Teoremas de Análise - 880E53CCd01

download Teoremas de Análise - 880E53CCd01

of 12

Transcript of Teoremas de Análise - 880E53CCd01

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    1/12

    UEL - UNIVERSIDADE ESTADUAL DE LONDRINADEP. ENGENHARIA ELÉTRICA – CTU2ELE024 – LABORATÓRIO DE MEDIDAS ELÉTRICASPROF. Jos A!"#$%&'" &" F'$%($

    AULA #2 – Laboratório de Introdução à Med. Elétricas

    1. Experimento 1 – Teorema da Superposição

    1.1. Introdução

     A análise de um circuito com mais de uma fonte de corrente ou de tensão pode ficar bastantecomplexa, principalmente se tal circuito contiver um número excessivo de nós. Felizmente, em umcircuito composto apenas de componentes lineares, o teorema da superposição pode ser aplicadopara simplificar o problema.

    Teorema da Superposição:  Em um circuito elétrico que contém apenas componentes lineares ecom diversas fontes de corrente e/ou tensão, a tensão e a corrente totais em um determinado ramo éa soma das contribuições individuais de cada fonte de tensão e de corrente. Além disso, para calculara contribuição individual de uma determinada fonte, em um ramo específico, deve-se substituir todasas outras fontes de tensão por curto-circuitos e abrir os terminais de todas as outras fontes decorrente.

    Neste experimento, aplicaremos o teorema da superposição a solução de um circuito conversor DAde ! bits e comprovaremos o seu resultado na prática.

    1.2. Prearação do E!eri"ento

    No circuito da figura abaixo, cada entrada, V 0, V 1 e V 2, pode ser igual a zero ou a 5V.

    Prove que a tensão Vout, sobre o resistor R figura abaixo!, " igual a

    onde b2, b1 e b0 pode# ser 0 ou 1.

    "

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    2/12

    UEL - UNIVERSIDADE ESTADUAL DE LONDRINADEP. ENGENHARIA ELÉTRICA – CTU2ELE024 – LABORATÓRIO DE MEDIDAS ELÉTRICASPROF. Jos A!"#$%&'" &" F'$%($

    1.. Monta$e" E!eri"ental

    #onte o circuito da fi$ura anterior e preenc%a a tabela a se$uir.

    b2 b1 b0 Valor Esperado Valor Real Erro (%)

    0 0 0

    0 0 1

    0 1 0

    0 1 1

    1 0 0

    1 0 1

    1 1 0

    1 1 1

     A$ora, com o circuito inte$rado &'()*!, $ere a se+-ncia binária da tabela anteriore visualize o resultado no osciloscópio.

    1.% &elatório

    a! $presente a dedu%ão da equa%ão da tensão Vout na sa&da conversor '($ )*2).

    b! $presente a tabela anterior preenc+ida. bserve a teoria de n-#eros significativos

    discutida na aula anterior.!

    c! sboce a #ontage# realizada co# o conversor '($ e o circuito integrado /34.

    xplique a #ontage# co# o /34.!

    d! $presente o esbo%o da for#a de onda visualizada e# laboratrio.

    e! 6ual a tensão de ali#enta%ão do /34 e qual o valor de tensão na sa&da dos seus

    pinos7

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    3/12

    TLF6533

     D M 5  4  9  0     D M

     7  4  9  0  A   D M 7  4  9  3  A

     D e c a d  e a n d 

     B  i    n a r   y C  o u n t    e r  s

    July 1992

    DM5490DM7490A DM7493A

    Decade and Binary CountersGeneral DescriptionEach of these monolithic counters contains four master-

    slave flip-flops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the

    count cycle length is divide-by-five for the 90A and divide-by-eight for the 93A

    All of these counters have a gated zero reset and the 90Aalso has gated set-to-nine inputs for use in BCD nine’s com-

    plement applications

    To use their maximum count length (decade or four-bit bina-ry) the B input is connected to the QA  output The input

    count pulses are applied to input A and the outputs are as

    described in the appropriate truth table A symmetrical di-

    vide-by-ten count can be obtained from the 90A counters byconnecting the QD   output to the A input and applying the

    input count to the B input which gives a divide-by-ten squarewave at output QA

    FeaturesY Typical power dissipation

    90A 145 mW 93A 130 mW

    Y Count frequency 42 MHz

    Connection Diagrams

    Dual-In-Line Package

    TLF6533–1

    Order Number DM5490J DM5490W or DM7490AN

    See NS Package Number J14A N14A or W14B

    Dual-In-Line Package

    TLF6533–2

    Order Number DM7493ANSee NS Package Number N14A

    C1995 National Semiconductor Corporation RRD-B30M105Printed in U S A

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    4/12

    Absolute Maximum Ratings   (Note)If MilitaryAerospace specified devices are requiredplease contact the National Semiconductor SalesOfficeDistributors for availability and specifications

