Universidade de Lisboa Instituto Superior Técnico Centro de ...

150
Universidade de Lisboa Instituto Superior Técnico Centro de Educação Ambiental de Torres Vedras. Um edifício de elevado desempenho? André Filipe Sá Serra Leitão Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Júri Presidente: Professor Doutor António Jorge Gonçalves de Sousa Orientador: Professor Doutor Manuel Guilherme Caras Altas Duarte Pinheiro Vogal: Professor Doutor Nuno Gonçalo Cordeiro Marques de Almeida julho 2014

Transcript of Universidade de Lisboa Instituto Superior Técnico Centro de ...

Page 1: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Universidade de Lisboa Instituto Superior Técnico

Centro de Educação Ambiental de Torres Vedras.

Um edifício de elevado desempenho?

André Filipe Sá Serra Leitão

Dissertação para obtenção do Grau de Mestre em

Engenharia do Ambiente

Júri

Presidente: Professor Doutor António Jorge Gonçalves de Sousa

Orientador: Professor Doutor Manuel Guilherme Caras Altas Duarte Pinheiro

Vogal: Professor Doutor Nuno Gonçalo Cordeiro Marques de Almeida

julho 2014

Page 2: Universidade de Lisboa Instituto Superior Técnico Centro de ...
Page 3: Universidade de Lisboa Instituto Superior Técnico Centro de ...

i

AGRADECIMENTOS

O meu primeiro agradecimento é dirigido ao meu orientador, o Professor Manuel Pinheiro, que

desde a sugestão do tema, à orientação do trabalho, passando pelas sugestões e recomendações

sempre demonstrou empenho, disponibilidade e conhecimento essenciais à concretização desta

dissertação.

Agradeço também aos arquitetos Tiago Baptista e Ana Ribeiro da Câmara Municipal de Torres Vedras

por toda a informação disponibilizada e dúvidas esclarecidas, essenciais à elaboração deste trabalho.

Um agradecimento a todo o pessoal do Centro de Educação Ambiental de Torres Vedras, em especial

ao Dr. Vasco Batista e à técnica Cláudia Gomes, que nas inúmeras visitas sempre me receberam com

um sorriso, partilhando as suas experiências e apoiando na recolha de dados imprescindíveis à

análise do centro.

A todos os amigos que fiz nestes anos de faculdade e a todos os colegas de curso que me

acompanharam nas aulas, trabalhos, estudo e nos momentos de maior descontração.

A todos os meus amigos, alguns que me acompanham há muitos anos.

A Deus e ao escutismo, particularmente ao Agrupamento de Escuteiros 1103 - St° Isidoro, peça

fundamental no meu crescimento integral.

Por último o mais importante, agradeço à minha avó, mãe, pai, irmão e tio, pilares fundamentais em

toda a minha vida.

“Procurai deixar o mundo um pouco melhor do que o encontrastes.”

Robert Baden Powell (Fundador do Escutismo)

Page 4: Universidade de Lisboa Instituto Superior Técnico Centro de ...

ii

RESUMO

Os edifícios, ao longo de todo o ciclo de vida, são responsáveis por significativos impactes, podendo

no entanto reduzir os seus consumos de forma responsável e providenciando conforto aos

ocupantes, enquadrando-se nos designados edifícios de elevado desempenho.

O conceito de elevado desempenho inclui a eficiência energética (o edificado é responsável pelo

consumo de 40 % do total da energia mundial), mas também as emissões de carbono, o consumo de

água e a produção de resíduos, entre outros.

Este trabalho analisa o conceito de elevado desempenho ambiental, sistematiza os elementos que

caracterizam um edifício de elevado desempenho, bem como avalia os principais indicadores

ambientais. Por conseguinte foram abordados oito casos internacionais de referência e, utilizado

como caso de estudo, o Centro de Educação Ambiental de Torres Vedras, apresentando um relatório

detalhado sobre as suas características.

Como resultado dos levantamentos e dos inquéritos efetuados, o centro evidencia condições de

desempenho, de entre as melhores práticas, com consumos de eletricidade (42 kWh/m2, quatro

vezes inferior às práticas usuais), de água e de produção de resíduos, substancialmente inferiores aos

edifícios de serviços. Estes resultados são complementados pelas avaliações positivas da perceção e

da satisfação dos utilizadores. Paralelamente, o edifício apresenta ainda eficiência nos métodos

construtivos, nos equipamentos e tecnologias aplicadas.

Em suma, o trabalho realizado é encarado como um desafio, na medida em que permite identificar

aspetos a considerar no desenvolvimento e avaliação de edifícios de elevado desempenho.

Palavras-chaves: Construção Sustentável, Edifício de Elevado Desempenho, Indicadores de

Desempenho Ambiental

Page 5: Universidade de Lisboa Instituto Superior Técnico Centro de ...

iii

ABSTRACT

Throughout their life cycle, the buildings are responsible for significant impacts however, their

consumption may be reduced in a responsible way and simultaneously provide comfort to their

occupants. These buildings are designated high performance buildings.

The concept of high performance includes energy efficiency, (the buildings are responsible for 40% of

the total world energy consumption), carbon emissions, water consumption and waste production,

among other things.

This paper analyzes the concept of environmental high performance, systematizes the elements that

characterize a high performance building, as well as assesses the main environmental indicators.

Eight international references cases were studied and the Environmental Education Center of Torres

Vedras was used as a case study, resulting in a detailed report on their features.

As a conclusion, from data collection and the surveys, the center reveals conditions of performance

among the best practices with consumption of water, production of waste and consumption of

electricity (about 42 kWh/m2, four times less than the standard practices), substantially lower than

the office buildings. These results are complemented by positive assessments of the perception and

satisfaction of users. The building also presents efficiency in the constructive elements, the

equipment and the technologies applied.

In short, this paper is seen as a challenge, to consider aspects to take into account in development

and evaluation concerning high performance building.

Keywords: Sustainable Construction, High Performance Building, Environmental

Performance Indicators

Page 6: Universidade de Lisboa Instituto Superior Técnico Centro de ...

iv

ÍNDICE

AGRADECIMENTOS ..........................................................................................................................i

RESUMO ......................................................................................................................................... ii

ABSTRACT ...................................................................................................................................... iii

ÍNDICE DE FIGURAS ........................................................................................................................ vi

ÍNDICE DE QUADROS .................................................................................................................... viii

SIGLAS, ABREVIATURAS E ACRÓNIMOS .......................................................................................... ix

CAPÍTULO 1 – INTRODUÇÃO ...............................................................................................................1

1.1 ENQUADRAMENTO GERAL ........................................................................................................1

1.1.1 PROCURANDO O DESENVOLVIMENTO SUSTENTÁVEL .........................................................1

1.1.2 EDUCAÇÃO AMBIENTAL ......................................................................................................2

1.1.3 SUSTENTABILIDADE NA CONSTRUÇÃO ................................................................................3

1.1.4 COMO ALCANÇAR A SUSTENTABILIDADE NA CONSTRUÇÃO ................................................6

1.2 HIPÓTESE E OBJETIVO ............................................................................................................. 15

1.3 METODOLOGIA ....................................................................................................................... 15

1.4 ORGANIZAÇÃO DA DISSERTAÇÃO ............................................................................................ 16

CAPÍTULO 2 – EDIFÍCIOS DE ELEVADO DESEMPENHO – ESTADO DA ARTE.......................................... 17

2.1 CONCEITO ............................................................................................................................... 17

2.1.1 NOS EUA........................................................................................................................... 17

2.1.2 NA EUROPA ...................................................................................................................... 18

2.1.3 EDIFÍCIOS DE ELEVADO DESEMPENHO vs EDIFÍCIOS “VERDES”.......................................... 19

2.2 UMA ABORDAGEM INTEGRADA .............................................................................................. 20

2.2.1 PRINCÍPIOS ORIENTADORES .............................................................................................. 21

2.2.2 UMA APOSTA DE SUCESSO ............................................................................................... 22

2.3 DESEMPENHO E PRÁTICAS INTERNACIONAIS ........................................................................... 24

2.3.1 DESEMPENHO ENERGÉTICO E DE CARBONO ..................................................................... 25

2.3.2 DESEMPENHO DA ÁGUA ................................................................................................... 27

2.3.3 DESEMPENHO DOS RESÍDUOS .......................................................................................... 28

2.3.4 CASOS INTERNACIONAIS ................................................................................................... 28

2.3.5 INDICADORES AMBIENTAIS ............................................................................................... 39

CAPÍTULO 3 – CASO DE ESTUDO – CENTRO DE EDUCAÇÃO AMBIENTAL DE TORRES VEDRAS ............. 41

3.1 INTRODUÇÃO .......................................................................................................................... 41

Page 7: Universidade de Lisboa Instituto Superior Técnico Centro de ...

v

3.2 ORGANIZAÇÃO FUNCIONAL ..................................................................................................... 43

3.3 ASPETOS CONSTRUTIVOS ........................................................................................................ 44

CAPÍTULO 4 – FUNCIONAMENTO – AVALIAÇÃO DESEMPENHO AMBIENTAL ...................................... 46

4.1 SERVIÇOS ................................................................................................................................ 46

4.2 ENERGIA.................................................................................................................................. 47

4.2.1 CONSUMO ........................................................................................................................ 47

4.2.2 PRODUÇÃO....................................................................................................................... 51

4.3 ÁGUA ...................................................................................................................................... 53

4.4 RESÍDUOS ................................................................................................................................ 55

4.5 UTILIZAÇÃO E PERCEÇÃO - INQUÉRITOS .................................................................................. 56

4.5.1 AMOSTRA ......................................................................................................................... 56

4.5.2 ESTRUTURA ...................................................................................................................... 56

4.5.3 METODOLOGIA................................................................................................................. 57

4.5.4 RESULTADOS .................................................................................................................... 58

CAPÍTULO 5 – DISCUSSÃO DE RESULTADOS ....................................................................................... 62

5.1 ABORDAGEM .......................................................................................................................... 62

5.2 RESULTADOS ........................................................................................................................... 62

5.3 LIMITAÇÕES ............................................................................................................................ 64

CAPÍTULO 6 – CONCLUSÕES E RECOMENDAÇÕES ............................................................................. 65

6.1 CONCLUSÕES .......................................................................................................................... 65

6.2 RECOMENDAÇÕES ................................................................................................................... 67

REFERÊNCIAS BIBLIOGRÁFICAS.......................................................................................................... 69

ANEXO I – DIVISÕES E ÁREAS DO CEA ................................................................................................ 75

ANEXO II – PLANTAS DO CEA ............................................................................................................. 76

ANEXO III – MODELO DESENVOLVIDO ............................................................................................... 82

ANEXO IV – INQUÉRITOS ................................................................................................................... 86

ANEXO V – DADOS REFERENTES À AMOSTRA .................................................................................... 90

ANEXO VI – RESULTADOS DOS INQUÉRITOS ...................................................................................... 91

ANEXO VII – RELATÓRIO DE AVALIAÇÃO DO CEA ............................................................................... 93

Page 8: Universidade de Lisboa Instituto Superior Técnico Centro de ...

vi

ÍNDICE DE FIGURAS

Figura 1.1 – Sociedade, Ambiente e Economia: três dimensões do Desenvolvimento Sustentável. ......2

Figura 1.2 - Casa da Cascata, Pennsylvania (EUA). ...............................................................................3

Figura 1.3 - Evolução das preocupações no setor da construção civil. ..................................................5

Figura 1.4 - City Hall, Londres. .............................................................................................................6

Figura 1.5 - Fases do ciclo de vida de um edifício. ................................................................................6

Figura 1.6 - Distribuição dos custos do ciclo de vida. ...........................................................................7

Figura 1.7 - Fontes de impactes num edifício.......................................................................................9

Figura 1.8 – Estratégias de uma casa solar passiva ou bioclimática. ................................................... 11

Figura 1.9 – Vertentes e áreas da versão 2.0 do sistema LiderA. ........................................................ 14

Figura 2.1 – Como conseguir um edifício de elevado desempenho. ................................................... 17

Figura 2.2 – Espaço ocupado pelos edifícios de elevado desempenho. .............................................. 20

Figura 2.3 – Edifícios de elevado desempenho, uma abordagem integrada. ...................................... 21

Figura 2.4 – Princípios orientadores dos edifícios de elevado desempenho. ...................................... 22

Figura 2.5 – Consumo anual de energia em edifícios de elevado desempenho. ................................. 26

Figura 2.6 – Consumo anual de água em edifícios de elevado desempenho. ..................................... 28

Figura 2.7 – A iluminação natural e a utilização de espécies autóctones são estratégias fundamentais

do CSBO Bank. .................................................................................................................................. 30

Figura 2.8 – Um espaçoso green roof e centenas de módulos fotovoltaicos preenchem a cobertura do

edifício. ............................................................................................................................................. 31

Figura 2.9 – A fachada original foi totalmente remodelada. .............................................................. 32

Figura 2.10 – Claraboia de grandes dimensões praticamente dispensa a iluminação artificial. ........... 33

Figura 2.11 – Os edifícios de elevado desempenho são uma presença nos mais variados climas. ...... 34

Figura 2.12 – A sensibilização dos alunos através da demonstração dos equipamentos. .................... 36

Figura 2.13 – No Earth Rangers Centre, 20 % da energia consumida provém do sistema solar

fotovoltaico. ..................................................................................................................................... 37

Figura 2.14 – Fachada sul do edifício onde são visíveis os módulos fotovoltaicos e a promoção da

ventilação natural com o aspeto exterior da zona de admissão de ar com grelha contínua. .............. 38

Figura 2.15 – Estratégias comuns utilizadas em edifícios de elevado desempenho. ........................... 40

Figura 3.1 – Localização do Centro de Educação Ambiental de Torres Vedras. ................................... 41

Figura 3.2 – Centro de Educação Ambiental de Torres Vedras. .......................................................... 42

Figura 3.3 – Cobertura (à esquerda), pátio interior (ao centro) e espaço expositivo / área circulação (à

direita). ............................................................................................................................................. 43

Page 9: Universidade de Lisboa Instituto Superior Técnico Centro de ...

vii

Figura 3.4 – Sistema de brise-soleil (à esquerda), isolamento em placas de aglomerado de cortiça

expandida (ao centro) e revestimento em pedra de vidraço de Ataíja Creme (à direita). ................... 44

Figura 3.5 – Sequência intercalada dos pátios (à esquerda), revestimento do pavimento em linóleo

(ao centro) e isolamento interior com placas de gesso (à direita). ..................................................... 45

Figura 4.1 – Entrada interior do café (à esquerda), exposição de concurso escolar (ao centro) e

material didático presente no laboratório (à direita). ........................................................................ 47

Figura 4.2 – Distribuição dos consumos de energia no CEA por utilização final (estimativa

aproximada). .................................................................................................................................... 49

Figura 4.3 – Elementos do sistema de microgeração (painéis fotovoltaicos e aerogerador) e coletor

solar térmico..................................................................................................................................... 52

Figura 4.4 – Vista interior dos coletores do sistema geotérmico (à esquerda) e bomba de calor

geotérmica (à direita). ...................................................................................................................... 53

Figura 4.5 – Esquema de aproveitamento das águas pluviais. ............................................................ 54

Figura 4.6 – Consumos semanais de água potável. ............................................................................ 55

Figura 4.7 – Locais de deposição dos resíduos do centro (à esquerda e ao centro) e resíduos do café

(à direita). ......................................................................................................................................... 55

Figura 6.1 – Centro de Educação Ambiental de Torres Vedras, um edifício de elevado desempenho . 66

Figura II.1 – Implantação do CEA no Parque Verde da Várzea. ........................................................... 77

Figura II.2 – Planta Cobertura do CEA. ............................................................................................... 78

Figura II.3 – Planta Piso 0 do CEA. ..................................................................................................... 79

Figura II.4 – Pormenor A Planta do Piso 0 do CEA. ............................................................................. 80

Figura II.5 - Pormenor B Planta do Piso 0 do CEA. .............................................................................. 81

Figura VI.1 – Satisfação dos utilizadores/visitantes do CEA. ............................................................... 91

Figura VI.2 - Satisfação dos utilizadores/visitantes do Parque Verde da Várzea ................................. 92

Page 10: Universidade de Lisboa Instituto Superior Técnico Centro de ...

viii

ÍNDICE DE QUADROS

Quadro 1.1 – Fases e respetivas medidas de intervenção num edifício. ............................................. 12

Quadro 2.1 - Características de um edifício de elevado desempenho segundo o “Guidelines for

Creating High-Performance Green Buildings: A Document for Decision Makers” ............................... 21

Quadro 2.2 – Desempenho energético e da água de edifícios de elevado desempenho..................... 39

Quadro 3.1 - Características urbanísticas do CEA. .............................................................................. 42

Quadro 4.1 – Utilização final de energia. ........................................................................................... 47

Quadro 4.2 – Estimativa do consumo de eletricidade. ....................................................................... 48

Quadro 4.3 – Excerto do modelo desenvolvido. ................................................................................ 49

Quadro 4.4 – Estimativa do consumo anual de eletricidade por utilização final. ................................ 50

Quadro 4.5 – Produção anual estimada do sistema fotovoltaico. ...................................................... 51

Quadro 4.6 – Resíduos produzidos em diferentes semanas. .............................................................. 56

Quadro 4.7a – Resultados dos utilizadores/visitantes do CEA. ........................................................... 58

Quadro 4.7b – Resultados dos utilizadores/visitantes do CEA. ........................................................... 59

Quadro 4.8a - Resultados dos utilizadores/visitantes do Parque Verde da Várzea. ............................ 60

Quadro 4.8b - Resultados dos utilizadores/visitantes do Parque Verde da Várzea. ............................ 61

Quadro 5.1 – Quadro resumo do desempenho do CEA. ..................................................................... 62

Quadro 5.2 – Quadro resumo do desempenho energético e da água de edifícios de elevado

desempenho. .................................................................................................................................... 62

Quadro I.1 – Divisões e respetivas áreas do CEA. ............................................................................... 75

Quadro V.1 - Utilizadores/visitantes do CEA. ..................................................................................... 90

Quadro V.2 - Utilizadores/visitantes do Parque Verde da Várzea. ...................................................... 90

Page 11: Universidade de Lisboa Instituto Superior Técnico Centro de ...

ix

SIGLAS, ABREVIATURAS E ACRÓNIMOS

ACV – Avaliação do Ciclo de Vida

AQS – Águas Quentes Sanitárias

ASHRAE – Sociedade Americana de Engenheiros de Aquecimento, Refrigeração e Ar Condicionado

(American Society of Heating, Refrigerating and Air Conditioning Engineers)

AVAC – Aquecimento, Ventilação e Ar Condicionado

CEA – Centro de Educação Ambiental de Torres Vedras

CMTV – Câmara Municipal de Torres Vedras

EPBD - Diretiva relativa ao Desempenho Energético de Edifícios (Energy Performance of Building

Directive)

ETICS - Sistema de Isolamento Térmico pelo Exterior (External Thermal Insulation Composite System)

EUA – Estados Unidos da América

GEE – Gases com Efeito de Estufa

IS – Instalação Sanitária

ISO – Organização Internacional para Padronização

LiderA – Liderar pelo Ambiente para a construção sustentável

NZEB – Edifícios de Balanço Energético Nulo (Nearly Zero Energy Building)

OCDE – Organização para a Cooperação e Desenvolvimento Económico

ONU – Organização das Nações Unidas

POVT / QREN – Programa Operacional Valorização do Território / Quadro de Referência Estratégico

Nacional

RCD – Resíduos de Construção e Demolição

UE – União Europeia

UNEP – Programa das Nações Unidas para o Ambiente

UNESCO – Organização das Nações Unidas para a Educação, a Ciência e a Cultura

UTA / UE – Unidade Tratamento de Ar / Unidade de Extração

Page 12: Universidade de Lisboa Instituto Superior Técnico Centro de ...
Page 13: Universidade de Lisboa Instituto Superior Técnico Centro de ...

1

CAPÍTULO 1 – INTRODUÇÃO

1.1 ENQUADRAMENTO GERAL

1.1.1 PROCURANDO O DESENVOLVIMENTO SUSTENTÁVEL

O Homem desde há inúmeros séculos tem, através das suas atividades, utilizado recursos,

aproveitando e por vezes ultrapassando pontualmente a capacidade local dos ecossistemas de

absorverem os impactes associados (Diamond, 2006). A Revolução Industrial, nos séculos XVIII e XIX,

ampliou esta dinâmica.

Com o findar da Segunda Grande Guerra, assistiu-se a um crescimento acelerado da população

mundial e a um desenvolvimento significativo, sobretudo nos países mais desenvolvidos. Este

crescimento criou níveis de poluição e padrões de consumo que se refletiram na degradação do

planeta e dos ambientes locais.

Contudo, no final da década 60 e início da década de 70 do século passado, este modelo de

crescimento começou a ser colocado em causa. Surgiu na sociedade uma consciencialização de que

os recursos são finitos e que é necessária a sua preservação. Marcos como a elaboração do relatório

The Limits to Growth, em 1972, por parte do clube de Roma e da Declaração do Ambiente, resultante

da Conferência de Estocolmo sobre Ambiente Humano promovida pela ONU, nesse mesmo ano,

reforçaram essa consciencialização.

Com o passar dos anos e com as evidências dos efeitos foi emergindo a certeza de que as soluções

para os problemas globais não se reduzem apenas à prevenção da degradação do ambiente físico e

biológico, mas incorporam dimensões sociais, políticas e culturais.

Foi o começo da formação do conceito de desenvolvimento sustentável, que ficou consagrado na

publicação Our Common Future, também conhecido como Relatório de Brundtland, publicado em

1987, pela Comissão Mundial para o Ambiente e Desenvolvimento. No relatório (Brundtland, 1987),

Desenvolvimento Sustentável é apresentado como:

“o desenvolvimento que satisfaz as necessidades do presente sem comprometer a possibilidade de

as gerações futuras satisfazerem as suas próprias necessidades.”

Page 14: Universidade de Lisboa Instituto Superior Técnico Centro de ...

2

Figura 1.1 – Sociedade, Ambiente e Economia: três dimensões do Desenvolvimento Sustentável.

Na prática a sustentabilidade está assente em três dimensões: economia, sociedade e ambiente

(Figura 1.1). Nos últimos anos, estas três dimensões tornaram‐se quase indissociáveis do conceito de

sustentabilidade. Elkington (1997), no seu livro Cannibals with Forks: The Triple Bottom Line of 21st

Century Business defende que é impossível conseguir sustentabilidade social, económica e ambiental

separadamente (Mahoney e Potter, 2004), sendo um dos pontos-chave a consciencialização e

educação ambiental da população.

1.1.2 EDUCAÇÃO AMBIENTAL

A educação ambiental é essencial para uma sociedade que se pretende apta para os desafios do

futuro, orientada para resolver de forma ativa os problemas. Contudo esta deve ser um processo

permanente e não apenas restrito à população escolar, incrementando o espírito crítico, não estando

apenas baseado na acumulação de conhecimentos, mas também na mudança de comportamentos e

atitudes. Segundo uma definição apresentada, em 1992, pela UNEP / UNESCO / OCDE (UNESCO,

1999), a educação ambiental deve ser:

“um processo permanente, no qual os indivíduos tomam consciência do seu ambiente e adquirem

conhecimentos, valores, habilidades, experiências e a determinação que os tornam capazes de agir,

individual ou coletivamente, na busca de soluções para os problemas ambientais, presentes e

futuros.”

Os conceitos de educação ambiental e desenvolvimento sustentável foram reforçados pela ONU, em

2002, com a instituição da Década da Educação para o Desenvolvimento Sustentável (2005-2014),

dinamizada pela UNESCO, com o objetivo de integrar os princípios, os valores e as práticas do

desenvolvimento sustentável a todos os aspetos da educação e da aprendizagem.

Page 15: Universidade de Lisboa Instituto Superior Técnico Centro de ...

3

1.1.3 SUSTENTABILIDADE NA CONSTRUÇÃO

A importância dos ambientes construídos (responsáveis por 40 % dos consumos de energia (Pinheiro,

2006)) leva a que os desafios e a mudança de paradigma tenham chegado também ao edificado, pelo

seu enorme impacte no ambiente, na economia, na saúde e na produtividade dos ocupantes dos

edifícios.

Estes impactes ocorrem ao longo de todo o ciclo de vida dos edifícios, que engloba o seu

planeamento e design, a construção, a operação – geralmente a fase mais longa do ciclo de vida de

um edifício – e a demolição ou remodelação desses edifícios (Cepinha e Santos, 2009).

O ambiente construído é assim uma área chave para atingir o desenvolvimento sustentável das

sociedades.

Ao longo do século XX, a construção afastou-se das preocupações ambientais criando sistemas de

elevado consumo de materiais, energia e água, alterando drasticamente o local onde se integram

(Pinheiro, 2006), aproveitando o desenvolvimento tecnológico e o reduzido preço da energia.

Exceções como o arquiteto Frank Lloyd Wright, pioneiro do desenho arquitetónico verde,

contrariaram a regra vigente. Os seus edifícios, como a Casa da Cascata (Figura 1.2), eram planeados

como se da extensão da Natureza se tratassem.

Figura 1.2 - Casa da Cascata, Pennsylvania (EUA).

(Fonte: http://www.fallingwater.org/, 2013)

Na década de 70, na sequência dos choques petrolíferos e da crise energética, levantaram-se

questões económicas, influenciando desta forma também as preocupações do setor da construção

(Pinheiro, 2006). O alerta para a síndrome dos edifícios doentes (sick building syndrome) emergiu

durante os finais dos anos 80 e princípios de 90 do século passado, trazendo novas preocupações

acerca da saúde e produtividade dos trabalhadores e ocupantes dos edifícios. Neste período, vários

arquitetos optaram pela utilização de materiais naturais como a terra e a aposta em fachadas e

coberturas ajardinadas em edifícios.

Page 16: Universidade de Lisboa Instituto Superior Técnico Centro de ...

4

Nos anos 90, surge o conceito de construção sustentável, sendo que vários especialistas debruçaram-

se sobre este tema. Kibert (1994) define construção sustentável como a:

“criação e gestão responsável de um ambiente construído saudável, tendo em consideração os

princípios ecológicos e de eficiência de recursos.”

Kibert (1994) apresenta ainda seis princípios para atingir a construção sustentável:

o reduzir o consumo de recursos;

o reutilizar os recursos;

o reciclar materiais em fim de vida do edifício e usar recursos recicláveis;

o proteger os sistemas naturais e a sua função em todas as atividades;

o eliminar os materiais tóxicos e os subprodutos em todas as fases do ciclo de vida;

o desenvolver a qualidade do ambiente construído.

A construção sustentável tem por objetivo a conceção de edifícios adaptados ao contexto

socioeconómico, cultural e ambiental local, tendo em atenção as consequências para as gerações

futuras (Guedes et al., 2009).

Chrisna du Plessis (citado por Gaspar, 2009) afirma que a construção sustentável é um:

“processo holístico que visa restaurar e manter a harmonia entre o ambiente natural e o ambiente

construído. Aplicação dos princípios do desenvolvimento sustentável ao processo global da

construção, desde a extração e beneficiação das matérias-primas, passando pelo planeamento,

projeto e construção de edifícios e infraestruturas, até à sua desconstrução final e gestão dos

resíduos dela resultantes.”

Segundo Pinheiro (2006), a construção sustentável tem em conta todo o ciclo de vida do edifício e

considera que os recursos da construção são os materiais, o solo, a energia e a água.

A construção sustentável requer uma forma diferente de pensar os custos, a qualidade e a duração,

em relação à construção tradicional (Vanegas et al., 1995). A sustentabilidade no projeto e na

construção adota critérios adicionais que priorizam um consumo mínimo de recursos e

procedimentos ambientais para alcançar um ambiente construído saudável (Kibert, 1994).

Vanegas et al. (1995) apontam uma mudança de paradigma no setor da construção com um foco

sobre os aspetos ambientais. Esta mudança de paradigma tem implicações sociais, culturais e

ambientais num contexto global. Deste modo, a construção sustentável enquanto produto final de

um processo de planeamento, que também ele requer ser sustentável pretende, no seu conceito, a

otimização da afetação e gestão dos recursos naturais, a eficiência energética, a qualidade do ar

Page 17: Universidade de Lisboa Instituto Superior Técnico Centro de ...

5

interior, a durabilidade dos edifícios e o assegurar de uma fácil utilização e manutenção simplificada

(Pinheiro, 2006).

É importante ter a clara noção, logo desde a fase de planeamento, que os edifícios sustentáveis não

acontecem por acaso, nem através da ação isolada dos diferentes intervenientes no processo. Pelo

contrário, requerem a colaboração de vários profissionais ligados ao setor e uma abordagem

integrada, de forma a garantir que o desempenho final do edifício (e ao longo do seu ciclo de vida)

atinja todos os objetivos propostos no início do seu planeamento e projeto. Por outro lado, projetar

e construir um edifício sustentável não pode ser considerado o fim de um ciclo (Cepinha e Santos,

2009).

Em suma, uma construção só pode ser considerada sustentável quando as diversas dimensões do

desenvolvimento sustentável são ponderadas durante a fase de projeto.

É assim necessária uma abordagem integrada ao logo do ciclo de vida da construção (Figura 1.3).

Figura 1.3 - Evolução das preocupações no setor da construção civil.

(Fonte: Bourdeau et al., 1998)

A construção sustentável não pretende nem desempenho ambiental excelente sacrificando a

viabilidade financeira de uma empresa, nem desempenho financeiro excecional à custa de

importantes efeitos adversos no ambiente e na sociedade (Real, 2010). Portanto, a construção

sustentável é vital para uma gestão adequada dos recursos e da qualidade de vida.

No final do século XX, um grupo de arquitetos reconhecidos, como Norman Foster, Renzo Piano,

Richard Roger, Thomas Herzog, formaram uma associação com o objetivo de aprofundar o uso das

energias renováveis na construção, projetando grandes edifícios de aço e vidro. O resultado dessa

pesquisa pode ser verificado no edifício City Hall (Figura 1.4), em Londres, onde se observa a

preocupação com o desempenho energético do edifício, evidente nas fachadas envidraçadas.

Page 18: Universidade de Lisboa Instituto Superior Técnico Centro de ...

6

Figura 1.4 - City Hall, Londres.

Assim, progressivamente, as preocupações ambientais foram crescendo e de forma muito lenta

foram sendo internalizadas no setor da construção e na arquitetura (Guedes, 2003, citado por

Pinheiro, 2006). A Agenda Habitat II, a Agenda 21 para a Construção Sustentável, estudos da OCDE e

as orientações da UE dinamizaram a implementação dos princípios de sustentabilidade no setor da

construção. Foi o evoluir de uma construção que até então, apenas tinha a capacidade de se focar

numa questão isolada, como a eficiência energética ou a utilização de materiais reciclados, para uma

abordagem holística, que permite perceber o impacte total do edifício, tanto no meio social como no

meio ambiental em que este se insere.

1.1.4 COMO ALCANÇAR A SUSTENTABILIDADE NA CONSTRUÇÃO

CICLO DE VIDA DE UM EDIFÍCIO

Os custos do ciclo de vida de um edifício incluem custos com o plano / projeto, custos com a

construção, custos com a operação / manutenção, custos de reabilitação e ainda com a demolição.

Figura 1.5 - Fases do ciclo de vida de um edifício. (Fonte: LiderA, 2014)

Segundo Korkmaz (2007), entre 60 % a 85 % dos custos reais de um edifício estão associados às

operações de utilização e manutenção, enquanto a construção totaliza apenas 10 %. Gupta (citado

por Real, 2010) afirma que à volta de 75 % do custo de vida útil do edificado pode estar relacionado

com a sua operação e manutenção pelo que, se torna incontornável a consideração dos custos do

ciclo de vida aquando da análise de uma construção. Oz (2014) aponta que aproximadamente 80 %

dos custos totais envolvidos pela construção e exploração de um edifício dizem respeito à operação e

manutenção e que apenas cerca de 3 % correspondem à conceção, projeto e fiscalização.

Page 19: Universidade de Lisboa Instituto Superior Técnico Centro de ...

7

Figura 1.6 - Distribuição dos custos do ciclo de vida. (Adaptado de Oz, 2014)

Neste sentido, os custos no ciclo de vida constituem um parâmetro essencial e importante para o

sucesso e a viabilidade de uma construção, visto ser uma forma de maximizar a rentabilidade do

edificado e dos ambientes construídos, minimizando simultaneamente a sua manutenção. Deve-se

ter em conta as várias fases dos edifícios (conceção, operação e demolição) mas a mais

preponderante é a fase de operação, dado constituir o período mais longo (Pinheiro, 2011).

O significado, em termos de impacte, de cada uma destas fases e a importância em cada uma das

áreas ambientais, são aspetos interessantes para a compreensão do fenómeno e para uma

intervenção fundamentada, sendo efetuado através da avaliação do ciclo de vida (ACV) (Pinheiro,

2006).

A ACV é uma técnica que tem como objetivo a avaliação do impacto ambiental associado a um

produto ou serviço ao longo de todo o seu ciclo de vida (Ferrão 2009). Segundo a ISO 14040 e a ISO

14044, a ACV consiste em 4 fases, i.e., objetivo e âmbito, análise do inventário, avaliação de impactes

e interpretação de resultados (Dixit et al., 2012).

Para um edifício, a ACV integra a extração de matérias-primas e produção dos materiais, a

construção, a operação, a manutenção, a desmontagem e o tratamento de resíduos. Para cada fase

do ciclo de vida, os vários fluxos de energia e materiais são avaliados (Peuportier et al., 2013).

A ACV é um dos métodos mais populares para analisar os aspetos técnicos dos edifícios. No

essencial, a ACV considera um edifício como um sistema, enquanto quantifica os fluxos de materiais

e os consumos de energia ao longo das várias etapas do ciclo de vida do edifício. A vantagem da ACV

vai além do tradicional estudo que se foca numa única etapa, estendendo a investigação a outras

etapas como a produção e transporte de materiais, o consumo de energia e de água e as emissões de

GEE durante a fase de operação (Zhuo e Zao, 2014).

