TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU...

8
152 HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 152-159 TiO 2 4CP * ** *** **** 305-600 150 * 306-798 133 ** 600-014 4 17-7 *** 609-735 30 ****( ) 660-882 11081-1 (2002 12 12 , 2003 2 4 ) Effect of the Non-Stochiometry of Photocatalytic TiO 2 on 4CP Decomposition Kwang-Wook Kim , Eil-Hee Lee, Young-Jun Kim*, Mi-Hye Lee**, Kwang-Ho Kim*** and Dong-Woo Shin**** Korea Atomic Energy Research Institute, 150, Dukjin-dong, Yusong-gu, Daejeon 305-600, Korea *Department of Chemical Engineering, Hannam University, 133, Ojeong-dong, Daedeok-gu, Daejeon 306-798, Korea **Busan Technology Appraisal Center, Korea Technology Credit Guarantee Fund, 17-7, Joongang-dong 4 ka, Joong-gu, Busan 660-014, Korea ***Department of Inorganic Materials Engineering, Busan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea ****NANO Co. Ltd., 11081-1, Sabong, Jinju 660-882, Korea (Received 12 December 2002; accepted 4 February 2003) 3 TiO 2 , UV OH radical (TiO x(0<x<2) ) . SIMS XPS , TiO 2 OH radical DMPO radical ESR Spectrometer DMPO-OH ESR(Electron Spin Resonance) . UV OH radical (TiO x(0<x<2) ) , . , OH radical . 4CP . Abstract - The relationship between the relative amount of OH radical and the degrees of non-stochiometry TiO x(0<x<2) was studied for the commercially available 3 photocatalytic TiO 2 powders. The presence and relative amounts of OH radical were confirmed by SIMS and XPS techniques relatively. The OH radical occurred instantaneously was reacted with the spin trap- ping agent, DMPO. This caused more stable radical prior to analyzing the Electron Spin Resonance (ERS) of DMPO-OH using EPR Spectrometer. Comparision the data of XPS for TiO x(0<x<2) and ESR for DMPO-OH showed that the higher the degree of non-stochiometry TiO 2 , the more the OH radicals in the slurry. In addition, the dispersibility of the powder in the solution strongly affected the total surface area of particles and consequently the amount of OH radical, since the radical always occurred at the surface. Thus the decomposition of 4CP was influenced not only the degree of non-stoichiomery TiO x but the total surface area of particles. Key words: Photocatalyst, TiO 2 , Non-Stochiometry, OH Radical, Dispersibility, Nano To whom correspondence should be addressed. E-mail: [email protected]

Transcript of TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU...

Page 1: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003, pp. 152-159

a

TiO 2 4CP

†*

*****

****

305-600 150*

306-798 133**

600-014 ! " "# 4$ 17-7*** ! %&'

609-735 ! ( ! 30****( ))*+

660-882 ) ,- 11081-1(2002. 12/ 120 12, 2003. 2/ 40 34)

Effect of the Non-Stochiometry of Photocatalytic TiO2 on 4CP Decomposition

Kwang-Wook Kim †, Eil-Hee Lee, Young-Jun Kim* , Mi-Hye Lee** , Kwang-Ho Kim*** and Dong-Woo Shin****

Korea Atomic Energy Research Institute, 150, Dukjin-dong, Yusong-gu, Daejeon 305-600, Korea*Department of Chemical Engineering, Hannam University, 133, Ojeong-dong, Daedeok-gu, Daejeon 306-798, Korea

**Busan Technology Appraisal Center, Korea Technology Credit Guarantee Fund, 17-7, Joongang-dong 4 ka, Joong-gu, Busan 660-014, Korea***Department of Inorganic Materials Engineering, Busan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Kore

****NANO Co. Ltd., 11081-1, Sabong, Jinju 660-882, Korea(Received 12 December 2002; accepted 4 February 2003)

3 TiO2 , UV OH radical

! " # $%(TiOx(0<x<2)) &&'( )*. ! " # $% + , SIMS - XPS .

/ 01 234, TiO2 #5/ 67 8 OH radical, DMPO9 :;< =* >?+ radical

@1 A B ESR Spectrometer( 1 DMPO-OH ESR(Electron Spin Resonance)( C?)*. UV 8

OH radical , 1# $% D E ! " # $%(TiOx(0<x<2)) , F "G HIJ K+)*.

