Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and...

49
Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Transcript of Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and...

Page 1: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Rodrigo Proença de Oliveira

Hydrology, Environment and Water Resources

2016 / 2017

Evaporation and evapotranspiration

Page 2: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Flow generation processes

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 2

Escoamento

superficial

(directo)

Escoamento

de base

Evapotranspiração

Intercepção

Água retida em

depressões

Evaporação

Infiltração

Precipitação

Recarga

Escoamento

sub-superficial

ou intermédio

Evaporação

Precipitação

Retention - Intercepted water in ground depressions

which evaporates / Retenção – Água que não se

infiltra nem dá origem a escoamento superficial

(água interceptada ou retida em depressões do solo)

Detention - Water in motion / Detenção – Água em

trânsito

Precipitation

Evaporation

Evapotranspiration

Interception

Runoff

Recharge

Infiltration

Base flow

Intermediate

flow

Page 3: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Global water balance

3

Esc. superficial

44.800 km3/ano

Precipitação sobre

continentes

119.000 km3/ano

Precipitação

sobre oceanos

458.000 km3/ano

Evapotranspiração

de continentes

72.000 km3/ano

Evaporação de

oceanos

505.000 km3/ano

Esc. subterrâneo

2.200 km3/ano

World Water Balance and Water Resources, UNESCO, 1978

Transporte de

humidade do ar

47.000 km3/ano

Evapotranspiration

from continents Evaporation

from oceans

Precipitation

over continents Precipitation

over oceans

Runoff

Groundwater flow

Water moisture transport

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

Almost 75% of the amount of

precipitation over the continents

returns to the atmosphere.Quase 75% da precipitação sobre os

continentes volta à atmosfera por

evaporação e transpiração

In the oceans the evaporated

water is greater that the

amount of precipitationNos oceanos a quantidade de agua

evaporada é superior à precipitada

Page 4: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Estimate the evaporation loss from the Alqueva reservoir (250 km2), assuming a

evaporation rate of 1000 mm. / Estime a perda de água por evaporação da albufeira de

Alqueva que em pleno armazenamento a superfície do espelho de água é de 250 km2. Assuma

uma taxa anual de evaporação de 1000 mm.

Vol = 250 x 106 x 1000 / 1000 = 250 x 106 m3 = 250 hm3/ano

Is it too much ? / É muito ?

The net storage volume of Alqueva reservoir is 3000 hm3 / O volume útil de armazenamento da

albufeira é cerca de 3000 hm3

The average annual inflow to Alqueva is close to 3000 hm3 / A afluência anual média à

albufeira da albufeira é da ordem dos 3000 hm3

We can satisfy the annual domestic water needs of 5 million people / Se pensarmos que

consumimos em nossas casas 150 l/hab/dia (50 m3/hab/ano), 250 hm3/ano satisfaz 5 milhões de

pessoas (excluindo água virtual e perdas).

Knowing that the average depth of Alqueva reservoir is 16.6 m, estimate the

evaporation loss from a set of reservoir with the same aggregate volume as Alqueva

but with an average depth of 3 m. Sabendo que a profundidade média da albufeira de

Alqueva é 16,6 m, estime as perda de água por evaporação de um conjunto de albufeiras com

uma profundidade média de 3 m e o mesmo volume agregado de armazenamento

Área = 16,6 x 250 / 3 = 1383 km2

Vol = 1383 x 106 x 1000 / 1000 = 1383 x 106 m3 = 1383 hm3/anoIST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 4

Page 5: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Main factors that condition evaporation

• Main factors:

– Available energy (solar radiation)

– Air temperature and surface water

temperature

– Water –vapour content in the air/

humidity

– Wind speed

– Atmosferic pressure

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 5

Radiação

Vento

Radiação

(vapor de água)

vaporização

condensão

Wind

Solar radiation

Solar radiation

Vaporization

Condensation

Water vapour

Page 6: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evaporation and evapotranspiration

• Evaporation from water surfaces; depends on:– solar radiation

– air and water temperature

– vapour pressure deficit

– wind speed

– atmospheric pressure

– dissolved substances

– vegetation cover

• Evaporation from soils; depends on:– water availability

– soil texture

– soil physical and chemical composition

• Transpiration from plants ; depends on:– vegetation type and density

– vegetation development stage

– Vegetation distribution in the terrain

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 6

E / And

E / And

Page 7: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evapotranspiration

• Potential evapotranspiration

• Real evapotranspiration

• Reference crop evapotranspiration

• Crop evapotranspiration

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 7

ETP >= ETR

Potential

evapotranspiration

(August 2010)

Average anual real

evapotranspiration

Potential

evapotranspiration

Real

evapotranspiration

Reference crop

evapotranspirationEvapotranspiration

from a patch of

crops

Page 8: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Potential evapotranspiration

• Why is potential evapotranspiration

different from evaporation ?– Evaporation occurs in the upper layers of a liquid

volume, while evapotranspiration occurs over the

soil’s root zone. A evaporação atua sobre a camada

superior da superfície líquida, enquanto que a

evapotranspiração atua sobre a água existente na zona

das raízes.

– The conditions to remove water vapour from the

evaporation zone are different, as the vegetation

creates air eddies which increase vapour removal

efficiency. As condições de remoção do vapor de água

da zona de evaporação são diferentes porque a

resistência aerodinâmica da vegetação, superior à da

superfície da água, provoca turbilhões que aumentam a

eficiência de remoção do vapor de água.

– Water in the plants have to overcome an

additional resistance to reach the atmosphere. A

água no interior dos estomas das plantas têm que

vencer resistências adicionais para atingirem a

atmosfera.IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 8

Page 9: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evapotranspiration

• Potencial evapotranspiration / Evapotranspiração potencial

• Real evapotranspiration / Evapotranspiração real

• Reference crop evapotranspiration / Evapotranspiração de uma cultura de referência

• Crop evapotranspiration / Evapotranspiração cultural

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 9

ETP >= ETR

Evapotranspiração

potencial (AGO 2010)Evapotranspiração

real anual média

Potencial

Evapotranspiration

Real

Evapotranspiration

Potential

evapotranspiration

from a reference

crop

Evapotranspiration

from a set of crops

Page 10: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Potential evapotranspiration

• Why is potential evapotranspiration different that

evaporation ? / Porque é que a evapotranspiração

potencial é distinta da evaporação?