80%

15 - 20 %

2 - 5 %

Operação eManutenção

Construção

Concepção, Projecto eFiscalização

Page 20: Universidade de Lisboa Instituto Superior Técnico Centro de ...

8

A ACV também permite comparar o impacte ambiental de edifícios localizados em zonas geográficas

diferentes ou com diferentes utilizações (Hestnes e Sartori, 2007).

A ACV aplica-se às fases de projeto e anteprojeto e os primeiros sistemas desenvolvidos

encontravam-se orientados para a avaliação do impacte ambiental de materiais e produtos, não só

da indústria da construção, como também de outras indústrias. Atualmente, os sistemas ACV

incluem o desempenho económico na avaliação. A avaliação do desempenho económico é um fator

importante no sucesso comercial de qualquer edifício. Devido ao facto de avaliarem os impactes

ambientais direta e indiretamente associados à totalidade do ciclo de vida dos materiais e produtos,

estes sistemas fornecem dados importantes para a avaliação da sustentabilidade (Mateus e

Bragança, 2004).

No entanto, a ACV tem sido complicada de aplicar, porque há muitas variáveis a serem consideradas,

com disponibilidade de dados escassa, especialmente durante a fase de projeto (Zabalza et al., 2013).

No fundo, a publicação das normas de ACV e as Declarações Ambientais de Produtos podem ajudar a

superar essas lacunas.

IMPACTES DO SETOR DA CONSTRUÇÃO

A indústria da construção apresenta significativos impactes ambientais, sociais e económicos.

Os impactes positivos das atividades relacionadas com a construção incluem o desenvolvimento de

edificado que permite satisfazer as necessidades da sociedade e promover oportunidades diretas ou

indiretas de emprego (Zuo e Zhao, 2014).

Por exemplo, o setor da construção em Portugal contribuiu em 2012, apesar da forte contração

económica, para 4 % do PIB e 7,7 % do emprego nacional, segundo dados do InCI (Gil, 2013).

Os impactes negativos também estão bem reconhecidos. Estes incluem o ruído, as poeiras, a

poluição da água e a produção de resíduos durante a fase de obra. Uma vez completos, os edifícios

continuam a apresentar impactes (Zuo e Zhao, 2014).

Na Figura 1.7 destacam-se as fontes de impactes ao logo do ciclo de vida de um edifício.

Page 21: Universidade de Lisboa Instituto Superior Técnico Centro de ...

9

Figura 1.7 - Fontes de impactes num edifício. (Fonte: WBCSD, 2008)

Os edifícios representam cerca de 40 % do consumo total de energia no mundo (WBCSD, 2008). Estes

são responsáveis por 38 % das emissões de GEE associados às alterações climáticas, estimando-se

que atinja as 42,4 mil milhões de toneladas em 2035, um aumento em 43 % em relação a 2007

(USGBC, 2007). Na UE, o edificado é responsável por mais de 40 % do total de energia consumida e

estima-se que o setor da construção gere 40 % do total de resíduos produzidos (CIB, 1999).

Acrescente-se o facto de, segundo o Worldwatch Institute, quase 40 % dos 7,5 mil milhões de

toneladas de matérias-primas extraídas anualmente são transformadas em materiais de construção

(Department of Design and Construction of the City of New York, 1999).

Em Portugal, em média, a energia consumida pelos edifícios corresponde a apenas 25 % do total

nacional, no entanto esse número cresce para os 40 % nos meios urbanos, onde a maioria da

população vive. Esta tendência, se não forem tomadas medidas eficazes, aponta para a aproximação

à média europeia (Guedes et al., 2009).

Por último, cerca de 40 % de todas as doenças podem ser atribuídas aos edifícios (Kibert, 2003), que

são amplificadas pela cada vez maior sedentarização das pessoas. Segundo Tirone (2007), as pessoas

passam mais de 90 % do tempo em espaços interiores. E não é apenas a qualidade de vida que sai

afetada, mas também a economia, porque uma sociedade baseada no consumo, como a nossa,

apenas pode ter sucesso se for produtiva. O facto da produtividade das pessoas poder aumentar em

15 % quando as condições de conforto ambiental são boas é também determinante (Tirone, 2007).

Os impactes serão agravados segundo a previsão da International Energy Agency que aponta um

crescimento para o dobro do número de edifícios comerciais e institucionais para 2050 (Zuo e Zhao,

2014).

Page 22: Universidade de Lisboa Instituto Superior Técnico Centro de ...

10

Em Portugal, apenas relativamente ao parque habitacional, na última década, de acordo com dados

dos Censos 2011, o número de edifícios destinados à habitação era de 3544389 e o de alojamentos

de 5878756, valores que, face a 2001, representam um aumento de 12 % e 16 %, respetivamente

(INE, 2012).

ESTRATÉGIAS

O facto de um projeto ser pensado, desde o início, de forma a integrar medidas sustentáveis pode

permitir uma solução equilibrada dos custos no ciclo de vida da construção, trazendo deste modo

benefícios, não só ambientais como também económicos (Pinheiro, 2010).

Em Portugal, tal como na restante UE, a aposta tem passado pela melhoria do desempenho

energético dos edifícios, ao conjugar estratégias passivas de projeto, como ventilação natural,

orientação solar e inércia térmica com energias renováveis. E não são necessárias grandes técnicas

construtivas, nem grandes orçamentos para se conseguir um melhor desempenho. De facto, os

edifícios construídos depois de 1990 geralmente são 60 % mais eficientes que os construídos antes

de 1970 e 28 % mais eficientes que os concebidos anteriormente a 1985 (Balaras et al., 2007).

A legislação europeia também tem promovido a eficiência energética do edificado e a diretiva

relativa ao Desempenho Energético de Edifícios (EPBD) foi, em 2002, segundo Vasconcelos (2013):

“um dos motores do processo de revisão dos diplomas relativos ao comportamento térmico dos

edifícios (…) promovendo a melhoria da eficiência energética do edificado existente, fomentando a

reabilitação urbana, e a introdução de inovação nas técnicas construtivas.”

A revisão da diretiva (Diretiva 2010 / 31 / UE de 19 de maio, 2010) vem dar um impulso significativo

ao exigir que os estados-membros, a partir de 2020 (2018 para edifícios públicos), passem a executar

os seus novos edifícios com balanço energético quase nulo, nearly zero energy building (NZEB), ou

seja, edifícios com um desempenho energético muito elevado em que as necessidades de energia

quase nulas deverão ser cobertas por renováveis. Este aumento da eficiência dos edifícios pode

constituir um importante instrumento para aliviar a dependência das importações de energia por

parte da UE, bem como para reduzir a emissão de GEE (Poel et al., 2007).

Dentro deste quadro, a prioridade deve ser então a minimização do consumo de energia, por meio

da utilização de estratégias de desenho passivas, isto é, a redução do uso de equipamentos que

consomem energia elétrica, como sistemas AVAC ou iluminação artificial, através de uma adaptação

inteligente do edifício ao contexto climático local (Baker e Steemers, 2000).

Segundo Guedes et al. (2009), no projeto de construção, um aspeto chave é o contexto do

desempenho bioclimático ou as opções passivas em cada país. Os edifícios devem ser em primeiro

Page 23: Universidade de Lisboa Instituto Superior Técnico Centro de ...

11

lugar edifícios bioclimáticos, desenhados de acordo com o clima local, minimizando as necessidades

de energia, a designada arquitetura solar passiva ou bioclimática (Figura 1.8).

Figura 1.8 – Estratégias de uma casa solar passiva ou bioclimática.

(Fonte: Gore, 2009)

Muitas das estratégias de desenho passivo, como a ventilação natural, orientação solar, uso de

inércia térmica são basicamente adaptações de técnicas utilizadas no passado, resultante de séculos

de acumulação de conhecimento empírico (Guedes et al., 2009). O desenho passivo tem de ser

complementado com medidas ativas e eficazes, a fim de reduzir o consumo de energia ou compensar

esse consumo com energia proveniente de fontes renováveis. A utilização de energias renováveis

tem sido uma estratégia fundamental (Shi et al., 2003). Os equipamentos mais comuns de

aproveitamento de recursos renováveis em edifícios incluem os sistemas solar térmico e

fotovoltaico, as turbinas eólicas de pequena escala e as bombas de calor geotérmicas (Praene et al.,

2012; Yuan et al., 2013).

Portugal tem um clima privilegiado, relativamente temperado, em que o uso da climatização artificial

é injustificado na maioria das situações. Geralmente pode-se identificar um significativo número de

técnicas e princípios comuns aplicáveis em várias regiões do país, como a ventilação noturna

associada a inércia térmica (para arrefecimento no verão), orientação solar propícia, isolamento

adequado e dimensionamento da área envidraçada (para aquecimento no inverno e proteção contra

sobreaquecimento no verão) e sombreamento adequado (Guedes et al., 2009).

Essas estratégias, reforçadas pela seleção de sistemas de climatização e de iluminação eficientes,

conduzem a uma redução dos custos operacionais e a um aumento da qualidade do ar interior (Kats,

2003).

Page 24: Universidade de Lisboa Instituto Superior Técnico Centro de ...

12

O processo de conceção deve integrar além de questões bioclimáticas, questões relacionadas com o

impacte socioeconómico do edifício ao longo das diferentes fases do ciclo de vida. Por exemplo, a

escolha de materiais de construção tem implicações não só em termos de consumo de energia

(energia incorporada), mas também para a economia local. Também é essencial considerar o tempo

de vida do edifício, que deve ser prolongado até ao limite. A escolha dos materiais deve considerar as

possibilidades de reciclagem, e a sua energia incorporada - utilizando materiais como o tijolo, a

madeira e certos tipos de betão, e minimizando o uso de materiais como o aço, o vidro ou o plástico,

que requerem muita energia (Guedes et al., 2009).

Um dos pontos importantes a focar é a redução, reciclagem e reutilização dos RCD. Coelho e Brito

(2012) referem que a adoção da reutilização e da reciclagem de materiais na construção favorecem

significativamente a redução dos impactes ambientais do setor da construção.

Para se garantir a sustentabilidade ao longo ciclo de vida, o edifício deve ser desenvolvido tendo por

base um processo cíclico, monitorizando, em cada uma das suas fases, os princípios de

sustentabilidade (Sousa e Amado, n.d.), de acordo com as estratégias apresentadas no Quadro 1.1.

Quadro 1.1 – Fases e respetivas medidas de intervenção num edifício. (Adaptado de Sousa e Amado, n.d.)

Fase Medidas de Intervenção

Projeto

o Adoção de soluções passivas para a conservação de energia e conforto ambiental;

o Sistema construtivo detalhado e exata compatibilidade entre as especialidades do projeto.

Construção

o Solução construtiva rigorosa e detalhada;

o Critério de seleção de produtos e materiais de construção;

o Impactes ambientais temporários durante a construção.

Operação/Manutenção

o Controlo de usos e atividades; o Procedimentos de utilização; o Definição de rotinas e

procedimentos de manutenção; o Monitorização do nível de

eficiência mantido.

O papel dos vários agentes é decisivo, incluindo o setor da extração dos materiais, o da construção,

os clientes das estruturas edificadas, os gestores e os responsáveis da manutenção (Pinheiro, 2006).

Contudo, talvez surpreendentemente, a transformação do parque edificado no caminho da maior

eficiência tem sido lenta. Várias razões foram identificadas, tais como a falta de informação, a

incerteza da economia da energia, a falta de incentivos e os custos iniciais. Se os custos das práticas

Page 25: Universidade de Lisboa Instituto Superior Técnico Centro de ...

13

ineficientes e os benefícios indiretos, como o aumento da produtividade dos ocupantes, fossem

facilmente traduzidos, certamente esta transformação aceleraria.

SISTEMAS DE AVALIAÇÃO AMBIENTAL

O reconhecimento da sustentabilidade na construção permitindo classificar o desempenho de um

edifício e, ao mesmo tempo, criar mecanismos de demonstração desse mesmo desempenho e

melhoria contínua do edifício estimula os agentes a procurarem cada vez mais estes conceitos de

construção.

Sistemas de avaliação e certificação do edificado estabeleceram-se por todo o mundo, a partir da

década de 90, destacando-se, segundo Pinheiro (2006) o BREEAM (Building Research Establishment

Environmental Assessment Method) no Reino Unido, o LEED (Leadership in Energy and

Environmental Design) nos EUA, o NABERS (National Australian Buildings Environmental Rating

System) na Austrália, o BEPAC (Building Environmental Performance Assessment Criteria) no Canadá,

o HQE (Haute Qualité Environnementale dês Bâtiments) em França, o CASBEE (Comprehensive

Assessment System for Building Environmental Efficiency) no Japão e o LiderA em Portugal.

O LiderA, acrónimo de Liderar pelo Ambiente para a construção sustentável, é a designação de um

sistema voluntário português que tem em vista efetuar de forma eficiente e integrada de

apoio, avaliação e certificação do ambiente construído que procure a sustentabilidade (LiderA,

2014).

Desenvolvido por Manuel Pinheiro, doutorado em Engenharia do Ambiente e docente do

Departamento de Engenharia Civil, Arquitetura e Georecursos do IST, o sistema LiderA foi publicado

pela primeira vez em 2005, remontando as suas primeiras certificações a 2007. De uma primeira

versão 1.2 destinada a edifícios e centrada sobre questões ambientais / ecológicas passou, (desde o

primeiro congresso LiderA em 2009), para uma nova versão 2.0 aplicável também a

empreendimentos e comunidades e com destaque para o ambiente e as questões socioeconómicas

(Pinheiro, 2014).

O sistema dispõe de três níveis: estratégico (da ideia ao plano), projeto e gestão do ciclo de vida,

tendo em vista permitir o acompanhamento nas diferentes fases de desenvolvimento do ciclo de

vida do empreendimento. Para o LiderA a procura de sustentabilidade nos ambientes construídos

assenta desde logo em seis princípios a serem adotados, os quais abrangem as seis vertentes

consideradas no sistema. Os princípios sugeridos para a procura da sustentabilidade são os seguintes

(LiderA, 2014):

Page 26: Universidade de Lisboa Instituto Superior Técnico Centro de ...

14

o Princípio 1 – Valorizar a dinâmica local e promover uma adequada integração;

o Princípio 2 – Fomentar a eficiência no uso dos recursos;

o Princípio 3 – Reduzir o impacte das cargas (quer em valor, quer em toxicidade);

o Princípio 4 – Assegurar a qualidade do ambiente, focada no conforto ambiental;

o Princípio 5 – Fomentar as vivências socioeconómicas sustentáveis;

o Princípio 6 – Assegurar a melhor utilização sustentável dos ambientes construídos, através da

gestão ambiental e da inovação.

Para orientar e avaliar o desempenho, o sistema possui um conjunto de vinte e duas áreas,

concretizando-se em critérios que operacionalizam os aspetos a considerar em cada área. Na versão

2.0 de base estão predefinidos 43 critérios (Pinheiro, 2010).

Figura 1.9 – Vertentes e áreas da versão 2.0 do sistema LiderA. (Fonte: LiderA, 2014)

Para cada tipologia de utilização e para cada critério são definidos os níveis de desempenho

considerados (ou limiares), que podem ser prescritivos ou de desempenho, e que permitem indicar

se a solução é ou não sustentável. A parametrização para cada um deles segue, ou a melhoria das

práticas existentes, ou a referência aos valores de boas práticas, tal como é usual nos sistemas

internacionais. Os níveis de desempenho são numéricos que do ponto de vista de comunicação são

transformados em classes (de G a A++), em que a classe E corresponde ao nível usual (Pinheiro,

2011).

Atualmente, com a publicação das normas para avaliação da sustentabilidade (CEN TC 350), o LiderA

tem em atualização a sua norma para a nova versão (2020) (Pinheiro, 2014).

As normas do CEN TC 350 clarificam os processos e especificações para edifícios e materiais.

Apresentam uma abordagem baseada na ACV, que tem em conta os impactes gerados em todas as

fases do ciclo de vida, quantificando a contribuição de todos os aspetos avaliados na sustentabilidade

Page 27: Universidade de Lisboa Instituto Superior Técnico Centro de ...

15

da construção. O modelo é baseado na avaliação da sustentabilidade, assentando no desempenho

ambiental, social e económico. As principais normas desenvolvidas são a EN 15643 relativa ao

Enquadramento para a avaliação de edifícios, a EN 15804 relativa às Declarações Ambientais de

Produto – Regras para as Categorias de Produtos, a CEN/TR 15941 relativa às Declarações Ambientais

de Produto – Metodologia para a seleção de dados genéricos, a EN 15942 relativa às Declarações

Ambientais de Produto – Formato para Comunicação e a EN 15978 relativa à Avaliação do

Desempenho Ambiental dos Edifícios - Métodos de cálculo (Pinheiro, 2014).

1.2 HIPÓTESE E OBJETIVO

O objetivo desta dissertação consiste em sistematizar os elementos que caracterizam um edifício de

elevado desempenho, bem como avaliar os principais indicadores ambientais. Pretende-se enumerar

o tipo de medidas que podem ser adotadas e analisar os resultados obtidos.

O caso de estudo desta dissertação é o recente edifício do Centro de Educação Ambiental de Torres

Vedras, concebido por forma a responder às necessidades programáticas e funcionais da edilidade

no que concerne à educação ambiental da população, pretendendo demonstrar as vantagens da

construção sustentável e da utilização das energias renováveis, com vista a educar e formar a

população.

Em última análise, este trabalho pretende encontrar um referencial que represente o que é facto um

edifício de elevado desempenho e como se consegue atingi-lo.

1.3 METODOLOGIA

A metodologia proposta abrange numa primeira fase, a revisão do estado da arte sobre edifícios de

elevado desempenho, nomeadamente conceitos e abordagens, recorrendo-se a oito casos de

estudo.

Posteriormente efetua-se a sistematização dos indicadores ambientais de desempenho dos edifícios,

selecionando-se um caso de estudo, o Centro de Educação Ambiental de Torres Vedras, já certificado

em fase de projeto pelo sistema LiderA.

No caso de estudo, após devida caracterização, é realizado um levantamento e análise dos dados de

desempenho, nomeadamente energia, água, resíduos e utilização, procurando-se medir neste último

aspeto a perceção e grau de satisfação dos utilizadores recorrendo-se a um inquérito. No caso

particular da energia é efetuado um levantamento detalhado de todos os equipamentos que

consumam ou produzam energia, e elaborado um modelo para estimar os valores de consumos e

padrões de utilização.

Page 28: Universidade de Lisboa Instituto Superior Técnico Centro de ...

16

De seguida é realizada uma avaliação crítica do desempenho do centro, posicionando-o face a outros

casos.

Por último é realizada uma discussão da abordagem, evidenciando limitações e potencialidades,

sugeridas recomendações e elaborada uma publicação explicitando com detalhe a avaliação do

centro, assentando a sua estrutura no sistema LiderA.

1.4 ORGANIZAÇÃO DA DISSERTAÇÃO

A dissertação encontra-se dividida em 6 capítulos, bibliografia e anexos, cujo conteúdo está disposto

da seguinte forma:

o Capítulo 1 – Introdução – define o enquadramento geral do tema, relacionando

sustentabilidade com construção. São ainda referidos os principais objetivos para este

trabalho, a metodologia seguida, bem como a disposição da dissertação;

o Capítulo 2 – Estado da Arte – desenvolve os conceitos ligados aos edifícios de elevado

desempenho ou high performance building. São apresentados os princípios orientadores que

norteiam este tipo de edificado, referindo casos internacionais, analisando as suas

características e o seu desempenho na procura da sustentabilidade;

o Capítulo 3 – Caso de Estudo – apresenta as características do edifício em estudo, destacando

a sua organização funcional e aspetos construtivos;

o Capítulo 4 – Funcionamento – neste capítulo é efetuada a avaliação do desempenho

ambiental do caso de estudo, apresentando o levantamento e análise dos dados,

nomeadamente relativos à energia, água, resíduos assim como os resultados obtidos pelos

inquéritos de satisfação;

o Capítulo 5 – Discussão de Resultados – faz uma discussão crítica da abordagem, limitações e

potencialidades do trabalho. São discutidos os resultados obtidos, comparando-os com

outros edifícios de elevado desempenho por forma a efetuar o posicionamento do centro;

o Capítulo 6 – Conclusões e Recomendações – encerra a dissertação apresentando as

conclusões finais e fazendo recomendações.

Por fim, seguem-se os anexos, onde se incluem as divisões e respetivas áreas bem como plantas do

centro, o modelo energético desenvolvido, a estrutura dos inquéritos, quadro resumo das

características das duas amostras, resumo dos resultados dos inquéritos e relatório de avaliação do

Centro de Educação Ambiental de Torres Vedras.

Page 29: Universidade de Lisboa Instituto Superior Técnico Centro de ...

17

CAPÍTULO 2 – EDIFÍCIOS DE ELEVADO DESEMPENHO – ESTADO DA ARTE

2.1 CONCEITO

O evoluir do paradigma da construção sustentável, faz-nos olhar para um edifício sustentável como

aquele em que todos os seus sistemas, operações e políticas de funcionamento estão de acordo com

a melhoria do desempenho integrado. São os designados edifícios de elevado desempenho ou high

performance building, que conjugam os melhores padrões de construção, com a excelência

operacional e comportamentos sustentáveis por parte dos seus utilizadores / ocupantes (Orr, 2006).

Figura 2.1 – Como conseguir um edifício de elevado desempenho.

(Adaptado de http://www.enerlife.com/index.php, 2013)

Destaca-se ainda que se devem salvaguardar aspetos como a resistência sísmica e a resistência a

incêndios.

2.1.1 NOS EUA

Uma das principais definições do conceito está presente na Energy Independence and Security Act

(EISA, 2007), dos EUA, onde edifícios de elevado desempenho são:

“edifícios que integram e otimizam com base no ciclo de vida todos os principais atributos de alto

desempenho, incluindo a conservação de energia, ambiente, segurança, durabilidade, acessibilidade,

custo-benefício, a produtividade, sustentabilidade, funcionalidade e considerações operacionais.”

O US Office of Energy Efficiency and Renewable Energy (DOE, 2006) define edifício de elevado

desempenho como:

“um edifício com um desempenho energético, económico e ambiental substancialmente melhor que

as práticas comuns. É eficiente em termos energéticos, de modo que economiza recursos financeiros

e naturais. É um lugar saudável para se viver ou trabalhar e tem um impacte relativamente reduzido

no ambiente.”

Construção

Edifício

de Elevado

Desempenho

Page 30: Universidade de Lisboa Instituto Superior Técnico Centro de ...

18

De facto, nos últimos anos, nos EUA, o conceito de edifício de elevado desempenho, segundo

Korkmaz (2007) tem sido desenvolvido em paralelo com as exigências ambientais e as necessidades

do mercado, sendo muitas vezes apresentado como high performance green building.

2.1.2 NA EUROPA

Na Europa, Erhorn e Erhorn-Kluttig (2011), referem que o conceito de edifício de elevado

desempenho é apresentado de diversas formas nos diferentes estados-membros da UE, mas

sobretudo relacionado com eficiência energética, implicando um menor consumo de energia e uma

maior e melhor estanquicidade ao ar dos edifícios em relação ao que é normalmente praticado.

Erhorn e Erhorn-Kluttig (2011) agrupam estes conceitos nas categorias seguintes:

o reduzido consumo de energia (low energy building, energy saving house, ultra-low energy

house, 3-litre-house, zero-heating energy house, zero-energy house, plus-energy house, very

low energy house, energy self-sufficient house, energy autarkic house);

o reduzidas emissões (zero-emission house, zero-carbon house, emission-free house, carbon-

free house);

o sustentabilidade ou aspetos verdes (eco-buildings, green buildings, bioclimatic house,

climate: active house).

Os conceitos de edifício de elevado desempenho variam largamente, não só na qualidade dos

requisitos, como nos métodos de cálculo utilizados. Muitos destes conceitos são definidos apenas de

forma descritiva, sendo por vezes acompanhados de metas relativas (Erhorn e Erhorn-Kluttig, 2011).

Por exemplo, enquanto um low energy building, que na maioria dos países é entendido como um

edifício com um consumo energético significativamente inferior aos requisitos nacionais, levantando

subjeções pois as necessidades energéticas diferem de país para país, já uma passive house

apresenta uma definição quantitativa. O padrão Passivhaus, desenvolvido na Alemanha pelo

Passivhaus Institute, apresenta três requisitos para certificação dos edifícios: consumo de energia

para aquecimento inferior a 15 kWh/m2.ano, consumo total de energia primária inferior a 120

kWh/m2.ano e infiltração do ar a 50 Pa inferior a 0,6 vol/h (Thiers e Peuportier, 2012), sendo aceite

em países como a Alemanha, a Áustria, a Dinamarca e a República Checa.

Outros conceitos como o eco-building, não incluem qualquer definição quantitativa, o que pode

originar diferentes interpretações. Segundo Erhorn e Erhorn-Kluttig (2011), a Comissão Europeia

define eco-building como:

Page 31: Universidade de Lisboa Instituto Superior Técnico Centro de ...

19

“ponto de encontro de desenvolvimento de curto prazo e demonstração a fim de suportar a

legislação e regulação para a eficiência energética e a maior utilização de fontes renováveis de

energia, que vão além da EPBD. Abordagem dupla: reduzir substancialmente e, se possível, evitar ou

fornecer apenas o necessário aquecimento, arrefecimento e iluminação através de fontes renováveis

de energia.”

Estes factos levam a que não seja fácil estabelecer um número confiável de edifícios de elevado

desempenho existentes nos países europeus. Segundo Erhorn e Erhorn-Kluttig (2011), enquanto

alguns especialistas afirmam que atualmente os novos edifícios são low energy house, o que sugere

que a definição não foi adaptada a novos requisitos, outros referem que cerca de 10 % de todos os

novos edifícios são energy saving house e logo edifícios de elevado desempenho, e ainda outros

destacam que se as low energy house não forem tidas em conta o número de edifícios de elevado

desempenho atinge um valor residual.

2.1.3 EDIFÍCIOS DE ELEVADO DESEMPENHO vs EDIFÍCIOS “VERDES”

Por vezes também os conceitos edifícios “verdes” e edifícios de elevado desempenho são utilizados

como sinónimos. Kibert (2012) define edifício “verde” como:

“….instalações saudáveis projetadas e construídas de forma eficiente em termos de recursos,

baseadas em princípios ecológicos.”

Edifícios “verdes” são, no geral, destinados a reduzir o consumo de recursos através da reciclagem,

de estratégias de conservação de água e energia e que apostam na redução das emissões. Robichaud

e Anantatmula (2010) apontam quatro pilares pelos quais os edifícios “verdes” devem reger-se:

minimizar impactes no ambiente; assegurar condições saudáveis para os ocupantes; retorno do

investimento; e considerar o ciclo de vida durante os processos de planeamento e desenvolvimento.

No entanto, estas estratégias não costumam resultar em benefícios económicos significativos e, de

facto muitas vezes são vistos como um custo adicional. Já os edifícios de elevado desempenho têm

potencial para reduzir o impacte ambiental e económico dos edifícios, minimizando o consumo de

energia, reduzindo o consumo de recursos e minimizando a produção de resíduos, proporcionando

ambientes saudáveis e produtivos para os ocupantes (Lapinski et al., 2006).

Horman et al. (2006) considera que os edifícios “verdes” compõem apenas uma parte do total do

edificado, enquanto os edifícios de elevado desempenho representam uma fração ainda menor.

Page 32: Universidade de Lisboa Instituto Superior Técnico Centro de ...

20

Figura 2.2 – Espaço ocupado pelos edifícios de elevado desempenho.

2.2 UMA ABORDAGEM INTEGRADA

No entanto a conceção de edifícios de elevado desempenho não se reduz na preocupação do

desempenho energético.

Os edifícios projetados para a sustentabilidade no século XXI devem basear-se nos recursos de forma

responsável, e devem providenciar conforto para os seus ocupantes. Qualquer edifício que pretenda

ser reconhecido como um edifício de elevado desempenho deve-o ser em termos de eficiência

energética. Contudo, a eficiência energética é somente um dos muito indicadores que podem ser

utilizados para avaliar, embora seja o mais significativo (Lerum, 2007).

O NIBS (National Institute of Building Science), numa avaliação sobre os edifícios de elevado

desempenho efetuada para o Congresso norte-americano e para o Departamento de Energia dos

EUA em 2008, refere que os edifícios de elevado desempenho que abordam as dimensões humanas,

ambientais e económicas são resultado da aplicação de elevados níveis no projeto, construção,

operação e manutenção – uma mudança de paradigma do ambiente construído.

Esta definição pressupõe que os edifícios sejam projetados e construídos no contexto de maiores

preocupações humanas, ambientais e económicas, e que as normas de construção de alto

desempenho são os meios para construí-los. Todas as partes do edifício têm de ser abordadas de

forma integrada, tendo em conta as fases de projeto, construção, operação / ocupação, reabilitação

e demolição. É necessária uma visão holística que segundo o NIBS (2008) deve equilibrar as seguintes

estratégias apresentadas na Figura 2.3.

Edifícios Edifícios “Verdes”

Edifícios de Elevado Desempenho

Page 33: Universidade de Lisboa Instituto Superior Técnico Centro de ...

21

Figura 2.3 – Edifícios de elevado desempenho, uma abordagem integrada. (Adaptado de NIBS, 2013)

2.2.1 PRINCÍPIOS ORIENTADORES

De facto, os edifícios de elevado desempenho têm tido uma rápida penetração, em especial nos EUA

(Korkmaz, 2007). Diversos estados americanos têm tomado iniciativas para facilitar a construção dos

edifícios de elevado desempenho. Uma dessas iniciativas, do Governo da Pennsylvania, é o

“Guidelines for Creating High-Performance Green Buildings: A Document for Decision Makers” de

1999. Kibert (2012) apresenta uma longa mas instrutiva definição de edifício de elevado desempenho

resultante do documento supracitado.

Quadro 2.1 - Características de um edifício de elevado desempenho segundo o “Guidelines for Creating High-Performance Green Buildings: A Document for Decision Makers”

(Adaptado de Kibert, 2012)

o Um projeto criado por cooperação entre proprietários dos edifícios, utilizadores, projetistas e construtores através de equipas interdisciplinares;

o Um projeto que envolve as comunidades locais em todas as etapas do processo, incluindo o projeto, construção e ocupação;

o Um projeto que integra um número de sistemas que se traduz em eficiências na operação e no desempenho dos utilizadores;

o Um projeto que considera os custos do impacte do edifício no contexto local e regional;

o Um projeto que considera os custos do ciclo de vida dos materiais ou sistemas do edifício;

o Um edifício que cria oportunidades de interação com o ambiente; o Um edifício que usa os recursos de forma eficiente e maximiza a utilização de

materiais locais; o Um projeto que minimiza os RCD e utiliza produtos que minimizam a produção

de resíduos; o Um edifício que é eficiente em termos energéticos e de recursos; o Um edifício que pode facilmente ser reconfigurado ou reutilizado; o Um edifício com um saudável ambiente interior; o Um projeto que utiliza tecnologia apropriada, incluindo produtos e sistemas

naturais e de baixa tecnologia antes de aplicar soluções complexas; o Um projeto que educa os ocupantes e utilizadores do edifício nas filosofias,

estratégias e controles incluídos no projeto, construção e manutenção do edifício.

Page 34: Universidade de Lisboa Instituto Superior Técnico Centro de ...

22

Estas características vão de encontro aos princípios orientadores para os edifícios de elevado

desempenho (NIBS, 2013), indicados na Figura 2.4, que sumarizam as estratégias para atingir este

tipo de edifício. A aposta deve passar por um projeto integrado que tenha em conta a proteção e

conservação da água, a otimização do desempenho energético, a redução do impacte dos materiais

utilizados e a promoção da qualidade interior do edifício.

2.2.2 UMA APOSTA DE SUCESSO

Kibert (2012) aponta três razões para o sucesso dos edifícios de elevado desempenho:

o São a resposta ética aos desafios ambientais, a forma correta de construir. Tipicamente, um

edifício convencional cumpre o mínimo, concentrando esforços nas questões relacionadas

com a água e a energia ignorando totalmente os resíduos produzidos, impactes da obra e

qualquer outra questão não especificada nos códigos da construção. Os edifícios de elevado

desempenho adotam uma abordagem diferente. Os impactes provocados e o consumo de

recursos são de importância primordial. O ciclo de vida do edifício é cuidadosamente

considerado. A ênfase está na utilização de fontes renováveis para sistemas energéticos,

reciclagem e reutilização de água e materiais, integração de espécies nativas e adaptadas ao

ambiente local, aquecimento, arrefecimento e ventilação passiva e uma série de outras

abordagens;

o Fazem sentido do ponto de vista económico, nem sempre no investimento inicial, mas quase

sempre com base no ciclo de vida. Sistemas de iluminação e de tratamento de ar com

Figura 2.4 – Princípios orientadores dos edifícios de elevado desempenho.

Projeto Integrado

Desempenho Energético

Conservação da Água

Qualidade do Ar

Materiais de baixo impacte

Page 35: Universidade de Lisboa Instituto Superior Técnico Centro de ...

23

excecional resposta certamente custam mais que os sistemas tradicionais. Sistemas de

captação de água pluvial para fins não potáveis acrescem os custos, devido à necessidade de

tubulação adicional, bombas, controles, depósitos de armazenamento e componentes de

filtração. No entanto, a maioria dos sistemas apontados fornecem um retorno sobre o seu

investimento, o designado período de recuperação do investimento ou payback period, num

prazo relativamente curto;

o É reconhecido o potencial efeito dos edifícios de elevado desempenho, incluindo a sua

operação, na saúde e desempenho dos utilizadores.