LMN 5E 1# $% OD #1 P1Q RS T UVW #X/ OD Y ZT1 [\]S 4,

1 ^\ OH radical 1 [\]S _*. 1` 1a 4CP .G, 5 E #_ D Y ZT

# b ! "G U cd efJ K+)*.

Abstract − The relationship between the relative amount of OH radical and the degrees of non-stochiometry TiOx(0<x<2) was

studied for the commercially available 3 photocatalytic TiO2 powders. The presence and relative amounts of OH radical were

confirmed by SIMS and XPS techniques relatively. The OH radical occurred instantaneously was reacted with the spin trap-ping agent, DMPO. This caused more stable radical prior to analyzing the Electron Spin Resonance (ERS) of DMPO-OH using

EPR Spectrometer. Comparision the data of XPS for TiOx(0<x<2) and ESR for DMPO-OH showed that the higher the degree of

non-stochiometry TiO2, the more the OH radicals in the slurry. In addition, the dispersibility of the powder in the solution

strongly affected the total surface area of particles and consequently the amount of OH radical, since the radical always

occurred at the surface. Thus the decomposition of 4CP was influenced not only the degree of non-stoichiomery TiOx but the

total surface area of particles.

Key words: Photocatalyst, TiO2, Non-Stochiometry, OH Radical, Dispersibility, Nano

152

†To whom correspondence should be addressed.E-mail: [email protected]

Page 2: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

153

e)

s

-

X

1.

TiO2 ,

! "# $%&' () *%+,

-. /0 1) 234 56 7 8[1-10]. 9:;9 Degussa P-25<

=>? 1) @A4 TiO2- BCDE& 6F7 E, G TiO2

@AH IJ K LM- NJ9 O8. TiO2 PQ MR4 S T

U LRM FV Q TiO24 QH W, X TiO2 TU Y",

KZ[4 \6 G ] FV ^H 1) _F< X, `? T

U a4 FV b Q, cd e /@E& TiO2, ?

64 f g"]4 hi 8? hi ^ LM& jkj O8.

lH' TiO2 KH W, mn _&' 4 @

A, 4 op, pH, f q$, rf ]s, tQ qFP hi 5

6 ]s& uH 5? v =w 1 7 6 j[8-10],

u) - x 64 ! y$H Iz 4 ^ _

FH 2? E& u LM&| U[4 g ^, R~

- ) &, TiO2 4 % ^, x -

y8.

4 g"] hi X& H O OH Rr4

E&| 7 OH radical4 qFH 4? E& .

8[10-16]. IJ' 4 g"]H 5? K, " i'

"E& &| -#? 1) OH radical,

ly8. TiO2 4 FV b = O/Ti- 2 H'

a|H LQ< -9 E& . , u L Q TiO2

H ]4 FV M O ]4 H OH& i7

H W, X & ? TiO2 H ]&| OH4 FV

< - E& 7 8[12, 13, 16]. IJ' TiO2

a4 FV =b(non-stochiometry)4 R) TiO2 4 g

^, i ly? Rt< 9, 9:;9 TiO2

a4 FV =bH Iz lH' 7 OH radical4

WH 5e PE& RO U 4 6 8.

IJ' vH' ¡ -94 TiO2 H 5e XPS,

SIMS ¢H 4e a4 65 FV =b, Rp `

RE& =w -£, ESR spectrometer< e UV Qo

H' u &| 7 OH radical4 65 , Re

a4 FV =b, OH pM g"] hi#4 62,

Qo£8.

2.

vH' oO TiO2 Degussa P-25 (X)j¤4 NT-20, NT-C4

C-9 < B o£E, TiO2 slurry< u" e

oO ]) 2S A ¥ w 9(Mill-Q plus)< ¦ B

18.2 MΩcm § < o£8. K, e oO UV lamp

450 W Mercury vapor lamp(Hanovia Co.)< o©E, ª l4

« 250 nm 4 ¬­® UV< S¬" ? cut-off Vycor

absorption sleeve< o£8. K" UV ¯°- ±T7 chiller

(25±0.5oC)&| ²³- Quartz immersion well(Ace

glass)M ±T7 500 ml Pyrex tube(Ace reaction vessel 7863)&

7 E 1,000 ml |µ4 TiO2 slurry(1.5 g/l) ¶| reservoir

&| ·°H 4i K" a& ¨ 7¸8. TiO2 slurry TiO2

¹, º magnetic stirrerH 4i wM §º­ w, e »

h ¼½? ¾ < ¨ K"H XT7¿ uÀ8. K"a

H' TiO2 slurry- K" |& ÁB7 , Â9 K

" aH ÃÄ hq7 " e K" |H »h? w+

, -9 magnetic bar< o£8.

