 2010. Disponível em:<http://www.lipolbattery.com/lipoAodVHGfSg>. Acesso em: 2 de junho de 2012.

LIPOL BATTERY. High voltage lithium polymer battery 7.4V 11.1V 14.8V 14.8V 18.5V22.2V. 2011. Disponível em: <http://www.lipolbattery.com/>. Acesso em: 2 de junho de 2012.

MASSA, Donald P. Choosing an Ultrasonic Sensor for Proximity or DistanceMeasurement Part 1: Acoustic Considerations. Sensors, 1999. Disponível em:<www.sensorsmag.com/sensors/acoustic-ultrasound/choosing-ultrasonic-sensor-proximity-or-distance-measurement-825>. Acesso em: 31 de março de 2012.

MASSA, Donald P. Choosing an Ultrasonic Sensor for Proximity or Distance Me-asurement Part 2: Optimizing Sensor Selection. Sensors, 1999. Disponível em:<www.sensorsmag.com/sensors/acoustic-ultrasound/choosing-ultrasonic-sensor-proximity-or-distance-measurement-825>. Acesso em: 31 de março de 2012.

MIGATRON CORP. Ultrasonic Sensing / Control Basics. Março 2010. Disponível em:<http://www.migatron.com/understanding_ultrasonics.htm>. Acesso em: 3 de abril de 2012.

MOORE, Aaron. Lithium Polymer (Lipo) Battery Guide. Novembro 2008. Disponível em:<prototalk.net/>. Acesso em: 2 de junho de 2012.

OUT OF THIS WORLD. The big bang. 2012. Disponível em:<http://solarcellcentral.com/big_bang_page_ootw.html>. Acesso em: 29 de maio de2012.

PICTRONICS. Servomotor. Agosto 2007. Disponível em:<http://www.pictronics.com.br/downloads/apostilas/servomotores.pdf>. Acesso em: 4 dejunho de 2012.

Page 52: ROBÔ LOCALIZADOR DE SERES HUMANOS

51

RCHELICOPTERFUN.COM. Understanding RC LiPo Batteries. Abril 2012. Disponível em:<http://www.rchelicopterfun.com/rc-lipo-batteries.html>. Acesso em: 2 de junho de 2012.

RIBEIRO, Miguel; BRANCO, Nuno; RIBEIRO, Ruben. Aplicações da robótica. 2012. Dis-ponível em: <http://roboticagrupo4.blogspot.com.br/2009/05/aplicacoes-da-robotica.html>.

SABER ELETRÔNICA. Placa de Circuito Impresso. Janeiro 2010. Disponível em:<http://www.sabereletronica.com.br/secoes/leitura/1494>. Acesso em: 12 de Junho de 2012.

SEATTLE ROBOTICS. Ultrasonics and Robotics. Outubro 2004. Disponível em:<http://www.seattlerobotics.org/encoder/may97/sonar2.html>. Acesso em: 3 de abril de 2012.

SENSORWIKI.ORG. Ultrasound. Abril 2011. Disponível em:<http://sensorwiki.org/doku.php/sensors/ultrasound>. Acesso em: 3 de abril de 2012.

SERVODATABASE. Servo Database. Janeiro 2012. Disponível em:<http://www.servodatabase.com/servo/hextronik/hxt90>. Acesso em: 12 de junho de2012.

SHAMIEH, Cathleen; MCCOMB, Gordon. Electronics For Dummies. 2. ed. [S.l.: s.n.], 2005.

SIEGWART, Roland; NOURBAKHSH, Illah R. Introduction to Autonomous Mobile Robots.1. ed. [S.l.]: The MIT Press, 2004.

SLEEPSLEEP. Sleep Is For Pussies. 2009. Disponível em:<http://sleepsleep.blogspot.com.br/2009/02/polaroid-680-slr.html>. Acesso em: 5 deabril de 2012.

SULTON ELETRÔNICOS. SP1. [S.l.], 2012. Disponível em:<http://sulton.com.br/_manuais/SP1.pdf>. Acesso em: 29 de abril de 2012.