A parte social é de extrema importância para o sucesso dos edifícios de elevado desempenho. Ruano

e Cruzado (2012) argumentam que a educação deve fazer parte da dimensão social da avaliação ao

longo do ciclo de vida dos edifícios. Mateus e Bragança (2011) sugerem que o desempenho de um

edifício deve ter em conta o bem-estar e conforto dos utilizadores, a acessibilidade aos serviços

públicos e o nível de preocupação com as questões ambientais.

Segundo Yates (2001) os benefícios quantificáveis dos edifícios de elevado desempenho são o

aumento do retorno do investimento, a redução dos custos de operação e manutenção e o aumento

da produtividade dos ocupantes dos edifícios.

Heerwagen (2000) afirma também que o retorno relativo ao investimento neste tipo de construção

ocorre através da redução de custos operacionais, satisfação dos ocupantes, redução do absentismo

e melhor desempenho.

No entanto Thiers e Peuportier (2012) referem que apesar dos edifícios de elevado desempenho

apresentarem melhor desempenho e consequentemente menores impactes na fase de operação, em

comparação com os edifícios tradicionais, requerem mais materiais (como isolamentos, vidros

duplos, etc…) e mais componentes (coletores solares térmicos, painéis fotovoltaicos, etc…) e, assim,

induzem mais impactes durante as outras fases de vida de um edifício (construção, reabilitação e

demolição).

Existem algumas barreiras e entraves ao desenvolvimento dos edifícios de elevado desempenho.

Kibert (2012) aponta os seguintes obstáculos:

1. Desincentivos financeiros

o Ausência da utilização da ACV;

o Elevados custos na perceção inicial;

o Separação na orçamentação entre custos de investimento e operacionais.

Page 36: Universidade de Lisboa Instituto Superior Técnico Centro de ...

24

2. Insuficiente investigação

o Financiamento inadequado;

o Investigação reduzida em relação ao ambiente interior e produtividade e saúde dos

utilizadores.

3. Falta de consciencialização

o Prevalência do pensamento convencional;

o Aversão ao risco.

Apesar de ser aceite uma visão integrada subjacente na fase de projeto, as técnicas e processos

tradicionais são difíceis de alterar em larga escala. Impedimentos adicionais também estão

presentes. Por exemplo, muitas legislações ainda não permitem a eliminação de infraestruturas

pluviais em detrimento da utilização de sistemas naturais de controlo de águas pluviais. Sistemas de

aproveitamento da luz natural não substituem totalmente a necessidade de iluminação artificial,

sobretudo em período noturno. Envidraçados eficientes, claraboias e outros sistemas aumentam os

custos de projeto. Controlos de ajustamento do nível de iluminação e sensores eventualmente

adicionam custos e complexidade, tal como sistemas de aproveitamento de águas pluviais. Custos

adicionais, como a certificação, são também acréscimos ao orçamento. Ainda a ACV não garante

sempre uma boa relação custo-benefício a curto ou médio horizonte. Por exemplo em locais onde a

água tem um custo reduzido, sistemas que aproveitam as águas pluviais ou cinzentas são dificilmente

justificáveis financeiramente, sem outras assunções favoráveis (Kibert, 2012).

2.3 DESEMPENHO E PRÁTICAS INTERNACIONAIS

Existe uma grande heterogeneidade no que diz respeito ao tipo de edifícios existente. A tipologia,

idade, materiais, técnicas utilizadas, tipo de utilização e localização condicionam o desempenho

alcançado. Diversos estudos têm sido publicados por vezes de forma comparativa e incidindo muitas

vezes sobre certos indicadores em particular. Organizações internacionais como a IEA (International

Energy Agency) ou a UNEP (United Nations Environment Programme), instituições ou agências

públicas como a EPA (Environmental Protection Agency), dos EUA, através do seu programa ENERGY

STAR, o BPIE (Buildings Performance Institute Europe), na UE, ou a ADENE (Agência para a Energia),

em Portugal ou associações do setor privado como a ISA (International Sustainability Alliance) ou o

WBCSD (World Business Council for Sustainable Development) têm encetado esforços na elaboração

de estatísticas para comparação do desempenho dos edifícios. Vários são os indicadores

apresentados, destacando-se:

Page 37: Universidade de Lisboa Instituto Superior Técnico Centro de ...

25

o Consumo de energia por unidade de área;

o Produção local de energia renovável por unidade de área;

o Emissão de carbono como resultado da energia consumida por unidade de área;

o Água consumida por unidade de área;

o Resíduos produzidos por tipo e método de eliminação.

2.3.1 DESEMPENHO ENERGÉTICO E DE CARBONO

A energia pode ser apresentada sob a forma de energia primária, recurso energético que se encontra

disponível na natureza como o petróleo, exprimindo-se normalmente, em termos da massa

equivalente de petróleo (kgep ou tep) ou energia final, que é a energia disponibilizada aos

consumidores como por exemplo a eletricidade (kWh) ou o gás (m3).

Como referido no Capítulo 1.1.4, os edifícios são responsáveis pelo consumo de 40 % do total

mundial de energia. Esta tendência agravar-se-á, com um crescimento no consumo de 34 % nos

próximos 20 anos (Pérez-Lombard et al., 2008).

A UE não é exceção, apesar do progresso na eficiência energética, com um ganho de 1,6 % ao ano

em termos de eficiência, entre 2000 e 2010 no setor residencial (que representa 75 % da área

construída), os edifícios consomem ainda 41 % do total de energia final (2010), sendo as habitações

responsáveis por 68 % deste valor (ENERDATA, 2012).

O consumo é amplificado pelo facto de mais de 40 % dos edifícios de habitação, na UE, terem sido

construídos antes de 1960. A nível europeu, o consumo médio de energia (cobrindo todas as

utilizações) é cerca de 280 kWh/m2 para os edifícios não-residenciais, pelo menos 40 % superior ao

setor residencial (BPIE, 2011).

Comparando países europeus as diferenças são assinaláveis, como comprovam os consumos

próximos dos 150 kWh/m2 para edifícios em Espanha e os mais de 300 kWh/m2 para a Finlândia. Esta

discrepância deve-se sobretudo a questões climáticas (ENERDATA, 2012).

Kibert (2012) afirma que atualmente um edifício de elevado desempenho pode apresentar consumos

anuais de energia de 100 kWh/m2 e na Alemanha podem descer para os 50 kWh/m2.

Num estudo (Hartkopf et al., 2009), desenvolvido para a UNEP, foram analisados 36 edifícios de

elevado desempenho. Este estudo que incidiu no desempenho energético permitiu abranger países

com climas e estádios de desenvolvimento diferentes.

Page 38: Universidade de Lisboa Instituto Superior Técnico Centro de ...

26

kWh

/m2 d

e á

rea

bru

ta

Energia Primária Energia Final Energia Renovável Local

Figura 2.5 – Consumo anual de energia em edifícios de elevado desempenho.

(Fonte: Hartkopf et al., 2009)

Residencial Público Ensino

Serviços

Investigação

Investigação

Page 39: Universidade de Lisboa Instituto Superior Técnico Centro de ...

27

A Figura 2.5 mostra os resultados do estudo, onde se pode observar o consumo anual de energia

(primária, final e renovável) por m2 de área bruta de construção. Conforme se pode constatar os

desempenhos são díspares, no entanto é de assinalar alguns consumos na ordem dos 50 kWh/m2 nos

edifícios residenciais. Para edifícios de serviços, as melhores práticas mostram menos de 100

kWh/m2 de consumo de energia primária e 200 kWh/m2 para edifícios de investigação. Na produção

de energia temos valores que atingem os 100 kWh/m2.

No que diz respeito ao carbono este pode ser apresentado sobre a forma de CO2 ou agrupando os

GEE, sobre a designação de CO2 eq.

No mundo o total de emissões de CO2 relacionadas com a energia nos edifícios atingiu as 2,9 Gt em

2011. O gás natural é a principal fonte de emissões, representado cerca de 50 % do total, com a

OCDE (maioritariamente os EUA e a Europa) responsáveis por dois terços do total (EIA, 2013).

Os edifícios são responsáveis por cerca de 36 % das emissões de CO2 na Europa. O valor médio

alcança os 54 kg CO2/m2 de área útil de construção no espaço europeu, onde os valores nacionais

variam entre os 5 e os 120 kg CO2/m2. Esta diferença está ligada à matriz energética de cada país

(BPIE, 2011).

De acordo com uma análise global ao setor da construção, realizada pela McGraw-Hill Construction,

os edifícios têm um potencial de redução de 35 % nas emissões de CO2 (UNEP, 2012). Num estudo

nos EUA, que envolveu 22 edifícios de serviços de elevado desempenho constatou-se uma redução

em 36 % da emissão de CO2 (GSA, 2011). No Reino Unido foi anunciada, em 2006, uma rápida

transição para o “carbono zero” nos novos edifícios, como elemento fundamental na estratégia de

redução dos GEE em 80 % comparando com os níveis de 1990 (McLeod, 2012).

2.3.2 DESEMPENHO DA ÁGUA

De acordo com a UNEP (2012), os edifícios são responsáveis por 12 % do total mundial de consumo

da água potável.

Um edifício de elevado desempenho nos EUA pode reduzir o consumo de água potável em 50 %

simplesmente utilizando equipamentos eficientes. E através da utilização de águas cinzentas e

pluviais o consumo pode ser reduzido a 25 % de um edifício convencional (Kibert, 2012).

Internacionalmente poucos estudos foram publicados no que diz respeito ao desempenho dos

edifícios relativamente ao consumo de água. Num estudo de Bint et al. (n.d.) foram analisados os

consumos de água de alguns edifícios de serviços, ou grupos de edifícios, de elevado desempenho. A

conclusão desse estudo é apresentada na Figura 2.6, que apresenta os consumos anuais de água em

m3/m2 de área do edifício.

Page 40: Universidade de Lisboa Instituto Superior Técnico Centro de ...

28

Figura 2.6 – Consumo anual de água em edifícios de elevado desempenho. (Fonte: Bint et al., n.d.)

Como se pode verificar nos edifícios britânicos são encontrados melhores níveis de desempenho no

consumo de água, com valores anuais próximos dos 0,5 m3/m2. Em climas mais quentes, como na

Austrália são encontrados valores superiores (pouco mais de 1 m3/m2), no entanto não se pode

generalizar uma vez que em Wellington, na Nova Zelândia, com clima ameno também são

encontrados consumos anuais superiores a 1 m3/m2.

2.3.3 DESEMPENHO DOS RESÍDUOS

No processo de construção de novos edifícios nos EUA são gerados 45 a 90 kg/m2 e 318 a 900 kg/m2

de resíduos na reabilitação. A demolição resulta em quantidades verdadeiramente surpreendentes

de resíduos (Kibert, 2003).

A construção, renovação e demolição do edificado produzem cerca de 40 % de todos os resíduos

sólidos dos países desenvolvidos (UNEP, 2012).

O potencial de redução dos resíduos ascende aos 70 % de acordo com a McGraw-Hill Construction

(UNEP, 2012) e Kats (2003). Edifícios, como o Szencorp na Austrália, que será aprofundado

seguidamente, consegue na sua operação menos 54 % de produção de resíduos comparativamente a

um edifício de serviços típico australiano, com uma capitação anual de 79 kg/ocupante e taxas de

reciclagem de 76 % (GBCA, 2010).

2.3.4 CASOS INTERNACIONAIS

De seguida são apresentados oito casos de edifícios de elevado desempenho. Procurou-se abranger

edifícios de diferentes países e que são referência em termos de desempenho, presentes na

publicação High Performing Buildings da ASHRAE, tendo-se incluído adicionalmente o exemplo

nacional do Solar XXI.

Page 41: Universidade de Lisboa Instituto Superior Técnico Centro de ...

29

SEDE CSBO BANK, REPÚBLICA CHECA

O CSBO é um banco comercial checo, cuja sede na capital Praga, foi construída entre 2005 e 2007 de

forma a proporcionar um ambiente de trabalho de qualidade. Este edifício situado numa antiga

lixeira de resíduos perigosos, a sudoeste de Praga, veio juntar mais de 2500 colaboradores num

espaço com mais de 82000 m2 distribuídos por 5 andares. O espaço que combina sustentabilidade,

eficiência e conforto tem estimulado o desenvolvimento da economia local.

O edifício conjuga além de áreas de trabalho, espaços não relacionados com o trabalho, num

conjunto de valências como cafés, lojas, refeitório, que totalizam cerca de 36 % da área total. As

áreas circundantes proporcionam um espaço verde, com espécies autóctones, para toda a

população, que garante a redução em 50 % do consumo de água. Tem boa cobertura de transportes

públicos, incluindo metropolitano e possui lugares reservados para veículos elétricos e de carpooling

e para bicicletas.

Na construção o solo foi descontaminado por processos biológicos e o que não pode ser reutilizado,

como cinquenta e cinco toneladas de vagões de madeira contaminada, foram encaminhados para

uma estação de tratamento de resíduos perigosos. Cerca de 10 mil m2 de betão foram reutilizadas a

partir de estruturas antigas e mais de 75 % dos RCD resultantes foram desviados de aterro, sendo

alguns utilizados em isolamento, camadas de drenagem e meios de cultura. Mais de 40 % de todos os

materiais de construção utilizados tiveram origem inferior a 500 km.

Foram utilizadas uma série de estratégias com vista à eficiência energética, através de uma

orientação otimizada, possibilidade de ventilação natural, um sistema AVAC avançado, controlo da

iluminação artificial e um sistema automático de sombreamento externo. Apesar dos utilizadores

poderem ajustar a iluminação e climatização individualmente, todo o edifício é controlado por um

sistema central de gestão automática que garante o desligar da iluminação e do AVAC após as 18h,

permitindo a continuação em pequenas zonas de trabalho.

As longas fachadas orientadas a norte e sul permitem reduzir as cargas de refrigeração nos meses

quentes e as cargas de aquecimento nos meses de inverno. A área envidraçada, cerca de 70 %, é

constituída por caixilharia com vidros duplos e caixa-de-ar com árgon. O sistema de aquecimento é

constituído por três caldeiras de condensação com eficiência de 92 %. O consumo anual estimado de

energia (eletricidade e gás) para todo o edifício é 207 kWh/m2.

Page 42: Universidade de Lisboa Instituto Superior Técnico Centro de ...

30

Figura 2.7 – A iluminação natural e a utilização de espécies autóctones são estratégias fundamentais do CSBO Bank. (Fonte: HPB, 2009b)

Mais de 41 % da área total da cobertura é verde, regada inteiramente através de um sistema que

aproveita as águas da chuva, sendo que trepadeiras são presença nas fachadas do edifício. No

interior, equipamentos eficientes permitem uma redução no consumo de água em 20 % em relação

aos edifícios convencionais na República Checa.

Para garantir que os recursos são utilizados de forma eficiente todos os colaboradores são alvos de

formação contínua. Foi o primeiro edifício checo a receber a certificação LEED Gold.

SEDE SOLON SE, ALEMANHA

SOLON SE é uma multinacional alemã da área da energia solar. A sua sede inaugurada em 2008, no

parque de ciência e tecnologia de Adlershof em Berlim, foi projetada por uma equipa interdisciplinar

por forma a desenvolver-se uma abordagem integrada na conceção do edifício. O complexo é

constituído por um total de 36000 m2, sendo 10000 m2 dedicados a uma área de escritórios com 350

colaboradores e a restante área a uma unidade de produção. Na construção dos escritórios, 34 % do

custo total foi investido no sistema AVAC, na iluminação, nas instalações elétricas e na automação.

Enquanto a área de produção ocupa um grande espaço, o edifício de serviços foi estruturado com

um interior aberto onde se encontram cinco pátios internos sob um telhado inclinado para sul. Uma

combinação de vidro com isolamento de aço e madeira no recinto cria um ambiente aberto e

convidativo reforçado por um telhado verde acessível. Nas imediações encontra-se também um

parque de estacionamento onde existe uma estação de carregamento solar para veículos.

A fachada é revestida a madeira e no edifício recorreu-se à utilização de tecnologias de informação e

partilha de dados para controlo do edifício. Grande parte do edifício é iluminado através de luz

natural e as janelas com vidro triplo proporcionam um isolamento eficaz (U=0,25 W/m2.K).

Uma central de cogeração a biogás, utilizando biomassa com origem em propriedades agrícolas

locais, satisfaz totalmente as necessidades de aquecimento e permite operar um chiller no verão. A

central fornece toda a eletricidade necessária, no entanto por questões de fiabilidade,

Page 43: Universidade de Lisboa Instituto Superior Técnico Centro de ...

31

particularmente para a unidade de produção, existe ainda a possibilidade de recorrer à rede. Os

sistemas fotovoltaicos geram 258 MWh/ano de energia que é totalmente introduzida na rede.

Figura 2.8 – Um espaçoso green roof e centenas de módulos fotovoltaicos preenchem a cobertura do edifício. (Fonte: HPB, 2011)

O desempenho do edifício está a ser avaliado pela Universidade Técnica de Braunschweig por forma

a fazer ajustamentos e otimização operacional. No ano de 2009/10, o consumo de calor cifrou-se nos

1831 MWh e de energia elétrica nos 1137 MWh, sendo que a produção resultante da central atingiu

os 4025 MWh de calor e 1934 MWh de energia elétrica, somando-se os 258 MWh do sistema

fotovoltaico. Estes factos resultaram numa redução em 85 % das emissões de CO2 em comparação

com o consumo na totalidade a partir da rede.

SZENCORP, AUSTRÁLIA

O edifício Szencorp, no sul de Melbourne na Austrália, foi originalmente construído em 1987 sem

qualquer visão de sustentabilidade, dependendo inteiramente de grandes quantidades de energia.

Reabilitado em 2005, o novo edifício é alvo de uma monitorização constante, disponibilizando os

dados aos seus ocupantes, o que tem permitido reduzir significativamente os seus consumos.

A fachada original foi substituída completamente por generosos envidraçados e sombreamento

externo. O sistema AVAC é controlado por um sistema central, que é auxiliado por uma estação

meteorológica, permitindo a abertura automática de painéis em cada fachada potenciando a

ventilação natural quando as condições são apropriadas. Sensores permitem que o ar condicionado

seja desligado quando certas áreas estão desocupadas. Nos parques de estacionamento

subterrâneos, a ventilação é promovida quando os limiares de monóxido de carbono são

ultrapassados. A iluminação artificial é controlada utilizando os mesmos sensores que controlam a

climatização.

Page 44: Universidade de Lisboa Instituto Superior Técnico Centro de ...

32

Figura 2.9 – A fachada original foi totalmente remodelada. (Fonte: HPB, 2009a)

A aposta na monitorização permitiu uma poupança de 1,85 MWh no consumo de energia após a

desativação de uma unidade de desumidificação pois constatou-se que as condições eram as

adequadas, mesmo sem o equipamento. Alterações no tempo de deteção, na substituição de

lâmpadas e outras correções permitiram economizar 5 MWh/ano. A produção do sistema

fotovoltaico instalado atinge os 13,8 MWh/ano.

A água da precipitação, lavatórios e chuveiros é recolhida e armazenada. Torneiras, autoclismos e

chuveiros eficientes também permitem poupanças. Estas medidas permitem um consumo de água

de apenas 157 m3/ano.

No edifício foram também utilizados materiais reciclados, sendo o mais interessante as paredes

internas em cartão reciclado. Madeiras e alumínio do antigo edifício também foram reutilizadas.

A mobilidade dos colaboradores também é uma preocupação, pelo que, e apesar do edifício ser

servido por transportes públicos, a empresa investiu em vestiários com chuveiros e em incentivos à

utilização de bicicleta. O edifício tornou-se também o lar do primeiro veículo plug-in na Austrália,

para utilização dos colaboradores em horário de expediente.

Recentemente as preocupações centraram-se na gestão dos resíduos. Com sensibilização constante

bem como com existência de locais de deposição diferenciada, cada utilizador produz apenas 0,303

kg de resíduos por dia, ou seja 79 kg por ano, atingindo uma taxa de reciclagem de cerca de 76 %.

O Szencorp tem um consumo de eletricidade de 84 MWh/ano, inferior em 65 % ao edifício anterior e

de gás a rondar os 381 GJ/ano. Um estudo realizado em 2006, um ano após as obras de reabilitação,

demonstra um aumento de produtividade de 13 %. O edifício líder na Austrália recebeu uma série de

distinções incluindo a certificação 6 Star Green Star Rating (certificação Australiana), equivalente ao

LEED Platinum.

Page 45: Universidade de Lisboa Instituto Superior Técnico Centro de ...

33

SPECTRAL SERVICES, ÍNDIA

Este prédio de escritórios de 5 andares localizado em Noida, perto de Deli na Índia, possui 1500 m2,

servindo 150 colaboradores.

O edifício orientado a sul e a norte permite, apesar do clima quente e húmido, um nível de

iluminação elevado (250-300 lux) sem ganhos de calor. Os 300 dias anuais de sol quase dispensam a

iluminação artificial. Um grande átrio estende-se por todos os andares do edifício, bem como uma

claraboia inclinada a sul, com grelhas que minimizam a luz solar direta, comportamento previamente

simulado. O nível de qualidade do ar interior é monitorizado, sendo que os precipitadores

electroestáticos garantem um ambiente interior livre de poeiras. A temperatura e humidade relativa

são mantidas entre os 23 °C e os 25 °C e 40 % e 60 % respetivamente, através de um sistema de ar

condicionado. As operações são coordenadas por um sistema e os seus parâmetros podem ser

visualizados a partir dos 150 postos de trabalho. O consumo anual de eletricidade ronda os 242086

kWh.

Figura 2.10 – Claraboia de grandes dimensões praticamente dispensa a iluminação artificial. (Fonte: HPB, 2008)

Uma vez que não existe rede de saneamento básico na área foi instalada uma estação de

tratamento, que permite a reutilização da água, o que somando à recolha da água pluvial permite

um consumo diário da rede de apenas 6500 L de água.

O edifício inaugurado em 2007, apesar de ter custado aproximadamente 8 % mais que um edifício

convencional, viu o seu investimento recuperado em apenas 3-4 anos. Recebeu a certificação LEED

Platinum.

ENERPOS, ILHA REUNIÃO

ENERPOS (sigla em francês para energia positiva), construído em 2008/09 na Ilha da Reunião no

Oceano Índico, é um dos poucos edifícios NZEB num clima tropical. O edifício universitário que

alberga salas de aula e escritórios foi edificado com o objetivo de demonstrar que através de técnicas

Page 46: Universidade de Lisboa Instituto Superior Técnico Centro de ...

34

passivas o consumo anual de energia pode ser reduzido a um terço (a média anual na Ilha Reunião

para um edifício universitário situa-se nos 140 kWh/m2).

Figura 2.11 – Os edifícios de elevado desempenho são uma presença nos mais variados climas. (Fonte: HPB, 2012a)

O edifício de dois andares, rodeado de espécies nativas, divide-se em dois blocos paralelos separados

por um pátio. As suas fachadas principais são orientadas a norte e sul por forma a beneficiar das

brisas durante o verão e para reduzir os ganhos energéticos. O parque de estacionamento situa-se

sobre a edificação para reduzir o efeito de ilha de calor e para aumentar a permeabilidade, aspeto

preponderante pois a ilha é afetada por tempestades tropicais severas com fortes precipitações. O

edifício é naturalmente ventilado com grelhas que permitem a regulação do fluxo de ar oferecendo

proteção contra fortes ventos. Os espaços de trabalho foram colocados paralelamente às janelas,

com alguma distância, evitando assim a radiação direta. As próprias cadeiras são feitas de tecido

respirável.

A densidade da iluminação artificial é reduzida (7 W/m2 nas salas de aula e 3,7 W/m2 nos escritórios),

sendo que temporizadores nas salas de aula desligam automaticamente as luminárias passadas 2

horas. Um total de 55 ventiladores de teto foram instalados, com controlo individual ou em

pequenos grupos e com três níveis de velocidade. Um sistema de gestão controla o sistema de ar

condicionado (período de funcionamento e temperatura nominal), os horários da iluminação exterior

e os consumos de energia por diferentes usos. Os ventiladores são utilizados durante o verão

(novembro a abril) e o ar condicionado apenas durante uma semana em fevereiro.

Após dois anos de ocupação verificou-se um consumo anual de apenas 14,4 kWh/m2 (9824 kWh), o

que significa que o ENERPOS consome apenas um décimo de um edifício universitário padrão. O

consumo reduzido de energia é equilibrado por 350 m2 de módulos fotovoltaicos. A sua produção

anual ascende aos 71118 kWh, o que resulta num excedente de 90 kWh/m2. A vantagem de um clima

tropical é que o pico de consumo e a produção máxima ocorrem em simultâneo. O sistema

fotovoltaico resulta de uma parceria com um agente privado que recebe os benefícios da produção

durante 15 anos, após o qual a universidade passa a ser total proprietário do sistema.

Page 47: Universidade de Lisboa Instituto Superior Técnico Centro de ...

35

Infelizmente a monitorização do consumo de água não é uma prioridade neste edifício que

demonstra que com um custo adicional de apenas 9 % é possível construir um edifício que consome

10 vezes menos energia que um edifício padrão, mantendo ótimas condições para os seus

ocupantes.

DR. DAVID SUZUKI PUBLIC SCHOOL, CANADÁ

Esta escola primária no Ontário foi a primeira no Canadá a receber a certificação LEED Platinum. Este

edifício de 2 andares com 5433 m2 acolhe mais de 500 alunos. Inaugurado em 2010, pretende

incorporar nas oportunidades educativas os princípios de sustentabilidade.

O edifício assegura a eficiência energética com a utilização de duas bombas de calor geotérmicas e

forte isolamento, com poliestireno extrudido na cobertura, poliuretano aplicado por pulverização

sobre as paredes de alvenaria e fibra de lã mineral semirrígida. As janelas são de vidro duplo com

caixa-de-ar com árgon e revestimento que origina um coeficiente de transferência de calor de

apenas 0,35 W/m2.K. O sistema de piso radiante fornece todo o aquecimento e arrefecimento para a

maioria das salas, que é ainda complementada por ventilação natural. O sistema central, que utiliza

as condições externas e internas para alternar entre aquecimento e arrefecimento, desativa o

fornecimento de ar caso seja detetada a abertura de janelas.

No que diz respeito à iluminação, o edifício reduz a necessidade de luz artificial, melhorando a

produtividade e aumentando o conforto através da orientação do edifício segundo um eixo este-

oeste, na instalação de janelas que permitem a transmissão de grandes quantidades de luz, de duas

claraboias equipadas com um controlador de GPS, de superfícies reflexivas, tubos de luz, sensores de

movimento e de regulação de intensidade. Como resultado, a densidade da iluminação artificial é

reduzida (7,5 W/m2), o que se traduz numa poupança de 28 % em relação aos valores de referência.

O estabelecimento de ensino tem dois sistemas fotovoltaicos instalados com produção estimada de

46507 MW/h e duas turbinas eólicas, uma de eixo horizontal com 2,4 kW de potência e outra de eixo

vertical de 5 kW. Um coletor solar de ar com 15 m2 foi colocado na parede vertical, servindo para

abastecer uma unidade de aquecimento de ar, e permitindo uma poupança na ordem dos 1000

kWh/ano. Um sistema solar térmico com 5 m2 produz AQS o que origina uma poupança estimada de

2752 kWh/ano. O consumo anual de energia do edifício atinge os 84 kWh/m2, 70 % inferior aos

consumos médios para estabelecimentos escolares no Canadá.

As medidas de conservação da água como a reutilização da água recolhida na cobertura, após

tratamento de filtração e de radiação ultravioleta e a utilização de espécies nativas permitem um

consumo anual de 1411 m3 (cerca de 260 L/m2).

Foram utilizados na construção 43 % de materiais de origem locais e 15 % deles reciclados, como

placas de gesso, betão e aço.

Page 48: Universidade de Lisboa Instituto Superior Técnico Centro de ...

36

Figura 2.12 – A sensibilização dos alunos através da demonstração dos equipamentos. (Fonte: HPB, 2012b)

A escola é uma “sala de aula viva” permitindo aos alunos, colaboradores e a todos os visitantes a

visualização dos equipamentos e de soluções inovadoras, como as paredes verdes. Os estudantes são

incentivados a fazer reciclagem existindo mesmo compostores. Os alunos também podem gerar a

sua própria energia, através de bicicletas, que é armazenada em baterias.

EARTH RANGERS CENTRE, CANADÁ

Este centro com quase 6000 m2 é o lar de várias espécies de animais, sendo também um espaço

aberto a eventos variados, recebendo algumas associações. Este projeto inaugurado em 2004 perto

de Toronto, Canadá foi alvo em 2010 de obras de renovação que resultaram na atribuição da

certificação LEED Platinum em 2012.

O edifício apresenta uma massa térmica forte de betão. Os espaços são aquecidos e arrefecidos

através de piso radiante, cuja energia resulta de um sistema de geotermia constituído por mais de 20

km de tubagem de polietileno reticulado (PEX). A luz artificial raramente é necessária, pois 75 % dos

espaços são naturalmente iluminados, favorecidos ainda pela existência de claraboias. No parque de

estacionamento toda a iluminação é constituída por LEDs.

Toda a água potável é obtida através de um furo e todas as águas residuais são tratadas no local por

um bioreactor e por tratamento ultravioleta, sendo armazenada num depósito juntamente com a

água recolhida na cobertura que apresenta um green roof com 929 m2. Esta água é reutilizada nas

instalações sanitárias e na rega. Os níveis de consumo são minimizados também através de sanitários

e urinóis eficientes. O consumo anual de água do furo ronda os 630 m3 e as águas residuais tratadas

ascendem a 1810 m3.

Um sistema de monitorização com mais de 80 pontos e automação extensa permitem controlar o

funcionamento e consumos do edifício. Um sistema solar fotovoltaico com 86 kW de potência,

constituído por um sistema fixo e um sistema de duplo eixo, fornecem cerca de 20 % da energia

consumida (113,855 MWh). Um sistema solar térmico com 16 coletores serve para pré-aquecer as

AQS.

Page 49: Universidade de Lisboa Instituto Superior Técnico Centro de ...

37

Figura 2.13 – No Earth Rangers Centre, 20 % da energia consumida provém do sistema solar fotovoltaico. (Fonte: HPB, 2013)

Um estudo em 2011 mostrou um grau de satisfação de 86 % dos ocupantes, o que vem de encontro

ao principal objetivo do centro: “inspirar cada um na construção e operação de edifícios de elevado

desempenho”.

EDIFÍCIO SOLAR XXI, PORTUGAL

O Edifício Solar XXI é um edifício com salas, gabinetes e laboratórios com uma área útil de 1200 m2

dividida por 3 pisos. Inaugurado em 2006, trata-se de um edifício de demonstração, constituindo um

exemplo de um edifício energeticamente eficiente, de baixo consumo energético, e com um

conjunto de sistemas solares passivos e ativos integrados na sua arquitetura.

O edifício devidamente orientado, com zonas de ocupação menos permanente localizadas a norte, é

constituído por uma estrutura em betão em alvenaria de tijolo com isolamento pelo exterior de

poliestireno expandido. O isolamento pelo exterior permite que no inverno o edifício mantenha a sua

massa inercial, constituindo no verão uma primeira barreira ao calor exterior.

Os vãos, principalmente na fachada sul, são constituídos por vidro duplo protegidos por estores

exteriores. Na fachada sul foi instalado um sistema solar fotovoltaico agrupando módulos de painéis

fotovoltaicos (silício multicristalino) em posição vertical, numa superfície total de 100 m2. Este

sistema, com potência de 12 kW, além de permitir o fornecimento direto de energia elétrica propicia

o aproveitamento térmico do calor gerado pelos módulos fotovoltaicos no período de inverno,

aquecendo a faixa de ar existente entre os painéis fotovoltaicos e a parede exterior do edifício,

potenciando assim as correntes de convecção natural. No parque de estacionamento foram

implementados dois sistemas fotovoltaicos, um com 6 kW de potência e outro, em 2010, com 12 kW.

A produção anual dos três sistemas fotovoltaicos é da ordem dos 38 MWh, sendo que o consumo do

edifício aproxima-se dos 37 MWh. O edifício tem ainda um sistema de aquecimento auxiliar, com

base num sistema com 8 coletores solares térmicos com apoio de uma caldeira a gás natural, para

períodos mais rigorosos.

Page 50: Universidade de Lisboa Instituto Superior Técnico Centro de ...

38

Um sistema de arrefecimento pelo solo, baseado na colocação de 32 tubos de manilhas de cimento

enterradas, constitui um permutador de calor ao permitir o arrefecimento do ar a ser injetado no

edifício durante o verão. Este sistema passivo é complementar a uma estratégia global associado a

um esquema de ventilação natural.

Figura 2.14 – Fachada sul do edifício onde são visíveis os módulos fotovoltaicos e a promoção da ventilação natural com o aspeto exterior da zona de admissão de ar com grelha contínua.

(Fonte: Gonçalves et al., 2010)

É ainda potenciada a iluminação natural, nomeadamente através de um poço de luz na zona central

do edifício e na adoção de superfícies translúcidas.

O Solar XXI apresenta níveis de conforto assinaláveis mesmo sem dispositivos de ar condicionado. O

edifício com um custo compatível com os custos de mercado (inferior a 900 €/m2) recebeu vários

prémios nacionais e internacionais, como o 3° lugar no European Award, Building-Integrated Solar

Technology 2008.

Page 51: Universidade de Lisboa Instituto Superior Técnico Centro de ...

39

2.3.5 INDICADORES AMBIENTAIS

No Quadro seguinte (Quadro 2.2) são resumidos os dados anuais normalizados relativos ao consumo

e produção de energia, bem como ao consumo de água dos oito edifícios anteriormente

selecionados e apresentados.

Quadro 2.2 – Desempenho energético e da água de edifícios de elevado desempenho.

Edifício Tipo de

Utilização Área (m2)

Energia (kWh/m2.ano) Água

(m3/m2.ano) Produção Consumo

Eletricidade Gás Eletricidade Gás CSBO Bank Serviços 82392 - - 163,6 43,4 0,33

SOLON SE Indústria/ Serviços

36000 80,5 148

(biogás) 41,9

67,3 (biogás)

n.d.