g"] hi ^, t" i' 50 ppm4 4CP(4-chlorophenol)<

TiO2 slurry< iÅ ÄR? Æ ÆÇE& < ÈÉe ¹ l

4 TOC(Total Organic Carbonx: Shimadzu TOC-5000A)< R £8.

OH radial) Ê Ë K ÌÍ&, TiO2 H' ¨Æ

E& 7 OH radical, t8 ÎR radical& B(adducting)

spin trapping agent[17-19] DMPO(5,5'-dimethyl-1-pirroline-

N-oxide) KÏ ¾, < EPR(Electron Paramagnetic Resonanc

spectrometer(Bruker EMX 10/12) Ði DMPO-OH4 ESR(Electron Spin

Resonance)< Re 7 OH radical4 65 , R £

8. DMPO OH4 adducting) ÄR? |µ4 20 mM DMPO< Ñ

Xo"< e UV- Qo7 TiO2 slurry< ¨ÆE& È

Ée Ò, < c& dry ice< e quenching Ï ¾ ESR

, R£8. TiO2 slurry a4 hqO TU4 P Y" ThÓ"

(Particle size analyzer: Microtrac UPA-150)< e hÓ7¸, TiO2

TU4 Ô(bulk density) Pycrometer(Micrometrics AccuPyc

1,330), oe R7¸8.

TiO2 4 % ^ LRQ< t" e XRD< o©

E, =FV b, -" e O2+¥ ÕH 4? 2S ¥

sp hÓ"(SIMS)(Secondary Ion Mass Spectrometry: Camenca-im

4f) XPS(X-ray photoelectron spectroscopy: VG scientific ESCALB

200R)< o? µY h ÂÖ, o£, 4 Xy h hÓ

) EPMA(Electron probe mictroanalyzer: JEOL JXA 8,600 with ED

detector)H 4i Ò7¸8.

3.

TiO2 4 LR Q< t" ? XRD hÓ LM- Fig. 1H jk

j 8. P-25 TiO24 anatase4 Q< t 25.3o, 48.1o, 55.1oH

' ×Ø? µY< t' rutile Q< t 27.4o, 36.1o, 54.3oH

' Ä| µY< t E& tÙ Ú Û[20] rutile Q< Ä

| -9 anatase-rutile ¼½ Q H, NT-C NT-20 4 L

Fig. 1. XRD patterns of TiO2 samples.

Table 1. Major elements and their relative atomic mole % of TiO2 samples

Sample Ti Fe S SiP-25 99.4 - - 0.6NT-C 99.39 - 0.42 0.19NT-20 97.98 0.48 0.82 0.55

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 3: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

154

R Q rutile Q- ÜB? anatase Q& E& 7

E& ³O8. EPMAH 4? bulk4 Xy h) Table 1M Ý

8. P-25 Xh Si< Ä| -9 4 ¨¨? Ti& 7

E, NT-C P-25H =e Si 9 S- Ä| Þ7

E& t NT-20) Fe< Þe P-25j NT-CH =e Sj Si-

8$ 1 ÞO E& t8.

Fig. 2H 1S ¥ Õ O2+< H »ßÅ jà 2S

¥4 LM< t SIMS4 LM- jkj 8. 1S ¥ ÕH 4i

7 ¥ %L½7 8? cluster ¥ 7 P-25,

NT-20, NT-C 4 Ti+H 5? intensity 4 =áj Ti qFF½

] ¥4 @A TiO+, TiO2+, Ti2O

+, Ti2O2+¢) NT-C- âã 1º,

ä 8. NT-CH' 8? cluster ¥ O8 )

U[H TiO2 h ¶H 8? FV =b Ti qF F½]

(TiOx, 0<x<2) f%e 1S ¥ ÕH 4i t8 8? S Cluster

¥E& åO8 , 4m?8. IJ' RO C-9 a4

65 FV =b qF]4 ) NT-C>NT-20>P-25 '& f

%?8 Ĭ æR ç 8.