– Evaporation occurs in the upper layers of a liquid

volume, while evapotranspiration occurs over the soil’s

root zone / A evaporação atua sobre a camada superior da

superfície líquida, enquanto que a evapotranspiração atua sobre

a água existente na zona das raízes.

– The conditions to remove water vapour from the

evaporation zone are different, as the vegetation

creates air eddies which increase vapour removal

efficiency / As condições de remoção do vapor de água da

zona de evaporação são diferentes porque a resistência

aerodinâmica da vegetação, superior à da superfície da água,

provoca turbilhões que aumentam a eficiência de remoção do

vapor de água.

– Water in the plants have to overcome an additional

resistance to reach the atmosphere / A água no interior

dos estomas das plantas têm que vencer resistências adicionais

para atingirem a atmosfera.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 10

Page 11: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evapotranspiration vs evaporation

Molen (1971) proposed the following values for the ratio between

potential evapotranspiration vs evaporation. Molen (1971) propôs o seguintes

valores para a razão entre a evapotranspiração potencial e a evaporação de uma

superfície de água.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 11

Crop

Humid climate Dry climate

Temperate Grande áreas A<1ha

Winter Summer Tropical Winter Summer Summer

Wet grass / Erva molhada

após precipitação ou

aspersão.0,9 1,0 1,0 1,0 1,2 1,5

Short grass / Erva curta. 0,7 0,8 0,8 0,8 1,0 1,2

High vegetation /

Vegetação alta.0,8 1,0 1,0 1,0 1,2 1,5

Rice / Arroz 1,0 1,0 1,2 1,0 1,3 1,6

Page 12: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Average annual real evapotranspiration

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 12

Distribuição da ETR

0

10000

20000

30000

40000

ETR Anual (mm)

Áre

a (

km

2)

Area (km2) 103 2619 14952 16442 29623 18083 4952 1839

0 1 - 400 401 - 450 451 - 500 501 - 600 601 - 700 701 - 800 801 - 900

In the south of Portugal there is more energy available

for evapotranpiration (more sunshine hours) but as

there is less water in the soil, real evaportranpiration

is lower.

In constrast in the northeast region, the existence of

water leads to higher real evaportranpiration values,

although the energy available is lower.

Page 13: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evaporation monitoring

• Evaporimeters / Evaporímetros:

– Pans / Tinas:

• Classe A (US)

• GGI – 3000 (Russian)

• Floating pans / Tinas flutuantes

– Atmometer / Atmómetros:

• Piche evaporimeter

• To obtain a more acurate value one needs

to correct measurement errors:

– Evaporimeter coeficient

– Pan coeficient (~0,8 – 0,95)

• Radiation over the pan walls (excess

energy) / Radiação sobre as paredes (excesso

de energia)

• Oasis effect. / Efeito de oásis (afluência de ar

seco proveniente das redondezas).

• Pan border effect. / Efeito de bordo

(turbulência de vento o que se traduz numa

maior capacidade de remoção do a húmido).

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 13

Page 14: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Evapotranspiration monitoring

Evapotransporimeters or lysimeters /Evapotransporimetros

ou lisimetros:

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 14

Page 15: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Crop potential evapotranspiration

ETPc – Crop Potential evapotranspiration / Evapotranspiração potencial cultural.

ETPo –Reference crop potential evapotranspiration / Evapotranspiração potencial de referência.

Kc –Crop coefficient / Coeficiente de cultura.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 15

occ ETPKETP

• Kc is conditioned by– Stomatal resistance of plant leaves

– Vegetation impact on wind pattern and air

temperaturre.

• There are tables of Kc as a function of:– Crop

– Development stage

Page 16: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Single (time-averaged) crop coefficients, Kc, and mean maximum plant heights for non

stressed, well-managed crops in subhumid climates (RHmin 45%, u2 2 m/s) for us with the

FAO Penman-Monteith ETo.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 16

Kc ini Kc mid Kc end

Maximum Crop

Height (h) (m)

0.7 1.05 0.95

1.05 0.95 0.3

1.05 0.95 0.4

1.05 0.95 0.4

1.05 0.95 0.3

1.05 0.95 0.4

1.05 1 0.6

1 0.7 0.3

1 0.95 0.3

- dry 1.05 0.75 0.4

- green 1 1 0.3

- seed 1.05 0.8 0.5

1 0.95 0.3

0.9 0.85 0.3

0.6 1.15 0.8

1.05 0.9 0.8

1.052 0.9 0.7

1.152 0.70-0.90 0.6

0.5 1 0.8

0.5 0.85 0.6 0.3

- Fresh Market 0.6 1.002 0.75 0.3

- Machine harvest 0.5 1 0.9 0.3

1 0.8 0.4

0.95 0.75 0.3

1.05 0.75 0.4

0.4 1 0.75 0.4

0.5 1.1 0.95

1.05 0.95 0.4

- year 1 0.3 0.803 0.3 1

- year 2 0.3 1.1 0.5 1.5

0.5 1.05 0.95 0.4

1.15 0.754 0.6

1.15 0.65 0.4

1.1 0.95 0.6

0.35 1.2 0.705 0.5

Turnip (and Rutabaga)

Sugar Beet

d. Roots and Tubers

Beets, table

Cassava

Parsnip

Potato

Sweet Potato

Cantaloupe

Cucumber

Pumpkin, Winter Squash

Squash, Zucchini

Sweet Melons

Watermelon

Radish

b. Vegetables - Solanum Family

Egg Plant

Sweet Peppers (bell)