Szencorp Serviços 1200 11,5 - 69 88,2 0,13 Spectral Services

Serviços 1500 -

- 161,5 - 1,58

ENERPOS Ensino 681 104,4 - 14,4 - n.d.

Dr. David Suzuki Public

School Ensino 5433 n.d. - 84 - 0,26

Earth Rangers Centre

Ensino 5853 19,5 - 90 6 0,40

Solar XXI Investigação 1200 32 - 31 - n.d.

n.d. – não determinado Melhor Desempenho Pior Desempenho

Como se pode observar por esta amostra, enquanto alguns edifícios garantem as suas necessidades

através de produção local de energia como é o caso dos edifícios Solar XXI e ENERPOS outros são

energeticamente dependentes. Os melhores valores de produção de eletricidade atingem mais de

100 kWh/m2.ano, enquanto de consumo alcançam os 14 kWh/m2.ano. No consumo de água destaca-

se, pela positiva, o edifício Szencorp na Austrália com um consumo de 0,13 m3/m2.ano e pela

negativa o Spectral Services, com um consumo superior a 1,5 m3/m2.ano.

O bom desempenho ambiental só é possível devido ao envolvimento de todos os utilizadores e deve

estar integrado nas várias fases de vida do edifício. Com esta consciencialização e estratégias já

apresentadas e que se sumarizam na Figura 2.15, como: sistemas de produção energética, green

roofs, solar térmico, iluminação de baixo consumo ou natural, isolamentos, materiais de baixo

impacte e massa térmica forte, equipamentos eficientes, soluções de mobilidade sustentável, gestão

correta dos resíduos, recolha de águas pluviais e reutilização de águas cinzentas, gestão e

monitorização, orientação adequada das fachadas, ventilação e arrefecimento passivo e vidros e

caixilharias de qualidade; caminhar-se-á cada vez mais no sentido de um edificado mais sustentável

e, consequentemente, de uma sociedade mais equilibrada.

Page 52: Universidade de Lisboa Instituto Superior Técnico Centro de ...

40

Figura 2.15 – Estratégias comuns utilizadas em edifícios de elevado desempenho.

Produção de Energia

Green roof

Solar Térmico

Iluminação natural

Isolamentos

Equipamentos

eficientes

Vidros e caixilharias

de qualidade

Ventilação e

Arrefecimento

passivo

Gestão e

Monitorização

Mobilidade

sustentável Gestão de Resíduos Gestão da Água

Page 53: Universidade de Lisboa Instituto Superior Técnico Centro de ...

41

CAPÍTULO 3 – CASO DE ESTUDO – CENTRO DE EDUCAÇÃO AMBIENTAL DE

TORRES VEDRAS

3.1 INTRODUÇÃO

O Centro de Educação Ambiental de Torres Vedras foi projetado nos anos de 2009/10, construído

entre 2011 e 2013, com algum atraso devido à insolvência do empreiteiro que ganhou o concurso

público, o que obrigou a CMTV a encontrar um segundo consórcio responsável por 90 % da

construção e foi inaugurado a 20 de setembro de 2013. A sua construção surgiu da intenção de criar

um edifício de elevado desempenho, com o intuito de substituir o antigo centro, pretendendo

demonstrar as vantagens da construção sustentável e da utilização das energias renováveis, com

vista a educar e formar a população.

O edifício, projetado pela Área de Projeto da Câmara Municipal de Torres Vedras, foi concebido de

forma a responder às necessidades programáticas e funcionais requeridas atualmente por um

concelho que coloca a educação ambiental como domínio estratégico de intervenção. A construção

está também relacionada com o GreenMed (um programa internacional em que a CMTV participou

na área das compras públicas sustentáveis) e a Rede Ecos (uma entidade nacional de apoio a

atividades no domínio da energia e construção sustentável da qual o município faz parte), tendo

atingido um custo total na ordem dos 1 330 500 €.

O centro encontra-se implantado no extremo poente do Parque Verde da Várzea, no limite do

perímetro urbano da cidade de Torres Vedras (Figura 3.1), com uma área de implantação de 1267 m2

e uma área bruta de construção de 1230,14 m2 (valor que será utilizado para os cálculos dos dados

normalizados de desempenho do edifício).

Figura 3.1 – Localização do Centro de Educação Ambiental de Torres Vedras. (Adaptado de Bing Maps, 2013)

Page 54: Universidade de Lisboa Instituto Superior Técnico Centro de ...

42

Inserindo-se na lógica da topografia e percursos do parque, o CEA desenha a transição da zona de

várzea para a encosta. Num único piso, ocupa uma área da parcela longitudinal do terreno e oferece

um prolongamento do parque na sua cobertura, contando com espaços de atividades, um

laboratório, espaços exteriores que complementam as atividades realizadas no seu interior, espaços

expositivos (átrio e corredor), espaços para apresentações / palestras, um café e áreas de apoio.

O edifício foi avaliado, na fase de projeto em 2010, pelo LiderA – sistema de avaliação da

sustentabilidade da construção, tendo sido atribuído a classe A+ (o que significa, em relação à prática

comum, uma melhoria do desempenho ambiental de cerca de 75 %). Entre os aspetos com melhor

desempenho destacam-se a valorização ecológica e a interligação de habitats, uma vez que boa parte

do lote é composto por áreas verdes, dando continuidade à estrutura verde existente; o desenho

passivo, aplicando princípios de bioclimatização; potencial de reduzir a intensidade em carbono,

através de equipamentos altamente eficientes e utilização de fontes de energia renováveis; conforto

térmico; soluções inclusivas; e, por fim, o trabalho local. Na publicação (Anexo VII) resultante da

caracterização do centro é apresentada pormenorizadamente a avaliação efetuada.

Figura 3.2 – Centro de Educação Ambiental de Torres Vedras.

Em síntese o centro que teve um custo médio de cerca de 1081 €/m2 apresenta as seguintes

características urbanísticas (Quadro 3.1).

Quadro 3.1 - Características urbanísticas do CEA.

Dono de Obra: Câmara Municipal de Torres Vedras

Projeto de arquitetura: Área de Projeto da Câmara Municipal de Torres Vedras

Fase: Operação

Concelho / Freguesia: Torres Vedras / União das Freguesias de Torres Vedras

Latitude/ Longitude: 39° 05’7.8” N / 9° 15’50.40” O

Inserção: Parque urbano

Tipo de uso: Equipamento de educação e formação

N°. de pisos: 1 piso + 1 piso técnico

Área de implantação: 1267 m2

Área bruta de construção: 1230,14 m2

Área de construção:

1438 m2

Custo total:

1330500 € (financiado a 70 % pelo POVT/QREN)

Page 55: Universidade de Lisboa Instituto Superior Técnico Centro de ...

43

3.2 ORGANIZAÇÃO FUNCIONAL

Na conceção do edifício teve-se em atenção duas opções: ocupar uma área longitudinal do terreno

disponível através de um só piso e, por outro lado, transformar a cobertura num prolongamento do

parque.

Apesar do edifício ser constituído por um só piso a diferença de cota e sobreposição entre o corpo

central e o volume nascente das salas permitiu criar também um piso técnico de acesso às

infraestruturas acima do espaço de exposição / circulação.

Figura 3.3 – Cobertura (à esquerda), pátio interior (ao centro) e espaço expositivo / área circulação (à direita).

Partindo-se da posição intermédia do átrio de entrada, consegue-se organizar desde logo o espaço

em zonas de exposição, atividades e trabalho a sul e nascente, café a norte e instalações sanitárias e

zonas de serviço a poente.

A zona de exposição define-se a partir do espaço expositivo, que tem a dupla função de ser uma sala

de exposição informal e de ser uma espaço de distribuição para as salas de exposição, de atividades,

laboratório, biblioteca (anterior auditório) e pátios interiores. O espaço entre o átrio de entrada e a

zona de exposição, caracterizado por um estreitamento de acesso e rebaixamento do teto, permitiu

resolver os acessos ao gabinete de trabalho do pessoal afeto ao centro, ao bloco de instalações

sanitárias bem como a uma das zonas técnicas.

O café instala-se na continuidade do átrio para norte ocupando a zona mais larga do corpo central.

Este espaço é dominado pela presença de um vão rasgado orientado para norte e que se abre para o

espaço exterior de estadia.

Tratando-se de um edifício que se pretende demonstrativo de soluções inovadoras de construção

sustentável, foi dado ênfase às duas zonas técnicas que ocupam as extremidades sul e norte do

edifício. No caso da zona técnica 1, situada no extremo norte, está prevista inclusive a possibilidade

de visita guiada ao espaço, por forma a observar os equipamentos. Este pressuposto levou a que se

estabelecesse um corredor de acesso direto a partir da zona de exposição. Este corredor, por sua vez,

Page 56: Universidade de Lisboa Instituto Superior Técnico Centro de ...

44

envolve e organiza as zonas de serviço e de apoio ao café, bem como o bloco de instalações

sanitárias.

As plantas do piso 0 e da cobertura bem como as áreas úteis das divisões encontram-se nos Anexos I

e II.

3.3 ASPETOS CONSTRUTIVOS

O centro, guiado por princípios de bioclimatização, tem as suas paredes, janelas e tetos devidamente

localizados, orientados e desenhados de modo a captarem corretamente a radiação solar, ventilação

e iluminação natural. A aposta num sistema tradicional de estrutura em betão armado e paredes em

alvenaria de tijolo fundamenta-se no princípio em que a inércia térmica deste sistema se adequa ao

nosso clima, contribuindo para um bom desempenho energético, complementado pela camada de

terra que reveste a cobertura do edifício e pelo seu encosto ao terreno a poente.

O edifício apresenta uma frente de madeira semitransparente, com um sistema de brise-soleil em

réguas em perfis de madeira termotratada e um embasamento de fundo em pedra de Vidraço de

Ataíja Creme que interpreta o encontro com o terreno. O topo da platibanda, escadarias, rodapé dos

muros e percurso pela cobertura, bem como limites das plataformas do espaço exterior são também

definidos por blocos em Vidraço de Ataíja Creme.

Praticamente todas as divisões principais (à exceção do café) estão orientadas a sul e a quase

totalidade dos seus envidraçados (vidros duplos e caixilharias em perfis de alumínio com rutura de

ponte térmica) é sombreada exteriormente pela frente de madeira acima mencionada e

interiormente por estores com comando duplo.

Figura 3.4 – Sistema de brise-soleil (à esquerda), isolamento em placas de aglomerado de cortiça expandida (ao centro) e revestimento em pedra de vidraço de Ataíja Creme (à direita).

No tocante ao tratamento das pontes térmicas, houve uma preocupação em eliminá-las,

nomeadamente através de paredes duplas ou paredes simples formando caixas-de-ar, o isolamento

térmico das estruturas a partir do revestimento de pavimentos, cobertura e paredes exteriores em

placas rígidas de espuma de poliestireno extrudido (XPS). Uma solução de ETICS foi também aplicada

Page 57: Universidade de Lisboa Instituto Superior Técnico Centro de ...

45

nas paredes exteriores, com isolamento em placas de aglomerado de cortiça expandida, e no

revestimento dos tetos exteriores, com isolamento térmico em placas de poliestireno expandido

(EPS). As placas de aglomerado de cortiça expandida foram também aplicadas no interior de paredes

e no paramento das 3 claraboias do átrio de entrada / receção e das claraboias das instalações

sanitárias.

Figura 3.5 – Sequência intercalada dos pátios (à esquerda), revestimento do pavimento em linóleo (ao centro) e isolamento interior com placas de gesso (à direita).

As condições preferenciais da conceção do edifício, a sua orientação e a conceção da sequência

intercalada de pátios exteriores, permitiram a localização dos vãos passíveis de abertura

direcionados ao vento dominante de verão (norte / noroeste), potenciando a utilização da ventilação

natural cruzada para arrefecimento passivo, nomeadamente no café, na sala de atividades /

multimédia, no átrio de entrada / receção, na sala de reuniões / gabinete e no atelier / laboratório de

educação ambiental.

O espaço interior é materializado em pedra de Calcário Azul Valverde, que além de revestir o

pavimento do acesso principal é utilizado no átrio de entrada, espaço de exposição / circulação e

café. Os paramentos destes espaços caracterizam-se pelo lambril em placas de fibra de gesso pintado

a tinta de esmalte e os tetos e a porção de paramento até ao lambril materializam-se em gesso

laminado pintado a tinta plástica mate.

No café utilizou-se placas de gesso laminado com absorção acústica. Nas salas de laboratório,

exposição e trabalho, optou-se por revestir o pavimento com linóleo, rebocando-se as paredes de

alvenaria existentes. Mantém-se no interior das salas o teto falso em gesso laminado.

Nas instalações sanitárias optou-se pelo revestimento das paredes até à altura do lambril com

azulejo vidrado branco e pelo uso de divisórias em painéis fenólicos brancos. Nas zonas técnicas e de

serviço optou-se por um revestimento de pavimento em epoxi.

Page 58: Universidade de Lisboa Instituto Superior Técnico Centro de ...

46

CAPÍTULO 4 – FUNCIONAMENTO – AVALIAÇÃO DESEMPENHO AMBIENTAL

4.1 SERVIÇOS

Inserindo-se, de acordo com o Despacho n.° 1237/2011 de 13 de janeiro, na Divisão de Planeamento

Estratégico para a Sustentabilidade, o CEA foi concebido para ser um espaço para toda a população,

estando no entanto especialmente vocacionado para acolher a comunidade escolar, até porque esse

serviço pedagógico municipal dinamiza anualmente, desde 2004, um conjunto de atividades que

contam com cerca de 15 mil participações, na sua grande maioria alunos. Apresenta como objetivos

estratégicos (CEA, 2014):

o Promoção da consciência crítica e participativa e adoção de comportamentos de

sustentabilidade;

o Estimulação da participação ativa dos munícipes na proteção do ambiente;

o Promoção de uma conduta consciente na exploração dos recursos naturais e energéticos do

Concelho.

O centro aberto de Segunda a Sexta das 9h às 17h e aos Sábados das 14h às 18h conta com uma

equipa constituída por 5 elementos que desenvolve, através de programas, um conjunto de

atividades dirigidas à população em geral, permitindo-lhe o acesso à informação e estimulando a sua

participação ativa na comunidade local. Essas atividades são distribuídas por sessões diárias, com

duração de 90 minutos, cuja população-alvo são os alunos do pré-escolar e do 1° ciclo, ações de

sensibilização, com duração de 90 minutos, dirigidas aos alunos do 2° ciclo ao secundário nos seus

respetivos estabelecimentos de ensino, de formação / workshops para a população adulta, visitas de

estudo, ateliês, comemoração de datas, concursos e apoio a projetos, reforçando assim a sua missão

de interação com a população.

Durante 2013, os técnicos do CEA desenvolveram e dinamizaram 192 ações, com destaque para

sessões diárias no âmbito dos resíduos, água, consumo responsável, alimentação, biodiversidade e

energia; ações de sensibilização relacionadas com resíduos, água, consumo responsável, alterações

climáticas, ruído e energia; e visitas a locais de interesse ambiental e empresas que desenvolvem

atividades regionalmente, como ETARs, centrais de tratamento de resíduos, unidades industriais,

viveiros municipais e litoral. O programa pedagógico do CEA pode ser consultado online (ver:

http://www.cm-tvedras.pt/ambiente/educacao-para-sustentabilidade/cea/). Desde a inauguração,

em setembro de 2013 e até março inclusive, o CEA segundo dados contabilizados pelos técnicos já

acolheu mais de 4000 pessoas.

No CEA é notória a rentabilização dos espaços com a existência de um café com serviço de refeições,

com 39 lugares sentados e ainda com esplanada, o Ambiente & Ar, com horário diário das 9h às 19h,

Page 59: Universidade de Lisboa Instituto Superior Técnico Centro de ...

47

recebendo também marcações de grupos para jantares fora do horário de funcionamento. O café

conta com um colaborador a tempo inteiro, sendo que em especial nos períodos das refeições é

reforçado o efetivo. A existência de espaços como a sala de atividades / multimédia também é

rentabilizada com ações de formação diversas.

Figura 4.1 – Entrada interior do café (à esquerda), exposição de concurso escolar (ao centro) e material didático presente no laboratório (à direita).

4.2 ENERGIA

4.2.1 CONSUMO

O CEA consome energia sob a forma de eletricidade e calor, como representado no Quadro seguinte

(Quadro 4.1).

Quadro 4.1 – Utilização final de energia.

Forma de Energia Utilização final

Eletricidade

Iluminação, aquecimento / arrefecimento de ar, ventilação e tratamento de ar, força motriz (bombas), equipamentos diversos de café (refrigeração, frigoríficos, fornos, máquinas lavar, etc.), equipamento do centro (computadores, projetores, etc.)

Calor Aquecimento / arrefecimento de ar (bomba calor geotérmica) e cozinha (confeção de alimentos)

Uma das importantes limitações com que deparou-se foi a ausência de dados relativos ao consumo

uma vez que o centro, à data de realização da dissertação, não dispunha de contador de eletricidade.

O contador existente, ainda de obra, está inacessível e o empreiteiro mostrou-se sempre relutante à

cedência dos dados. Face a esta contrariedade recorreu-se ao engenheiro responsável pelo projeto

de eletrotecnia que fez uma estimativa de consumos em setembro de 2013. Esta estimativa no

entanto não teve em conta os equipamentos do centro e do café.

Page 60: Universidade de Lisboa Instituto Superior Técnico Centro de ...

48

Quadro 4.2 – Estimativa do consumo de eletricidade.

Sistema / Equipamento Consumo anual (kWh) Iluminação Interior 9500

Iluminação Exterior 1200

UTAs 8500

Chiller 5500

Ventilação 2500

Ventilação da Cozinha 950

Bombagem 225

Total 28375

Como se pode verificar no Quadro 4.2 os valores de consumo atribuídos à iluminação,

particularmente a exterior, tem algum peso relativo. De facto esta estimativa não teve em conta os

diferentes períodos de funcionamento do centro e sobretudo na parte exterior sobrestimou a

iluminação pois no período noturno o centro mantém acesas apenas duas luminárias reguladas por

foto-sensores.

À falta de dados de consumo de energia, bem como de um levantamento detalhado dos diferentes

sistemas e equipamentos consumidores de energia foi efetuado um levantamento individual de

todos os equipamentos, bem como produzido um modelo para estimar os valores de consumo e

padrões de utilização de forma a desagregar os diferentes consumos em termos de utilização final.

Apesar do edifício ser recente boa parte dos seus equipamentos, especialmente da cozinha, foram

reaproveitados até porque o proprietário do café possui mais estabelecimentos de restauração no

município. O número elevado de equipamentos aos quais por vezes é difícil a recolha de informação,

como potências, períodos e regimes de funcionamento influenciados pelo clima, ocupação,

atividades e comportamentos dos utilizadores pode colocar em causa o rigor da desagregação dos

consumos de energia.

Para garantir esse rigor, identificou-se os equipamentos existentes registando-se a sua quantidade,

potência (W/unidade) e o seu consumo (h/dia), tendo em atenção neste último ponto aos diferentes

períodos de funcionamento do centro e do café isoladamente. Para caracterizar e quantificar com

sucesso os padrões de consumo energético seguiu-se sequencialmente a seguinte metodologia:

o Identificação das divisões do centro (Anexo I);

o Levantamento detalhado para cada divisão dos equipamentos presentes bem como a sua

quantidade e potência;

o Avaliação e registo dos períodos de funcionamento dos equipamentos com o apoio dos

técnicos do CEA e do colaborador do café;

o Confirmação do consumo dos equipamentos, sobretudo do café e respetiva cozinha, através

de um medidor de consumo de energia de tomada;

o Elaboração do modelo e ajustes em cada elemento.

Page 61: Universidade de Lisboa Instituto Superior Técnico Centro de ...

49

No Quadro 4.3 é apresentado um excerto do modelo desenvolvido. O modelo completo e mais

detalhado encontra-se no Anexo III.

Quadro 4.3 – Excerto do modelo desenvolvido.

Com base nesta identificação e quantificação dos consumos de energia foi possível caracterizar os

principais setores consumidores de energia no CEA.

Na figura seguinte (Figura 4.2) apresenta-se a distribuição de consumos por utilização final no centro.

Figura 4.2 – Distribuição dos consumos de energia no CEA por utilização final (estimativa aproximada).

Esta distribuição traduz-se na seguinte estimativa de consumo anual por utilização final.

Iluminação 13,2%

Climatização e Tratamento do Ar

38,4%

Café + Cozinha 38%

Bombas 0,7%

Equipamentos WC 1,2%

Equipamentos CEA 8,7%

Page 62: Universidade de Lisboa Instituto Superior Técnico Centro de ...

50

Quadro 4.4 – Estimativa do consumo anual de eletricidade por utilização final.

Setor Consumo anual (kWh) Climatização e Tratamento do Ar 19829

Café + Cozinha 19403

Iluminação 6832

Equipamentos CEA 4488

Equipamentos WC 642

Bombas 378

Total 51572

O consumo estimado de eletricidade aproxima-se dos 1000 kWh por semana, o que perfaz um

consumo anual de cerca de 51572 kWh, ou seja, 42 kWh/m2.

As parcelas que apresentam maiores consumos são as dedicadas ao café e à respetiva cozinha, bem

como à climatização e tratamento do ar (aquecimento / arrefecimento, ventilação e tratamento),

representando cada uma 38 % do consumo total de energia.

No café os consumos são sobretudo a nível de frio, com equipamentos como frigoríficos, arcas

conservadoras, bancadas e vitrines refrigeradas a consumirem boa parte da energia. No período das

refeições, sobretudo entre as 12h e as 14h, os equipamentos de confeção, em particular o forno, os

fornos micro-ondas, o fogão, o fry-top e a fritadeira são os equipamentos que mais pesam no

consumo.

Apesar das condições preferenciais da conceção do edifício com incorporação de princípios de

desenho passivo, outra parcela de grande consumo é a climatização dos espaços. A climatização é

assegurada por duas unidades de tratamento e extração de ar (UTA / UE), uma alimentada por um

chiller com bomba de calor, responsável pelas salas e áreas do piso 0, e outra por produção

geotérmica, responsável pelo átrio de entrada / receção e pelo café. Este sistema é programado

através de um sistema de automação, instalado na receção, que controla as duas UTAs, permitindo

manter as temperaturas interiores na ordem dos 20 °C de inverno e os 25 °C no verão.

A parcela correspondente à iluminação representa cerca de 13 %, com um valor reduzido de menos

de 6 kWh/m2. De facto quanto à iluminação artificial esta funciona como complemento à iluminação

natural nas áreas principais e com mecanismos de controlo intuitivos em zonas com menor

utilização, como os detetores de movimento nas instalações sanitárias e certas áreas de circulação. A

luz natural é uma presença constante resultado da orientação do edifício, dos generosos vãos

envidraçados, com uma área total de quase 180 m2 e das claraboias do átrio de entrada / receção e

das instalações sanitárias. Por outro lado, os acabamentos interiores de cor clara favorecem a

iluminação natural que é controlada por um sistema de brise-soleil e estores controlados

manualmente.

Page 63: Universidade de Lisboa Instituto Superior Técnico Centro de ...

51

Tendo em conta as diferentes ações promovidas pelo centro e consequente ocupação, os

equipamentos do centro, como os projetores e os computadores têm diferentes períodos de

utilização.

O consumo de energia nas bombas, incluindo o reciclador de águas cinzentas, as eletrobombas do

sistema de recolha de águas pluviais e a unidade de controlo de rega, representa uma pequena

percentagem do consumo total de energia. Os equipamentos das instalações sanitárias (secadores de

mãos) representam, igualmente, uma percentagem relativamente sem importância.

4.2.2 PRODUÇÃO

A utilização das energias renováveis foi um dos propósitos aquando da construção do centro. Para tal

foi instalado um sistema híbrido (sistema fotovoltaico + sistema eólico), no âmbito da microgeração,

para potência de ligação à rede de baixa tensão de 3,68 kVA. Este sistema no entanto, por falta de

licenciamento e de certificação energética do edifício, à data de realização desta dissertação não se

encontra ainda a operar.

O sistema fotovoltaico, instalado na cobertura, é constituído por 11 módulos multicristalinos, da

Mprime com 15,1 % de eficiência e 240 Wp de potência máxima, garante um total de 2,64 kWp. O

sistema é ainda constituído por um inversor de 2500 W responsável pela conversão de corrente

contínua gerada pelos painéis fotovoltaicos, em corrente alternada para ser injetada na rede. A

produção de energia através dos sistemas fotovoltaicos é influenciada por fatores como radiação,

ângulo da radiação incidente e temperatura ambiente. Os módulos foram devidamente orientados a

sul, com uma inclinação ótima de 35°, ou seja, subtraindo 4° à latitude de Torres Vedras, pelo que a

energia produzida anualmente será cerca de 3920 kWh, utilizando o PVGIS (2014) e considerando

perdas combinadas na ordem dos 25 %.

Quadro 4.5 – Produção anual estimada do sistema fotovoltaico.

Mês Produção Média

Mensal (kWh)

Radiação Média Mensal

(kWh/m2) jan 233 112

fev 261 127

mar 349 173

abr 358 180

mai 379 193

jun 382 198

jul 408 214

ago 402 211

set 369 191

out 316 159

nov 244 121

dez 220 107

Total 3920 1990

Page 64: Universidade de Lisboa Instituto Superior Técnico Centro de ...

52

O sistema eólico instalado no terreno adjacente a poente do centro, um modelo Proven 2.5, produz

até 2,8 kW, sendo que à velocidade de 12 m/s tem uma potência nominal de 2,5 kW. A torre utilizada

tem uma altura de 11 m e o rotor, constituído por três pás, tem um diâmetro de 3,5 m. A energia

produzida por este sistema vai variar com a velocidade e turbulência do vento. Contudo, para uma

velocidade de vento média de 12,1 km/h (velocidade média anual, para o período 1961-90, na

estação meteorológica de Dois Portos (APA, 2012), situada a cerca de 8 km de Torres) a turbina

produzirá cerca de 2000 kWh/ano.

Pelo que o sistema de microgeração tem assim uma produção anual estimada próxima dos 6000 kWh

(4,9 kWh/m2).

Foi ainda instalado um sistema solar térmico de circulação forçado, em funcionamento, constituído

por um coletor OP-V4AL da OPENPLUS com área absorsora de 2,02 m2, um depósito de dupla

serpentina com capacidade de 200 L, um controlador digital e um grupo de bombagem. Este sistema

é para uso exclusivo do café, considerando um consumo diário de águas quentes sanitárias a 60 °C e

não existindo um sistema de apoio.

Figura 4.3 – Elementos do sistema de microgeração (painéis fotovoltaicos e aerogerador) e coletor solar térmico.

Por forma a minimizar o consumo de energia em climatização, foi instalado um sistema geotérmico

que se encontra em funcionamento. A grande vantagem da utilização de um sistema de geotermia

deve-se ao facto de a terra manter a partir de uma pequena profundidade uma temperatura

constante de aproximadamente 17 °C. No verão a dissipação de energia captada no interior do

edifício vai ser libertada num ambiente com esta temperatura. No inverno, de forma inversa, em vez

de trocar calor com um ambiente com baixas temperaturas a referida troca vai ser realizada um

ambiente mais ameno.

A captação geotérmica processa-se através da circulação de água em sondas geotérmicas duplas

introduzidas em furos verticais. A produção de água aquecida / arrefecida é garantida por uma

bomba de calor geotérmica (uma WRL 080H da AERMEC). Este equipamento foi instalado na zona

Page 65: Universidade de Lisboa Instituto Superior Técnico Centro de ...

53

técnica 1, conjuntamente com um depósito de inércia de 600 L que acumula a água tratada pela

bomba.

Figura 4.4 – Vista interior dos coletores do sistema geotérmico (à esquerda) e bomba de calor geotérmica (à direita).

Tomaram-se como referência as temperaturas de 45 °C para a produção de água quente para os

circuitos de aquecimento, e 7 °C para a produção de água fria para os circuitos de arrefecimento. A

transferência de energia calorífica com o exterior é assegurada por intermédio de permutadores

geotérmicos que consistem basicamente em furos verticais nos quais são introduzidas sondas

geotérmicas duplas compostas por quatro tubos de 32 mm de diâmetro, com 125 m de comprimento

(estes 500 m de sonda devem-se aos 25000 W de potência a dissipar no verão, considerando que o

terreno tem uma capacidade de dissipação mínima de 50 W/ml de sonda).

Estas sondas geotérmicas possibilitam a circulação de água em circuito fechado no interior do furo

vertical, permitindo a absorção (ou dissipação) de energia calorífica. Esta água é recebida por

coletores e transferida para uma linha para interligar com a bomba de calor.

4.3 ÁGUA

Toda a água potável utilizada provém da rede municipal de abastecimento e é reencaminhada após a

sua utilização para a rede de drenagem de águas residuais pública ou no caso dos lavatórios das IS

para um reservatório. Esta recolha das águas cinzentas é feita para um reservatório de 500 L,

localizado abaixo do solo, no Armazém Detergentes / Pia Despejo. Sobre este está instalado um

Reciclador de Águas Cinzentas (Ecodepur BIOX) com um depósito de 100 L (UAAC – Unidade de

Aproveitamento das Águas Cinzentas) para armazenamento da água tratada, por um processo de

filtragem e controlo / injeção de cloro, a partir do qual é depois pressurizada para a rede alternativa

de alimentação dos autoclismos.

Este sistema é ainda compensado pela recolha de águas pluviais na cobertura do edifício que são

encaminhadas para 2 depósitos (UAAP – Unidade de Aproveitamento das Águas Pluviais), cada um

Page 66: Universidade de Lisboa Instituto Superior Técnico Centro de ...

54

com 1000 L de capacidade, enterrados no exterior do edifício. Esta reserva é utilizada na alimentação

da rede de rega, que quando necessária é reforçada automaticamente pela água da rede e na

compensação do reservatório de aproveitamento das águas cinzentas.

Figura 4.5 – Esquema de aproveitamento das águas pluviais.

Os espaços ajardinados a regar, incluindo a cobertura e os pátios, correspondem a uma área de 1653

m2 e é efetuada com recurso a um sistema gota-a-gota enterrado, permitindo uma poupança de

água na ordem dos 25 %. Esta rega faz-se através da programação automática da central de rega,

instalada na zona técnica 2, que comanda a abertura de electroválvulas, funcionado em alternância

por seis sectores.

De realçar, neste âmbito também a opção por equipamentos eficientes, como torneiras misturadoras

e redutoras de caudal e autoclismos de dupla descarga, inclusive com certificação hídrica da ANQIP

(ANQIP, 2013), como o Geberit modelo Kombifix UP 320, com classificação A.

Um levantamento a partir da leitura do contador da água desde finais de janeiro até meados de abril

permitiu observar os seguintes consumos semanais de água (Figura 4.6).

Reforço da UAAC a partir da

UAAP

Abastecimento do sistema

de rega gota-a-gota

enterrado

Page 67: Universidade de Lisboa Instituto Superior Técnico Centro de ...

55

Figura 4.6 – Consumos semanais de água potável.

O consumo excessivo da semana de 16 a 22 de março resultou de uma rutura, sendo que as semanas

de 23 de fevereiro a 1 de março e 2 a 8 de março correspondem ao período de Carnaval, no qual o

centro esteve fechado em alguns dias. Os consumos semanais de água potável encontram-se pois

sobretudo na gama dos 2 a 4 m3, próximo dos 0,53 m3 diários, pouco menos de 200 m3 anuais, o que

resulta num consumo anual de apenas 0,16 m3/m2.

4.4 RESÍDUOS

Os resíduos, dada a existência de um café, a produção maioritária advém deste espaço, incluindo

resíduos orgânicos e óleos alimentares. Se excluirmos o café, o papel e cartão apresentam um peso

relevante, resultado das sessões, concursos e outras atividades promovidas. No centro (excluindo o

café), os resíduos, após devida separação, são recolhidos pelos serviços camarários todas as sextas.

Figura 4.7 – Locais de deposição dos resíduos do centro (à esquerda e ao centro) e resíduos do café (à direita).

No café a reciclagem, à exceção dos óleos e do cartão, é deficientemente efetuada. Os resíduos são

tratados diariamente pelo colaborador do espaço de restauração que os armazena para recolha

semanal por parte de um veículo pertencente ao espaço de restauração, sendo posteriormente

colocados num ecoponto próximo. Para comprovar a produção de resíduos foram realizadas algumas

pesagens, cujo resultado apresenta-se no quadro seguinte (Quadro 4.6).

0

2

4

6

8

10

12

26 jan -1 fev

2 - 8fev

9 - 15fev

16 - 22fev

23 fev -1 mar

2 - 8mar

9 - 15mar

16 - 22mar

23 - 29mar

30 mar- 5 abr

6 - 12abr

Co

nsu

mo

m3

Page 68: Universidade de Lisboa Instituto Superior Técnico Centro de ...

56

Quadro 4.6 – Resíduos produzidos em diferentes semanas.

Plástico (kg)

Papel e Cartão

(kg)

Vidro (kg)

Orgânico (kg)

Indiferenciado (kg)

Óleos (L)

Total (kg)

Centro (excluindo café)

1 13 - - 2 - 16

1 2 - - 4,5 - 7,5

2 5 - - 5 - 12

1,5 8 - - 4 - 13,5

1 12 - - 3,5 - 16,5

Café

- 3 1,5 - 18 n.d. 22,5

- 4 2 - 22,5 n.d. 28,5

- 2 1 - 25 n.d. 28 n.d. – não determinado

Da análise do quadro constata-se a elevada produção de resíduos indiferenciados quando

comparado com outros tipos, especialmente no café que acaba por apresentar reduzidos níveis de

reciclagem. Os óleos alimentares, segundo o colaborador do café, são recolhidos para um depósito

adequado, que à data de realização desta dissertação ainda não tinha sido totalmente preenchido

desde a inauguração do centro. De facto a produção de resíduos no centro é reduzida, com cerca de

40 kg semanais o que se traduz em menos de 2 kg/m2.ano, no entanto a sua valorização,

particularmente no café é ainda incipiente.