Fig. 3H P-25, NT-20, NT-C TiO2 4 a| qF]4 6 < t

" e narrow scannedO O 1s Ti 2p3/2 µYH 5e µY h

(peak de-convolution)O LM- jkj 8. Ti 2p3/2 peakH' ÜB?

TiO2 L½Hè9(binding energy) 458.8 eVH neé ?8. G

êj L½Hè9, i' Ti 2p3/2 peak< best fitting, ç

8. Ti F½]H 5? Ti 2p3/2 XPS L½Hè9< t XPS database [21]

H IÍ TiO 455.1 eV, TiO1.5 456.1 eV, Ti 454 eVH jkë8.

e"' TiH 5? q$ ªU - ¿ L½Hè9- ì ,

8. IJ' NT-C4 ! Ti 2p3/24 µY< best fitting" e

458.8 eV t8 ) 457.79 eVH peak< æ-eé ÜB? peak h<

ç ¸ æ-O µY non-stochiometric TiO2, í TiOx(1<x<2)&

³ 8. Ti 2p3/24 µYh4 îB, t" e O 1s µ

Y4 iÓ, Ò£8. TiH' Ý) ÂÖE& O 1s µYH' TiO2

H 4? L½Hè9 529.9eVH' jkj9 E& ï O 1s

µY< best curve-fitting, ç ¸8. XPS databaseH jkë Table

1H' t Si4 qF] SiO2 530.7 eV |0H', Fig. 2H t

TiO2 H ðå7 mC? Ta, Al, Mn, Fe ¢4 impurity

h l: qF]4 L½Hè9 530~531 eVH' jkë8. Gêj

O 1s4 TiO2 MO24 L½Hè9E& µY h< ç 532 eV

L½Hè9 0H 8z hH 4? µY- f% º, Fig. 3H

' 2ñç 8. h) TiO2 H r" lE&| 7

f% 7 C& ³O8. < ~" ? C 1sH 5? µY-

Fig. 4H jkj 8. Fig. 44 C 1sH' 284.5 eVH' L½Hè9<

-9 C4 µY ¶H 288.5 eV 0H 8z µY- f% , 2

ñç 8. XPS databaseH' ò$ q$& O F½]4 L½

Hè9 286-290 eVH' 1 jkj E& tÙ Fig. 44 288.5 eV

04 µY ò$ q$4 L½H 4? E& ³O8. IJ' Fig.

34 O 1s µY 532 eV B¾4 µY TiO2 H O ò$ q$

4 L½H 4? E& ³ 8. IJ' TiO24 XPS O 1s

4 µY< TiO2, TiOx+MO2 ò$H ió7 L½Hè9< -9

µY h£, ô O 1s< -® õ curve-fitting, ç ¸8. Table

2H Fig. 34 P-25, NT-20, NT-C TiO2 4 XPS O 1s Ti 2p3/2

µY h< e oO ³ h4 L½Hè9 n ô hO

³ µY M < Ði DqO TiOx/TiO24 = jkj 8. O

1s Ti 2p3/2 µY h4 îB, t" e Ti 2p3/2 µYH' TiO2

H ió M O 1sH' TiO2H ió , XPS4 Ti O

4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø =)

4 1 : 2H -;ù, ä , Fig. 34 Ti 2p3/2 µYh- ú

£º, 8. hO ³ µY ÷E&| DqO TiO2 a FV

=b TiOx/TiO2 =) 5û 30-50% R- 7¸8. qF] a

4 TiO2 H TiOx h ü6t8 8$ Y jkj ) Dq

÷ ³ bulk4 Ã TiOx ÷J" t8 4 6 < t

e X E& ³O8. XPS R a|4 ^ Ùý

E&| A R4 ^, te X, `? %4 Q

a| Q 8Í þÜBe XPS LM&| RO TiOx =

( jkj E& ³O8. Gêj Fig. 3H' DqO TiOx ÷

) Fig. 2H' Ý ³ aH f% =FV b4 5û

65 Y"< te , E& ³O8. Fig. 3E&| D

qO ³ H f% TiOx 4 65 Y" ¨) Fig. 24

SIMSH 4i üO LM ÿÄ NT-C>NT-20>P-25 8.

' ? Û TiO2 q$4 U(vacancy)H 4? ÇU

L½ Q TiO2 H ]4 H W, X `? ] OH& i

Fig. 2. Mass spectra of TiO2 samples by SIMS.

