UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia ...

25
UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplina: Mecânica dos Materiais 1 – 5º Período Professor: Dr. Damiano da Silva Militão.

description

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplina: Mecânica dos Materiais 1 – 5º Período. Professor: Dr. Damiano da Silva Militão. OBJETIVOS: - PowerPoint PPT Presentation

Transcript of UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia ...

Page 1: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

UNIVERSIDADE DO ESTADO DO RIO DE JANEIROINSTITUTO POLITÉCNICO

Graduação em Engenharia Mecânica

Disciplina: Mecânica dos Materiais 1 – 5º Período

Professor: Dr. Damiano da Silva Militão.

Page 2: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Tema de aula 1: Tensão

SEQUÊNCIA DE ABORDAGENS:• 1.1 Introdução

• 1.2 Equilíbrio

• 1.3 Tensão

• 1.4 Tensão Normal Média em uma Barra com Carga Axial

• 1.5 Tensão de Cisalhamento Média

• 1.6 Tensão Admissível

OBJETIVOS:

• Revisar alguns princípios importantes da estática e usar para determinar os esforços internos resultantes em um corpo.• Introduzir os conceitos de tensão normal e tensão de cisalhamento e discutir aplicações específicas da análise e do projeto de elementos submetidos a carga

axial ou cisalhamento.

“Não é conhecer muito, mas o que é útil, que torna um homem sábio.”THOMAS FULLER, M.D.

Page 3: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.1-Introdução.A resistência dos materiais: estuda as relações entre cargas externas aplicadas a um corpo deformável e forças internas que atuam dentro do corpo.Abrange o cálculo da deformação do corpo e o estudo da sua estabilidade, quando submetido a forças externas.

É necessário primeiro usar estática para determina as forças que atuam tanto sobre como no interior de seus vários membros.

As dimensões dos elementos, sua deflexão e sua estabilidade dependem não só das cargas como também do tipo de material. Assim, a determinação precisa e a compreensão do comportamento do material são de vital importância para o desenvolvimento das equações usadas na resistência dos materiais.

Page 4: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.2 - Equilíbrio.Forças Externas: Classificadas como força de superfície ou de corpo;

Forças de Superfície são causadas pelo contato direto de um corpo com a superfície e distribuídas pela área de contato entre os corpos. Se área for pequena é força concentrada em um ponto do corpo. Se aplicada ao longo de uma área estreita é carga linear distribuída, w(s) (N/m), representada por setas ao longo da reta s, A força resultante de w(s), FR, equivale à área sob a curva de distribuição da carga, e sua resultante atua no centróide C ou centro geométrico dessa área.

Força de Corpo. Desenvolve-se sem contato físico direto entre eles. No caso da gravidade, essa força é chamada peso e atua no centro de gravidade desse corpo.

Page 5: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Reações do Apoio. São forças de superfície nos pontos de contato entre corpos submetidos a sistemas de forças coplanares.

Determinar reação do apoio imaginando que se o apoio impede a translação em dada direção, então deve ser desenvolvida uma força naquela direção; se a rotação for impedida, deve ser aplicado um conjugado sobre o elemento.

Page 6: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Equações de Equilíbrio.

O equilíbrio de forças, evita translação ou movimento acelerado.O equilíbrio de momentos, evita a rotação do corpo.

Num sistema de coordenadas x, y, z com origem no ponto O as equações podem ser decompostos em componentes:

A melhor maneira de considerar essas forças e conjugados para aplicar as equações é desenhar o diagrama de corpo livre.

Page 7: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Força interna resultante: Determina força resultante e o momento que atuam no interior do corpo, para manter o corpo unido quando submetido a cargas externas.

O diagrama de corpo livre de uma das partes é desenhado.As forças internas representam os efeitos do material da parte superior atuando sobre a parte inferior.

Exemplo;Consideremos o corpo mostrado mantido em equilíbrio por quatro forças externas.Para determinar as cargas internas; fazer uma seção ou 'corte' através da região em que as cargas internas devem ser determinadas (método das seções)

Obter a força resultante FR e o momento resultante Mro no Centróide O da área e relacioná-las às forças externas.

Page 8: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

As componentes de FR e Mro na direção normal ou perpendicular à área definem;Força Normal, N, perpendicular à área se as forças externas tendem a empurrar ou puxar as duas partes secionadas do corpo.Força de Cisalhamento, V, quando as cargas externas tendem a provocar o deslizamento das duas partes secionadas do corpo.Momento de Torção ou Torque, T, quando as cargas externas tendem a torcer uma parte do corpo secionado em relação à outra (regra da mão direita).Momento Fletor, M, quando as cargas externas tendem a fletir o corpo no plano da área secionada.

Para Cargas Coplanares, existirão na seção apenas força normal, de cisalhamento e momento fletor.

Uma solução direta para N é obtida aplicando-se Fx = 0, e para V aplicando-se Fy = 0. Finalmente o momento fletor M0 é determinado diretamente pela soma dos momentos em torno do ponto O (eixo do z), Mo = 0, vejamos exemplos;

Page 9: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Exemplo 1:

Page 10: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Vamos treinar: 1-A viga suporta a carga distribuída mostrada. Determinar a carga interna resultante nas seções transversais que passam pelos pontos D e E. Assumir que as reações nos apoios A e B sejam verticais.

Page 11: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Exemplo 2:

Page 12: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Vamos treinar: 2-A prensa manual de metal está submetida a uma força de 120 N na extremidade. Determine a intensidade da força de reação no pino A e no elo BC. Determinar também a resultante das cargas internas que atuam na seção transversal que passa pelo ponto D do cabo.