4.5 UTILIZAÇÃO E PERCEÇÃO - INQUÉRITOS

Sendo o CEA um espaço para toda a população torna-se importante avaliar a perceção e grau de

satisfação dos seus utilizadores pelo que recorreu-se à realização de inquéritos por forma a averiguar

a opinião sobre o centro bem como os aspetos distintivos.

4.5.1 AMOSTRA

Fazendo o CEA parte do Parque Verde da Várzea optou-se pela realização de inquéritos também

neste espaço verde, em última análise para verificar o conhecimento e utilização do centro por parte

da população local. Por este motivo as duas populações alvo de estudo são os visitantes do Parque

Verde da Várzea e os utilizadores do CEA. O seu perfil é apresentado no Anexo V.

4.5.2 ESTRUTURA

Na elaboração de um inquérito deve-se ter em atenção que o mesmo deverá ser claro, simples, fácil,

objetivo e não exaustivo. Assim procurou-se através de uma série de questões, na sua maioria de

resposta fechada, cada uma delas apresentando uma pontuação numa escala de 1 a 10 com

possibilidade de assinalar “Sem Opinião”, avaliar o grau de satisfação dos inquiridos. Como forma de

Page 69: Universidade de Lisboa Instituto Superior Técnico Centro de ...

57

avaliar, recorre-se à utilização da média geométrica. A média geométrica é um tipo de média ou

aproximação, que indica a tendência central ou o valor típico de um conjunto de números usando o

produto dos seus valores. A razão da escolha deve-se à maior instabilidade das restantes

características amostrais (mediana e moda). Outro fator que valida a opção da média geométrica

como ferramenta de avaliação deve-se às dificuldades logísticas de inquirir toda a população.

O inquérito é constituído por 3 secções (com possibilidade de dar opinião no final do mesmo):

o Caracterização Sociológica;

o Contacto com o Centro;

o Satisfação.

Primeiramente na Caracterização Sociológica procura-se saber quem é o inquirido, ou seja, sexo,

faixa etária, profissão, habilitações literárias e se é residente no concelho de Torres Vedras. A secção

Contacto com o centro pretende explorar a relação do inquirido com o centro. Uma vez que existe a

possibilidade dos inquiridos do Parque Verde da Várzea nunca terem visitado o centro ou

eventualmente nem saberem da sua existência, esta secção é ligeiramente diferente no inquérito

realizado no centro ou no espaço verde. Enquanto no interior do edifício se questiona se é a primeira

vez que visita o espaço e o motivo dessa mesma visita, no parque pergunta-se se sabe da existência e

se alguma vez visitou o CEA. Em ambos os inquéritos procura-se saber como tomou conhecimento da

existência do centro e se já participou em alguma atividade desenvolvida pelo centro. Caso não

tenha visitado o CEA é também perguntado se gostaria de o visitar. O inquérito prossegue, apenas

para os inquiridos que já visitaram o CEA, para a secção de satisfação, onde em 4 itens: Espaço;

Funcionamento; Desempenho; e Global é avaliado o grau de satisfação. No primeiro item é avaliada

a integração local do edifício bem como o espaço físico. No Funcionamento são tratadas questões

relativas ao serviço prestado como horário de funcionamento, atendimento e qualidade das

exposições / atividades. No Desempenho, os recursos e as cargas ambientais, particularmente a

energia, água e resíduos são os temas abordados bem como o conforto nas suas variadas vertentes

(qualidade do ar, térmico, iluminação e acústica). Neste item procura-se ainda saber junto do

inquirido qual a importância que atribui à avaliação da sustentabilidade dos edifícios. Por fim são

efetuadas três questões mais globais como a aplicação de soluções inovadoras, a interação do CEA

com a comunidade e a avaliação global do centro.

A consulta dos inquéritos na íntegra poderá ser feita no Anexo IV.

4.5.3 METODOLOGIA

Os inquéritos no parque foram realizados entre os meses de janeiro a março, inclusive ao fim de

semana, entre as 10h e as 18h. A sua realização foi um verdadeiro desafio pois ao contrário da

Page 70: Universidade de Lisboa Instituto Superior Técnico Centro de ...

58

população reformada que frequenta o parque durante todo o dia e devido à sua fraca mobilidade é

mais fácil de abordar, a população adulta aproveita mais a hora de almoço, pós-laboral e fins de

semana para visitar o parque com os filhos. Quanto aos estudantes, pelo facto de existirem

estabelecimentos de ensino na zona, os mesmos procuram o parque para atividades desportivas e

para momentos de descontração entre ou após as aulas.

Outro aspeto foi a duração de cada inquérito pois enquanto uns duraram escassos minutos, outros

passaram largamente os 30 minutos, nomeadamente os realizados a reformados, sobretudo porque

alguns aproveitaram para partilhar um pouco da sua vida, num momento em que vivem sozinhos e

isolados. A inquirição passou muitas vezes a sensibilização e explicação sobre o CEA e outras vezes a

escutar sugestões e críticas não só ao centro como à obra municipal e aos possíveis gastos excessivos

numa altura em que o país atravessa uma grave crise. No entanto, no geral as pessoas foram

recetivas à realização dos inquéritos.

No interior do CEA os inquéritos foram realizados, também durante os meses acima referidos, pelos

técnicos que dinamizam as atividades.

4.5.4 RESULTADOS

No total foram realizados 64 inquéritos no interior do CEA e 101 no Parque Verde da Várzea, no

entanto apenas 23 inquiridos no parque visitaram pelo menos uma vez o centro, pelo que o número

de pessoas que responderam ao inquérito na sua totalidade foi de 87 (a distribuição detalhada

encontra-se no Anexo V).

A aplicação da metodologia e questionários anteriormente referidos levou à obtenção dos seguintes

resultados. Quadro 4.7a – Resultados dos utilizadores/visitantes do CEA.

Contacto com o Centro

Primeira visita ao CEA

Sim Não

34 30

Motivo da visita

Formação Profissional Lazer Outro

43 11 4 6

Como tomou conhecimento

do CEA

Familiares/ Amigos/

Conhecidos Internet

Imprensa/ Brochuras

Visita Parque

Entidade Formadora/ Profissional

9 8 6 9 32

Participou em alguma

atividade

Sim Não

13 51

Satisfação

Média Desvio Padrão Sem Opinião

Espaço

Integração na Paisagem 8,60 1,26 0

Acessos 6,87 1,64 0

Espaço físico 8,30 1,07 0

Contribuição para o Parque Verde

8,61 1,23 6

Page 71: Universidade de Lisboa Instituto Superior Técnico Centro de ...

59

Quadro 4.7b – Resultados dos utilizadores/visitantes do CEA.

Satisfação

Média Desvio Padrão Sem Opinião

Funcionamento

Horário de funcionamento 7,96 1,43 10

Atendimento Prestado 8,87 1,08 7

Qualidade das exposições/atividades

7,65 1,44 11

Desempenho

Redução do consumo de água 8,61 1,19 24

Gestão da energia 8,72 1,13 23

Gestão dos resíduos 8,45 1,28 28

Conforto térmico 7,67 1,75 1

Qualidade do ar 8,50 1,24 4

Iluminação 8,69 1,17 0

Conforto acústico 6,57 2,23 2

Importância da avaliação da sustentabilidade

8,95 1,04 9

Sabe que o CEA é certificado pelo LiderA

Sim Não

27 37

Global

Aplicação de soluções inovadoras

8,76 1,16 11

Interação com a comunidade 8,57 1,15 15

Global 8,67 0,95 2

A grande maioria dos inquiridos estava de visita ao centro devido a formação. De facto à exceção dos

professores do ensino básico, de alguns eventuais visitantes do centro e do café são as ações de

formação que mais atraem a população ao CEA. Por este motivo os inquiridos têm sobretudo idades

compreendidas entre os 31 e os 60 anos e um nível de instrução relativamente elevado (médio ou

superior). Em geral são residentes no concelho de Torres Vedras ou concelhos limítrofes, como a

Lourinhã, tendo tomado conhecimento do CEA pela entidade formadora ou pela CMTV.

Na secção Satisfação, no item Espaço, a avaliação é bastante positiva, no entanto os acessos ao

centro apresentam um valor mais reduzido. Destaca-se neste ponto, segundo os inquiridos, a escassa

sinalização referente ao CEA, que praticamente só existe na aproximação ao Parque Verde da Várzea.

Alguns inquiridos residentes fora do concelho sugeriram o reforço da sinalização, sobretudo à

entrada da cidade, como forma até de atrair mais visitantes. Como é óbvio, numa sociedade que

privilegia a utilização do automóvel, os acessos exclusivamente pedonais não satisfazem todos.

No item Funcionamento, é de assinalar a boa pontuação atribuída ao nível de atendimento prestado,

quanto ao horário de funcionamento e à qualidade das exposições / atividades, o número de

inquiridos que não deram opinião tem algum peso. Relativamente ao horário é compreensível pois

apenas recentemente foi colocado o horário visível ao público na entrada do edifício. As exposições /

atividades sendo sobretudo dirigidas ao público-alvo do CEA, ou seja, alunos do pré-escolar e do 1°

ciclo refletem o desconhecimento de alguns inquiridos face às mesmas.

Page 72: Universidade de Lisboa Instituto Superior Técnico Centro de ...

60

No item Desempenho, a avaliação menos positiva é atribuída ao conforto acústico. As atividades com

crianças e o facto de o espaço expositivo / área circulação ser uma área comum próxima da sala de

atividades, onde decorrem as ações de formação, originam por vezes ruído que perturba o normal

funcionamento das sessões. Apesar da avaliação muito positiva atribuída no desempenho da água,

energético e de resíduos, muitos inquiridos assinalaram a opção “Sem Opinião”, o que demonstra

algum desconhecimento por parte dos utilizadores do CEA acerca do seu desempenho, isto apesar da

existência de uma exposição permanente acerca do CEA no átrio de entrada /receção. É de destacar

também a atribuição da importância da avaliação da sustentabilidade dos edifícios por parte dos

inquiridos.

Na secção Global, todos os três pontos atingem avaliações bastante positivas.

Além do reforço de sinalização acima mencionado, os inquiridos sugeriram uma maior divulgação das

atividades do centro.

Quadro 4.8a - Resultados dos utilizadores/visitantes do Parque Verde da Várzea.

Contacto com o Centro

Conhecimento do CEA

Sim Não

84 17

Como tomou conhecimento do CEA

Familiares/ Amigos/

Conhecidos Internet

Imprensa/ Brochuras

Visita Parque

23 0 17 44

Já visitou o CEA Sim Não

23 61

Gostaria de visitar o CEA

Sim Não

70 8

Participou em alguma atividade

Sim Não

5 18

Satisfação

Média Desvio Padrão Sem Opinião

Espaço

Integração na Paisagem 8,05 1,40 1

Acessos 8,01 1,56 0

Espaço físico 8,25 1,47 0

Contribuição para o Parque Verde

6,89 1,47 5

Funcionamento

Horário de funcionamento

6,52 1,23 12

Atendimento Prestado 7,90 1,59 10

Qualidade das exposições/atividades

6,87 1,67 9

Desempenho

Redução do consumo de água

7,48 2,39 16

Gestão da energia 4,64 3,29 18

Gestão dos resíduos 6,80 1,63 20

Page 73: Universidade de Lisboa Instituto Superior Técnico Centro de ...

61

Quadro 4.8b - Resultados dos utilizadores/visitantes do Parque Verde da Várzea.

Satisfação

Média Desvio Padrão Sem Opinião

Conforto térmico 8,44 1,32 2

Qualidade do ar 8,50 1,30 5

Iluminação 8,37 1,44 1

Conforto acústico 8,70 1,15 9

Importância da avaliação da sustentabilidade

9,31 0,98 1

Sabe que o CEA é certificado pelo LiderA

Sim Não

1 22

Global

Aplicação de soluções inovadoras

8,44 1,58 0

Interação com a comunidade

5,79 2,52 5

Global 7,99 1,39 0

Relativamente aos inquéritos realizados no Parque Verde da Várzea, apesar da grande maioria dos

inquiridos ter conhecimento da existência do CEA, poucos são os que efetivamente já o visitaram

(apenas 23 em 101 inquiridos), no entanto a recetividade a uma eventual visita foi elevada. O modo

como tomaram conhecimento foi sobretudo na visita ao parque. Outros tomaram conhecimento

também pela impressa local, como o semanário Badaladas ou pela revista da CMTV.

Na secção Satisfação, no item Espaço, destaca-se com um valor inferior a contribuição do CEA para o

Parque Verde da Várzea. Os inquiridos destacaram a falta de atividades promovidas pelo centro no

espaço verde, que poderia ser uma forma de promoção do CEA.

No item Funcionamento, de novo uma boa pontuação atribuída ao atendimento prestado. No

horário de funcionamento, alguns inquiridos sugeriram, apesar da abertura aos Sábados à tarde, o

prolongamento do horário durante a semana.

No item Desempenho, a avaliação relativamente ao conforto (térmico, qualidade do ar, iluminação e

acústico) é muito positiva. A quase totalidade dos inquiridos que visitaram o CEA demonstrou

enorme desconhecimento acerca do desempenho do edifício. A importância dada à avaliação da

sustentabilidade, tal como nos inquiridos no interior do CEA, é de novo um ponto forte. Praticamente

nenhum inquirido sabe que o CEA é certificado pelo sistema LiderA.

No item Global, a interação com a comunidade aparece com uma nota baixa. Os inquiridos sugeriram

a realização de atividades dirigidas a faixas etárias mais elevadas. Mesmo alguns residentes da cidade

de Torres afirmaram que não sabiam para que servia o centro, os seus objetivos e atividades

dinamizadas. A colocação em pontos estratégicos do parque de painéis promocionais do centro foi

uma das sugestões efetuadas. A realização dos inquéritos no parque permitiu confirmar a indiferença

de muitas crianças/jovens a partir do 2° ciclo e de vários idosos relativamente ao CEA.

Page 74: Universidade de Lisboa Instituto Superior Técnico Centro de ...

62

CAPÍTULO 5 – DISCUSSÃO DE RESULTADOS

5.1 ABORDAGEM

Através da abordagem efetuada confirma-se que o levantamento dos dados de desempenho permite

a caracterização da operação do centro, numa perspetiva de conhecimento dos níveis de

desempenho ambiental do edifício. Desta forma, prova-se igualmente que existem condições para a

melhoria do desempenho se a avaliação dos edifícios for feita por uma abordagem integrada,

conhecendo estruturas, equipamentos, modos de utilização e funcionamento, comportamento e

satisfação dos utilizadores, verificando-se os indicadores ambientais.

5.2 RESULTADOS

O desempenho do CEA foi avaliado analisando-se os dados de desempenho, tendo-se

posteriormente normalizado-os. No Quadro 5.1 são apresentados os principais resultados para o

caso de estudo.

Quadro 5.1 – Quadro resumo do desempenho do CEA.

Área Bruta (m2)

Custo total Eletricidade (anual) Água (anual) Resíduos (anual)

€ €/m2 Produção Consumo

m3 m3/m2 kg kg/m2 kWh kWh/m2 kWh kWh/m2

1230 1330500 1081 6000 4,9 51572 42 200 0,16 2000 < 2

De seguida é realizada uma comparação do desempenho do centro, relativamente à energia e água,

posicionando-o face a outros casos anteriormente referenciados.

Quadro 5.2 – Quadro resumo do desempenho energético e da água de edifícios de elevado desempenho.

Edifício Tipo de

Utilização Área (m2)

Energia (kWh/m2.ano) Água

(m3/m2.ano) Produção Consumo

Eletricidade Gás Eletricidade Gás

CEA Ensino 1230 4,9 - 42 - 0,16

CSBO Bank Serviços 82392 - - 163,6 43,4 0,33

SOLON SE Indústria/ Serviços

36000 80,5 148

(biogás) 41,9

67,3 (biogás)

n.d.

Szencorp Serviços 1200 11,5 - 69 88,2 0,13

Spectral Services

Serviços 1500 - - 161,5 - 1,58

ENERPOS Ensino 681 104,4 - 14,4 - n.d.

Dr. David Suzuki Public

School Ensino 5433 n.d. - 84 - 0,26

Earth Rangers Centre

Ensino 5853 19,5 - 90 6 0,40

Solar XXI Investigação 1200 32 - 31 - n.d.

n.d. – não determinado Melhor Desempenho Pior Desempenho

Page 75: Universidade de Lisboa Instituto Superior Técnico Centro de ...

63

Numa primeira abordagem, é possível constatar que o Centro de Educação Ambiental de Torres

Vedras apresenta dados de desempenho em linha com um edifício de elevado desempenho.

O consumo anual estimado de eletricidade para o centro é de apenas 42 kWh/m2, próximo dos

melhores consumos encontrados nos casos estudados, tais como, os edifícios Solar XXI e SOLON SE, e

a apenas alguma distância dos consumos do edifício ENERPOS, com apenas 14,4 kWh/m2 de

consumo de eletricidade. É um desempenho de relevo se compararmos com o estudo de Hartkopf et

al. (2009), desenvolvido para a UNEP, no qual as melhores práticas mostram, que para edifícios de

serviços o consumo de energia primária é menor que 100 kWh/m2, podendo atingir até cerca de 50

kWh/m2. Do mesmo modo, Kibert (2012) refere que atualmente um edifício de elevado desempenho

pode apresentar consumos anuais de energia inferiores a 100 kWh/m2, tal como o Centro de

Educação Ambiental de Torres Vedras.

Apesar do sistema híbrido, constituído por um sistema solar fotovoltaico e um aerogerador, a

produção estimada de energia no Centro de Educação Ambiental de Torres Vedras não chega aos 5

kWh/m2.ano, bem abaixo dos 100 kWh/m2 encontrados em alguns edifícios. No entanto, na

produção há ainda que contar com o coletor solar térmico que permite satisfazer todo o consumo de

energia proveniente das AQS do café e, o sistema geotérmico que apoia a minimização do consumo

de energia em climatização.

Nesta conformidade, mesmo que aja um aumento substancial do número de visitantes, é espetável

que esse aumento não traduza um acréscimo da utilização da iluminação e da climatização.

Destaca-se também, no Centro de Educação Ambiental de Torres Vedras, o desempenho relativo ao

consumo de água. Através da reutilização de águas cinzentas dos lavatórios, da recolha de águas

pluviais, da rega dos espaços ajardinados com sistema gota-a-gota enterrado e com programação

automática, bem como, dos equipamentos eficientes, o consumo de água potável atinge apenas os

0,16 m3/m2.ano. Este desempenho encontra-se bem próximo do melhor caso referenciado nos

estudos comparativos, o Szencorp, com 0,13 m3/m2.ano.

A quantidade de resíduos produzida no centro é reduzida (inferior a 2 kg/m2.ano), no entanto, a sua

valorização não é uma prática usual. Retenha-se que, este descritor poderá ter uma forte relação

com o número de utilizadores, já que do aumento da atividade no restaurante, resultará

efetivamente maiores produções de resíduos.

Relativamente aos aspetos construtivos, o Centro de Educação Ambiental de Torres Vedras foi

concebido tendo em conta o contexto local, inserindo-se perfeitamente no parque e valorizando-o

através da sua cobertura verde e dos espaços verdes. O edifício incorpora também princípios de

desenho passivo, apresentando uma estrutura em betão armado e paredes de alvenaria, uma

orientação adequada que potencia a utilização da ventilação natural cruzada e a iluminação natural,

vãos envidraçados com vidros e caixilharia dupla de corte térmico e sombreamento com sistema de

Page 76: Universidade de Lisboa Instituto Superior Técnico Centro de ...

64

brise-soleil e estores com comando duplo. Aplicou-se materiais, locais como a pedra de Calcário Azul

Valverde e a pedra de Vidraço de Ataíja Creme, e de baixo impacte como a cortiça. E foram utilizados

outros com características de isolamento térmico e acústico, tais como as placas rígidas de espuma

de poliestireno extrudido e expandido, as placas de aglomerado de cortiça expandida e as placas de

gesso cartonado.

Sendo um edifício dedicado à formação e educação da população, o Centro de Educação Ambiental

de Torres Vedras intrinsecamente promove a dinamização socioeconómica, através das atividades

promovidas, incrementada ainda pela presença de um espaço de restauração. Favorecido pela sua

localização, este edifício é servido, por meios de mobilidade de baixo impacte como bicicletas

públicas e serviço de autocarros urbanos, ou facilidades como ciclovias, percursos pedonais,

estacionamentos gratuitos e postos de carregamento de veículos elétricos. Conta ainda com

inúmeras amenidades nas proximidades.

Apesar de alguma autonomia no controlo da iluminação e do sistema de climatização através de um

sistema central de automação, o Centro de Educação Ambiental de Torres Vedras não promove a

monitorização dos vários aspetos ambientais e não dispõe de qualquer sistema de gestão ambiental.

Tendo acolhido em pouco mais de 6 meses, desde a sua inauguração, mais de 4000 pessoas, os seus

utilizadores evidenciam uma satisfação elevada, corroborada pelos resultados dos inquéritos

efetuados. Contudo, alguns cidadãos desconhecem ainda o centro, as atividades promovidas e

sobretudo, as práticas de gestão de recursos, como água, energia e resíduos.

5.3 LIMITAÇÕES

As limitações ou incertezas, num edifício de elevado desempenho prendem-se com a falta de um

conceito claro que identifique o que é de facto é este tipo de edifício, bem como valores de

referência de aspetos ambientais que o definam. A heterogeneidade das condições ambientais e de

desenvolvimento dos países condicionam também o desempenho dos edifícios e consequentemente

esta mesma definição.

Outro ponto a considerar é o grande enfoque que os estudos dão ao desempenho energético dos

edifícios, o que faz descurar a abordagem a outros aspetos.

Relativamente ao edifício analisado, as maiores limitações para a análise do desempenho consistiram

na ausência da monitorização dos aspetos ambientais assim como, de dados de consumo de energia,

(acentuados pela não existência de um contador definitivo) e de água, da certificação energética, do

funcionamento do sistema de microgeração, limitações incrementadas pela recente entrada em

funcionamento do centro.

Page 77: Universidade de Lisboa Instituto Superior Técnico Centro de ...

65

CAPÍTULO 6 – CONCLUSÕES E RECOMENDAÇÕES

6.1 CONCLUSÕES

Os enormes impactes no ambiente, na economia, na saúde e na produtividade dos ocupantes que

ocorrem ao longo de todo o ciclo de vida dos edifícios conduzem cada vez mais a preocupações na

projeção e construção do edificado. Para tal, todas as partes do edifício têm de ser abordadas de

forma integrada, tendo em conta as diferentes fases do ciclo de vida.

Em paralelo com as exigências ambientais e as necessidades do mercado, têm surgido edifícios

sustentáveis, baseando-se nos recursos de forma responsável e providenciando conforto para os

seus ocupantes. Estes edifícios conjugam os melhores padrões de construção, com sistemas,

operações e políticas de funcionamento adequados, sempre numa perspetiva de melhoria do

desempenho ambiental. Numa abordagem holística são designados de edifícios de elevado

desempenho ou high performance building.

Diversos casos de edifícios de elevado desempenho, nos mais variados países, surgem de dia para

dia. Na Europa, o conceito de edifício de elevado desempenho está relacionado sobretudo com

eficiência energética, contudo a energia é somente um dos muitos indicadores que podem ser

utilizados para aferir o seu desempenho.

Neste contexto, surge o principal objetivo desta dissertação: sistematizar os elementos que

caracterizam um edifício de elevado desempenho, bem como avaliar os principais indicadores

ambientais.

Cada vez mais são publicados diversos estudos, por vezes de forma comparativa, sobre o

desempenho dos edifícios, incidindo sobretudo na questão energética. As melhoras práticas

mostram, para edifícios de serviços, menos de 100 kWh/m2 de consumo de energia, podendo atingir

os 50 kWh/m2. Estes valores contrastam, por exemplo, com os cerca de 280 kWh/m2, de consumo

médio, para edifícios não-residenciais na Europa. Na produção de energia temos, como melhores

desempenhos, valores que atingem os 100 kWh/m2. Na água os consumos são díspares, podendo

ultrapassar 1 m3/m2, com os melhores desempenhos inferiores aos 0,5 m3/m2, em alguns casos com

consumos próximos dos 0,1 m3/m2.

No caso de estudo, o Centro de Educação Ambiental de Torres Vedras, dado que não dispunha de

uma monitorização dos aspetos ambientais, no âmbito desta dissertação foi efetuado um

levantamento dos dados de desempenho, nomeadamente da energia, água e resíduos, bem como

foram realizados inquéritos de satisfação aos utilizadores do centro. E analisados os aspetos

construtivos e de operação, assentando esta análise no sistema LiderA. Na Figura 6.1 são

apresentadas, resumidamente, as estratégias utilizadas no Centro de Educação Ambiental de Torres

Vedras.

Page 78: Universidade de Lisboa Instituto Superior Técnico Centro de ...

66

Figura 6.1 – Centro de Educação Ambiental de Torres Vedras, um edifício de elevado desempenho.

Integração local Valorização ecológica Desenho passivo Gestão de energia Gestão da água Materiais de baixo impacte Gestão de resíduos

Conforto térmico e acústico Iluminação natural Qualidade do ar Mobilidade de baixo impacte Dinâmica socioeconómica

Capacidade de controlo Informação

Consumo

eletricidade - 42

kWh/m2.ano

Produção

estimada de

eletricidade – 4,9

kWh/m2.ano

Consumo de água –

0,16 m3/m

2.ano

Produção de

resíduos – <2

kg/m2.ano

Page 79: Universidade de Lisboa Instituto Superior Técnico Centro de ...

67

O centro apresenta consumos reduzidos de eletricidade (42 kWh/m2), água (0,16 m3/m2) e de

produção de resíduos (inferior a 2 kg/m2), com sistemas eficientes e ainda de produção energética, e

de reutilização quer de águas cinzentas quer de águas pluviais. Valoriza o local em que se insere,

incorporando princípios de desenho passivo e materiais de construção de baixo impacte e

proveniência local. Promove ainda localmente a dinamização socioeconómica, através da criação de

postos de trabalho e de atividades de formação e educação. É ainda reconhecido positivamente

pelos seus ocupantes, que apresentam elevados níveis de satisfação.

Naturalmente não basta ter apenas técnicas de construção, tecnologias e equipamentos, mas

importa também ter modos de sensibilização dos comportamentos dos ocupantes, nomeadamente

dos colaboradores e visitantes do Centro de Educação Ambiental de Torres Vedras.

A análise deste caso de estudo permitiu assim estabelecer as linhas orientadoras pelas quais os

edifícios devem reger-se, para se tornarem edifícios de elevado desempenho, como estabelecido na

Figura 6.1.

Deste modo, espera-se que o trabalho realizado auxilie a identificação dos aspetos a melhorar no

desempenho do Centro de Educação Ambiental de Torres Vedras e nas solicitações para futuros

edifícios de elevado desempenho.

Em síntese, a análise efetuada ao Centro de Educação Ambiental de Torres Vedras dá resposta à

pergunta formulada no tema desta dissertação – se seria um edifício de elevado desempenho? -

evidenciando as melhores práticas e complementando com as avaliações da perceção e satisfação,

pode-se assumir este edifício como sendo de elevado desempenho.

6.2 RECOMENDAÇÕES

Com interesse a realizar no futuro, para que se possa superar lacunas em áreas específicas do Centro

de Educação Ambiental de Torres Vedras, é relevante:

o Analisar a forma como evoluirá em termos dos seus consumos energéticos, água e de

produção de resíduos;

o Estudar a repartição dos consumos de energia nos meses de verão, uma vez que o Centro de

Educação Ambiental de Torres Vedras ainda não esteve em funcionamento neste período;

o Estudar a capacidade de os sistemas de recolha de águas pluviais e de reutilização de águas

cinzentas suportarem os previsíveis aumentos de consumo de água resultantes da rega nos

meses mais secos;

o Instalar definitivamente um contador de energia elétrica, realizar uma auditoria energética e

uma certificação energética do edifício (obrigatória em edifícios públicos pelo Decreto-Lei n.°

78/2006 de 4 de abril) colocando assim fim ao impasse da paragem do sistema de

microgeração;

Page 80: Universidade de Lisboa Instituto Superior Técnico Centro de ...

68

o Recolher simultaneamente os resíduos do café e do centro, promovendo assim a sua

reciclagem;

o Monitorizar e divulgar os dados de desempenho, primeiramente aos colaboradores do

centro e posteriormente aos utilizadores;

o Colocar mensagens de sensibilização, promovendo as boas práticas dos ocupantes;

o Melhorar a sinalização, indicando assim de forma mais clara onde se situa o centro;

o Divulgar as atividades promovidas pelo centro, através de novos veículos de informação (não

apenas o site da Câmara Municipal de Torres Vedras e a publicação bimestral), como por

exemplo as redes sociais.

Page 81: Universidade de Lisboa Instituto Superior Técnico Centro de ...

69

REFERÊNCIAS BIBLIOGRÁFICAS

A ANQIP (2013). Catálogo de Produtos Certificados 2013. Associação Nacional para a Qualidade nas Instalações Prediais. (Obtido de http://www.anqip.com/images/Catalogo_2013.pdf em fevereiro de 2014)

APA (2012). Plano das Bacias Hidrográficas das Ribeiras do Oeste. Relatório Técnico. Parte 2 – Caraterização e Diagnóstico da Região Hidrográfica. Agência Portuguesa do Ambiente. (Obtido de http://www.apambiente.pt/_zdata/planos/PGRH4-RO/RB%5Cpbhro_p2.pdf em fevereiro de 2014)

B Baker, N. e Steemers, K. (2000). Energy and environment in architecture: a technical design guide. E&FN Spon, London

Balaras, C., Gaglia, A., Georgopoulou, E., Mirasgedis, S., Sarafidis, Y. e Lalas, D. (2007). European residential buildings and empirical assessment of the Hellenic building stock, energy consumption, emissions and potential energy savings. Building and Environment 42 (3), pp. 1298–1314

Bint, L., Isaacs, N. e Vale, R. (n.d.). Water Performance Benchmarks for New Zealand: an approach to understanding water consumption in commercial office buildings. Wellington

Bourdeau, L., Huovila, P., Lanting, R. e Gilham, A. (1998). Sustainable Development and the Future of Construction: A comparison of visions from various countries. CIB report publication 225, Rotterdam

BPIE (2011). Europe’s buildings under the microscope. Buildings Performance Institute Europe, Brussels. (Obtido de http://www.europeanclimate.org/documents/LR_%20CbC_study.pdf em janeiro de 2014)

Brundtland, G. (1987). Our Common Future (p. 247). United Nations

C CEA (2014). Centro de Educação Ambiental de Torres Vedras. (Acesso a http://www.cm-tvedras.pt/ambiente/educacao-para-sustentabilidade/cea/ em março de 2014)

Cepinha, E. e Santos, S. (2009). Implementação de um sistema de avaliação de desempenho ambiental da construção – LEED. Sustentare. (Obtido de http://www.sustentare.pt/ pdf/Research2%20-%20LEED-sistema-de-avaliacao.pdf em novembro de 2013)

CIB (1999). Agenda 21 on Sustainable Construction. CIB report publication 237, Rotterdam Coelho, A. e Brito, J. (2012). Influence of construction and demolition waste management on the environmental impact of buildings. Waste Management 32 (3), pp. 532–41

D Decreto-Lei n.º 78/2006 de 4 de abril de 2006. Diário da República, 1.ª Série – N.º 67

Department of Design and Construction of the City of New York (1999). High Performance Building Guidelines, New York. (Obtido de http://www.nyc.gov/html/ddc/dowloads/pdf/guidelines.pdf em novembro de 2013)

Despacho n.° 1237/2011 de 13 de janeiro de 2011. Diário da República, 2.ª Série – N.° 9

Page 82: Universidade de Lisboa Instituto Superior Técnico Centro de ...

70

Diamond, J. (2006). Collapse: How Societies Choose to Fail or Succeed. Penguin Books

Diretiva 2010/31/UE de 19 de maio (2010). Relativa ao desempenho energético dos edifícios. Jornal Oficial da União Europeia

Dixit, M., Fernández-Solís, J., Lavy, S. e Culp, C. (2012). Need for an embodied energy measurement protocol for buildings: a review paper. Renew Sustain Energy 16 (6), pp. 3730–43

DOE (2006). High Performance Green Project Database. US Department of Energy

E EIA (2013). Annual Energy Outlook 2013. US Energy Information Administration. Washington. (Obtido de http://www.eia.gov/forecasts/aeo/pdf/0383(2013).pdf em janeiro de 2014)

EISA (2007). Title IV – Energy Savings in Buildings and Industry

Elkington, J. (1997). Cannibals with Forks: The Triple Bottom Line of 21st Century Business. Capstone Publishing Ltd

ENERDATA (2012). Energy Efficiency Trends in Buildings in the EU

Erhorn, H. e Erhorn-Kluttig, H. (2011). Detailed report – Terms and definitions for high performance

buildings. União Europeia

F

Ferrão, P. (2009). Ecologia Industrial, Princípios e Ferramentas (p. 422). IST Press, Lisboa

G

Gaspar, D. (2009). Inovação na Arquitetura e Desempenho Ambiental. Instituto Superior Técnico. Dissertação de Mestrado em Arquitetura. Instituto Superior Técnico – Universidade Técnica de Lisboa

GBCA (2010). Green Building Council of Australia. (Acesso a http://www.gbca.org.au/em março de 2014)

Gil, C. (2013). Relatório: O Sector da Construção em Portugal - 2012. Instituto da Construção e do Imobiliário, Lisboa. (Obtido de http://www.base.gov.pt/oop/downloads/RelatorioConstrucao2012.pdf em novembro de 2013)

Gonçalves, H., Cabrito, P. e Diniz, I. (2010). Solar XXI – Em direcção à energia zero / Towards zero energy. LNEG, Lisboa

Gore, A. (2009). A Nossa Escolha - Um Plano Para Resolver a Crise Climática (1a ed., p. 416). Esfera do Caos Editores

GSA (2011). Green Buiding Performance – A post occupancy evaluation of 22 GSA buildings. GSA Public Buildings Service. (Obtido de http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf em fevereiro de 2014)

Guedes, M., Pinheiro, M. e Alves, L. (2009). Sustainable architecture and urban design in Portugal: An overview. Renewable Energy 34 (9), pp. 1999-2006

Page 83: Universidade de Lisboa Instituto Superior Técnico Centro de ...