Tomato

c. Vegetables - Cucumber Family

Cauliflower

Celery

Garlic

Lettuce

Onions

Spinach

Crop

a. Small Vegetables

Broccoli

Brussel Sprouts

Cabbage

Carrots

Kc ini Kc mid Kc end

Maximum Crop

Height (h) (m)

0.4 1.15 0.55

0.5 1.052 0.9 0.4

0.4 1.152 0.35 0.4

1 0.35 0.4

- Fresh 0.5 1.152 1.1 0.8

- Dry/Seed 0.5 1.152 0.3 0.8

0.4 1.15 0.35 0.8

1.05 0.60- 0.4

1.15 0.6 0.4

1.1 0.3 0.5

- Fresh 0.5 1.152 1.1 0.5

- Dry/Seed 1.15 0.3 0.5

1.15 0.5 0.5-1.0

0.5 1 0.8

0.5 1 0.95 0.7

0.5 0.957 0.3 0.2-0.8

0.6 1.15 1.1 0.6-0.8

0.4 0.85 0.75 0.2

0.35

1.15-1.20 0.70-0.50 1.2-1.5

1.1 0.25 1.2

0.4-0.7 0.4-0.7 1.5

0.35 1.15 0.35

1.15 0.55 0.3

1.0-1.159 0.35 0.6

1.0-1.159 0.25 0.8

1.1 0.25 1

1.0-1.159 0.35 2

0.3 1.15 0.4

1.15 0.25 1

1.15 0.25 1

1.15 0.25-0.410 1

- with frozen soils 0.4 1.15 0.25-0.410 1

- with non-frozen soils 0.7 1.15 0.25-0.410

1.2 0.60- 2

1.15 1.0512 1.5

1 0.3 1.5

- grain 1.00-1.10 0.55 01-Fev

- sweet 1.2 1.05 02-Abr

1.05 1.2 0.90-0.60 1

Crop

Sorghum

Rice

Oats

Spring Wheat

Winter Wheat

Maize, Field (grain) (field corn)

Maize, Sweet (sweet corn)

Millet

Rapeseed, Canola

Safflower

Sesame

Sunflower

i. Cereals

Barley

g. Fibre Crops

Cotton

Flax

Sisal 8

h. Oil Crops

Castorbean (Ricinus )

Soybeans

f. Perennial Vegetables (with winter

Artichokes

Asparagus

Mint

Strawberries

Fababean (broad bean)

Grabanzo

Green Gram and Cowpeas

Groundnut (Peanut)

Lentil

Peas

e. Legumes (Leguminosae)

Beans, green

Beans, dry and Pulses

Chick pea

Pri

mary

sourc

es:

Kc

ini:

Doore

nbos

and

Kass

am

(1979);

K

cm

idand

Kc

end:

Doore

nbos

and

Pru

itt

(1977);

Pru

itt

(1986);

Wri

ght

(1981,

1982).

Snyder

et

al.

, (1

989)

Page 17: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Radiation, Insolation and cloud cover

• Radiation:

– Energy received or emitted by unit of area and time

– Measured in radiometers

– Common units: MJ/m2/dia;

• Insolation:

– Number of sunlight hours

– Medida em heliometers

– Units: horas

• Relative insolation

– Percentage of sunlight hours to maximum potential

– Units: (-)

• Cloud cover: Percentage of sky covered by cloudsIST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 17

N

n n – Number of hours of sun;

N – Astronomical insolation (Potential number of hours of sun (daylight hours)

Page 18: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Units

• Pressure:

– mm Hg

– mca (metros de coluna de água)

– atom, 1 atom = 760 mm Hg, 1 atom = 10,33 mca = 96,8 kPa

– bar, 1 bar = 1,013 atom = 100 kPa

– mbar, 1 mbar = 0,001 bar

– kPa, 1 kPa = 1000 N/m2, 1 kPa = 1/9.8 kgf/m2

• Energy:

– J, 1 J = 1 N m

– MJ = 106 J

– cal, 1 cal = 4.1868 J

– Cal, 1 Cal = 1 kcal

• Power:

– W, 1W = 1J/s

• Energy flux:

– W/m2, 1 W/m2 = 1 W/m2/s

– MJ/m2/diaIST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 18

Page 19: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Heat and temperature

• Heat / Calor: Energy of an object associated with the internal movement of its

molecules (thermal energy) / energia de um objecto associada ao movimento interno

das suas moléculas; relacionado com a energia térmica contida.

• Temperature / Temperatura: It is not a measure of heatm but the transfer of

heat between two bodies is a function of the diference of temperature / não é

uma medida de calor; mas a transferência de calor entre dois corpos é função da sua

diferença de temperatura.

• Heat transfers: / Transferência de calor:

– Conduction / Condução - By molecular activity / por actividade molecular

– Convection / Convecção – By mass movement / por movimento de massas

– Radiation / Radiação – By IV irradiation / Por radiação IV

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 19

Page 20: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Radiation

• All object emit radiation / Todos os objectos emitem radiação;

• Radiation per surface unit increases with the object temperature

(Stefan–Boltzmann law) / A emissão de radiação por unidade de superficie

aumenta com a temperatura do objecto (lei de Stefan–Boltzmann);

• Radiation wave length decreases with the object temperature / O

comprimento de onda da radiação diminui com a temperatura do objecto:

– Solar radiation / Radiação solar: T = 6000 ºC >>> l = 0.5 mm (radiação visivel)

– Earth radiation / Radiação terrestre: T = 15ºC >>> l = 10 mm (radiação IV)

• Good emitters objects are also good receptors / Os objectos que são bons

emissores, também são bons receptores de radiação:

– Sun and Earth: Good emitters and receptors / Sol e Terra: bons emissores e

receptores (eficiencia de 100%);

– Gases: selective emitters and receptors (Transparent to visible radiation and not

transparent to long wave radiation) / Gases: emissores e receptores selectivos

(transparentes (não absorvem) à radiação visivel e opacos à radiações de elevado

comprimento de onda).