41 2 2003 4

Page 4: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

155

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Fig. 3. Deconvoluted XPS peaks of Ti 2p3/2 and O 1s of TiO2 samples.

Table 2. Areas and binding energies of deconvoluted peaks of Ti 2p3/2 and O1s peaks of XPS of TiO2 samples, and calculated TiOx/TiO2 and relativeatomic mole ratios of TiO2

Sample Ti 2p3/2 O 1s T2/T1 O/Ti atomic

ratio of TiO2T1(TiO2) T2(TiOx) O1(TiO2) O2(TiOx) O3 (Other)

P-25 B.E. 458.6 456.8 529.8 530.6 532.2 0.338 2.094 area 6342.5 2144.4 4869.2 5466.6 5684.9

NT-20 B.E. 458.6 457.6 529.5 530.3 531.9 0.469 2.192 area 8711.4 4087.0 7001.3 9931.4 4571.3

NT-C B.E. 458.6 457.8 529.1 529.9 531.0 0.681 2.132 area 12534.1 8530.4 9800.1 13666.6 3266.3

*B.E.: Binding energy(eV) for deconvolution*TiO 2 atomic ratio: (O1/O sensitivity factor of 0.66)/(T1/ Ti sensitivity factor of 1.8)

Page 5: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

156

< -Å E& . E&[12, 13, 16, 22], q

$ UH 4i 7 FV =b TiOx< 1 -9

TiO2 "E& H 1) OH−< -. UV Qo t8

1) OH radical, u , E& ³O8. go? D

RuO2 ` IrO24 qF] B(catalytic oxide electrode)H

' ]&| B H OH-< e B"FVE& OH radical

, " e FV =b qF] h MOx- y?

E& . 8[23-27]. vH' PE& UV QoH 4i

7 RrM H O OH− &| O TiO2 4

OH radical4 , Re t8. Fig. 2 34 LMH' jkë TiO2

4 FV =bH IJ UV Qo 7 OH radical4

_F E& ü67¸8. OH radical) þÎR Ê ËE

& DMPO Ý) spin trap «, oe OH radical, ÎRF

Å OH radical, ~ç 8[17-19]. 450 W lamp&| UV- Q

o H' 4CP- P-25, NT-20, NT-C TiO2 slurry ¹4 Ä|<

Fig. 4. Narrow scanned XPS peak of C 1s of TiO2 samples.

Fig. 5. Electron spin resonance spectra of DMPO-OH radical adductafter UV irradiations of TiO 2 samples.

Fig. 6. Removal yield of 4CP TOC in TiO2 slurry system after UV irra-diation for 2 hours.

Fig. 7. Particle size distributions of TiO2 samples with mixing condition.

41 2 2003 4

Page 6: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

157

n

¨ÆE& sampling e DMPO x Å OH radical DMPOH

spin trap7 ? ¹4 ESR RO LM- Fig. 5H jkj 8. Fig.

5 DMPO-OH adduct ESR4 B\ 1 : 2 : 2 : 1[17, 28] =,

µY Û, te X, µY4 65 Y" O OH

radical4 65 , ?8. FV =b qF] TiOx 1)

NT-C4 H' ï -® DMPO-OH adduct µY- t, TiOx

-® ) P-254 H' DMPO-OH adduct µY- -® j

k , ä 8. hqO TiO2 l ToO UVH ¤åO

F7, slurry a4 4 »h hq7 8 -R

, ? ¨Æ UVH ÂWE& Qo7 K" a TiO2

) 4 =áç E& ³7, Fig. 5H' R7 OH radical4

) OH radical4 H W, X TiO2 4 FV =b

H =ç E& ³O8. Fig. 5H' RO OH radical4 65 Y

" Fig. 2 34 LM Ý NT-C>NT-20>P-254 '8. u L

M&| Ý) anatase Q< -9J TiO2 % ^ FV =

bH IJ UV Qo&| 7 OH radical4 ) W,

º, 8.