71

H Hartkopf, V., Yang, X. e Azizan, A. (2009). Case-studies of High Performance Sustainable Buildings. UNEP, Sustainable Buildings & Climate Initiative, Paris. (Obtido de http://www.unep.org/sbci/pdfs/Paris-Case_Studies_Summary.pdf em novembro de 2013)

Heerwagen, J. (2000). Green buildings, organizational success, and occupant productivity. Building Research and Information 28 (5), pp. 353-67

Hestnes, A. e Sartori, I. (2007). Energy use in the life cycle of conventional and low energy buildings: A review article. Energy and Buildings 39 (3), pp. 249–57

Horman, M., Riley, D., Lapinski, A., Korkmaz, S., Pulaski, M., Magent, C., Luo, Y., Harding, N. e Dahl, P. (2006). Delivering green buildings: process improvements for sustainable construction. Journal of Green Building 1 (1), pp. 123-40

HPB (2008). Fall 2008 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2008fall/ em fevereiro de 2014)

HPB (2009a). Spring 2009 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2009spring/ em fevereiro de 2014)

HPB (2009b). Summer 2009 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2009summer/em fevereiro de 2014)

HPB (2011). Spring 2011 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2011spring/ em fevereiro de 2014)

HPB (2012a). Summer 2012 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2012summer/ em fevereiro de 2014)

HPB (2012b). Fall 2012 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2012fall/ em fevereiro de 2014)

HPB (2013). Spring 2013 Magazine. High Performing Buildings. (Obtido de http://www.nxtbook.com/nxtbooks/ashrae/hpb_2013spring/ em fevereiro de 2014)

I IEA (2013). Redrawing the Energy-Climate Map: World Energy Outlook Special Report. Paris

INE (2012). Censos 2011 – Resultados Definitivos, pp. 1-41

K Kats, G. (2003). The Costs and Financial Benefits of Green Buildings. Report developed for Sustainable Building Task Force. California

Kibert, C. (1994). Establishing Principles and a Model for Sustainable Construction. Proceedings of the First International Conference on Sustainable Construction, pp 1-10

Kibert, C. (2003). Green buildings: an overview of progress. Journal of Land Use. Vol. 19:2, pp. 491-502

Page 84: Universidade de Lisboa Instituto Superior Técnico Centro de ...

72

Kibert, C. (2012). Sustainable construction: green building design and delivery (3a ed.). Hoboken, NJ: John Wiley and Sons, Inc

Korkmaz, S. (2007). Piloting Evaluation Metrics for High Performance Green Building Project Delivery. Pennsylvania State University

L Lapinski, A., Horman, M. e Riley, D. (2006). Lean Processes for Sustainable Project Delivery. Journal of Construction Engineering and Management 132 (10), pp. 1083-91

Lerum, V. (2007). High-performance building. Hoboken, NJ: John Wiley and Sons, Inc

LiderA (2014). (Acesso a www.lidera.info em fevereiro de 2014)

M Mahoney, M. e Potter, J. (2004). Integrating health impact assessment into the triple bottom line concept. Environmental Impact Assessment Review 24 (2), pp. 151‐60 Mateus, R e Bragança, L. (2004). Avaliação da Sustentabilidade da Construção: Desenvolvimento de uma Metodologia para a Avaliação da Sustentabilidade de Soluções Construtivas. Universidade do Minho.

Mateus, R. e Bragança, L. (2011). Sustainability assessment and rating of buildings: developing the methodology SBTool PT–H. Universidade do Minho

McLeod, R., Hopfe, C. e Rezgui, Y. (2012). An investigation into recent proposals for a revised definition of zero carbon homes in the UK. Energy Policy 46, pp. 25-35

N NIBS (2008). Assessment to the US Congress and US Department of Energy on High Performance Buildings. National Institute of Building Sciences (Obtido de https://c.ymcdn.com/sites/www.nibs.org/resource/resmgr/HPBC/NIBS_HighPerformanceBuilding.pdf em novembro de 2013)

NIBS (2013). National Institute of Building Sciences. (Acesso a http://www.nibs.org em fevereiro de 2014)

O Orr, D. (2006). Design on the edge: the making of a high-performance building (p. 296). The MIT Press

OZ (n.d.). Revisão de projectos de edifícios. (Acesso a www.oz-diagnostico.pt em fevereiro de 2014)

P Pérez-Lombard, L., Ortiz, J. e Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings 40 (3), pp. 394–98

Peuportier, B., Thiers, S. e Guiavarch, A. (2013). Eco-design of buildings using thermal simulation and life cycle assessment. Journal of Cleaner Production 39, pp. 73-8

Page 85: Universidade de Lisboa Instituto Superior Técnico Centro de ...

73

Pinheiro, M. (2006). Ambiente e Construção Sustentável. Instituto do Ambiente, Amadora

Pinheiro, M. (2010). Principios e Critérios para a Construcao Sustentavel: Guia de Enquadramento do LiderA (V.2.01)

Pinheiro, M. (2011). Apresentação Sumária do LiderA - versão 2.00c. Instituto Superior Técnico – Universidade Técnica de Lisboa

Pinheiro, M. (2014). Curso Prático de Construção Sustentável – Assessores de Sistema LiderA (2020). FUNDEC, Instituto Superior Técnico

Poel, B., Cruchten, G. e Balaras, C. (2007). Energy performance assessment of existing dwellings. Energy and Buildings 39 (4), pp. 393–403

Praene, J., David, M., Sinama, F., Morau, D. e Marc, O. (2012). Renewable energy: progressing towards a net zero energy island, the case of Reunion Island. Renewable and Sustainable Energy Reviews 16 (1), pp. 426–42

PVGIS (2014). Photovoltaic Geographical Information System. (Acesso a http://re.jrc.ec.europa.eu/pvgis/ em janeiro de 2014)

R Real, S. (2010). Contributo da análise dos custos do ciclo de vida para projectar a sustentabilidade na construção. Dissertação de Mestrado em Engenharia Civil. Instituto Superior Técnico – Universidade Técnica de Lisboa

Robichaud, L. e Anantatmula, V. (2010). Greening project management practices for sustainable construction. Journal of Management in Engineering 27 (1), pp. 48–57

Ruano, M. e Cruzado, M. (2012). Use of education as social indicator in the assessment of sustainability through out the life cycle of a building . European Journal of Engineering Education 37 (4), pp. 416–25

S Shi, Q., Zuo, J., Huang, R., Huang, J. e Pullen, S. (2013). Identifying the critical factors for green construction – an empirical study in China. Habitat International 40, pp. 1–8

Sousa, P. e Amado, M. (n.d.). Construção Sustentável – Contributo para a Construção de Sistema de Certificação. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

T Thiers, S. e Peuportier, B. (2012). Energy and environmental assessment of two high energy performance. Building and Environment 51, pp. 276-84

Tirone, L. (2007). Construção Sustentável - Soluções eficientes hoje, a nossa riqueza de amanhã (1a ed.). Tirone Nunes, SA, Sintra

U UNEP (2012). Building Design and Construction: Forging Resource Efficiency and Sustainable Development. United Nations Environment Programme. (Obtido de http://www.unep.org/sbci/pdfs/UNEP_SBCI_PositionPaperJune2012.pdf em novembro de 2013)

Page 86: Universidade de Lisboa Instituto Superior Técnico Centro de ...

74

UNESCO (1999). 6a Adult environmental education: awareness and environmental action (p. 15). UNESCO, Hamburgo

USGBC (2007). A National Green Building Research Agenda. U.S. Green Building Council Research Committee. US Green Building Council

V Vanegas, J., DuBose, J. e Pearce, A. (1995). Sustainable Technologies for the Building Construction Industry Proceedings of the Symposium on Design for the Global Environment. Atlanta

Vasconcelos, F. (2013). A importância do desempenho energético dos edifícios. Jornal Público, 9 outubro 2013 W WBCSD (2008). Eficiência Energética em Edifícios: Realidades empresariais e oportunidades. Relatório Síntese. World Business Council for Sustainable Development. (Obtido de http://www.wbcsd.org/web/eeb/EEBSummary-portuguese.pdf em fevereiro de 2014) Y Yates, A. (2001). Quantifying the Business Benefits of Sustainable Building. Centre for Sustainable Construction

Yuan, X., Wang, X. e Zuo, J.(2013). Renewable energy in buildings in China—a review. Renewable and Sustainable Energy Reviews 24, pp. 1-8

Z Zabalza, I., Scarpellini, S., Aranda, A., Llera, E. e Jáñez, A. (2013). Use of LCA as a tool for building ecodesign. A case study of a low energy building in Spain. Energies 6 (8), pp. 3901-21

Zuo, J. e Zhao, Z.-Y. (2014). Green building research – current status and future agenda: A review. Renewable and Sustainable Energy Reviews 30, pp. 271–81

Page 87: Universidade de Lisboa Instituto Superior Técnico Centro de ...

75

ANEXO I – DIVISÕES E ÁREAS DO CEA

Quadro I.1 – Divisões e respetivas áreas do CEA.

Piso Divisão Área útil (m2)

Piso 0 (Área útil total =

1095,43 m2)

Acesso Principal 36,96

Átrio de Entrada / Receção 112,96

Espaço Expositivo / Área Circulação

160,57

Sala de Reuniões / Gabinete 60,36

Pátios Exteriores 59,47+59,47

Sala de Atividades / Multimédia 61,00 + 61,00

Atelier / Laboratório de Educação Ambiental

60,35

Entrada Técnica 35,02

Biblioteca 59,81

Arrumos 38,91 Zona Técnica 2 31,90

Átrio IS 20,46

IS Infantil 5,50

IS Feminino 9,94

IS Masculino 9,94

IS Mobilidade Condicionada 6,00

Circulação Funcional 18,34

Armazém Detergentes / Pia Despejo

4,47

Vestiário Funcionários 4,12

Armazém Bebidas 8,47

Zona Técnica 1 77,87

Café 73,23

Cozinha 17,18

Despensa 2,13

Piso Técnico (Área útil total =

334,11 m2) Galeria Técnica 306,97 + 27,14

Cobertura (Área útil total =

1086,08 m2)

Cobertura Ajardinada com Degraus

127,87 + 22,85

Cobertura Ajardinada 325,35

Cobertura Ajardinada / Atelier, Laboratório de Educação

Ambiental 59,15

Cobertura Ajardinada / Sala de Atividades, Multimédia

104,00

Cobertura Ajardinada / Sala de Reuniões, Gabinete

73,15

Cobertura / Átrio de Entrada, Receção e Café

219,15

Cobertura / IS 26,13

Cobertura Ajardinada / Zona Técnica 1

104,00

Restante 24,43

Page 88: Universidade de Lisboa Instituto Superior Técnico Centro de ...

76

ANEXO II – PLANTAS DO CEA

Page 89: Universidade de Lisboa Instituto Superior Técnico Centro de ...

77

Figura II.1 – Implantação do CEA no Parque Verde da Várzea.

Page 90: Universidade de Lisboa Instituto Superior Técnico Centro de ...

78

Figura II.2 – Planta Cobertura do CEA.

Page 91: Universidade de Lisboa Instituto Superior Técnico Centro de ...

79

Figura II.3 – Planta Piso 0 do CEA.

A B

Page 92: Universidade de Lisboa Instituto Superior Técnico Centro de ...

80

Figura II.4 – Pormenor A Planta do Piso 0 do CEA.

A

Page 93: Universidade de Lisboa Instituto Superior Técnico Centro de ...

81

Figura II.5 - Pormenor B Planta do Piso 0 do CEA.

B

Page 94: Universidade de Lisboa Instituto Superior Técnico Centro de ...

82

ANEXO III – MODELO DESENVOLVIDO

Page 95: Universidade de Lisboa Instituto Superior Técnico Centro de ...

83

Page 96: Universidade de Lisboa Instituto Superior Técnico Centro de ...

84

Page 97: Universidade de Lisboa Instituto Superior Técnico Centro de ...

85

Page 98: Universidade de Lisboa Instituto Superior Técnico Centro de ...

86

ANEXO IV – INQUÉRITOS

Inquérito de Satisfação ao Centro de Educação Ambiental de Torres Vedras

Este inquérito insere-se numa dissertação de mestrado do Instituto Superior Técnico da

Universidade de Lisboa, com o tema “Centro de Educação Ambiental de Torres Vedras – Um

Edifício de Elevado Desempenho?”.

Pretende-se com este inquérito avaliar o grau de satisfação dos utilizadores do Parque Verde da

Várzea, relativamente ao Centro de Educação Ambiental de Torres Vedras.

1. Caracterização Sociológica 1.1 Indique o seu sexo:

Masculino

Feminino

1.2 Indique a sua idade:

até 20 anos

21 a 30 anos 31 a 60 anos mais de 61 anos

1.3 Indique a sua profissão:

1.4 Quais as suas habilitações literárias?

Ensino Básico

Ensino Secundário Licenciatura Mestrado ou superior

1.5 Residente no Concelho de Torres Vedras?

2. Contacto com o Centro 2.1 Tem conhecimento da existência do centro?

Sim

Não (Passe para a questão 2.4)

2.2 Como tomou conhecimento do centro?

Familiares/Amigos/Conhecidos

Internet Imprensa/Brochuras Visita Parque

Sim

Não.Qual?

Page 99: Universidade de Lisboa Instituto Superior Técnico Centro de ...

87

2.3 Já visitou o centro?

Sim (Passe para a questão 2.5)

Não

2.4 Gostaria de visitar o centro?

Sim. Porquê?

Não. Porquê? (O seu inquérito termina aqui)

2.5 Já participou em alguma atividade desenvolvida pelo centro?

Sim. Qual (ais)?

Não

3.1 Espaço:

4. 3.1.1 Como avalia a integração do centro na paisagem?

3.1.2 Como avalia os acessos?

5.

6. 7. 3.1.3 Como avalia o espaço físico disponível?

3.1.4 Como avalia a contribuição do centro para o Parque Verde da Várzea?

3.2 Funcionamento:

3.2.1 Como avalia o horário de funcionamento?

3.2.2 Como avalia o atendimento prestado?

3.2.3 Como avalia a qualidade das exposições/atividades?

3.3 Desempenho:

3.3.1 Como avalia as medidas de redução do consumo de água no centro?

3.3.2 Como avalia as medidas de gestão da energia no centro?

3.3.3 Como avalia as medidas de gestão dos resíduos (lixo) no centro?

3. Satisfação (Nota: Ao preencher, tenha em conta os diferentes graus de satisfação. Considere a

escala de 1 a 10, em que 1 significa "Extremamente insatisfeito" e 10 significa "Extremamente satisfeito")

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

Page 100: Universidade de Lisboa Instituto Superior Técnico Centro de ...

88

3.3.4 Como avalia o centro relativamente ao conforto:

3.3.4.1 térmico

3.3.4.2 qualidade do ar

3.3.4.3 iluminação

3.3.4.4 acústico

3.3.5 Sabia que o centro está certificado pelo sistema de sustentabilidade LiderA?

Sim

Não

3.3.6 Qual a importância de existir uma avaliação da sustentabilidade destes edifícios?

3.4 Global:

3.4.1 Como avalia o centro face à aplicação de soluções inovadoras (por ex: cobertura verde)?

3.4.2 Como avalia a interação do centro com a comunidade?

3.4.3 Globalmente como avalia o centro?

Data:

Obrigado pela sua colaboração!

4. Deixe a sua opinião Sugestões, comentários, etc.

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

1 2 3 4 5 6 7 8 9 10 Sem opinião

Page 101: Universidade de Lisboa Instituto Superior Técnico Centro de ...

89

Inquérito de Satisfação ao Centro de Educação Ambiental de Torres Vedras

Este inquérito insere-se numa dissertação de mestrado do Instituto Superior Técnico da

Universidade de Lisboa, com o tema “Centro de Educação Ambiental de Torres Vedras – Um

Edifício de Elevado Desempenho?”.

Pretende-se com este inquérito avaliar o grau de satisfação dos utilizadores/visitantes do Centro

de Educação Ambiental de Torres Vedras.

2. Contacto com o Centro 2.1 É a sua primeira visita ao centro?

Sim

Não

2.2 Qual o motivo da sua visita?

2.3 Como tomou conhecimento do centro?

Familiares/Amigos/Conhecidos

Internet Imprensa/Brochuras Visita Parque

Entidade Formadora/Profissional

2.4 Já participou em alguma atividade desenvolvida pelo centro?

Sim. Qual (ais)?

Não

Nota: As secções 1 e 3 são iguais às do inquérito realizado aos visitantes do Parque Verde da

Várzea.

Page 102: Universidade de Lisboa Instituto Superior Técnico Centro de ...

90

ANEXO V – DADOS REFERENTES À AMOSTRA

Quadro V.1 - Utilizadores/visitantes do CEA.

Caracterização Sociológica

Sexo Masculino Feminino

22 42

Idade até 20 anos 21 a 30 anos

31 a 60 anos

mais de 61 anos

0 6 58 0

Profissão Estudante Ativo Reformado

1 63 0

Habilitações Literárias

Ensino Básico

Ensino Secundário

Licenciatura Mestrado

ou superior

1 26 28 9

Residente no Concelho de Torres

Vedras

Sim Não

43 21

Quadro V.2 - Utilizadores/visitantes do Parque Verde da Várzea.

Sexo Masculino Feminino

45 56

Idade até 20 anos 21 a 30 anos

31 a 60 anos

mais de 61 anos

27 8 34 32

Profissão Estudante Ativo Reformado

30 39 32

Habilitações Literárias

Ensino Básico

Ensino Secundário

Licenciatura Mestrado

ou superior

60 23 14 4

Residente no Concelho de Torres

Vedras

Sim Não

89 12

Page 103: Universidade de Lisboa Instituto Superior Técnico Centro de ...

91

ANEXO VI – RESULTADOS DOS INQUÉRITOS

Figura VI.1 – Satisfação dos utilizadores/visitantes do CEA.

0

1

2

3

4

5

6

7

8

9

Inte

graç

ão n

a p

aisa

gem

Ace

sso

s

Esp

aço

fís

ico

Co

ntr

ibu

ição

par

a o

Par

que

Ver

de

Ho

rári

o d

e fu

ncio

nam

ento

Ate

nd

imen

to p

rest

ado

Qu

alid

ade

das

exp

osi

ções

/ati

vid

ades

Red

uçã

o d

o c

on

sum

o d

e ág

ua

Ges

tão

da

ener

gia

Ges

tão

do

s re

síd

uo

s

Co

nfo

rto

tér

mic

o

Qu

alid

ade

do

ar

Ilum

inaç

ão

Co

nfo

rto

acú

stic

o

Imp

ort

ânci

a da

ava

liaçã

o d

asu

sten

tab

ilida

de

Ap

licaç

ão d

e so

luçõ

esin

ova

do

ras

Inte

raçã

o c

om

a c

om

un

idad

e

Glo

bal

Page 104: Universidade de Lisboa Instituto Superior Técnico Centro de ...

92

Figura VI.2 - Satisfação dos utilizadores/visitantes do Parque Verde da Várzea

0

1

2

3

4

5

6

7

8

9

10

Inte

graç

ão n

a p

aisa

gem

Ace

sso

s

Esp

aço

fís

ico

Co

ntr

ibu

ição

par

a o

Par

que

Ver

de

Ho

rári

o d

e fu

ncio

nam

ento

Ate

nd

imen

to p

rest

ado

Qu

alid

ade

das

exp

osi

ções

/ati

vida

des

Red

uçã

o d

o c

on

sum

o d

e ág

ua

Ges

tão

da

ener

gia

Ges

tão

do

s re

síd

uo

s

Co

nfo

rto

tér

mic

o

Qu

alid

ade

do

ar

Ilum

inaç

ão

Co

nfo

rto

acú

stic

o

Imp

ort

ânci

a da

ava

liaçã

o d

asu

sten

tab

ilida

de

Ap

licaç

ão d

e so

luçõ

es in

ova

do

ras

Inte

raçã

o c

om

a c

om

un

idad

e

Glo

bal

Page 105: Universidade de Lisboa Instituto Superior Técnico Centro de ...

93

ANEXO VII – RELATÓRIO DE AVALIAÇÃO DO CEA

Page 106: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Centro de Educação Ambiental de Torres Vedras Edifício de Elevado Desempenho

2014

Page 107: Universidade de Lisboa Instituto Superior Técnico Centro de ...

1 Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras

Page 108: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 2

Resumo

Centro de Educação Ambiental de Torres Vedras

Certificado em 2010

O Centro de Educação Ambiental de Torres Vedras, construído com o intuito de substituir o antigo

centro, que já não cumpria as necessidades programáticas e funcionais requeridas, tem como

promotor a Câmara Municipal de Torres Vedras e está relacionado com o GreenMed e a Rede Ecos.

O edifício localiza-se no limite poente do Parque Verde da Várzea, espaço multifacetado com 9

hectares e que permitiu revitalizar a zona poente da cidade de Torres Vedras.

O edifício em questão foi projetado pela Área de Projeto da Câmara Municipal de Torres Vedras e

insere-se na charneira entre a rede de caminhos pedonais do parque e o arranque da encosta do

sistema de colinas que o envolve a poente. O equipamento de educação e formação está repartido

por salas de atividades, laboratório, espaços exteriores para atividades, espaços de exposição com

uma parte dedicada permanentemente à sustentabilidade ambiental, zonas de projeção de

conteúdos multimédia alusivos ao ambiente, áreas de palestras, biblioteca e café com esplanada.

Este edifício foi concebido de forma a sensibilizar, ilustrar e demonstrar ao público em geral, as

grandes vantagens da construção sustentável, da utilização de energias alternativas e das

consequentes poupanças inerentes a estas novas formas de projetar e de construir, tendo obtido a

classificação A+ do Sistema LiderA, na sua avaliação, na fase de projeto.

Entre os aspetos com melhor desempenho destacam-se a valorização ecológica e a interligação de

habitats, uma vez que boa parte do lote é composto por áreas verdes, dando continuidade à

estrutura verde existente; o desenho passivo, aplicando princípios de bioclimatização; potencial de

reduzir a intensidade em carbono, através de equipamentos altamente eficientes e utilização de

fontes de energia renováveis; conforto térmico; soluções inclusivas; e, por fim, o trabalho local.

Classificação: A+ (desempenho ambiental cerca de 75% superior à prática atual)

Localização: Parque Verde da Várzea de Torres Vedras

Promotor: Câmara Municipal de Torres Vedras

Projetista: Área de Projeto da Câmara Municipal de Torres Vedras

Eletrotecnia e Segurança: Eng. Domingos Cardoso

Reaproveitamento de Águas e Rede de Rega: Eng. Carlos Mendonça

Fiscalização: Departamento de Obras Municipais da Câmara Municipal de Torres Vedras

Empreiteiro geral: Oliveiras, SA

Tipo de uso: Equipamento de educação e formação

Inserção: Parque urbano

Área de implantação: 1267 m2

Área bruta de construção: 1230,14 m2

Área de construção: 1438 m2

Custo total: 1 330 500 € (financiado a 70 % pelo POVT/QREN)

Figura 1 – Vista nascente / norte – Centro de

Educação Ambiental, Torres Vedras

Page 109: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 3

Índice Resumo…………………………………………………………………………………………………………..2

Índice de Figuras………………………………………………………………………………………….…4

Índice de Quadros…………………………………………………………………………………………...6

Siglas, Abreviaturas e Acrónimos……………………………………………………………………..…..7

Apresentação e Principais Características……………………………………………………………….….9

Introdução…………………………………………………………………………………………………..10

Caracterização……………………………………………………………………………………………..11

Processo de verificação e avaliação………………………………………………………………………...14

Verificação………………………………………………………………………………………………….16

Integração local…………………………………………………………………………………………16

Recursos………………………………………………………………………………………………...19

Cargas Ambientais……………………………………………………………………………………..27

Conforto Ambiental……………………………………………………………………………………..31

Vivência socioeconómica……………………………………………………………………………...34

Uso Sustentável………………………………………………………………………………………...41

Conclusões……………………………………………………………………………………………………..42

Desempenho Ambiental Global…………………………………………………………………………..42

Referências…………………………………………………………………………………………………….43

Page 110: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 4

Índice de Figuras

Figura 1 – Vista nascente / norte – Centro de Educação Ambiental, Torres Vedras ........................ 2

Figura 2 – Localização do Centro de Educação Ambiental (Fonte: www.maps.google.com) .......... 10

Figura 3 - Perspetiva da localização do Centro de Educação Ambiental (Fonte: www.bing.com/maps)

...................................................................................................................................... 11

Figura 4 - Esquema de implantação ..................................................................................... 11

Figura 5 – Capa do Relatório Preliminar ................................................................................ 15

Figura 6 - Escadaria sul de acesso à cobertura verde ............................................................. 16

Figura 7 - Pátios interiores .................................................................................................. 17

Figura 8 - Elevada área permeável ....................................................................................... 17

Figura 9 - Flora presente nas imediações do centro ................................................................ 17

Figura 10 - Perfeita transição da várzea para a encosta .......................................................... 18

Figura 11 - Vista norte evidenciando a valorização estética do edifício ....................................... 18

Figura 12 - Frente de madeira semitransparente .................................................................... 18

Figura 13 - Sombreamento através do sistema de brise-soleil .................................................. 19

Figura 14 - Grande área de vãos envidraçados ...................................................................... 20

Figura 15 - Sistema tradicional em betão armado e alvenaria ................................................... 20

Figura 16 - Isolamento através de placas de aglomerado de cortiça expandida ........................... 20

Figura 17 - Sequência intercalada de pátios exteriores potencia a utilização de ventilação natural

cruzada ........................................................................................................................... 20

Figura 18 - Painéis fotovoltaicos e coletor solar térmico na cobertura do centro ........................... 21

Figura 19 - Aerogerador ..................................................................................................... 21

Figura 20 - Vista interior dos coletores do sistema geotérmico .................................................. 22

Figura 21 - Bomba de calor geotérmica ................................................................................. 22

Figura 22 – Consumos semanais de água potável .................................................................. 23

Figura 23 - Esquema de aproveitamento das águas pluviais .................................................... 24

Figura 24 - Central de rega ................................................................................................. 24

Figura 25 - Revestimento em pedra de Vidraço de Ataíja Creme............................................... 24

Figura 26 - Pavimento em pedra de Calcário Azul Valverde nas zonas comuns........................... 25

Figura 27 - Teto do átrio de entrada materializado em gesso laminado pintado a tinta plástica mate25

Figura 28 - Revestimento do pavimento com linóleo................................................................ 25

Figura 29 - Revestimento da cobertura em seixo rolado .......................................................... 26

Figura 30 - Mobiliário nacional e executado em materiais recicláveis ......................................... 26

Figura 31 - Ecopontos presentes no atelier / laboratório de educação ambiental ......................... 28

Figura 32 - Pequenos contentores presentes no centro ........................................................... 29

Figura 33 - Ecoponto na Rua António Leal da Ascensão .......................................................... 29

Page 111: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 5

Figura 34 - Ecopontos na circundante do edifício, num raio de 100 metros ................................. 29

Figura 35 - Utilização de placas de aglomerado de cortiça ....................................................... 29

Figura 36 - Isolamento dos equipamentos de climatização ....................................................... 30

Figura 37 - Iluminação natural da sala de atividades ............................................................... 30

Figura 38 - Fachada constituída por perfis de madeira e cores claras ........................................ 30

Figura 39 - UTA / UE responsável pelo tratamento de ar do átrio de entrada / receção e café ........ 31

Figura 40 - Tintas e vernizes utilizadas cumprem o disposto na Diretiva 2004/42/CE relativa aos

COVs .............................................................................................................................. 32

Figura 41 - Isolamento adequado dos espaços interiores, como as placas de gesso, favorece o

conforto térmico ................................................................................................................ 32

Figura 42 - Claraboias permitem a iluminação natural.............................................................. 33

Figura 43 - Sistema brise-soleil e estores .............................................................................. 33

Figura 44 - Claraboias no átrio de entrada / receção ............................................................... 33

Figura 45 - Pormenor dos isolamentos .................................................................................. 33

Figura 46 - Bicicletas “Agostinhas”, uma das marcas da cidade de Torres .................................. 35

Figura 47 - Mapa de transportes públicos, num raio de 500 metros do edifício............................. 35

Figura 48 - Incentivos à mobilidade de baixo impacte .............................................................. 36

Figura 49 - Café Ambiente & Ar e esplanada .......................................................................... 37

Figura 50 - Parque Verde da Várzea ..................................................................................... 37

Figura 51 - Hortas comunitárias ........................................................................................... 38

Figura 52 - Sinalização do CEA e do Parque Verde da Várzea ................................................. 38

Figura 53 - Mapa de amenidades, num raio de 500 metros do centro ......................................... 38

Figura 54 - Material do laboratório ........................................................................................ 39

Figura 55 - Exposição......................................................................................................... 39

Figura 56 - Sistema de automação OMRON .......................................................................... 39

Figura 57 - Central de deteção de incêndio ............................................................................ 40

Figura 58 – Desempenho Ambiental Global atingido ............................................................... 42

Page 112: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 6

Índice de Quadros

Quadro 1 – Divisões do edifício ........................................................................................... 12

Quadro 2 - Características urbanísticas do edifício ................................................................. 13

Quadro 3 - Integração Local: Áreas e Critérios de base considerados ........................................ 16

Quadro 4 - Recursos: Áreas e Critérios de base considerados.................................................. 19

Quadro 5 – Produção anual fotovoltaica ................................................................................ 21

Quadro 6 – Consumo anual estimado de eletricidade .............................................................. 22

Quadro 7 – Principais materiais de baixo impacte utilizados ..................................................... 25

Quadro 8 – Cargas Ambientais: Áreas e Critérios de base considerados .................................... 27

Quadro 9 – Resíduos produzidos no centro em diferentes semanas .......................................... 28

Quadro 10 – Conforto Ambiental: Áreas e Critérios de base considerados .................................. 31

Quadro 11 – Presença de COVs nas tintas e vernizes utilizadas ............................................... 32

Quadro 12 – Vivência Socioeconómica: Áreas e Critérios de base considerados ......................... 34

Quadro 13 – Uso Sustentável: Áreas e Critérios de base considerados ...................................... 41

Page 113: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 7

Siglas, Abreviaturas e Acrónimos

AQS – Águas Quentes Sanitárias

AVAC – Aquecimento, Ventilação e Ar Condicionado

CEA – Centro de Educação Ambiental de Torres Vedras

CMTV – Câmara Municipal de Torres Vedras

COVs – Compostos Orgânicos Voláteis

ETICS - External Thermal Insulation Composite System

IS – Instalação Sanitária

LiderA – Liderar pelo Ambiente para a construção sustentável

PEFC – Programa para o Reconhecimento da Certificação Florestal

POVT / QREN – Programa Operacional Valorização do Território / Quadro de Referência Estratégico

Nacional

RCCTE – Regulamento das Características de Comportamento Térmico dos Edifícios

UE – União Europeia

UTA / UE – Unidade Tratamento de Ar / Unidade de Extração

Page 114: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 8

Page 115: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 9

Apresentação e

Principais

Características Neste capítulo é efetuada uma breve introdução onde são apresentadas

as principais características do Centro de Educação Ambiental.

Page 116: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 10

Introdução O objeto de estudo do presente relatório surge da intenção de criar um edifício de elevado

desempenho, com o intuito de substituir o antigo centro de educação ambiental, pretendendo

demonstrar as vantagens da construção sustentável e da utilização das energias renováveis, com

vista a educar e formar a população, em que figura como promotor a Câmara Municipal de Torres

Vedras.

A construção do edifício está relacionada com o GreenMed (um programa internacional em que a

CMTV participou na área das compras públicas sustentáveis) e a Rede Ecos (uma entidade nacional

de apoio a atividades no domínio da energia e construção sustentável da qual o município faz parte).

Este edifício situa-se em Torres Vedras, localizando-se na zona poente do Parque Verde da Várzea.

O edifício insere-se na lógica da topografia e percursos do parque, desenhando a transição da zona

de várzea para a encosta. Num único piso, ocupando uma área da parcela longitudinal do terreno e

oferecendo um prolongamento do parque na sua cobertura, conta com espaços para atividades,

exposições e experiências.

O edifício, projetado pela Área de Projeto da Câmara Municipal de Torres Vedras, foi concebido de

forma a responder às necessidades programáticas e funcionais requeridas atualmente por um

concelho que coloca a educação ambiental como domínio estratégico de intervenção, revelando

também preocupações com o seu posicionamento no âmbito da sustentabilidade, tendo como

objetivo principal a promoção de um edificado com uma performance ambiental superior à prática

comum.

Neste contexto foi solicitado ao Sistema LiderA, que verificasse e avaliasse o edifício, com vista à

sua certificação. O presente relatório refere-se à apresentação da Verificação da Avaliação de

Posicionamento do Desempenho Ambiental e Certificação do Centro de Educação Ambiental de

Torres Vedras.

De referir que o edifício em questão encontra-se, desde finais de Setembro de 2013, em fase de

operação.

Figura 2 – Localização do Centro de Educação Ambiental (Fonte: www.maps.google.com)

Page 117: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 11

Caracterização A zona de intervenção onde foi construído o Centro de Educação Ambiental, possui uma área de

implantação de 1267 m2 e caracteriza-se por ser uma área classificada como verde ecológico

urbano, localizada no limite poente do perímetro urbano da cidade de Torres Vedras.