TAMIYA. Twin-Motor Gearbox. Tamiya, 1995. Manual. Disponível em:<http://www.tamiyausa.com/product/item.php?product-id=70097>. Acesso em: 29 deabril de 2012.

TEXAS INSTRUMENTS. L293, L293D quadruple half-H drivers. [S.l.]: Texas Instruments,Julho 2002. Acesso em: Acessado em 31 de maio de 2012.

TIPPLER, Paul A.; MOSCA, Gene. Física para Cientistas e Engenheiros. 6. ed. [S.l.]: LTC,grupo gen, 2009.

UNIVERSITY OF APPLIED SCIENCES POTSDAM. Arduino and L293D. University of Ap-plied Sciences Potsdam, Outubro 2011. Disponível em: <http://fritzing.org/projects/arduino-l293d/>. Acesso em: Acessado em 31 de maio de 2012.

Page 53: ROBÔ LOCALIZADOR DE SERES HUMANOS

52

APÊNDICE A -- ORÇAMENTO

Tabela 5: Orçamento do RobôItem Preço Frete

Arduino R$ 100,00 R$ 10,00Bateria LI-PO R$ 40,00 R$ 0,00Buzzer R$ 4,50 R$ 0,00Kit: Chassi com esteiras, plataforma e 1 motor CC R$ 93,63 R$ 40,00Kit: Motor duplo com caixas de redução R$ 53,50 R$ 10,30L293D × 2 R$ 20,00 R$ 0,00LM7805 + dissipador R$ 3,85 R$ 0,00PCI R$ 4,85 R$ 0,00Sensor de presença - Infravermelho R$ 25,00 R$ 0,00Servomotor R$ 15,00 R$ 0,00Sonar R$ 78,00 R$ 6,50TOTAL (INCLUSO FRETE) R$ 505,13

Page 54: ROBÔ LOCALIZADOR DE SERES HUMANOS

APÊNDICE B - DIAGRAMA DE GANTT

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17Compra dos componentes do robô 2Testes com infravermelho 6Testes com motor de passos 9Testes com ultrassom 3Testes com motor cc 4Montagem do chassi Robô 5Testes com Ponte H 4Teste com driver ULN2003 6Integração motor de passo com infravermelho 4Integração dos sensores com a locomoção do robô 13Desenvolvimento do código fonte no Arduíno 6Alimentação do robô 3Testes e ajustes finais com o robô 25

Determinação do Projeto 6Pesquisa dos componentes do robô 8Elaboração da Proposta 4Elaboração da Qualificação 8Elaboração da Monografia 60Apresentação Final 3TEMPO TOTAL GASTO (por integrante) 179

Segue o diagrama de Gantt com o tempo, estimado, gasto por cada integrante da equipe para cada atividade. Deve-se levar em consideração que a equipe preferiu não distribuir as atividades práticas, e sim realizá-las em conjunto.

CARGA HORÁRIA (horas)

ATIVIDADES TEÓRICAS

ATIVIDADES PRÁTICASMARÇO ABRIL MAIO JUNHO

Page 55: ROBÔ LOCALIZADOR DE SERES HUMANOS

54

APÊNDICE C - CÓDIGO FONTE DO ROBÔ #include <Ultrasonic.h> #include <Servo.h> #define speakerPin 4 //Buzzer /*saídas do Arduino para os motores DC*/ #define motorpin1 3 //motor 1 #define motorpin2 5 //motor 1 #define motorpin3 6 //motor 2 #define motorpin4 11 //motor 2 #define servoPin 7 //Saída do Arduíno para o servomotor #define sensorIR 8 // Sinal do sensor de infravermelho #define echoPin 13 //Pino 13 recebe o pulso do echo (ultrassom) #define trigPin 12 //Pino 12 envia o pulso para gerar o echo (ultrassom) /*movimentação do robô*/ #define PARAR 0 #define FRENTE 1 #define DIREITA 2 #define ESQUERDA 3 #define TRAS 4 #define ANGULO_INICIAL 90//Angulo inicial do servomotor Ultrasonic ultrasonic(trigPin, echoPin); Servo servo; //O servomotor é representado por um objeto da classe Servo const int danger= 25; //Distância mínima que o robô deve ficar de objetos int anguloServo; //angulo do servomotor int velMotor = 128; /*velocidade do motor igual à aproximadamente metade da velocidade total. Todas as velocidades são controladas por PWM*/ /*Angulo inicial do servomotor. Corresponde à posição em que o infravermelho está direcionado exatamente na frente do robô. */ int angulo = ANGULO_INICIAL; bool direita = true; /*Determnina se a pessoa está à direita ou à esquerda do robô*/ bool encontrado = false; //variável que indica se o alvo foi encontrado ou não