    Supply Voltage 7V

    Input Voltage 55V

    Operating Free Air Temperature Range

    DM54   b55C to a125CDM74 0C to a70C

    Storage Temperature Range   b65C to a150C

    Note  The ‘‘Absolute Maximum Ratings’’ are those values beyond which the safety of the device cannot be guaran- teed The device should not be operated at these limits The 

    parametric values defined in the ‘‘Electrical Characteristics’’ table are not guaranteed at the absolute maximum ratings

    The ‘‘Recommended Operating Conditions’’ table will define the conditions for actual device operation

    Recommended Operating Conditions

    Symbol Parameter  DM5490 DM7490A

    UnitsMin Nom Max Min Nom Max

    VCC   Supply Voltage 45 5 55 475 5 5 25 V

    VIH   High Level Input Voltage 2 2 V

    VIL   Low Level Input Voltage 08 08 V

    IOH   High Level Output Current   b08   b08 mA

    IOL   Low Level Output Current 16 16 mA

    fCLK   Clock Frequency A 0 32 0 32 MHz(Note 5)

    B 0 16 0 16

    tW   Pulse Width A 15 15(Note 5)

    B 30 30 ns

    Reset 15 15

    tREL   Reset Release Time (Note 5) 25 25 ns

    TA   Free Air Operating Temperature   b55 125 0 70   C

    ’90A Electrical Characteristicsover recommended operating free air temperature range (unless otherwise noted)

    Symbol Parameter Conditions Min  Typ

    Max Units(Note 1)

    VI   Input Clamp Voltage VCC e Min II e b12 mA   b15 V

    VOH   High Level Output VCC e Min IOH e Max 24 34 VVoltage VIL e Max VIH e Min

    VOL   Low Level Output VCC e Min IOL e Max 02 04 VVoltage VIH e Min VIL e Max (Note 4)

    II   Input Current   Max VCC e Max VI e 55V 1 mAInput Voltage

    IIH   High Level Input VCC e Max A 80Current VI e 27V Reset 40   mA

    B 120

    IIL   Low Level Input VCC e Max A   b32

    Current VI e 04V Reset   b16 mA

    B   b48

    IOS   Short Circuit VCC e Max DM54   b20   b57 mAOutput Current (Note 2)

    DM74   b18   b57

    ICC   Supply Current VCC e Max (Note 3) 29 42 mA

    Note 1  All typicals are at VCC  e  5V TA  e  25CNote 2  Not more than one output should be shorted at a time

    Note 3  ICC  is measured with all outputs open both RO inputs grounded following momentary connection to 45V and all other inputs grounded

    Note 4  QA  outputs are tested at IOL  e  Max plus the limit value of IIL  for the B input This permits driving the B input while maintaining full fan-out capability

    Note 5  TA  e  25C and VCC  e  5V

    2

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    5/12

    ’90A Switching Characteristicsat VCC  e  5V and TA  e  25C (See Section 1 for Test Waveforms and Output Load)

    From (Input)  RL e 400X

    Symbol ParameterTo (Output)