Figura 3 - Perspetiva da localização do Centro de Educação Ambiental (Fonte: www.bing.com/maps)

Localização e acessos

O edifício encontra-se implantado no extremo poente do Parque Verde da Várzea, no limite do

perímetro urbano da cidade de Torres Vedras. Tem acessos pedonais, embora possua na

proximidade lugares de estacionamento, incluindo de abastecimento de veículos elétricos. O edifício

surge assim numa área classificada como verde ecológico urbano da cidade, sendo o parque em

que se insere circundado por escolas e estabelecimentos comerciais a sul, estrada nacional 8 a

oeste, Rua Villenave D`Ornon a norte e Rua António Leal da Ascensão, habitações e edifícios

comerciais a este. Nas proximidades tem alguns pontos de transportes, contando com diversas

paragens de autocarro, estações de bicicletas públicas – “Agostinhas” e praças de táxis.

Organização Funcional

Na conceção do edifício teve-se em atenção duas opções: ocupar uma área da parcela longitudinal

do terreno disponível (aproximadamente 120 m de comprimento por 20 m de largura), através de um

só piso e, por outro lado, transformar a cobertura num prolongamento do parque, oferecendo-se a

possibilidade de um percurso alternativo que reponha ao nível da cobertura uma parte do solo

vegetal ocupado.

Apesar do edifício ser constituído por um só piso, a diferença de cota e sobreposição entre o corpo

central e o volume nascente das salas permitiu criar também um piso técnico de acesso às

infraestruturas acima do espaço de exposição / circulação.

Partindo da posição intermédia do átrio de entrada, consegue-se organizar desde logo o espaço em

zonas de exposição, atividades e trabalho a sul e nascente, café a norte e instalações sanitárias e

zonas de serviço a poente.

Figura 4 - Esquema de implantação

Page 118: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 12

A zona de exposição define-se a partir do espaço expositivo, que tem a dupla função de ser uma

sala de exposição informal e de ser uma espaço de distribuição para as salas de exposição, de

atividades e laboratório. O espaço entre o átrio de entrada e a zona de exposição, caracterizado por

um estreitamento de acesso e rebaixamento do teto, permitiu resolver os acessos ao gabinete de

trabalho do pessoal afeto ao centro, ao bloco de instalações sanitárias bem como a uma das zonas

técnicas.

O café instala-se na continuidade do átrio para norte ocupando a zona mais larga do corpo central.

Este espaço é dominado pela presença de um vão rasgado orientado para norte e que se abre para

o espaço exterior de estadia.

Tratando-se de um edifício que se pretende demonstrativo de soluções inovadoras de construção

sustentável, foi dado ênfase às duas zonas técnicas que ocupam as extremidades sul e norte do

edifício. No caso da zona técnica 1, situada no extremo norte, está prevista inclusive a possibilidade

de visita guiada ao espaço, por forma a observar os equipamentos. Este pressuposto levou a que se

estabelecesse um corredor de acesso direto a partir da zona de exposição. Este corredor, por sua

vez, envolve e organiza as zonas de serviço e de apoio ao café, bem como o bloco de instalações

sanitárias.

Quadro 1 – Divisões do edifício

Piso Divisão Área útil (m2)

Piso 0 (Área útil total = 1095,43 m2)

Acesso Principal 36,96

Átrio de Entrada / Receção 112,96

Espaço Expositivo / Área Circulação 160,57

Sala de Reuniões / Gabinete 60,36

Pátios Exteriores 59,47+59,47

Sala de Atividades / Multimédia 61,00 + 61,00

Atelier / Laboratório de Educação Ambiental

60,35

Entrada Técnica 35,02

Biblioteca 59,81

Arrumos 38,91

Zona Técnica 2 31,90

Átrio IS 20,46

IS Infantil 5,50

IS Feminino 9,94

IS Masculino 9,94

IS Mobilidade Condicionada 6,00

Circulação Funcional 18,34

Armazém Detergentes / Pia Despejo 4,47

Vestiário Funcionários 4,12

Armazém Bebidas 8,47

Zona Técnica 1 77,87

Café 73,23

Cozinha 17,18

Despensa 2,13

Piso Técnico (Área útil total = 334,11 m2)

Galeria Técnica 306,97 + 27,14

Cobertura (Área útil total = 1086,08 m2)

Cobertura Ajardinada com Degraus 127,87 + 22,85

Cobertura Ajardinada 325,35

Page 119: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 13

Piso Divisão Área útil (m2)

Cobertura (Área útil total = 1086,08 m2)

Cobertura Ajardinada / Atelier, Laboratório de Educação Ambiental

59,15

Cobertura Ajardinada / Sala de Atividades, Multimédia

104,00

Cobertura Ajardinada / Sala de Reuniões, Gabinete

73,15

Cobertura / Átrio de Entrada, Receção e Café

219,15

Cobertura / IS 26,13

Cobertura Ajardinada / Zona Técnica 1 104,00

Restante 24,43

Aspetos construtivos

Tendo em consideração a sua localização, o edifício insere-se na lógica da topografia e percursos do

parque, procurando desenhar a transição da zona da várzea para a encosta.

Desde a sua construção foram utilizadas práticas sustentáveis, com a cuidadosa avaliação ambiental

nas escolhas dos materiais aplicados, que refletem os pressupostos que orientaram a implantação e

a disposição espacial e volumétrica do edifício. O edifício guiado por princípios de bioclimatização

tem as suas paredes, janelas e tetos devidamente localizados, orientados e desenhados de modo a

captarem corretamente a radiação solar, ventilação e iluminação natural. A aposta num sistema

tradicional de estrutura em betão armado e paredes em alvenaria de tijolo fundamenta-se no

princípio em que a inércia térmica deste sistema se adequa ao nosso clima, contribuindo para um

bom desempenho energético, complementado pela camada de terra que reveste a cobertura do

edifício e pelo seu encosto ao terreno a poente. A materialização dos volumes construídos não é

senão a seleção das qualidades percetivas das superfícies que revestem a estrutura em betão

armado e alvenaria de tijolo e que caracterizam os volumes e espaços do edifício.

Foram também instalados painéis solares fotovoltaicos e térmicos, um aerogerador e um sistema de

geotermia.

O edifício aborda assim a questão da sustentabilidade do ponto de vista do ciclo de vida do edifício.

Isto significa monitorizar o impacte ambiental do edifício desde a decisão de elaborar um projeto até

à demolição / reconversão do edifício.

Quadro 2 - Características urbanísticas do edifício

Edifício: Centro de Educação Ambiental de Torres Vedras

Dono de Obra: Câmara Municipal de Torres Vedras

Projeto de arquitetura: Área de Projeto da Câmara Municipal de Torres Vedras

Fase: Operação

Concelho / Freguesia: Torres Vedras / União das Freguesias de Torres Vedras

Latitude/ Longitude: 39º 05’7.8” N / 9º 15’50.40” O

Inserção: Parque urbano

Tipo de uso: Equipamento de educação e formação

Nº. de pisos: 1 piso + 1 piso técnico

Área de implantação: 1267 m²

Page 120: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 14

Processo de

verificação

e avaliação

Neste capítulo são apresentados os processos de verificação e a

avaliação do centro em análise por parte do Sistema LiderA,

apresentando a verificação e avaliação elaboradas e a classificação

final do nível de desempenho ambiental.

Page 121: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 15

No edifício objeto de estudo deste relatório, o seu promotor – Câmara Municipal de Torres Vedras –

solicitou ao Sistema LiderA o processo de verificação do Centro de Educação Ambiental (fase de

projeto), com vista à obtenção de certificado ambiental.

Essa verificação foi efetuada pela equipa do LiderA: Coordenador Professor Manuel Duarte Pinheiro,

Arq° Bruno Xisto e Arqa Madalena Esquível, fazendo esta uma avaliação do posicionamento

ambiental do centro, organizando as evidências para certificação, assentando na obtenção de

elementos necessários nas vertentes LiderA.

Perante a avaliação realizada, materializada num relatório preliminar, o Centro de Educação

Ambiental, em fase de projeto, evidenciou um bom desempenho ambiental sendo passível de

reconhecimento (certificação) com o nível A+ do Sistema LiderA, o que significa que o edifício teria

um desempenho 75% superior à média nacional atual.

Figura 5 – Capa do Relatório Preliminar

Page 122: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 16

Verificação Seguidamente são apresentadas as conclusões da verificação e avaliação, onde se analisam e

comprovam os níveis de desempenho para cada critério do Sistema LiderA, organizando-o de

acordo com a sua estrutura – vertentes> áreas> critérios.

Vertente

Integração local Na vertente da Integração Local os melhores desempenhos aferidos surgem nos critérios da

otimização ambiental da implantação (C2), da valorização ecológica (C3), da interligação de habitats

(C4) e integração paisagística (C5), como se poderá comprovar no quadro seguinte.

Quadro 3 - Integração Local: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-req. Critério NºC

Classe de

desempenho

ambiental1

Integração

local

Solo 7% S

Valorização territorial C1

Otimização ambiental da

implantação C2

Ecossistemas

naturais 5% S

Valorização ecológica C3

Interligação de habitats C4

6 Critérios Paisagem e

património 2% S

Integração paisagística C5

14% Proteção e valorização do

património C6

Solo

Na área do Solo, no que se refere à valorização territorial (C1) este edifício contribui para o espaço

público, em especial o Parque Verde da Várzea, ao vincular-se a um caminho pedonal existente,

efetuando uma “interface” pedonal de ligação entre o parque e a cidade e transformando a cobertura

do edifício num prolongamento do parque; localiza-se numa zona infraestruturada de esgotos e

águas e está inserida numa área classificada como verde ecológico urbano.

1 Classes de desempenho ambiental – Sistema LiderA:

Figura 6 - Escadaria sul de acesso à cobertura

verde

Page 123: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 17

No que se refere à otimização ambiental da implantação (C2), o centro além de possuir áreas

permeáveis, ocupa uma pequena parte dos cerca de 9 ha do Parque Verde da Várzea (CMTV, n.d.).

Ecossistemas naturais

Relativamente à valorização ecológica (C3), o centro possui áreas verdes na cobertura e no espaço,

num total de 1653 m2 de área verde, na qual possui uma espécie de árvore não autóctone. As

seguintes espécies, caracterizadas pela RHS (2011) e pela UTAD (2014), podem ser encontradas na

parte nascente do centro:

Catalpa bignonioides – árvore ornamental caduca, também designada Árvore-das-

trombetas, sendo uma espécie nativa e abundante no sudeste dos EUA: 3 unidades.

Para além das árvores, o centro possui ainda as seguintes espécies de sebes arbustivas e plantas:

Argyranthemum frutescens – flor perene, de clima mediterrâneo, subtropical e temperado é

nativa das Canárias e Madeira: 45 unidades;

Escallonia macrantha – planta com flor, nativa dos Açores: 35 unidades;

Lantana camara – espécie presente em Portugal originária da América do Sul e Central: 35

unidades;

Lavandula angustifolia – planta de ornamentação, conhecida por Alfazema, muito

frequente em Portugal: 90 unidades;

Lonicera japonica – trepadeira nativa do Extremo Oriente: 8 unidades;

Nerium oleander – arbusto ornamental de grandes dimensões, nativa do Norte de África,

Este do Mediterrâneo e Sul da Ásia, sendo muito comum em Portugal: 13 unidades;

Osteospermum sp. – flor perene, com origem na África do Sul: 45 unidades;

Rosmarinus officinalis – arbusto conhecido por Alecrim, comum na região mediterrânica:

35 unidades;

Santolina chamaecyparis – flor perene de origem mediterrânica: 90 unidades;

Senecio cineraria – arbusto nativo da região mediterrânica, tolerante à seca: 75 unidades;

Thymus communis – planta nativa da Europa, Norte de África e Ásia, sendo conhecida por

tomilho: 75 unidades;

Viburnum tinus – arbusto cultivado extensivamente na Europa Ocidental e América do

Norte, nativo das regiões mediterrânicas, Canárias e Açores onde é encontrado em matas:

14 unidades.

Apesar das árvores plantadas ainda serem jovens e não apresentarem copa, nas imediações do

centro existem várias espécies de árvores que fazem parte das 48 espécies de árvores e 38

espécies arbustivas existentes no parque (CMTV, n.d.).

No que se refere ao critério interligação de habitats (C4), é de referir que à exceção do lado poente e

do acesso principal, o restante perímetro do lote é verde e que a cobertura do edifício oferece a

Figura 7 - Pátios interiores

Figura 8 - Elevada área permeável

Figura 9 - Flora presente nas imediações do centro

Page 124: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 18

possibilidade de um percurso alternativo, que repõe uma parte do solo vegetal ocupado, permitindo

uma ligação entre a parte sul e norte do lote.

Paisagem e património

Na área da paisagem e património este edifício alcança um bom nível de desempenho na integração

paisagística (C5). No que se refere a este critério, o edifício insere-se na lógica da topografia do

parque ao desenhar a transição da várzea para a encosta. Num só piso, ocupando uma área da

parcela longitudinal do terreno disponível, transforma a cobertura do edifício num prolongamento do

parque. Os materiais e cores utilizados refletem os pressupostos que orientaram a implantação e a

disposição espacial e volumétrica do edifício, apresentando uma frente de madeira semitransparente

e um embasamento de fundo em pedra de Ataíja que interpreta o encontro com o terreno. De uma

forma geral o projeto cria condições de valorização estética da paisagem.

O edifício novo não favorece a proteção e valorização do património (C6).

Figura 10 - Perfeita transição da várzea para a encosta

Figura 11 - Vista norte evidenciando a valorização estética do edifício

Figura 12 - Frente de madeira semitransparente

Page 125: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 19

Vertente

Recursos Na vertente dos Recursos os melhores desempenhos aferidos surgem nos critérios da eficiência nos

consumos - certificação energética (C7), desenho passivo (C8), intensidade em carbono (C9) e

durabilidade (C12), como se poderá comprovar no quadro seguinte.

Quadro 4 - Recursos: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-req. Critério NºC

Classe de

desempenho

ambiental2

Recursos

Energia 17% S

Eficiência nos consumos

- Certificação Energética C7 *

Desenho Passivo C8

Intensidade em Carbono C9 **

Água 8% S

Consumo de água

potável C10

Gestão das águas locais C11

Materiais 5% S

Durabilidade C12

Materiais locais C13

9 Critérios Materiais de baixo

impacte C14

32% Produção

Alimentar 2% S

Produção local de

alimentos C15

Energia

Na área da Energia, no que se refere à avaliação na eficiência nos consumos - certificação

energética (C7), existe um esforço para que o edifício atinja a classe energética A+, a equipa

recomendou uma auditoria energética para precisão deste ponto na operação (*).

No que se refere à incorporação de princípios de desenho passivo (C8), este edifício, que se situa

numa posição favorável, inclui um conjunto de boas práticas a realçar, em especial na sua

orientação; no sombreamento; na aplicação de materiais com baixo coeficiente de transmissão

2 Classes de desempenho ambiental – Sistema LiderA:

Figura 13 - Sombreamento através do sistema de brise-soleil

Page 126: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 20

térmica; no isolamento térmico; na ventilação adequada; no fator de forma do edifício

(Aenvolvente/Vinterior que garante um rácio pelo menos 1,21), onde mais de 75 % das divisões principais

estão orientadas para sul (exceção do café); e na adoção de vidros duplos (Saint Gobain Glass

Portugal: Exterior - Planitherm Ultra N II (temperado) + caixa-de-ar + Stadip Protect 44.2 (laminado))

e caixilharias eficientes (em perfis de alumínio com rutura de ponte térmica e acabamento anodizado

à cor preta acetinado).

A quase totalidade dos envidraçados é sombreada exteriormente com um sistema de brise-soleil em

réguas em perfis de madeira termotratada e interiormente com estores com comando duplo, que

permitem um obscurecimento total.

A aposta num sistema tradicional de estrutura em betão armado e paredes em alvenaria de tijolo

fundamenta-se no princípio em que a inércia térmica deste sistema se adequa ao nosso clima,

contribuindo para um bom desempenho energético.

No que diz respeito à fenestração seletiva, de acordo com a orientação do edifício, a própria

arquitetura já tivera este aspeto em consideração, fazendo incidir a maior área de envidraçados na

orientação sul/nascente e uma menor na orientação norte/nascente (área dos vãos com orientação

sul/nascente: 152,44 m2; área dos vãos com orientação nascente/norte: 25,23 m2). Quanto à

Aenvidraçados/Apavimento podemos constatar que tendo o edifício 1095,43 m2 de área útil de pavimento no

piso 0 e 177,67 m2 de envidraçado obtém-se um valor de cerca de 16 %.

No tocante ao tratamento das pontes térmicas, houve uma preocupação em eliminá-las,

nomeadamente através de paredes duplas ou paredes simples formando caixas-de-ar, o isolamento

térmico das estruturas a partir do revestimento de pavimentos, cobertura e paredes exteriores em

placas rígidas de espuma de poliestireno extrudido (XPS). Uma solução de ETICS foi também

aplicada nas paredes exteriores, com isolamento em placas de aglomerado de cortiça expandida, e

no revestimento dos tetos exteriores, com isolamento térmico em placas de poliestireno expandido

(EPS). As placas de aglomerado de cortiça expandida foram também aplicadas no paramento de

claraboias e no interior de paredes.

Em termos de ventilação, com a instalação de um sistema de AVAC, constituído por duas unidades

de tratamento e extração de ar (UTA / UE), uma alimentada por um chiller com bomba de calor e

outra por produção geotérmica, o principal meio de arrefecimento no verão passa a ser mecânico e

não passivo. Contudo, as condições preferenciais da conceção do edifício, a sua orientação e a

conceção da sequência intercalada de pátios exteriores, que permitiu a localização dos vãos

passíveis de abertura direcionados ao vento dominante de verão (norte / noroeste) (APA, 2012)

potenciam a utilização da ventilação natural cruzada para arrefecimento passivo, nomeadamente no

café, na sala de atividades / multimédia, no átrio de entrada / receção, na sala de reuniões / gabinete

e no atelier / laboratório de educação ambiental.

Por último como referido foi instalado um sistema passivo especial, um sistema de geotermia que

alimenta o sistema de ventilação responsável pelo tratamento do ar do átrio de entrada / receção e

do café.

Figura 16 - Isolamento através de placas de aglomerado de cortiça expandida

Figura 17 - Sequência intercalada de pátios exteriores potencia a utilização de ventilação natural

cruzada

Figura 14 - Grande área de vãos envidraçados

Figura 15 - Sistema tradicional em betão armado e alvenaria

Page 127: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 21

Por sua vez, no que se refere à intensidade em carbono (C9), este edifício segundo os dados de

projeto, alcança um nível elevado. Dado que atualmente ainda não estão todos os sistemas em

operação, importa assegurar e avaliar após essa efetivação (**).

Neste âmbito foi instalado um sistema híbrido (sistema fotovoltaico + sistema eólico), no âmbito da

microgeração, para potência de ligação à rede de baixa tensão de 3,68 kVA.

O sistema fotovoltaico é composto por 11 módulos multicristalino, da Mprime com 15,1 % de

eficiência e 240 Wp de potência máxima, o que garante um total de 2,64 kWp. O sistema é ainda

constituído por um inversor de 2500 W responsável pela conversão de corrente contínua gerada

pelos painéis fotovoltaicos, em corrente alternada para ser injetada na rede. A produção de energia

através dos sistemas fotovoltaicos é influenciada por fatores como radiação, ângulo da radiação

incidente e temperatura ambiente. Os módulos foram devidamente orientados a sul, com uma

inclinação ótima de 35º, ou seja, subtraindo 4º à latitude de Torres Vedras, pelo que a energia

produzida anualmente será cerca de 3920 kWh, segundo o PVGIS (2014) e considerando perdas

combinadas na ordem dos 25%:

Quadro 5 – Produção anual fotovoltaica

Mês Produção

Média Mensal (kWh)

Radiação Média Mensal

(kWh / m2)

jan 233 112

fev 261 127

mar 349 173

abr 358 180

mai 379 193

jun 382 198

jul 408 214

ago 402 211

set 369 191

out 316 159

nov 244 121

dez 220 107

Total 3920 1990

O sistema eólico instalado, um modelo Proven 2.5, produz até 2,8 kW, sendo que à velocidade de 12

m/s tem uma potência nominal de 2,5 kW. A torre utilizada tem uma altura de 11 m e o rotor,

constituído por três pás, tem um diâmetro de 3,5 m. A energia produzida por este sistema vai variar

com a velocidade e turbulência do vento. Contudo, para uma velocidade de vento média de 12,1

km/h (velocidade média anual, para o período 1961-90, na estação meteorológica de Dois Portos

(APA, 2012), situada a cerca de 8 km de Torres) a turbina produzirá cerca de 2000 kWh/ano.

Pelo que o sistema de microgeração tem assim uma produção anual estimada próxima dos 6000

kWh.

Foi ainda instalado um sistema solar térmico de circulação forçado, constituído por um coletor OP-

V4AL da OPENPLUS com área absorsora de 2,02 m2, um depósito de dupla serpentina com

capacidade de 200 L, um controlador digital e um grupo de bombagem. Este sistema é para uso

Figura 18 - Painéis fotovoltaicos e coletor solar térmico na cobertura do centro

Figura 19 - Aerogerador

Page 128: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 22

exclusivo do café, considerando um consumo diário de águas quentes sanitárias a 60 °C e não

existindo um sistema de apoio.

Por forma a minimizar o consumo de energia em climatização, foi instalado um sistema geotérmico.

A grande vantagem da utilização de um sistema de geotermia deve-se ao facto de a terra manter a

partir de uma pequena profundidade uma temperatura constante de aproximadamente 17 °C. No

verão a dissipação de energia captada no interior do edifício vai ser libertada num ambiente com

esta temperatura. No inverno, de forma inversa, em vez de trocar calor com um ambiente com

baixas temperaturas a referida troca vai ser realizada um ambiente mais ameno.

A captação geotérmica processa-se através da circulação de água em sondas geotérmicas duplas

introduzidas em furos verticais. A produção de água aquecida / arrefecida é garantida por uma

bomba de calor geotérmica (uma WRL 080H da AERMEC). Este equipamento foi instalado na zona

técnica 1, conjuntamente com um depósito de inércia de 600 L que acumula a água tratada pela

bomba.

Tomaram-se como referência as temperaturas de 45 °C para a produção de água quente para os

circuitos de aquecimento, e 7 °C para a produção de água fria para os circuitos de arrefecimento.

A transferência de energia calorífica com o exterior é assegurada por intermédio de permutadores

geotérmicos que consistem basicamente em furos verticais nos quais são introduzidas sondas

geotérmicas duplas compostas por quatro tubos de 32 mm de diâmetro, com 125 m de comprimento

(estes 500 m de sonda devem-se aos 25000 W de potência a dissipar no verão, considerando que o

terreno tem uma capacidade de dissipação mínima de 50 W/ml de sonda).

Estas sondas geotérmicas possibilitam a circulação de água em circuito fechado no interior do furo

vertical, permitindo a absorção (ou dissipação) de energia calorífica. Esta água é recebida por

coletores e transferida para uma linha para interligar com a bomba de calor.

No caso do consumo energético é apresentada de seguida uma estimativa do consumo anual de

eletricidade, que não foi validada por problemas com o contador.

Quadro 6 – Consumo anual estimado de eletricidade

Equipamento Consumo

Anual (kWh)

Climatização e Tratamento do Ar 19829

Café + Cozinha 19403

Iluminação 6832

Equipamentos CEA 4488

Equipamentos WC 642

Bombas 378

Total 51572

O consumo estimado de eletricidade aproxima-se dos 1000 kWh por semana o que perfaz um

consumo anual de cerca de 51572 kWh.

As parcelas que apresentam maiores consumos são as dedicadas ao café e à respetiva cozinha,

bem como à climatização e tratamento do ar (aquecimento / arrefecimento, ventilação e tratamento),

representando cada uma 38 % do consumo total de energia.

Figura 20 - Vista interior dos coletores do sistema geotérmico

Figura 21 - Bomba de calor geotérmica

Page 129: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 23

Água

Relativamente ao consumo de água (C10), de acordo um levantamento, durante mais de 2 meses, a

partir do contador dos consumos de água aponta para um gasto médio diário de cerca de 0,53 m3. O

consumo excessivo da semana de 16 a 22 de março resultou de uma avaria, sendo que as semanas

de 23 de fevereiro a 1 de março e 2 a 8 de março correspondem ao período de Carnaval, no qual o

centro esteve fechado em alguns dias. Os consumos semanais de água potável encontram-se pois

sobretudo na gama dos 2 a 4 m3, pouco menos de 200 m3 anuais.

Figura 22 – Consumos semanais de água potável

Toda a água potável utilizada provém da rede municipal de abastecimento e é reencaminhada após

a sua utilização para a rede de drenagem de águas residuais pública ou no caso dos lavatórios das

IS para um reservatório. Esta recolha das águas cinzentas é feita para um reservatório de 500 L,

localizado abaixo do solo, no Armazém Detergentes / Pia Despejo. Sobre este está instalado um

Reciclador de Águas Cinzentas (Ecodepur BIOX) com um depósito de 100 L (UAAC – Unidade de

Aproveitamento das Águas Cinzentas) para armazenamento da água tratada, por um processo de

filtragem e controlo / injeção de cloro, a partir do qual é depois pressurizada para a rede alternativa

de alimentação dos autoclismos. Este sistema é ainda compensado pela recolha de águas pluviais

na cobertura do edifício que são encaminhadas para 2 depósitos (UAAP – Unidade de

Aproveitamento das Águas Pluviais), enterrados no exterior do edifício.

0

2

4

6

8

10

12

26 jan -1 fev

2 - 8fev

9 - 15fev

16 - 22fev

23 fev -1 mar

2 - 8mar

9 - 15mar

16 - 22mar

23 - 29mar

30 mar- 5 abr

6 - 12abr

Co

nsu

mo

m3

Page 130: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 24

De realçar, neste âmbito também a opção por equipamentos eficientes, como torneiras misturadoras

e redutoras de caudal e autoclismo de dupla descarga, inclusive com certificação hídrica da ANQIP

(ANQIP, 2013), como o Geberit modelo Kombifix UP 320, com classificação A.

Em relação à gestão das águas locais (C11) destaca-se a recolha das águas pluviais na cobertura

do centro, que são encaminhadas para 2 depósitos (UAAP), cada um com 10000 L de capacidade,

enterrados na parte sul do lote. Esta reserva é utilizada na alimentação da rede de rega, que quando

necessária é reforçada automaticamente pela água da rede e na compensação do reservatório de

aproveitamento das águas cinzentas.

Os espaços ajardinados a regar, incluindo a cobertura e os pátios, correspondem a uma área de

1653 m2 e é efetuada com recurso a um sistema gota-a-gota enterrado, permitindo uma poupança

de água na ordem dos 25%. Esta rega faz-se através da programação automática da central de

rega, instalada na zona técnica 2, que comanda a abertura de electroválvulas, funcionado em

alternância por seis sectores.

Materiais

No que refere aos materiais é avaliada a sua durabilidade, a quantidade de materiais locais e de

baixo impacte.

O edifício é revestido por um embasamento de fundo em pedra de Vidraço de Ataíja Creme, sendo o

revestimento da parede até à platibanda com reboco areado fino pintado (sistema ETICS). O topo da

platibanda, escadarias, rodapé dos muros e percurso pela cobertura, bem como limites das

plataformas do espaço exterior são também definidos por blocos em Vidraço de Ataíja Creme.

Figura 24 - Esquema de aproveitamento das águas pluviais

Figura 23 - Central de rega

Figura 25 - Revestimento em pedra de Vidraço de Ataíja Creme

Abastecimento do sistema

de rega gota-a-gota

enterrado

Reforço da UAAC a partir

da UAAP

Page 131: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 25

O espaço interior é materializado em pedra de Calcário Azul Valverde, que além de revestir o

pavimento do acesso principal é utilizado no átrio de entrada, espaço de exposição / circulação e

café. Nas salas de laboratório, exposição e trabalho, optou-se por revestir o pavimento com linóleo,

rebocando-se as paredes de alvenaria existentes. No interior das salas optou-se pelo teto em gesso

laminado.

Os paramentos do átrio de entrada, espaço de exposição / circulação e café caracterizam-se pelo

lambril em placas de fibra de gesso pintado a tinta de esmalte e os tetos e a porção de paramento

até ao lambril materializam-se em gesso laminado pintado a tinta plástica mate. No café utilizou-se

também, no teto, placas de gesso laminado com absorção acústica.

Nas instalações sanitárias optou-se pelo revestimento das paredes até à altura do lambril com

azulejo vidrado branco e pelo uso de divisórias em painéis fenólicos brancos. Nas zonas técnicas e

de serviço optou-se por um revestimento de pavimento em epoxi.

Sendo um edifício novo, os tempos de vida referentes à sua construção estão escalonados da

seguinte forma: estrutura - 100 anos; canalizações - 40 anos; acabamentos - 20 anos; e

equipamentos - 20 anos. Deste modo, haverá um bom nível de durabilidade (C12) referente aos

materiais da nova construção.

Relativamente à aplicação de materiais locais (distância inferior a 100 km) há a realçar o betão +

alvenaria de tijolo, o seixo de rio, a pedra de Calcário Azul Valverde e pedra de Vidraço de Ataíja

Creme.

No que diz respeito à aplicação de materiais de baixo impacto (C14), seguidamente apresenta-se um

quadro que resume os principais materiais de baixo impacte utilizados:

Quadro 7 – Principais materiais de baixo impacte utilizados

Material Observações

Betão + Alvenaria de tijolo Reciclável por processo de britagem

Madeira tratada de pinho nórdico

Oriunda da Finlândia, com tratamento térmico com vapor de água, livre

de agentes químicos. Reconhecida com rótulo ecológico escandinavo, Nordic Swan e com o selo de certificação PEFC

Seixo de rio Material natural reutilizável

Vidro aplicado em vãos

exteriores

Material reciclável. Produção reconhecida pela redução de emissões

de carbono (Carbon Disclosure Project / CDP)

Cortiça Reciclável, de extração e fabrico nacional certificados, e sustentável

Linóleo Oriundo de matérias-primas 97% naturais e produção controlada, 72% renováveis após 10 anos: óleo de linhaça + resina + flor de madeira +

cal + pigmentos + juta. 100% biodegradável

Placas de gesso cartonado 100% do gesso é produzido com resíduos de centrais energéticas, e o

revestimento cartonado fabricado com papel reciclado. Placas

reutilizáveis

Tela asfáltica Declaração de Desempenho

Ambiental da UE baseada em estudo exaustivo e reestruturação do ciclo de vida do material

Pedra de Calcário Azul Valverde Reciclável por processo de britagem

Pedra de Vidraço de Ataíja Creme

Reciclável por processo de britagem

Figura 26 - Pavimento em pedra de Calcário Azul Valverde nas zonas comuns

Figura 27 - Teto do átrio de entrada materializado em gesso laminado pintado a

tinta plástica mate

Figura 28 - Revestimento do pavimento com linóleo

Page 132: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 26

Material Observações

Tinta Teor máximo de compostos orgânicos voláteis (COV) de acordo com a

Diretiva 2004/42/CE

Azulejo Material de extração e transformação nacional, reutilizável como inerte

de construção civil

Terra vegetal Terra natural reutilizável

Alumínio Material resistente à corrosão, não tóxico e reciclável por processo de

fundição

Placas de fibra de madeira de média densidade (MDF)

Composto por reutilização de fibras de madeira; reciclável e de produção nacional

Mobiliário

Reutilização de mobiliário do centro anterior. Aquisição de mobiliário maioritariamente desenhado e fabricado em Portugal (90%), executado

em materiais recicláveis e por processos amigos do ambiente. Fornecedores: Peel e Corquedesign

Produção alimentar

No que diz respeito à produção alimentar no local, não existe nenhum tipo de produção alimentar.

Figura 29 - Revestimento da cobertura em seixo rolado

Figura 30 - Mobiliário nacional e executado em materiais recicláveis

Page 133: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 27

Vertente

Cargas Ambientais Na vertente das Cargas Ambientais os melhores desempenhos aferidos surgem nos critérios do

caudal de emissões atmosféricas (C18), das fontes de ruído para o exterior (C22) e da poluição

ilumino-térmica (C23), como se poderá comprovar no quadro seguinte.

Quadro 8 – Cargas Ambientais: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-req. Critério NºC

Classe de

desempenho

ambiental3

Cargas

ambientais

Efluentes 3% S

Tratamento das

águas residuais C16

Caudal de

reutilização de

águas usadas

C17

Emissões

atmosféricas 2% S

Caudal de emissões

atmosféricas C18

Resíduos 3% S

Produção de

resíduos C19

Gestão de resíduos

perigosos C20

Valorização de

resíduos C21

8 Critérios Ruído exterior 3% S Fontes de ruído

para o exterior C22

12% Poluição ilumino-

térmica 1% S

Poluição ilumino-

térmica C23

Efluentes

Neste edifício os efluentes líquidos são encaminhados para o sistema municipal de tratamento de

águas, no entanto tal como referido no critério C10, a água resultante dos lavatórios das IS é

armazenada e tratada por um processo de filtragem e controlo / injeção de cloro, a partir do qual é

depois pressurizada para a rede alternativa de alimentação dos autoclismos.

3 Classes de desempenho ambiental – Sistema LiderA:

Page 134: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 28

No que diz respeito às águas pluviais, como indicado no critério C11, as mesmas são recolhidas na

cobertura e utilizadas na alimentação da rede de rega e na compensação da compensação do

reservatório de aproveitamento das águas cinzentas.