OH radical) () qF+H 4i lH f7 g"], "

E& qFò$ ]& hi E& . 8[1-

20]. Fig. 6H hqO 1.5 g/l4 TiO2 slurryH 4i hiO 4CP4 TOC

4 P jkj 8. TOC P) NT-C≈P-25>NT-204 ¨E&

jk8. 4CP- TiO2 TU H' O OH radicalH 4i hi

7, K" a slurry4 TiO2 TU- Ìz & ù&

TU- ÿÄ? ~& UVH e" O8 -R, 4CP g"] h

i) slurry a UVH Qo7 K" a TiO2 TU4 P ´

M TiO2 TU4 FV =bH Iz OH =ç E

& ³O8. IJ' Fig. 2 3H' P-254 FV =b) 9

TOC P () g ÿÄ TiO2 < -9 slurry a4 B[

TUH 5? UV Qo (Ù =¿ P-254 FV =b)

9 B[ ÿÄ |µ aH' 7 OH radical4 1Ù9"

ôE& æRO8. < ~" e slurry PQ QîH' P

¹ lH hqO TiO2 TU4 Y"< T hÓ"(particle size analyzer)

, e R? LM- Fig. 7H jkj G Ã ÷ Table 3

H jkj 8. SEM, Ðe RO ³ 4 îQ6 [ TU

4 morphology Y"- Fig. 8M Table 3H jkj 8.

NT-20, NT-C4 ×? !D< -9 ³ ! −0.1µm

−0.5µm TUu KZ(agglomeration)O \ < tj, P-25

¬ÄTU KZ 4 !D- þhÊ? mC? TUu

KZ7 8. TiO2 slurry ¹, =ç ô TiO2 <

UÓ w"& w, ¾ t8 ÃÄ? hq, i §º­ w

Table 3. Average size of crystalline, dry particle, and dispersed particle in solution of TiO2 samples

Crystalline size by TEM Single particle Agglomerated particle size Mixing Dispersed particle size in solutio

P-25 −20 nm

4-5 µm M0.52 µm: 46%2.49 µm: 54%

M+S 0.34 µm

NT-20 −4-5 nm

−0.1 µm 2-3 µm M 2.96 µm

M+S0.48 µm: 77%2.96 µm: 23%

NT-C −25 nm

0.4-0.6 µm −8 µm M 3.8 µm

M+S 2.09 µm

*M: Magnetic mixing, S: Sonification mixing

Fig. 8. SEM photographs of TiO2 samples.