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 20

Page 21: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Energy balance

Incoming solar radiation:Radiação solar incidente:

Radiação reflectida:

Reflected solar radiation:

Solar radiation reaching the ground:

Radiação recebida pelo solo:

Energy balance:

Balanço de energia radiante:

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 21

crcn RrRRR 1

AC RN

nR

, – Angstrom coeficients that are a function of the

humidity, dusts and aerosols in the

atmosphere (average values: =0.25, =0.5);

n/N=1: Rc = 0,75 RA; n/N=0: Rc = 0,25 RA

LcLcc RRrRRrRR 1

Cr RrR

r – albedo (-)

RA – Solar radiation at the top of the

atmosphere (short wave length)

RC – Global incident solar

radiation reaching Earth

surface (short wave length)

Rr – Radiation reflected

by Earth surface (short

wave length)

RL – Difuse radiation

(long wave length)

Heated soil irradiates long wave

radiation which is capture by the

atmosphere (greenhouse effect)

G – Loss of heat through

the soil (small amount which

is usually not considered)

Radiation reflected by the atmosphere

(short wave length)

RL – Energy net balance

between the atmosphere and

the ground surface. It is

usually negative (loss of

energy) as the soil as a

higher temperature than the

air) / Balanço liquido das trocas

de energia entre a atmosfera e a

superfície do solo. É em geral

negativo (perda de energia)

porque o solo tem uma

temperatura mais elevada do

que a atmosfera

Page 22: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Solar radiation

• Power received from the sun = 1.366 kW/m2 x 127,4 x 106 km2 = ~173.000 TW

• Energy flux by unit of area = 173.000 TW / 511,5 x 106 km2 = ~342 W/m2

• Valor médio = 342 W/m2 = 30 MJ/m2/dia (os valores reais dependem da latitude e época do ano)

NOTE: The average energy flux received by m2 of illuminated surface is 1366 KW/ m2. The average energy flux received by m2 of

the earthsurface is 342 KW/ m2. This difference results because at each moment only 127,4 x 106 km2 of the total Earth surface

(511,5 x 106 km2 ) are illuminated. O fluxo médio recebido é 1366 KW por m2 de superfície iluminada pelo sol e 342 W por m2 de

superfície total do planeta. O quociente entre entre estes dois valores é 4 e resulta do ratio das áreas (4 p R2) / (p R2)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 22

Earth radius = 6380 km

Área of the transversal section of Earth = p R2 = 127,4 x 106 km2

Earth surface= 4 p R2 = 511,5 x 106 km2

A obliquidade é sensivelmente constante, mas o

ângulo entre o eixo de rotação da Terra e o raio

da orbita solar varia:

- Equinócio: Momento em que o angulo é mínimo

- Solstício: Momento em que o angulo é máximo

Sol

Radiação no topo da atmosfera:

1412 kW/m2 (Jan) – 1312 kW/m2 (Jul)

R=152 x106 km

Periélio

Início de Janeiro

Afélio

Início de Julho

Equinócio

Setembro

Equinócio

Março

Solstício

Junho

Solstício

Dezembro

R=146x106 km

Obliquidade da

Terra = 23,44º

Page 23: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Earth energy balance

• Earth is a closed system in steady state:

– Closed system (there are exchanges of energy between Earth and the

exosphere but not of matter (it is neither a open system nor an isolated

system)

– Steady state: Input of energy = Output of energy

• Input:

– Solar radiation: 173,000 TW = 342 W/m2 x Earth surface area (512 x 106 km2)

– Internal heat: 32 TW (vulcanism and tectonic plates movement)

– Gravitacional forces: 3 TW (tides)

• Output:

– Solar radiation reflected by earth and its atmosphere: 54,126 TW (107 W/m2)

– Radiation irradiated by Earth: 118,874 TW (238 W/m2)

• Energy consumption for evapotranspiration = 78 TW

• Energy consumption photosynthesis = 100 TW

• Only 100 TW are stored in plants by photosynthesis:

– Around 99,9% is returned to the atmosphere by carbon respiration, degradation and

combustion.

– Only 0,01% (10 GW) is retained in sediments and does not oxidizes and, under certain

conditions, may lead to fossil fuels;IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 23

Page 24: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Earth energy balance

• Exo-atmosfera

– Out: 342 W/m2

– In: 342 W/m2 (107+235)

• Earth surface

– In: 522 W/m2 (168+30+324)

– Out: 522 W/m2 (30+40+350+24+78)

• Atmosphere

– In (da exo-atmosfera): 144 W/m2 (67+77)

– In (da superficie terrestre): 452 W/m2 (350+24+78)

– In (total): 596 W/m2

– Out (para exo-atmosfera): 272 W/m2 (77+195)

– Out (para a superfície terrestre): 324 W/m2

– Out (total): 596 W/m2

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

Fluxo por unidade de área = ~342 W/m2

Potência recebida = 342 W/m2 x 511,5 x 105 km2 = ~175,000 TW

Energia recebida por ano = 173,000 TW x 365 x 24 = ~1532x106 TWh

24

Page 25: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Basic concepts

Latent heat of vaporization (L) – Amount of energy needed to

evaporate water per unit of mass of water / Calor latente de vaporização (L)

- Quantidade de energia necessária para quebrar a superfície da água.