      CL e 15 pF Units

    Min Max

    fMAX   Maximum Clock A to QA   32 MHz

    Frequency B to QB   16

    tPLH   Propagation Delay Time A to QA   16 nsLow to High Level Output

    tPHL   Propagation Delay Time A to QA   18 nsHigh to Low Level Output

    tPLH   Propagation Delay Time A to QD   48 nsLow to High Level Output

    tPHL   Propagation Delay Time A to QD   50 nsHigh to Low Level Output

    tPLH   Propagation Delay Time B to QB   16 nsLow to High Level Output

    tPHL   Propagation Delay Time B to QB   21 nsHigh to Low Level Output

    tPLH   Propagation Delay Time B to QC   32 nsLow to High Level Output

    tPHL   Propagation Delay Time B to QC   35 nsHigh to Low Level Output

    tPLH   Propagation Delay Time B to QD   32 nsLow to High Level Output

    tPHL   Propagation Delay Time B to QD   35 nsHigh to Low Level Output

    tPLH   Propagation Delay Time SET-9 to 30 nsLow to High Level Output QA QD

    tPHL   Propagation Delay Time SET-9 to 40 nsHigh to Low Level Output QB QC

    tPHL   Propagation Delay Time SET-0 40 nsHigh to Low Level Output Any Q

    3

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    6/12

    Recommended Operating Conditions

    Symbol Parameter  DM7493A

    UnitsMin Nom Max

    VCC   Supply Voltage 475 5 525 V

    VIH   High Level Input Voltage 2 V

    VIL

      Low Level Input Voltage 08 V

    IOH   High Level Output Current   b08 mA

    IOL   Low Level Output Current 16 mA

    fCLK   Clock Frequency A 0 32 MHz(Note 5)

    B 0 16

    tW   Pulse Width A 15(Note 5)

    B 30 ns

    Reset 15

    tREL   Reset Release Time (Note 5) 25 ns

    TA   Free Air Operating Temperature 0 70   C

    ’93A Electrical Characteristicsover recommended operating free air temperature range (unless otherwise noted)

    Symbol Parameter Conditions Min  Typ

    Max Units(Note 1)

    VI   Input Clamp Voltage VCC e Min II e b12 mA   b15 V

    VOH   High Level Output VCC e Min IOH e Max 24 34 VVoltage VIL e Max VIH e Min

    VOL   Low Level Output VCC e Min IOL e Max 02 04 VVoltage VIH e Min VIL e Max (Note 4)

    II   Input Current   Max VCC e Max VI e 55V 1 mAInput Voltage

    IIH   High Level Input VCC e Max Reset 40Current VI e 24V A 80   mA

    B 80

    IIL   Low Level Input VCC e Max Reset   b16Current VI e 04V

    A  b

    32 mAB   b32

    IOS   Short Circuit VCC e Max b18   b57 mAOutput Current (Note 2)

    ICC   Supply Current VCC e Max (Note 3) 26 39 mA

    Note 1  All typicals are at VCC  e  5V TA  e  25C

    Note 2  Not more than one output should be shorted at a time

    Note 3  ICC  is measured with all outputs open both R0 inputs grounded following momentary connection to 45V and all other inputs grounded

    Note 4  QA  outputs are tested at IOL  e  Max plus the limit value of IIL  for the B input This permits driving the B input while maintaining full fan-out capability

    Note 5  TA  e  25C and VCC  e  5V

    4

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    7/12

    ’93A Switching Characteristicsat VCC e 5V and TA e 25C (See Section 1 for Test Waveforms and Output Load)

    From (Input)  RL e 400X

    Symbol ParameterTo (Output)

      CL e 15 pF Units

    Min Max

    fMAX   Maximum Clock A to QA   32 MHz

    Frequency B to QB   16

    tPLH   Propagation Delay Time A to 16 nsLow to High Level Output QA

    tPHL   Propagation Delay Time A to 18 nsHigh to Low Level Output QA

    tPLH   Propagation Delay Time A to 70 nsLow to High Level Output QD

    tPHL   Propagation Delay Time A to 70 nsHigh to Low Level Output QD

    tPLH   Propagation Delay Time B to 16 nsLow to High Level Output QB

    tPHL   Propagation Delay Time B to 21 nsHigh to Low Level Output QB

    tPLH   Propagation Delay Time B to 32 nsLow to High Level Output Q

    CtPHL   Propagation Delay Time B to 35 ns

    High to Low Level Output QC

    tPLH   Propagation Delay Time B to 51 nsLow to High Level Output QD

    tPHL   Propagation Delay Time B to 51 nsHigh to Low Level Output QD

    tPHL   Propagation Delay Time SET-0High to Low Level Output to 40 ns

    Any Q

    5

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    8/12

    Function Tables (Note D)

    90A

    BCD Count Sequence(See Note A)