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003

Page 7: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

158

e-

c

us

cal

tal-

a-

the

de-

of

les

in

in

ia-

bel-

er-

ç , ¹H hqO TU4 Y" ³ w 6 H IJ §" SEMH

' t Y" t8 Y NJ, Fig. 8M Table 3H' ä 8. P-25

4 ! §" KZO 4 Y" 4-5µm¸Ej ¹ lH' §º

­ wO ¾ slurry 6H'4 Ã hq TUY" « 0.34µm R

& NT-C4 hq TUt8 âã , ä , ) KZ

O morphology 6 H W, " ôE& ³O8. P-25 UÓ w

TiO2 TU Y" ÃE& 0.52µm 46%, 2.49µm 54%

7 E, NT-20) UÓ w ¾ §º­ w, !Ò©, ô 0.48µm

77%, 2.96µm 23%& O 2"4 Ã TU Y"< hÞ(bimodal

size distribution)< t£8. ê? LM ¹ lH hqO TiO2

B[ , ¬ SEM 6H' t TU Y" t8 w 6

H Iz P ¹ l4 hqO TU4 Y"& ié ?8

ly? LM< t 8. Slurry ¹ l4 TU Y"< E

& ³ 4 bulk Ô< E ÄR? <

slurry a4 65 ´ TU =< Dqç 8. Table 4H

ÿÄ? TiO2 slurry H' Table 34 TU Y" Fig. 9H jk

ë ³ 4 RO bulk density ÷, e P-25< "E& Dq

O slurry aH ´ TU 4 65 =w ÷ jkj 8. Table

3H' t# P-254 slurry a TU Y"- -® E& P-254

´ TU ) NT-20M NT-C4 ! t8 ³³ « 3$, 5.9$ R

Y jk8. Fig. 5H t DMPO-OH4 ESR Û µY4 6

5 Y" TiO2 TU4 FV =b4 SH 4i TiO2 H

¨ÆE& O OH radical4 65 , 4m E&, Table

4H g-factor 2.003 nH' RO ³ 4 65 ÷ jkj

8. K" a slurry4 ´ TU4 65 ÷M, TU H'

7 OH radical 65 ÷, , ' ? K" a slurry4

TiO2 TU- Ìz & ù& TU- ÿÄ? ~&

UVH e" O8 -R, o K" aH' 7 ´ OH

radical4 65 , Dq ç 8. K" a4 4CP hi- K

"aH' O OH radicalM 4CP- x %H =?8, Ä

R? ÆH hiO 4CP4 ) l a 7 ´ OH radical4

H =ç E& ³O8. Table 4H P-25< "E& 65 ´

OH radical M 4CP4 TOC P jkj 8. P-25< "E

& ? NT-C4 ´ OH radical M 4CP4 TOC P4 = ³

³ 1.09, 1.02& u ÷4 =- 4 Ý, ? NT-204 ! 0.87, 0.82

R& 4 Ý8. & DqO ´ OH radical M 4CP4 TOC

P =- Ý8 ) 4CP4 hiH oO OH radical4 )

TiO2 a FV =bM slurry a4 TiO2 TU4 ´ 4

(product)H =?8 , 4m?8. 64 LMu&| g"]

, hi OH radical H W, X TiO2 TU a4 FV =

b hM u TUu slurry 6 & hq ô4 TU Y", í B

[ TU H W, º, 8.

4.

TiO2 P-25, NT-C, NT-20 H 5? XPS4 µY h SIMS

H 4i RO FV =b h qF] TiOx 65 Y" ¨)

ÿÄ£E G ' NT-C>NT-20>P-25¸8. ESRH 4i ðåO

³ UVH 4i O OH radical4 65 ) TiO2 4 FV

=bH =£8. OH radicalH 4? TiO2 slurry a 4CP hi

) TiO2 slurryH hqO TU4 ´ M TiO2 4 FV =

bH ÿH W, , slurry a4 TU4 ´ H 2'O T

U Y" w 6 H Y W, 8.

v q(Uª|4 q(")" o(4 Ä E& Ò7¸*

+8.

1. Yang, T. and Wan. W., “Kinetics of Photocatalytic Oxidation of Ph

nol on TiO2 Surface,”Journal of Photochem. Photobiol. A: Chem.,

69, 241-249(1992).

2. Muraki, H., Saji, T., Fujihira, M. and Aoyagui, S., “Photocatalyti

Oxidation of Water to Hydrogen Peroxide by Irradiation of Aqueo

Suspensions of TiO2,” J. Electroanal. Chem., 169, 319-323(1984).

3. Matsumoto, Y., Shimuzu, T. and Sato, E., “Photoelectrochemi

Properties of Thermally Oxidized TiO2,” Electrochimica acta., 27,

419-424(1982).

4. Bard, A. J., “Photoelectrochemistry and Heterogeneous Photo-Ca

ysis at Semiconductors,”J. Photochemistry., 10, 59-75(1979).

5. Jung, K. Y. and Park, S. B., “Enhanced Photoactivity of Silic

Embedded Titania Particles Prepared by Sol-Gel Process for

Decomposition of Trichloroethylene,”Applied catalysis B: Environ-

mental., 25, 249-256(2000).

6. Zane, D., Decker, F. and Razzini, G., “Characterization of Electro

posited TiO2 Films,”Electrochimica acta., 38, 37-42(1993).

7. Gerischer, H., “Photoelectrochemical Catalysis of the Oxidation

Organic Molecules by Oxygen on Small Semiconductor Partic

with TiO2 as an Example,”Electrochimica acta., 38, 3-9(1993).

8. Litter, M., “Heterogeneous Photocatalysis: Transition Metal Ions

Photocatalytic Systems,” Applied Catalysis B. Envir., 23, 89-114(1999).

9. Hagfeldt, A. and Gratzel, M., “Light-Induced Redox Reactions

Nanocrystalline Systems,”Chem. Rev., 95, 49-68(1995).

10. Serpone, N. and Pelizzetti, E., Photocatalysis, Fundamentals and

Applications, John Wiley & Sons(1989).

11. Lu, G., Linsebigler, A. L. and Yates, J. T., “Ti3+ Deect Sites on TiO2(110):

Production and Chemical Detection of Active Sites,”J. Phys. Chem.,

98, 11733-11738(1994).

12. Kurtz, R. L., Stockbauer, R. and Madey, T. E., “Synchrotron Rad

tion Studies of H2O Adsorption on TiO2(110),”Sur. Sci., 218, 178-

200(1989).