As L is not much dependent on water temperature / Como L é pouco dependente da

temperatura da água:

L ~ 2,5 MJ/kg = 600 cal/g

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 25

L

diamMJRdiammR

w

n

121000/

L – Latent heat of vaporization (MJ/kg)

Ts – Water temperature (ºC)

• One needs 600 cal to evaporate 1 g

of water or 2,5 MJ to evaporate 1

kg. / São precisas 600 cal para evaporar

1 grama de água; noutras unidades: são

precisos 2,5 MJ para evaporar 1 kg de

água

• Using L it is possible to express

energy fluxes as water fluxes / Recorrendo a esta relação é possível

apresentar valores de fluxo de energia

em unidade de fluxo de volume água.

sTL 002361,0501,2

w – Water density (kg/m3)

Page 26: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Energy needs to support evaporation from oceans

• Annual evaporation / Evaporação anual

= 502x103 km3/ano = 502x1015 kg/ano

• Latent heat / Calor latente de vaporização

= L ~ 2,5 MJ/kg = 600 cal/g

• Needed energy / Energia necessária

= 2,5 x 502 x 1015 MJ/ano = 1255 x 1015 MJ/ano

• Needed energy flux / Fluxo de energia necessária

= 1255 x 1015 MJ/ano / 511,5 x 106 km2

= 2,45 x 109 MJ/ano/km2 = 2,45 x 109 J/ano/m2

= 78 W/m2 (per m2 of Earth Surface)

• Reference value / Valor de referência: 342 W/m2 (Amount of

energy that reaches Earth per unit of time and area / Quantidade de energia que

atinge a Terra por unidade de tempo e de área)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 26

Page 27: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Astronomical insolation

N – Astronomical insolation: Number

of daylight hours in the day

ws – hour angle at sunset (rad);

f – latitude (positive in the northern

hemisphere);

d – solar declination (rad).

J – Julian day

J=1 for 1st of January;

J=115 for 25th April)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 27

swNp

24

df tantanarccos sw

405,1

365

2sin4093,0 J

pd

N – Astronomical insolation(h)

Page 28: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Extraterrestrial solar radiation

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 28

Solar radiation at the top of the atmosphere

(MJ/m2/dia)

ssrA senwsensenwdR dfdf coscos392.15

dr – Relative distance to the Sun

/ Distância relativa ao sol

Jdr

365

2cos033,01

p

RA - Solar radiation at the top of

the atmosphere (energy

reaching the top of the

atmosphere by unit of time and

unit of area) / Quantidade de

energia que incide no topo da

atmosfera por unidade de área e

unidade de tempo;

Maximum radiation occurs in the

winter and in the southern hemisphere

/ Radiação máxima ocorre no inverno e

no hemisfério sul.

Page 29: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Solar radiation on earth surface

Rc – Amount of energy reaching

the ground per unit of area

and unit of time / Quantidade

de energia que incide na

superficie terrestre por unidade

de área e unidade de tempo;

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 29

Direct solar radiation (short wave length) at the ground

Radiação solar directa à superficie (MJ/m2/dia)

%40,

1

AtenuaçãoN

n

RN

nR AC

Page 30: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Albedo

Albedo: from Albus (white) in latin / de Albus (branco) em latim;

Ratio of reflected radiation from the surface to incident radiation upon

it. It depends on the surface vegetation cover./ Percentagem reflectida da

energia incidente de curto comprimento de onda. Depende da cobertura vegetal.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 30

Land use / Cobertura vegetal r (albedo)

Water / Água 0.05 - 0.08

Forests / Floresta alta 0,11 – 0.16

High crops (e.g. sugar cane) / Culturas altas (e.g. cana de açucar) 0,15 – 0,20

Cereal crops (e.g. wheat) / Cultura de cereais (e.g. trigo) 0,20 – 0,26

Low heigth crops ( e.g, sugar beat) / Culturas baixas (e.g. beterraba) 0,20 – 0,26

Pastures and grass / Pastagens ou relva 0,20 – 0,26

Soil / Solo nú 0.10 (hum) - 0,35(seco)

Snow and ice / Neve e gelo 0,20 (velha) – 0,80 (nova)

Page 31: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Long wave radiation

Ta – Air temperature (ºK)/ Temperatura do ar (ºK)

ea – Vapour pressure (mm Hg) / Tensão do vapor de água (mm Hg)

s – Stefan-Boltzman constant = 0,8132x10-10(cal cm-2 min-1 K-4)

n – Number of sunshine hours (h) / Número de horas de Sol a descoberto (h)

N – Astronomical insolation (h) / Insolação astronómica (h)

Please recall:

Relative humidity (%):

ea* – Saturated vapour pressure

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 31

)90,010,0)(09,056,0(4

N

neTR aaL s

6,29

15,27367.17exp58,4*

a

aa

T

Te ea* (mm Hg), Ta (ºK)

*100

a

ar

e

eh

RL – Energy net balance between the atmosphere and the ground surface.

It is usually negative (loss of energy) as the soil as a higher temperature

than the air) / Balanço liquido das trocas de energia entre a atmosfera e a superfície do

solo. É em geral negativo (perda de energia) porque o solo tem uma temperatura mais

elevada do que a atmosfera

Page 32: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Energy balance

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 32

)90,010,0)(09,056,0()1( 4

N

neTrRR aac s

R – Energy balance (cal cm-2 min-1) / Balanço de energia radiante (cal cm-2 min-1)

Rc – Incident solar radiation on the ground (cal cm-2 min-1) / Radiação solar incidente (cal cm-2 min-1)

r – Albedo (-)

Ta – Air temperature (ºK) / Temperatura do ar (ºK)

ea – Vapour pressure (mm Hg) / Tensão do vapor de água do ar (mm Hg)

n – Number of sunshine hours (h) / Número de horas de Sol a descoberto (h)

N – Astronomical insolation (h) /Insolação astronómica (h)

s –Stefan-Boltzman constant = 0,8132x10-10 (cal cm-2 min-1 K-4)

Incident energy absorbed by

Earth surface (shorth wave length)

Energia absorvida pela superfície

terrestre (comprimento de onda

curto)

Energy irradiated by the Earth

surface (long wave length) Energia

irradiada pela superfície terrestre

(comprimento de onda longo)

Energy available to support evaporation and evapotranspiration:

Page 33: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Total radiation

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 33

140 kcal/cm2/ano

= 5858 MJ/m2/ano = 186 W/m2

170 kcal/cm2/ano

= 7113 MJ/m2 ano= 226 W/m2

Potential evapotranspiration

(August 2010)

Total radiation (kcal/cm2)

Page 34: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Formulas to estimate evaporation and evapotranspiration

• Evaporation from water surfaces:

– Penman

– Priestley-Taylor

• Potential evapotranspiration (the type of vegetation is not specified)

– Thornthwaite

– Turc

• Potential evapotranspiration from a reference crop

– Penman-Monteith

– FAO IDP 56, 1998

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 34

Most accurate but data intensive (radiation, air temperature, vapour pressure, wind speed.)