Emissões atmosféricas

No que se refere às emissões atmosféricas (C18), é de registar, e apesar da existência de um café,

com cozinha de apoio, a inexistência de aquecedores ou fogões a gás, bem como de

esquentadores/caldeiras, pois como assinalado no critério C9, o sistema solar térmico preenche na

totalidade a necessidade de AQS. Sendo um edifício público, de acordo com o DL 37/2007 de 14 de

agosto, o fumo de tabaco no interior do edifício não é permitido. Quanto ao estacionamento o

mesmo não ocorre, pois o centro está inserido no parque onde não é permitida a circulação de

veículos motorizados.

Resíduos

Os resíduos, dado que o centro possui um café com serviço de refeições, a produção maioritária

advém deste espaço, incluindo resíduos orgânicos e óleos alimentares. Relativamente ao CEA, o

papel e cartão apresentam um peso relevante, resultado das sessões, concursos e outras atividades

promovidas (apresentadas com maior detalhe no critério C35). No centro os resíduos, após devida

separação, são recolhidos pelos serviços camarários todas as sextas. No café a reciclagem, à

exceção dos óleos e do cartão, é deficientemente efetuada. Os resíduos são tratados diariamente

pelo colaborador do espaço de restauração que os armazena para recolha semanal por parte de um

veículo pertencente ao espaço de restauração, sendo posteriormente colocados num ecoponto

próximo. Segue-se um quadro que comprova a produção de resíduos no centro.

Quadro 9 – Resíduos produzidos no centro em diferentes semanas

Plástico (kg)

Papel e Cartão (kg)

Vidro (kg) Orgânico

(kg) Indiferenciado

(kg) Óleos

(L) Total (kg)

Centro (excluindo café)

1 13 - - 2 - 16

1 2 - - 4,5 - 7,5

2 5 - - 5 - 12

1,5 8 - - 4 - 13,5

1 12 - - 3,5 - 16,5

Café

- 3 1,5 - 18 n.d. 22,5

- 4 2 - 22,5 n.d. 28,5

- 2 1 - 25 n.d. 28

n.d. – não determinado

De facto a produção de resíduos no centro é reduzida, com cerca de 40 kg semanais o que se traduz

em menos de 2 kg/m2.ano, no entanto a sua valorização, particularmente no café é incipiente.

Figura 31 - Ecopontos presentes no atelier /

laboratório de educação ambiental

Page 135: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 29

No que diz respeito à gestão de resíduos perigosos (C20), existem locais para a arrumação segura e

adequada das embalagens de limpeza e manutenção, nomeadamente nos arrumos. Resíduos de

escritórios, assim como tinteiros também são devidamente recolhidos. Os óleos alimentares usados

no café, de acordo com o DL 267 / 2009 de 29 de setembro, são devidamente recolhidos.

No que respeita à reciclagem dos resíduos (C21), existem locais adequados para a deposição e

separação dos resíduos a reciclar, nomeadamente na sala de reuniões / gabinete e no atelier /

laboratório de educação ambiental. Acrescente-se a colocação de pequenos contentores, como no

átrio de entrada / receção, cujo conteúdo é devidamente separado posteriormente. Contudo as

práticas de reciclagem, especialmente no café, não são as mais corretas.

Mesmo assim, nas proximidades do centro, existem contentores para a deposição de resíduos para

a reciclagem, apresentados na Figura 33, na qual se representa ainda a distância de 100 m em

relação ao centro.

Figura 34 - Ecopontos na circundante do edifício, num raio de 100 metros

Ecoponto

Ruído Exterior

No que se refere ao ruído exterior o centro apresenta certos pormenores construtivos, destacando-

se:

A introdução de placas de aglomerado de cortiça expandida, para aumentar o isolamento

acústico, no revestimento de paredes exteriores e interiores e no paramento de claraboias;

A utilização de paredes exteriores em alvenaria dupla, de betão armado em zonas

enterradas, que lhe aumentam a massa, aumentando o isolamento sonoro;

A utilização de vidros duplos;

Figura 32 - Pequenos contentores presentes no centro

Figura 33 - Ecoponto na Rua António Leal da Ascensão

Figura 35 - Utilização de placas de aglomerado de cortiça

Page 136: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 30

Pavimentos exteriores revestidos a pedra de Vidraço de Ataíja Creme e Calcário Azul

Valverde, bem como áreas permeáveis;

A introdução de isolamento na cobertura, nomeadamente recorrendo a:

o Revestimento herbáceo (prado de sequeiro);

o Revestimento com seixo de rio rolado;

o Betão leve com regranulado de cortiça expandida;

o Teto falso absorsor sonoro em placas de gesso perfurado da “Knauf”.

O assentamento das UTA / UE em maciços incluindo apoios anti vibráteis e atenuadores

acústicos e isolamento constituído por lã de rocha.

Relativamente aos equipamentos utilizados no edifício, através da criação de duas zonas técnicas

no lado poente que ocupam as extremidades sul e norte do edifício, conseguiu-se minimizar o

impacte provocado pelos principais equipamentos produtores de ruído, nomeadamente as UTA / UE

e a bomba de calor.

Poluição Ilumino-térmica

No que se refere aos dados tidos em consideração na avaliação da poluição ilumino-térmica (C23)

deste edifício, há a realçar a posição do próprio edifício inserido num parque urbano com presença

de árvores, tal como referido no critério C3, que contribuem para a minimização da ilha de calor, bem

como a inexistência de edifícios nas proximidades. É também considerável a minimização das

superfícies impermeáveis.

O átrio de entrada, zona permeável, é sombreado pelo prolongamento da cobertura. No exterior são

utilizados materiais adequados às condições climatéricas locais, tais como paramentos em ladrilhos

de pedra de Vidraço de Ataíja Creme, fachadas constituídas por perfis de madeira e cores claras e

pavimentos revestidos a pedra de Vidraço de Ataíja Creme e Calcário Azul Valverde. Apesar das

grandes áreas de vãos envidraçados que refletem parte da radiação incidente, pelo que contribuem

ativamente para o efeito de ilha de calor, estes são sombreados exterior e interiormente. A cobertura

ajardinada e os terraços revestidos de seixo rolado claro constituem outra forma de atenuar

possíveis formas de poluição que afetem o ambiente da zona de intervenção.

O edifício foi construído de forma adequada em relação aos ventos dominantes (norte / noroeste) e

com a sequência intercalada de pátios exteriores potencia o escoamento do calor por massa de ar

corrente.

Relativamente aos efeitos luminosos são utilizadas, nomeadamente nos pátios exteriores e átrio de

entrada, luminárias com intensidade e projeção adequada.

Figura 36 - Isolamento dos equipamentos de climatização

Figura 37 - Iluminação natural da sala de atividades

Figura 38 - Fachada constituída por perfis de madeira e cores claras

Page 137: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 31

Vertente

Conforto Ambiental Na vertente do Conforto Ambiental os melhores desempenhos aferidos surgem em todos os critérios,

particularmente no conforto térmico (C25), como se poderá comprovar no quadro seguinte.

Quadro 10 – Conforto Ambiental: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-req. Critério NºC

Classe de

desempenho

ambiental4

Conforto

ambiental

Qualidade do

ar 5% S Níveis de qualidade do ar C24

Conforto

térmico 5% S Conforto térmico C25

4 Critérios Iluminação e

acústica 5%

S Níveis de iluminação C26

15% S Conforto Sonoro C27

Qualidade do ar

No critério dos níveis de qualidade do ar (C24), dever-se-á ter em atenção uma taxa de ventilação

natural ajustada de forma adequada às atividades que irão decorrer no local. De facto, como descrito

no critério C8, em termos de ventilação, com a instalação de um sistema de AVAC constituído por

duas UTA / UE, uma responsável pelas salas e áreas do piso 0 e outra pelo átrio de entrada /

receção e pelo café é potenciada a ventilação mecânica. No entanto a orientação e disposição dos

espaços interiores do edifício, permitindo a localização dos vãos passíveis de abertura direcionados

ao vento dominante de norte / noroeste favorece a ventilação natural cruzada.

O fumo de tabaco no interior do edifício também não é permitido e o depósito de dupla serpentina do

sistema solar térmico acumula energia solar térmica na forma de AQS a 60 ºC evitando assim a

propagação da Legionella. A inexistência de aparelhos a gás e a utilização de uma hotte

compensada na cozinha também favorece a boa qualidade do ar interior. No que diz respeito ao

amianto (fibra mineral cancerígena muito utilizada na construção, principalmente nas décadas de 70

e 80, devido às suas propriedades de isolamento térmico, incombustibilidade, resistência,

maleabilidade e baixo custo) (Comissão Europeia, n.d.), não é permitida a utilização de produtos que

contenham fibras de amianto na construção ou requalificação. Esta proibição foi reforçada em 2011

com a publicação do DL 2/2011 de 9 de fevereiro que legisla sobre a remoção de amianto em

edifícios, instalações e equipamentos públicos. O gás radão que provém da desintegração do urânio,

4 Classes de desempenho ambiental – Sistema LiderA:

Figura 39 - UTA / UE responsável pelo tratamento

de ar do átrio de entrada / receção e café

Page 138: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 32

característico do granito e que, no limite, causa tumores pulmonares não está presente no local, pois

é característico de zonas granítica. De assinalar que no concelho de Torres Vedras predominam

fundamentalmente formações geológicas de origem sedimentar e particularmente a cidade está

assente num aluvião do quaternário (CMTV, 2006).

Ao analisar os níveis de qualidade do ar é importante avaliar nos materiais aplicados a existência de

COVs (Compostos Orgânicos Voláteis). As tintas e vernizes utilizados respeitam o teor máximo de

COVs de acordo com a Diretiva 2004/42/CE, como visível no quadro seguinte:

Quadro 11 – Presença de COVs nas tintas e vernizes utilizadas

Tinta / Verniz Teor

máximo em COVs (g/L)

Valor limite em COVs

(g/l) Características

CIN – Aqua Primer, ref.ª 12-830

30 30 Primário de base

aquosa

CIN – Primário Cinolite, ref.ª 54-850

518 750 Primário de base

aquosa

CIN – Sintecin Satinado, ref.ª 48-261

300 300 Esmalte sintético

acetinado

CIN – Nováqua HD, ref.ª

10-125 5 40

Tinta aquosa

100% acrílica

C-Floor Sealer E140, ref.ª 7F-140

59 500 Verniz selante

epoxy para pavimentos

CIN - C-Floor E400 SL, ref.ª 7F-400

214 500

Revestimento autonivelante multifuncional

para pavimentos

C-Floor Varnish PU385 Matt, ref.ª 7F-385

488 500

Verniz mate de poliuretano

alifático para

pavimentos

Robbialac – Primalac, ref.ª 020-011

125 140 Primário

multiusos de secagem rápida

Conforto Térmico

Os fatores que afetam o conforto térmico são a temperatura do ar, a temperatura radiante média, a

estratificação, o movimento do ar, a humidade relativa, o nível de atividade e o vestuário do utilizador

(APA, 2009).

Na área do conforto térmico, o edifício apresenta várias características que permitem atingir uma

melhoria de cerca de 90%, face à prática comum atual, no que diz respeito ao conforto térmico (C25)

dos seus utilizadores.

Na avaliação deste critério, realçam-se assim alguns pontos já aprofundados no critério C8, como: a

distribuição interna e orientação adequada do edifício e dos espaços interiores; o bom fator de forma

do edifício; a massa térmica forte da estrutura; isolamento térmico adequado; vãos envidraçados

com vidros e caixilharia dupla de corte térmico adequado e com sombreamento exterior; fenestração

seletiva; minimização ou eliminação de pontes térmicas; ventilação adequada e possibilidade de

haver ventilação natural cruzada.

Figura 40 - Tintas e vernizes utilizadas

cumprem o disposto na Diretiva 2004/42/CE relativa aos COVs

Figura 41 - Isolamento adequado dos espaços

interiores, como as placas de gesso, favorece o conforto térmico

Page 139: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 33

Iluminação e Acústica

Num edifício, é importante conjugar as áreas de envidraçados das fachadas com os espaços

interiores de forma a serem proporcionados bons níveis de iluminação (C26), tendo em conta o uso

destinado a cada espaço, ou seja, as áreas envidraçadas devem estar em equilíbrio com os espaços

a iluminar relativamente à sua área e forma.

Relativamente à iluminação natural o átrio de entrada / receção recebe luz de nascente do

envidraçado de acesso ao edifício, luz proveniente de três claraboias e luz de norte que provém do

envidraçado do café. A luminosidade do café é então dominada por esse vão rasgado. A zona de

exposição / circulação recebe luz natural de nascente de vãos que abrem para os pátios exteriores,

sendo esta luz condicionada pela projeção do próprio corpo do edifício. Quanto aos espaços de

trabalho e de atividades, como a sala de reuniões / gabinete, a sala de atividades / multimédia e o

atelier / laboratório de educação ambiental recebem luz de nascente do parque e de poente /

nascente dos pátios, sendo esta condicionada pelo sistema de brise-soleil. Na biblioteca também

existe um vão que permite a entrada de luz. As instalações sanitárias infantil, feminina e masculina

recebem luz natural de claraboias, sendo esta complementada por sancas de iluminação. Pelo que

apenas as zonas técnicas e de apoio necessitam imprescindivelmente de iluminação artificial.

Por outro lado, os acabamentos interiores são de cor clara, o que aumenta o fator de luz,

aumentando a possibilidade de serem iluminadas naturalmente.

No tocante aos vãos envidraçados, como já referido anteriormente e no critério C8, estes potenciam

uma boa iluminação natural do espaço a iluminar, corroborada pela relação entre a área de

envidraçados e a área de pavimento e pela sua orientação a sul e nascente.

Em termos de sombreamentos dos vãos envidraçados que permitem controlar o nível de iluminação

pretendido, recorreu-se além do já descrito sistema de brise-soleil, a estores controlados

manualmente, permitindo um ajustamento do nível de iluminação.

Quanto à iluminação artificial, em várias divisões esta funciona como complemento da iluminação

natural, como as sancas de iluminação no café e nas instalações sanitárias e a iluminação de

encastrar nos espaços de trabalho e atividades, calculada para distribuir uniformemente a luz pelo

espaço. Os mecanismos de controlo de iluminação artificial são também intuitivos, sendo

constituídos por interruptores e detetores de movimento em zonas com menor utilização, como as

instalações sanitárias, o átrio das instalações sanitárias e o espaço de circulação, permitindo um

menor consumo.

Relativamente à acústica, o centro situa‐se numa zona sensível – habitacional onde o ruído exterior

não excede os 55 dB (A). É evidente a introdução de medidas para a redução de ruído, já referidas

no critério C22, como a organização espacial adequada, colocando as zonas técnicas afastadas das

áreas de trabalho e o café no topo norte; a aplicação de isolamento acústico nas paredes,

pavimentos, tetos e cobertura, bem como a utilização de vidros duplos e caixilharia adequada. De

assinalar também o encastramento no teto das grelhas lineares do sistema AVAC.

Figura 42 - Claraboias permitem a iluminação natural

Figura 43 - Sistema brise-soleil e estores

Figura 44 - Claraboias no átrio de entrada / receção

Figura 45 - Pormenor dos isolamentos

Page 140: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 34

Vertente

Vivência socioeconómica Na vertente da vivência socioeconómica os melhores desempenhos aferidos surgem nos critérios da

mobilidade de baixo impacte (C29), das soluções inclusivas (C30), do trabalho local (C33), das

amenidades locais (C34), da interação com a comunidade (C35), da capacidade de controlo (C36),

das condições de participação e governância (C37) e do controlo dos riscos naturais (C38), como se

poderá comprovar no quadro seguinte.

Quadro 12 – Vivência Socioeconómica: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-

req.. Critério NºC

Classe de

desempenho

ambiental5

Vivências

Socioeconómicas

Acesso para

todos 5% S

Acesso aos transportes

Públicos C28

Mobilidade de baixo

impacte C29

Soluções inclusivas C30

Diversidade

económica 4% S

Flexibilidade -

Adaptabilidade aos

usos

C31

Dinâmica Económica C32

Trabalho Local C33

Amenidades e

interação

social

4% S

Amenidades locais C34

Interação com a

comunidade C35

Participação e

controlo 4% S

Capacidade de

Controlo C36

Condições de

participação e

governância

C37

Controlo dos riscos

naturais - (Safety) C38

13 Critérios Controlo das ameaças

humanas - (Security) C39

5 Classes de desempenho ambiental – Sistema LiderA:

Page 141: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 35

Vertentes Área Wi Pré-

req.. Critério NºC

Classe de

desempenho

ambiental

Vivências

Socioeconómicas

19%

Custos no ciclo

de vida 2% S Custos no ciclo de vida C40

Acesso para todos

No que diz respeito ao acesso aos transportes públicos (C28), o edifício do Centro de Educação

Ambiental que se localiza no Parque Verde da Várzea, em Torres Vedras, tem hoje disponível, num

raio de 500 metros:

várias paragens de autocarro, contabilizando duas linhas (verde e amarela) de

Transportes Urbanos de Torres Vedras (TUT), que fazem ligação ao terminal rodoviário e

à estação de comboios. O terminal rodoviário, que dista cerca de 1 km do centro, a partir

do grupo Barraqueiro, mantém ligações regulares aos municípios vizinhos, a Lisboa e

através da Rede Expresso a todo o país. A estação de comboios, a cerca de 1,5 km é

parte integrante da linha do Oeste;

estações de bicicletas públicas – “Agostinhas”.

Figura 47 - Mapa de transportes públicos, num raio de 500 metros do edifício

Figura 46 - Bicicletas “Agostinhas”, uma das marcas da cidade de Torres

Paragens TUT (Transportes Urbanos de Torres Vedras)

Estações de bicicletas públicas – “Agostinhas”

Page 142: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 36

Relativamente ao critério da mobilidade de baixo impacte (C29), o edifício alcança um bom nível de

desempenho, uma vez que:

localiza-se numa zona unicamente pedonal, com caminhos de dimensões adequadas ao

fluxo de pessoas que realizam esse trajeto;

a ciclovia mais próxima surge a cerca de 50 metros6 do edifício (ciclovia desde a

Expotorres até ao Barro);

o estacionamento público para bicicletas mais próximo é junto ao centro;

existem dois lugares exclusivos para veículos elétricos com posto de carregamento

MOBI.E a cerca de 250 metros:

parque de estacionamento gratuito de dimensão adequada a pouco mais de 100 metros.

No que se refere às soluções inclusivas (C30) este edifício alcança um bom resultado, uma vez que

todos os acessos foram cuidadosamente concebidos, salvaguardando deste modo as definições

constantes no DL 163/2006 de 8 de agosto. O piso 0 não possui qualquer obstáculo à movimentação

de pessoas de mobilidade reduzida, no entanto a cobertura verde pelos acessos apenas em

escadaria, sem rampas, apresenta-se como um entrave à mobilidade. A sinalética no interior do

edifício, assinalando as diferentes divisões, também é de assinalar. Sendo um espaço dedicado à

formação dos mais jovens o mobiliário presente é adequado a faixas etárias baixas.

Diversidade económica

Do ponto de vista da flexibilidade e adaptabilidade aos usos (C31), há a realçar a construção de:

paredes de separação de divisões interiores facilmente amovíveis presentes na sala de atividades /

multimédia; espaços com duplo pé direito (cerca de 2,3 metros), como por exemplo no átrio de

entrada / receção e no café; instalação de um sistema híbrido (sistema fotovoltaico + sistema eólico)

no âmbito da microgeração, de um sistema solar térmico e de um sistema de geotermia de apoio ao

sistema AVAC, descritos no critério C9. Existem ainda espaços exteriores, como na cobertura, para

outros usos.

No que toca à dinâmica económica (C32) é notória a rentabilização dos espaços com a existência de

um café que serve refeições, com 39 lugares sentados e ainda com esplanada, o Ambiente & Ar,

com horário diário das 9h às 19h, recebendo também marcações. A existência de espaços como a

sala de atividades / multimédia também é rentabilizada com ações de formação diversas. Uma vez

que o centro aposta fortemente nas energias renováveis, existe possibilidade e intenção de venda de

energia à rede.

Já no que se refere ao trabalho local (C33) é de assinalar que o centro possui cinco colaboradores

da CMTV responsáveis pela dinamização das atividades de educação ambiental. O café conta com

6 Distância máxima considerada para a valorização de ciclovias é de 100 m

Figura 48 - Incentivos à mobilidade de baixo impacte

Page 143: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 37

um colaborador a tempo inteiro, sendo que em especial nos períodos das refeições é reforçado.

Sendo um edifício público é também de assinalar os auxiliares de limpeza e outros que zelam pela

manutenção do espaço contribuindo assim para a criação e manutenção de empregos, alguns deles

qualificados, que contribuem para o desenvolvimento da região de Torres Vedras, tendo em conta o

tema da sustentabilidade.

Amenidades e interação social

No que se refere às amenidades locais (C34), além do próprio Parque Verde da Várzea em que se

insere o edifício, o próprio centro contribuirá para aumentar as amenidades da envolvente, pois

incorpora zonas pedagógicas (atelier / laboratório de educação ambiental), lúdicas (sala de

atividades / multimédia) e zonas ajardinadas. O edifício tem na sua envolvente, sobretudo a oeste,

áreas agrícolas, onde predomina o cultivo da vinha e bem perto também existem hortas

comunitárias. Acrescente-se se considerarmos um raio de 500 m, o edifício apresenta nas suas

proximidades múltiplas amenidades humanas, onde se encontram:

bombeiros voluntários – na Rua Manuel César Candeias, a 500 m do edifício;

CAERO (Centro de Apoio ao Empresário da Região Oeste) – na Rua António Leal da

Ascensão, a 150 m do edifício;

Centro Pastoral – na Rua António Leal da Ascensão, a 200 m do centro;

escolas:

o CENFIM – na Rua António Leal da Ascensão, a 150 m do edifício;

o Escola Básica São Gonçalo – na Estrada da Serra da Vila, a 300 m do edifício;

o Escola Básica Conquinha – na Rua Ana Maria Bastos, a 400 m do centro;

o Escolas Básica Padre Francisco Soares e Secundária Madeira Torres – na Praça

Dr. Francisco Sá Carneiro, a 500 m do centro;

o Helen Doron Early English – na Rua Fernando Barros Ferreira Leal, a 500 m do

edifício;

espaços desportivos:

o Clube de Ténis – na Rua Clube de Ténis, a 200 m do edifício;

o Polidesportivo – junto ao centro;

o Skate Park – integrado no Parque Verde da Várzea;

hipermercados – estando o mais próximo na Rua António Augusto Cabral, a 300 m do

centro;

hospital distrital - na Rua Dr. Ricardo Belo, a 500 m do edifício;

lar e jardim de infância de São José – na Rua Joaquim dos Santos Vaquinhas, a 300 m do

centro;

posto de combustível – na Rua António Leal da Ascensão, a 400 m do edifício;

PSP – na Rua Manuel César Candeias a 400 m do centro;

Figura 49 - Café Ambiente & Ar e esplanada

Figura 50 - Parque Verde da Várzea

Page 144: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 38

tribunal judicial – na Rua Campo da Várzea, a 500 m do centro;

universidade: ISPO (Instituto Superior Politécnico do Oeste) – na Praceta Prof. José

Carvalho Mesquita, a 500 m do centro;

zona de estabelecimentos comerciais (cafés, restaurantes, bancos, farmácias, comércio

local, etc.) – nas ruas António Leal da Ascensão, Dr. José de Bastos, Dona Teresa de

Jesus Pereira, Ana Maria Bastos, Venerando de Matos, Dr. Albarran Grilo, etc., a partir dos

250 m do centro;

etc.

Alargando a área considerada para um raio de 1000 m surgem mais amenidades naturais – o Jardim

da Graça, a cerca de 600 m do edifício e o Rio Sizandro, a 1000 m – e o número de amenidades

humanas multiplica-se, onde se destacam a GNR e a Igreja e Convento da Graça, a 600 m do

centro, uma unidade hoteleira, a Igreja de Santiago, a Associação de Educação Física e Desportiva

de Torres Vedras e o Pavilhão Multiusos, a 700 m do centro, a Expotorres, o Posto de Turismo, a

Escola Secundária Henriques Nogueira e a Clínica da CUF, a 800 m edifício, a Câmara Municipal e

o Centro de Saúde, a 900 m do centro e o mercado municipal, o cemitério, o terminal rodoviário, a

Igreja de Santa Maria, o castelo e a zona industrial do Barro a 1000 m do centro.

Figura 53 - Mapa de amenidades, num raio de 500 metros do centro

Figura 51 - Hortas comunitárias

Figura 52 - Sinalização do CEA e do Parque Verde da Várzea

Page 145: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 39

No que se refere aos dados tidos em consideração na avaliação da interação com a comunidade

(C35) há que realçar que o edifício foi desenvolvido para interagir diretamente com o espaço público,

estando integrado no Parque Verde da Várzea, espaço de lazer e de encontro da população e

apresentando um amplo espaço verde exterior.

Através de um conjunto de atividades dirigidas à população em geral, e mais especificamente à

população escolar do concelho, como sessões diárias cuja população-alvo são os alunos do pré-

escolar e do 1º ciclo, ações de sensibilização dirigidas aos alunos do 2º ciclo ao secundário nos seus

respetivos estabelecimentos de ensino, de formação / workshops para a população adulta, visitas de

estudo, ateliês, comemoração de datas, concursos e apoio a projetos, o centro reforça assim a sua

missão de interação com a comunidade (ver: http://www.cm-tvedras.pt/ambiente/educacao-para-

sustentabilidade/cea/).

Participação e controlo

Em relação à capacidade de controlo (C36) por parte do utilizador no espaço exterior a iluminação

artificial dos pátios é controlada por temporizador. Já no que diz respeito à temperatura, ventilação

artificial e indiretamente à humidade são controladas por programação através de um sistema de

automação da OMRON, instalado na receção, que controla as duas UTAs. A ventilação natural é

promovida manualmente pela abertura dos vãos. A iluminação artificial nas divisões principais é

controlada exclusivamente por interruptores, sendo as zonas com menor circulação, como as

instalações sanitárias, o átrio das instalações sanitárias e o espaço de circulação controlada por

sensores. O sombreamento e consequentemente a iluminação natural são controlados de forma

manual por estores que preenchem a quase totalidade dos vãos envidraçados.

Relativamente às condições de participação e governância (C37) há a mencionar as tomadas de

decisão da equipa, paralelamente à consulta da população local e a interação com a população

durante a fase de operação através da divulgação das atividades a partir por exemplo do site da

CMTV e da sua revista, de periodicidade bimestral.

No que se refere ao controlo dos riscos naturais (C38), onde se deve considerar a ação sísmica, a

pluviosidade e o vento, procurando garantir ao máximo o controlo e a segurança dos utilizadores

deste edifício, realça-se a identificação dos riscos naturais em fase de projeto e apresentação de

soluções face a eventuais fenómenos climatéricos extremos; a segurança aos riscos de pluviosidade

acrescida; a segurança ao risco eólico/vento; e a segurança aos riscos sísmicos.

Segundo o Projeto de Estabilidade: O edifício apresenta um comprimento que obrigou à execução

de duas juntas de dilatação e, atendendo à sua implantação foi necessário executar muros de

suporte em betão que são em consola, ou como paredes de cave. Na conceção estrutural optou-se

por uma estrutura de betão armado, justificável por…apresentar rigidez e monolitismo, bem como

razoável resistência ao fogo e ser de fácil conservação. Estruturalmente optou-se por um sistema

porticado espacial de lajes maciças, assentes em vigas ligadas a pilares, com fundações diretas e

Figura 54 - Material do laboratório

Figura 55 - Exposição

Figura 56 - Sistema de automação OMRON

Page 146: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 40

execução de muros de suporte de terras. Foram executadas lajes assentes em massame armado

para suporte dos depósitos.

As fundações dos pilares são constituídas por sapatas de betão armado, que transmitem ao terreno

tensões inferiores à tensão de segurança admitida para o mesmo. As fundações dos muros de

suporte estão assentes no “bed rock”, respeitando as tensões de segurança atribuídas ao terreno.

As fundações foram protegidas por uma rede de drenagem formada por geodrenos protegidos por

geotextéis. De acordo com o Regulamento de Segurança das Construções contra os sismos e visto

tratar-se de um edifício destinado a ser normalmente utilizado por aglomerações de pessoas, o

cálculo dos esforços foi feito considerando a ação dos sismos.

Por fim, no que diz respeito ao controlo das ameaças humanas (C39), o edifício possui um sistema

de deteção de incêndios constituído por uma central de deteção endereçável equipada com

dispositivo de comunicação aos bombeiros. O sistema de deteção de intrusão existente é constituído

por: uma central de controlo e alarme, com bloco de transmissão de alarme à polícia; detetores

volumétricos; contactos magnéticos de abertura de portas e janelas; botoneiras de alarme; e

sinalizadores acústicos e luminosos.

Custos no ciclo de vida

No que se refere aos dados considerados na avaliação deste edifício do ponto de vista dos custos

no ciclo de vida (C40) há a realçar a escolha de materiais duráveis e resistentes, com elevado tempo

de vida útil, a sua correta aplicação e fácil manutenção periódica.

O consumo de eletricidade é apenas cerca de 42 kWh/m2.ano. Existem condições, com um sistema

solar fotovoltaico e um aerogerador, de produzir 6000 kWh/ano. Com equipamentos eficientes,

aproveitamento das águas pluviais e das águas cinzentas provenientes dos lavatórios, bem como

um sistema eficiente de rega, o consumo de água é de apenas cerca de 0,16 m3/m2.ano.

Figura 57 - Central de deteção de incêndio

Page 147: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 41

Vertente

Uso Sustentável Na vertente do Uso Sustentável o melhor desempenho aferido surge no critério das inovações (C43),

como se poderá comprovar no quadro seguinte.

Quadro 13 – Uso Sustentável: Áreas e Critérios de base considerados

Vertentes Área Wi Pré-req.. Critério NºC

Classe de

desempenho

ambiental7

Uso

Sustentável Gestão

ambiental 6%

S

Condições de utilização

ambiental C41

3 Critérios Sistema de gestão ambiental C42

8% Inovação 2% Inovações C43

Gestão ambiental

Na área da gestão ambiental, nas condições de utilização ambiental (C41) é avaliada a quantidade

de informação referente ao modo de funcionamento e gestão do edifício que é disponibilizada. Os

colaboradores do centro têm algum conhecimento sobre o funcionamento e manutenção dos

sistemas e equipamentos instalados. Existe informação sobre os sistemas de alarme, de incêndio e

de evacuação, nomeadamente através de sinalização de emergência.

No que diz respeito aos Sistemas de Gestão Ambiental (C42), o centro não tem implementado

qualquer sistema de gestão ambiental nem de monitorização dos vários aspetos ambientais e de

desempenho.

Inovação

Na área da inovação, sendo um edifício piloto de construção sustentável destacam-se a cobertura

percorrível ajardinada, o sistema híbrido (sistema fotovoltaico + sistema eólico), no âmbito da

microgeração e por forma a minimizar o consumo de energia em climatização, o sistema geotérmico.

7 Classes de desempenho ambiental – Sistema LiderA:

Page 148: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 42

Conclusões

Desempenho Ambiental Global Da avaliação de posicionamento ambiental, efetuada pelo Sistema LiderA ao Centro de Educação

Ambiental de Torres Vedras, apresentada nos pontos anteriores, conclui-se que este se insere numa

classe certificável, A+, o que em termos ambientais significa, em relação à prática comum, uma

melhoria do Desempenho Ambiental de cerca de 75%.

Figura 58 – Desempenho Ambiental Global atingido

Page 149: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 43

Referências

Page 150: Universidade de Lisboa Instituto Superior Técnico Centro de ...

Avaliação LiderA® - Centro de Educação Ambiental de Torres Vedras 44

ANQIP (2013). Catálogo de Produtos Certificados 2013. Associação Nacional para a Qualidade nas

Instalações Prediais

APA (2009). Qualidade do Ar em Espaços Interiores – Um Guia Técnico. Amadora

APA (2012). Plano das Bacias Hidrográficas das Ribeiras do Oeste. Relatório Técnico. Parte 2 –

Caraterização e Diagnóstico da Região Hidrográfica. Agência Portuguesa do Ambiente

CMTV (n.d.). Bem Vindo ao Parque Verde da Várzea. Divisão de Serviços Urbanos da Câmara

Municipal de Torres Vedras

CMTV (2006). Estudos Caracterização do Território Municipal de Torres Vedras. Versão Final do

Processo de Revisão do Plano Diretor Municipal de Torres Vedras

CMTV (2014). (Acesso a http://www.cm-tvedras.pt/ambiente/educacao-para-sustentabilidade/cea/

em março de 2014)

Comissão Europeia (n.d.). Guia de boas práticas para prevenir ou minimizar os riscos decorrentes do

amianto em trabalhos que envolvam (ou possam envolver) amianto, destinado a empregadores,

trabalhadores e inspetores do trabalho. Guia publicado pelo Comité de Altos Responsáveis da

Inspeção do Trabalho (CARIT)

Decreto-Lei n.º 163/2006 de 8 de agosto de 2006. Diário da República, 1.ª Série – N.º 152

Decreto-Lei n.º 37/2007 de 14 de agosto de 2007. Diário da República, 1.ª Série – N.º 156

Decreto-Lei n.º 267/2009 de 29 de setembro de 2009. Diário da República, 1.ª Série – N.º 189

Decreto-Lei n.º 2/2011 de 9 de fevereiro de 2011. Diário da República, 1.ª Série – N.º 28

Diretiva 2004/42/CE de 21 de abril (2004). Relativa à limitação das emissões dos compostos

orgânicos voláteis. Jornal Oficial da União Europeia

PVGIS. Photovoltaic Geographical Information System. (Acesso a http://re.jrc.ec.europa.eu/pvgis/ em

janeiro de 2014)

RHS (2011). Royal Horticultural Society. (Acesso a http://www.rhs.org.uk/ em fevereiro de 2014)

UTAD (2014). Universidade de Trás-os-Montes e Alto Douro. (Acesso a http://jb.utad.pt/pesquisa em

fevereiro de 2014)