    Count  Outputs

    QD

      QC

      QB

      QA

    0 L L L L1 L L L H

    2 L L H L3 L L H H4 L H L L

    5 L H L H6 L H H L

    7 L H H H8 H L L L9 H L L H

    90ABCD Bi-Quinary (5-2)

    (See Note B)

    Count  Outputs

    QA

      QD

      QC

      QB

    0 L L L L1 L L L H

    2 L L H L3 L L H H4 L H L L

    5 H L L L6 H L L H

    7 H L H L8 H L H H9 H H L L

    93ACount Sequence

    (See Note C)

    Count  Outputs

    QD

      QC

      QB

      QA

    0 L L L L1 L L L H

    2 L L H L3 L L H H4 L H L L

    5 L H L H6 L H H L

    7 L H H H8 H L L L9 H L L H

    10 H L H L11 H L H H

    12 H H L L13 H H L H

    14 H H H L15 H H H H

    90A

    ResetCount Function Table

    Reset Inputs Outputs

    R0(1) R0(2) R9(1) R9(2) QD   QC   QB   QA

    H H L X L L L LH H X L L L L LX X H H H L L H

    X L X L COUNTL X L X COUNT

    L X X L COUNTX L L X COUNT

    93A

    ResetCount Function Table

    Reset Inputs Outputs

    R0(1) R0(2) QD   QC   QB   QA

    H H L L L LL X COUNTX L COUNT

    Note A  Output QA  is connected to input B for BCD count

    Note B  Output QD  is connected to input A for bi-quinary count

    Note C   Output QA  is connected to input B

    Note D  H  e   High Level L  e  Low Level X  e   Don’t Care

    6

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    9/12

    Logic Diagrams

    90A

    TLF6533–3

    93A

    TLF6533–4

    The J and K inputs shown without connection are for reference only and are functionally at a high level

    7

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    10/12

    8

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    11/12

    Physical Dimensions  inches (millimeters)

    14-Lead Ceramic Dual-In-Line Package (J)

    Order Number DM5490JNS Package Number J14A

    14-Lead Molded Dual-In-Line Package (N)Order Number DM7490AN or DM7493AN

    NS Package Number N14A

    9

  • 8/18/2019 Teoremas de Análise - 880E53CCd01

    12/12

         D     M     5     4     9     0          D     M     7     4     9     0     A 

         D     M     7     4     9     3     A

         D    e    c    a     d    e    a    n     d     B     i    n    a    r    y     C    o    u    n     t    e    r    s

    Physical Dimensions inches (millimeters) (Continued)

    14-Lead Ceramic Flat Package (W)

    Order Number DM5490WNS Package Number W14B

    LIFE SUPPORT POLICY

    NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

    DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONALSEMICONDUCTOR CORPORATION As used herein

    1 Life support devices or systems are devices or 2 A critical component is any component of a lifesystems which (a) are intended for surgical implant support device or system whose failure to perform can

    into the body or (b) support or sustain life and whose be reasonably expected to cause the failure of the lifefailure to perform when properly used in accordance support device or system or to affect its safety or

    with instructions for use provided in the labeling can effectivenessbe reasonably expected to result in a significant injuryto the user

    National Semiconducto r National Semiconduct or Natio nal Semiconducto r National Semiconduct or

    Corporation Europe Hong Kong Ltd Japan Ltd1111 West Bardin Road Fax (a4 9) 0 -1 80 -5 30 8 5 8 6 1 3t h F lo or S tr ai gh t B lo ck T el 8 1- 04 3- 29 9- 23 09Arlington TX 76017 Email cnjwget ev m2 n sc c om O ce an C en tr e 5 C an to n R d F ax 8 1- 04 3- 29 9- 24 08Tel 1(800) 272-9959 Deutsch Tel (a49) 0-180-530 85 85 Tsimshatsui KowloonFax 1(800) 737-7018 Eng lish Tel (a49 ) 0- 180 -53 2 7 8 32 Ho ng K ong

    Franais Tel (a4 9) 0 -1 80 -5 32 9 3 5 8 T el ( 85 2) 2 73 7- 16 00Italiano Tel (a4 9) 0 -1 80 -5 34 1 6 8 0 F ax ( 85 2) 2 73 6- 99 60

    National doesnot assumeany responsibilityfor useof anycircuitry described nocircuit patent licenses areimplied and National reserves the right at anytime without noticeto changesaid circuitryand specifications