Less accurate but easy to apply (air temperature)

Most accurate but data intensive (radiation, air

temperature, vapour pressure, wind speed.)

Page 35: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Penman formula

E – Evaporation from a shalow water body (mm d-1) / Evaporação da

superfície da água, em lago pouco profundo (mm d-1)

Em – Evaporation due to the energy balance (mm d-1) / Evaporação

equivalente ao balanço de energia radiante (mm d-1)

Ea – Air evaporative capacity (mm d-1) / Poder evaporante do ar (mm d-1)

, – Weighting factors / Factores de ponderação (mm Hg K-1)

R – Energy balance (cal cm-2 min-1) / Balanço de energia radiante (cal cm-2 min-1)

L – Latent heat of vaporization for 0.1 cm3 = 59 cal / Calor latente de

evaporação de 0,1 cm3 = 59 cal (<< Atenção: gralha na folhas)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 35

am EE

E

L

REm

6024

Lc RrRR )1(

100135,0 * V

eeE aaa

*

26,29

4304a

a

eT

ap31066,0

Combines fundamental physical principles with some empirical knowledge.

to estimate evaporation. Derived from data from a shallow lake.

Combina princípios físicos com conceitos empíricos para calcular a evaporação. Estabelecida

com base no balanço energético de um lago pouco profundo.

ea, ea* - Vapour pressure and saturated vapure pressure (mm

Hg) / Tensão de vapor e tensão de saturação do vapor (mm Hg)

V – Wind speed at 2m from the soil (mi d-1) / Velocidade do vento a

2 m do solo (mi d-1)

pa – Atmospheric pressure (mm Hg) / Pressão atmosférica (mm Hg)

Page 36: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Energy budget approach: amount of water than

can be evaporated given the energy avaliable / Componente depende da energia radiante disponível.

Em – Evaporation due to the energy balance

(mm d-1) / Evaporação equivalente ao balanço de energia

radiante (mm d-1)

R – Energy balance (cal cm-2 min-1) / Balanço de

energia radiante (cal cm-2 min-1)

Penman formula: an explanation

Mass transfer approach:ammount of water

the atmosphere can receive in addition to

current conditions / Compondente dependente das

condições meteorológicas/climatológias/ Depende do défice

de saturação e da velocidade do vento.

Ea – Air evaporative capacity (mm d-1) / Poder

evaporante do ar (mm d-1)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 36

amam EE

EEE

L

REm

6024

100135,0 * V

eeE aaa

100135,0 * V

eeEEE

Eaam

am

Page 37: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Priestley-Taylor formula

E – Evaporation from a shalow water body (mm d-1) / Evaporação da

superfície da água, em lago pouco profundo (mm d-1)

Em – Evaporation due to the energy balance (mm d-1) / Evaporação

equivalente ao balanço de energia radiante (mm d-1)

, – Weighting factors / Factores de ponderação (mm Hg K-1)

R – Energy balance (cal cm-2 min-1) / Balanço de energia radiante (cal

cm-2 min-1)

L – Latent heat of vaporization for 0.1 cm3 = 59 cal / Calor latente de

evaporação de 0,1 cm3 = 59 cal

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 37

mE

E 26,1

L

REm

6024

Lc RrRR )1(

*

26,29

4304a

a

eT

ap31066,0

A simplification of the Penman formula used to estimate evaporation.

Simplificação da fórmula de Penman que calcula a evaporação.

Page 38: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Penman-Monteith formula

It estimates the evapotranspiration from a referenced (i.e. standard) crop. /Calcula a evapotranspiração de uma cultura de referência.

A modified version of the Penman equation. / A fórmula de Penman é modificada para ter

em conta a resistência estomatal e aerodinâmica à evaporação assim como a resistência da vegetação à

passagem do vento.

– ETPo – Reference crop evapotranspiration (mm d-1) / Evapotranspiração cultural de

referência (mm d-1)

– Em - Evaporation due to the energy balance (mm d-1) / Evaporação equivalente ao

balanço de energia radiante sobre a relva (mm d-1)

– T – Average daily air temperature (ºK) / Temperatura média diária do ar a 2m da

superfície evaporante (ºK)

– V – Wind speed (m s-1) / Velocidade média do ar (m s-1)

– ea , ea* - Vapour pressure and saturated vapure pressure (mm Hg) / Tensões do

vapor de água (hPa)

- , – Weighting factors (hPa K-1) / Factores de ponderação (hPa K-1)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 38

V

eeVT

E

ETPaam

34,01

90 *

0

100135,0 * V

eeEEE

Eaam

amPenman formula (evaporation)

Penman-Monteith formula

(evapotranspiration from a reference crop)

Page 39: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Penman-Monteith formula

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 39

V

eeVT

E

ETPaam

34,01

90 *

0

Penman-Monteith formula

(evapotranspiration from a

reference crop)

a

s

aa

a

pa

m

r

r

eer

cE

ETP

1

*

Penman-Monteith formula

(evapotranspiration from a

generic crop)

– ETPo – Reference crop evapotranspiration (mm d-1) / Evapotranspiração cultural de referência (mm d-1)

– Em - Evaporation due to the energy balance (mm d-1) / Evaporação equivalente ao balanço de energia

radiante sobre a relva (mm d-1)

– T – Average daily air temperature (ºK) / Temperatura média diária do ar a 2m da superfície evaporante (ºK)

– V – Wind speed (m s-1) / Velocidade média do ar (m s-1)