13. Bourgeois, S., Jomard, F. and Perdereau, M., “Use of Isotopic La

ling in a SIMS Study of the Hydroxylation of TiO2(100) Surfaces,”Sur.

Sci., 279, 349-354(1992).

14. Hugenschmidt, M. B., Gamble, L. and Campbell, C. T., “The Int

Table 4. Relative ratios of total surface are of particles in the slurry, total OH radical generation, and removal yield of 4CP TOC of TiO2 samples

Relative ratio of total surface area

Relative ratio of generated OH radical at TiO2 surface

Relative ratio of total generated OH radical within reactor

Relative ratio of 4CP destruction

RP-25/P-25 1 1 1 1 RNT-20/P-25 0.3394 2.576 0.874 0.819 RNT-C/P-25 0.1672 6.551 1.095 1.017

41 2 2003 4

Page 8: TiO 4CP - CHERICH ó i M O 1sH' TiO2H ió , XPS4 Ti O 4 sensitivity factor& jö ÷H 4i DqO Ti O4 ªU ø = ) 4 1:2H -;ù, ä , Fig. 34 Ti 2p 3/2 - µYh ú

159

a

of

a

rt

.,

ed

s-

e

action of H2O with a TiO2(110) Surface,”Sur. Sci., 302, 329-340(1994).

15. Pelizzetti, E. and Minero, C., “Mechanism of the Photo-Oxiative

Degradation of Orgainic Pollutants over TiO2 Particles,”Electrochimica

acta., 38, 47-55(1993).

16. Smith, P. B. and Bernasek, S. L., “The Adsorption of Water on TiO2

(001),”Sur. Sci., 188, 241-254(1987).

17. Echigo, S., Yamada, H., Matsui, S., Kawanishi, S. and Shishida, K.,

“Comparison Between O3/VUV, O3/H2O2, VUV and O3 Processes

for the Decomposition of Organophosphoric acid Trimesters,”Wat.

Sci. Tech., 34, 81-88(1996).

18. Lai, C. -S. and Piette, L. H., “Hydroxyl Radical Production Involved

in Lipid Peroxidation of Rat Liver Microsomes,”Biochem. Biophy.

Res. Commun., 78, 51-59(1977).

19. Makino, K., Mossoba, M. M. and Riesz, P., “Chemical Effect of

Ultrasound on Aqueous Solutions. Evidence for OH and H by Spin

Trapping,”J. Am. Chem. Soc., 104, 3537-3539(1982).

20. Jung, K. -S. and Lee, H. -I., “Photocatalysis and Its Application,”J.

Korean Chem. Soc., 41, 682-710(1997).

21. Mouler, J. F., Stickle, W. F., Sobol, P. E. and Bomben, K. D., Hand-

book of X-ray photoelectron spectroscopy, Physical Electronics Inc.,

(1995).

22. Linsebigler, A. L., Lu, G. and Yates, J. Y., “Photoatalysis on TiO2

Surface: Principles, Mechanism, and Selected Results,”Chem. Rev.,

95, 735-758(1995).

23. Trasatti, S., Electrode of conductive Metallic Oxides, Part A, Elsevier

Sci. Pub. Co., Amsterdam(1980).

24. Galizzioli, D., Tantardini, F. and Trasatti, S., “Ruthenium Dioxide:

New Electrode Material. II. Non-Stochiometry and Energetics

Electrode Reactions in Acid Solution,”J. Appl. Electrochem., 5, 203-

214(1975).

25. Galizzioli, D., Tantardini, F. and Trasatti, S., “Ruthenium Dioxide:

New Electrode Material. I. Behaviour in Acid Solutions of Ine

Electrolytes,”J. Appl. Electrochem., 4, 57-67(1974).

26. Kim, K. -W., Lee, E. -H., Kim, J. -S., Shin, K. -H. and Kim, K. -H

“Study on the Electroactivity and Non-Stochiometry of a Ru-bas

Mixed Oxide Electrode,”Electrochimica acta., 46, 915-921(2001).

27. Floyd, R. A. and Soong, L. M., “Spin Trapping in Biological Sy

tems. Oxidation of the Spin Trip 5,5-Dimethyl-1-Pyrroline-1-Oxid

by a Hydroperoxide-Hematin System,”Biochem. Biophy. Res. Com-

mun., 74(1), 79-84(1977).

HWAHAK KONGHAK Vol. 41, No. 2, April, 2003