Page 56: ROBÔ LOCALIZADOR DE SERES HUMANOS

55

bool alvoPerdido = true; //variável que verifica se o alvo foi perdido long inicio, fim; //Variáveis de tempo void setup() //inicialização dos pinos do Arduino pinMode(speakerPin,OUTPUT); pinMode(motorpin1, OUTPUT); pinMode(motorpin2, OUTPUT); pinMode(motorpin3, OUTPUT); pinMode(motorpin4, OUTPUT); pinMode(sensorIR, INPUT);

pinMode(echoPin, INPUT); // define o pino 13 como entrada (recebe) pinMode(trigPin, OUTPUT); // define o pino 12 como saída (envia) servo.attach(servoPin); servo.write(ANGULO_INICIAL); direcao(PARAR); digitalWrite(speakerPin, HIGH); delay(300); digitalWrite(speakerPin, LOW); //Emite um bip ao ser inicializado delay(3400); //Delay necessário para que o PIR funcione corretamente digitalWrite(speakerPin, HIGH); delay(300); digitalWrite(speakerPin, LOW); void loop() if(!digitalRead(sensorIR) & !encontrado) //Se nenhuma pessoa foi encontrada rotacionaServo(); //verificação da direção a ser tomada pelo robô if (distancia() > danger) direcao(FRENTE);

delay(100); //espera 100ms para fazer a leitura novamente else //quando o robô encontra um obstáculo, ele para direcao(PARAR); delay(200);

/*devido ao robô funcionar reativamente, a escolha de para qual lado ele vai quando ele encontra um obstáculo á aleatória*/

if(random(0,2))// se randon =1, vai para a direita

//enquanto houver um obstáculo na frente do robô ele gira

Page 57: ROBÔ LOCALIZADOR DE SERES HUMANOS

56

/*o while é necessário para garantir que o robô vire sempre para o lado que ele escolheu*/

do direcao(DIREITA); delay(1000);

/*para o robô e dá um delay antes de verificar se tem um obstáculo na frente*/

direcao(PARAR); delay(500); while(distancia() < danger) ; else //se random igual a 0, vai para a esquerda

/*enquanto houver um obstáculo na frente do robô ele gira. O while é necessário para garantir que o robô vire sempre para o lado que ele escolheu*/

do direcao(ESQUERDA); delay(1000);

/*para o robô e dá um delay antes de verificar se tem um obstáculo na frente*/

direcao(PARAR); delay(500); while(distancia() < danger); else //Caso alguma pessoa tenha sido detectada if(alvoPerdido) direcao(PARAR); if (!encontrado) //Verifica o ângulo do servo anguloServo = servo.read(); encontrado = true; delay(2500); servo.write(ANGULO_INICIAL); if(anguloServo > 90)

//Com o ângulo do servo, o robô irá escolher o sentido de //rotação

while(!digitalRead(sensorIR)) //Laço para fazer o robô girar até detectar alguém direcao(ESQUERDA); delay(100); direcao(PARAR); delay(80); else while(!digitalRead(sensorIR)) direcao(DIREITA); delay(100); direcao(PARAR); delay(80); delay(200);