– ea , ea* - Vapour pressure and saturated vapure pressure (mm Hg) / Tensões do vapor de água (hPa)

– a – Air density / Massa volúmica do ar

– Cp – Calor específico do ar húmido (1,013 kJ kg-1 ºC-1) / Calor específico do ar húmido (1,013 kJ kg-1 ºC-1)

– rs – Bulk surface resistance / Resistência superficial da cobertura vegetal

– ra – Aerodynamic resistance / Resistência aerodinâmica

- , - Weighting factors (hPa K-1) / Factores de ponderação (hPa K-1)

Page 40: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Thornthwaite formula

ETP – Monthly potential evapotranspiration (30 d, N=12 h/d)

(mm) / Evapotranspiração potencial mensal (30 d, N=12 h/d) (mm)

T – Average monthly temperature (ºC) / Temperatura média mensal

do ar (ºC)

I – Annual heat index (-) / Índice térmico anual (-)

a – Empirical exponent (-) / Expoente empírico (-)

i – Monthly heat index (-) / Índice térmico mensal (-)

Dm – Number of days in the month (d) / Número de dias do mês (d)

f – Monthly correction factor (to correct the assumption that

each month has 30 days, each with 12 hours of sun) / Factor

de correcção mensal

Dm – Numero of days in the month / Número de dias no mês

Nm – Astronomical insolation in the month (h/day) / Insolação

astronómica média no mês (h/d)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 40

12

1

iI

514,1

5

Ti

332639 1039,4921092,17101,7710675 IIIa

360

mm NDf

An empirical formula to estimate evapotranspiration.Uma fórmula empírica para estimar a evapotranspiração.

𝐸𝑇𝑃 = 16 10𝑇

𝐼

𝑎

Page 41: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Turc formula

ETP – Monthly Potential evapotranspiration (mm) /

Evapotranspiração potencial mensal (mm)

T – Monthly average air Temperature (ºV) / Temperatura

média mensal do ar (ºC)

Rc – Global radiation (cal cm-2 d-1) / Radiação solar global (cal

cm-2 d-1)

, – Angstrom coeficients (-) / Coeficientes de Angstrom (-)

RA – Solar radiation at the top of the amosphere (cal cm-2

d-1) / Radiação solar no topo da atmosfera (cal cm-2 d-1)

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 41

5015

40,0

cRT

TETP

Ac RN

nR

ETPh

ETP rc

70

501

Correction factores / Factores de correcção

- In February, use 0.37 instead of 0.40 / No mês de Fevereiro,

em vez de 0,40, deve utilizar-se 0,37.

- If the monthly average of relative humidity is below 50%

use the following formula / Se a humidade relativa no mês for

em média inferior a 50 %:

An empirical formula to estimate evapotranspiration.Uma fórmula empírica para estimar a evapotranspiração

Page 42: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Use the Penman formula to estimate the

evaporation from a lake near Lisbon on a humid

winter day and on a dry summer day. Assume

that the air temperature is 11,6 ºC and 23,1 ºC,

repectively, and that there is no wind.

Estime pela fórmula de Penman a evaporação que

ocorre numa albufeira perto de Lisboa num dia húmido

de inverno em Janeiro e num dia seco de verão em

Julho. Assuma que a temperatura média do ar em

Janeiro e em Julho é, respectivamente, 11,6 ºC e 23,1

ºC, e uma velocidade do vento nula.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 42

Janeiro Julho

Ra 15 40 MJ/m2/dia

n 0 14,5 horas

N 9 14,5 horas

n/N 0 1

(+*n/N) 0.25 0.75

Rc 3.75 30.00 MJ/m2/dia

Albedo, r 0.065 0.065

Rc (1-r) 3.51 28.05 MJ/m2/dia

Rc (1-r) 0.58 4.65 cal cm-2 min-1

Ta 11.6 23.1 ºC

Ta 284.8 296.3 ºK

Hum. Relativa 100 10 %

ea_sat 10.2 21.2 mm Hg

ea 10.2 2.1 mm Hg

Steffman-Boltzman 8.13E-11 8.13E-11 cal cm-2 min-1 K-4

RL -0.28 -0.27 cal cm-2 min-1

R 0.30 4.39 cal cm-2 min-1

L 600 600 cal/g

Em 0.7 10.5 mm/dia

Vento 0 0 mi/dia

Ea 0.00 6.67 mm/dia

patom 760 760 mm Hg

psi 0.05016 0.05016 mm Hg / ºK

delta 135.9 2156.3 mm Hg / ºK

E 0.7 12.9 mm/dia

Page 43: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Use the Thorthwaite and Turc methods to estimate the monthly and annual

evapotranspiration at a location 40 ºN. Assume the following values for the

Angstrom coeficients: =0.23 e =0.53. For the Turc method, do not consider the

humidity effect.

No quadro seguinte apresentam-se os valores da temperatura média mensal e da

insolação média diária em determinado local à latitude de 40 ºN. Estime pelos

métodos de Thornthwaite e de Turc a evapotranspiração potencial mensal e anual

nessa região. Considere que os coeficientes de Angstrom são =0.23 e =0.53 e

despreze o efeito da humidade relativa na fórmula de Turc.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

Mês Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez

T (ºC) 5.1 6.0 8.5 10.6 14.3 18.6 21.7 21.0 18.0 13.6 8.0 5.1

n (h) 3.9 5.2 5.7 7.8 10.0 11.6 12.8 12.0 7.8 6.2 4.6 3.2

43

Page 44: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise solution

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

1 cal = 4.1868 J; thus 1 cal/cm2/day = 4.1868 / 106 x 104 MJ/m2/day

ETPThorthwaite <> ETPTurc

Em Portugal:

ETPThorthwaite ~0.5 * Etina e ETPTurc ~0.7 * Etina

ETPThorthwaite >> valores por defeito

ETPTurc >> valores por excesso

Mês Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez Ano

T (ºC) 5,1 6 8,5 10,6 14,3 18,6 21,7 21 18 13,6 8 5,1

N (h) 3,9 5,2 5,7 7,8 10 11,6 12,8 12 7,8 6,2 4,6 3,2

Thornthwaite

i 1,030 1,318 2,233 3,119 4,908 7,308 9,229 8,782 6,954 4,549 2,037 1,030

ETP (cm/m) 1,54 1,91 3,02 4,04 6,00 8,49 10,40 9,96 8,13 5,62 2,79 1,54 63,4

Nastron (h/dia) 9 10 11 13 14 15 15 14 13 11 10 9

Dm 31 28 31 30 31 30 31 31 30 31 30 31

f 0,80 0,80 0,97 1,11 1,24 1,29 1,33 1,24 1,11 0,97 0,86 0,80

ETP (cm/m) 1,23 1,53 2,94 4,50 7,44 10,91 13,82 12,35 9,06 5,47 2,39 1,23 72,9 cm

728,8 mm

Turc

Ra (MJ/m2/dia) 15 20 28 32 38 40 40 38 32 28 20 15

Ra (cal/cm2/dia) 358 478 669 764 908 955 955 908 764 669 478 358

n/N 0,43 0,52 0,52 0,60 0,71 0,77 0,85 0,86 0,60 0,56 0,46 0,36

Rc (MJ/m2/dia) 6,90 10,11 14,13 17,54 23,13 25,59 27,29 26,00 17,54 14,80 9,48 6,28

Rc (cal/cm2/dia) 165 242 337 419 552 611 652 621 419 354 226 150

Constante 0,4 0,37 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4

ETP (mm/m) 21,8 30,8 56,1 77,7 117,6 146,4 166,0 156,6 102,3 76,8 38,4 20,3 1010,7 mm

44

Page 45: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Estimate the Ea component of the Penman formula, in mm/day, that

represents ability of the atmosphere to absorb evaporated water at a

location where the temperature, wind speed and relative humidity are 18

ºC e 20 km/h and 40%, respectively.

Em determinado local a temperatura e a velocidade do ar a 2m do solo são,

respectivamente, 18 ºC e 20 km/h. Sabendo que a humidade relativa é de 40% calcule o

poder evaporante do ar (mm d-1).

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

100135,0 * V

eeE aaa*

100a

ar

e

eh

6,29

15,27367.17exp58,4*

a

aa

T

Te

45

V 20 km/h 298.3219 mi/d 1 mi = 1609 m

HR 40%

Tar 291.15 ºK 18 ºC T (ºK) = T (ºC) + 273.15

eas 15.45 mm Hg 2.1 kPa

ea 6.18 mm Hg 0.8 kPa

D = eas-ea 9.27 mm Hg 1.2 kPa

Ea 12.9255 mm/dia

Page 46: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Estimate the evaporation from a water surface, assuming that the daily

energy balance of the situation described in the previous problem is 11.72

MJ m-2 d-1 and the air pressure is 102 391 Pa.

Num dia em que o balanço de energia radiante foi 11.72 MJ m-2 d-1 e a pressão atmosférica

102 391 Pa, o ar apresentou características idênticas às do problema anterior. Nestas

condições, estime pela fórmula de Penman a evaporação nesse dia de uma superfície livre

de água de pequena profundidade.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016

L

diamMJRdiammE

w

m

121000/

*

26,29

4304a

a

eT

ap31066,0

am EE

E

R 11.72 MJ/m2/dia

patom 102391 Pa

L 2.5 MJ/kg

Massa esp. agua 1000 kg/m3

Em 4.688 mm/dia

patom 767.994 mm Hg 1 Pa = 0,0075006 mm Hg

psi 67.6 mm Hg /ºC

delta 839.6 mm Hg /ºC

E 5.30 mm/dia

46

Page 47: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Estimate the irrigation requirements of a corn field with 1 ha, knowing the

potential evapotranspiration from a reference crop and the crop coefficient

values for different development stages.

A tabela indica para um dado local onde se pretende cultivar 1 ha de milho, os valores

mensais de evapotranspiração de uma cultura de referência, os valores de precipitação

mensal e os valores do coeficiente cultura do milho (ao longo da sua evolução vegetativa).

Estime as necessidades de rega desse perimetro em toda a época de regadio.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 47

ETPc (mm/dia) 1.57 2.07 4.02 6.60 5.94 3.16 1.29 752

Precip (mm/dia) 0.50 0.16 0.00 0.00 0.00 0.17 0.40

Nec.Rega (mm/dia) 1.07 1.91 4.02 6.60 5.94 2.99 0.89 714

Mês Abr Mai Jun Jul Ago Set Out Total

ETPo (m/dia) 4.14 5.45 5.82 6.60 5.94 4.05 2.34 1047

Kc 0.38 0.38 0.69 1.00 1.00 0.78 0.55

Precip (mm) 15.00 5.00 0.00 0.00 0.00 5.00 12.00 1129

Page 48: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Explain the following concepts: potential evapotranspiration, potential

evapotranspiration for a reference crop and real evapotranspiration.

Describe the factors that influence these variables.

Defina os conceitos de evapotranspiração potencial, evapotranspiração potencial de

referência e evapotranspiração real. Descreva os factores que influenciam cada uma destas

variáveis, indicando sumariamente a razão e sentido dessa influência.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 48

Page 49: Rodrigo Proença de Oliveira - ULisboa · Rodrigo Proença de Oliveira Hydrology, Environment and Water Resources 2016 / 2017 Evaporation and evapotranspiration

Exercise

Explain the variables included in the following equation. Refira o significado das variáveis intervenientes na fórmula de Penman, escrita

do seguinte modo.

IST:Hydrology, environment and water resources © Rodrigo Proença de Oliveira, 2016 49

𝐸 =∆ ∙ 𝐸𝑚 + 𝛾 ∙ 𝑒𝑎

∗ − 𝑒𝑎 1 +𝑉100

∆ + 𝛾