Page 58: ROBÔ LOCALIZADOR DE SERES HUMANOS

57

alvoPerdido= false; inicio = millis();// Inicia o contador de tempo if (distancia() < danger) if(distancia() < 15) direcao(TRAS); else

//Faz o robô se mexer levemente para que o PIR //verifique se é uma pessoa ou não direcao(TRAS);

delay(100); direcao(FRENTE); delay(100); direcao(PARAR); if(digitalRead(sensorIR)) for(int count = 0; count < 2; count++)

//Quando alguém é detectado, um som é //emitido

digitalWrite(speakerPin,HIGH); delay(800); digitalWrite(speakerPin,LOW); delay(500); if(count == 1)

digitalWrite(speakerPin,HIGH); delay(2000); digitalWrite(speakerPin,LOW); while(true)

//Após o robô ter encontrado a pessoa, não há //mais nada a ser executado

direcao(PARAR); else

// Se o PIR detectou alguém, o robô, rotaciona até //ficar de frente com a fonte de calor

if(anguloServo > 90) while(!digitalRead(sensorIR)) direcao(ESQUERDA); delay(100); direcao(PARAR); delay(80); else while(!digitalRead(sensorIR)) direcao(DIREITA); delay(100); direcao(PARAR);

Page 59: ROBÔ LOCALIZADOR DE SERES HUMANOS

58

delay(80); else direcao(FRENTE); if(!digitalRead(sensorIR)) fim = millis();

//Caso o robô perca o alvo, se não encontrar em 8 //segundos, volta a procurar

if((fim ‐ inicio) > 8000) alvoPerdido = true; //método que pega a distância do objeto mais próximo do sensor ultrassônico. int distancia() //seta o pino 12 com um pulso baixo "LOW" ou desligado ou ainda 0 digitalWrite(trigPin, LOW); // delay de 2 microssegundos delayMicroseconds(2);// delay de 2 us para dar tempo do sensor //seta o pino 12 com pulso alto "HIGH" ou ligado ou ainda 1 digitalWrite(trigPin, HIGH); //delay de 10 microssegundos delayMicroseconds(10); //seta o pino 12 com pulso baixo novamente digitalWrite(trigPin, LOW); // função Ranging, faz a conversão do tempo de //resposta do echo em centímetros, e retorna //na função distância int dist = ultrasonic.Ranging(CM); //Delay necessário para estabilização do sistema delay(200); return dist; void direcao(int sentido) //Função de controle do sentido e velocidade dos motores de locomoção do robô switch(sentido) case PARAR: analogWrite(motorpin3, LOW); analogWrite(motorpin4, LOW); analogWrite(motorpin1, LOW); analogWrite(motorpin2, LOW); break; case TRAS: //frente analogWrite(motorpin3, velMotor); analogWrite(motorpin4, LOW); analogWrite(motorpin1, velMotor); analogWrite(motorpin2, LOW); break;

Page 60: ROBÔ LOCALIZADOR DE SERES HUMANOS

59

case DIREITA: //direita analogWrite(motorpin3, velMotor); analogWrite(motorpin4, LOW); analogWrite(motorpin1,LOW ); analogWrite(motorpin2, velMotor); break; case FRENTE: //tras analogWrite(motorpin3, LOW); analogWrite(motorpin4, velMotor); analogWrite(motorpin1, LOW); analogWrite(motorpin2, velMotor); break; case ESQUERDA: //esquerda analogWrite(motorpin3, LOW); analogWrite(motorpin4, velMotor); analogWrite(motorpin1, velMotor); analogWrite(motorpin2, LOW); break; void rotacionaServo() if(direita) angulo += 10;

if(angulo >= 165) /*ângulo máximo que o servomotor irá para a direita. A partir desse ponto, ele para de ir para a direita e começa a girar para a esquerda*/

direita = false; else angulo ‐=10;

if(angulo <= 15) /*angulo máximo que o servomotor irá para a esquerda. A partir desse ponto, ele para de ir para a esquerda e começa a girar para a direita*/

direita = true; //a cada loop, o servomotor gira apenas um angulo de 10 graus servo.write(angulo);