Page 13: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.3-Tensão.

supondo que o material é contínuo, (sem vazios), e coeso, (bem unido e sem trincas), a força finita (ΔF), atuante sobre ΔA, tem três componentes; ΔFz, normal , ΔFx e ΔFy tangentes à área, que geram as seguintes tensões nesta área:

Para estabelecer o conceito de tensão, considere que a seção da área seja subdividida em áreas pequenas ΔA;

Tensão Normal, se ΔFz 'empurra' o elemento é denominada tensão de compressão, se 'puxa‘ é chamada tensão de tração.

Tensão de Cisalhamento, que atuam tangentes à ΔA.Onde z indica a orientação da área, enquanto x e y referem-se às retas de direção das tensões de cisalhamento.

Estado Geral da Tensão. Representado ao ‘cortar' um elemento cúbico do volume do material. Em cada face atuam as 3 componentes do estado geral da tensão.

Unidades. No SI, (N/m2= pascal (Pa). No sistema norte-americano, (ou sistema Pés-Libras-Segundo)expressamos a tensão em libras por polegada quadrada (psi) ou quilolibrapor polegada quadrada (ksi).

Page 14: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.4-Tensão normal média em uma barra com carga axial.

Caso todas as áreas da seção transversal da barra sejam iguais, a barra será denominada prismática. Desprezando o peso da barra, para o equilíbrio do segmento inferior, a resultante da força interna que atua na seção transversal deverá ser igual em intensidade, oposta em sentido à força na extremidade inferior .

Supomos: 1-considerar tensão no interior da seção média da barra onde a deformação é uniforme (longe das forças externas das extremidades que causam distorções).2- P aplicada ao longo do eixo centróide para uniformizar deformação.3- material homogéneo e isotrópico.

Tensão Normal Média. Com as considerações acima, cada área ΔA está sujeita a uma força ΔF = σ Δ A, e o somatório resulta na força interna resultante P no centróide da seção;

Nota: P passar pelo centróide implica tensão uniforme e produzirá momentos nulos em torno de quaisquer eixos x e y que passem por esse ponto:

Igualdades satisfeitas porque no centróide;

Page 15: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Tensão Normal Média Máxima.

Ocasionalmente, a barra pode ser submetida a várias cargas externas ao longo de seu eixo, ou pode ocorrer uma mudança na área de sua seção transversal.

Resultado: tensão normal no interior será diferente de uma seção para a outra. É importante determinar o local em que a relação P/A chega ao máximo, para tal, havendo mudança de área, mostrar por meio do gráfico da força normal P contra posição x ao longo da barra. EXEMPLO: A barra tem largura constante de 35 mm e espessura de 10 mm. Determinar a tensão normal média máxima da barra quando submetida ao carregamento mostrado.

Interpretação gráfica: P é equivalente ao volume sob o diagrama de tensão. A resultante passa pelo centróide do volume considerado.

OBS: As hipóteses podem ser usadas para barras levemente cónicas. Por exemplo, em barra cónica de seção transversal retangular, com ângulo de 15° entre dois lados adjacentes, a tensão normal média calculada é 2,2% menor.

Page 16: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Como a área da seção transversal da barra é constante, a maior tensão normal média ocorreem BC;

Sol: força axial interna na região AB:

força axial interna na região BC:

força axial interna na região CD:

Diagrama:

Graficamente, o volume (ou 'bloco') dessa distribuição de tensão equivale à carga de 30 kN; isto é, 30 k N = (87,5 MPa)(35 mm)(10 mm).

Page 17: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Fazer: O mancal de encosto está submetido às cargas mostradas. Determinar a tensão normal média desenvolvida nas seções transversais que passam pelos pontos B,C e D. Fazer o desenho esquemático dos resultados para um elemento de volume infinitesimal localizado em cada seção.

Page 18: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Exemplo: O pedestal tem seção transversal triangular como mostrado. Supondo que esteja submetido a uma força de compressão de 500 lb, especificar as coordenadas de localização do ponto P (x, y), em que a carga deve ser aplicada na seção transversal, de modo que a tensão normal média seja uniforme. Calcular a tensão e desenhar sua distribuição atuando em uma seção transversal fora do ponto de aplicação da carga.

Solução: Para obter as coordenadas e do centróide devemos nos lembrar que em triângulos ele se encontra à x= 1/3 da altura relativa a base, então podemos dividir em dois triângulos e obter as coordenadas x e y do centróide por somatórrio;

Sendo a tensão média uniforme, podemos calcular por;

A distribuição em uma seção qualquer será:

Page 19: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Fazer: O bloco pequeno tem espessura de 5 mm. Supondo que a distribuição de tensão desenvolvida pela carga no apoio varie como mostrado, determinar a força F aplicada ao bloco e a distância d até o ponto em que ela se aplica.

Page 20: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.5-Tensão de cisalhamento média.Ao lado F=2v, logo a tensão de cisalhamento média sobre cada uma dasduas seções será ;Ela é a uniforme em cada ponto da seção;

Geralmente ocorrem dois tipos de cisalhamento:Cisalhamento simples:

Cisalhamento duplo:

Page 21: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Para estar em equilíbrio de forças (em z e y), e momentos, um elemento removido da superfície onde atue a tensão de cisalhamento média;

requer as quatro tensões de cisalhamento com intensidades iguais e sentido contrário nas bordas opostas. (propriedade complementar do cisalhamento)

Exemplo: A embreagem de dentes é usada para transmitir um torque de 450 lb • pés em uma única direção. Supondo que cada eixo tenha apenas dois dentes em torno da circunferência, como mostrado, determinar a tensão de cisalhamento média ao longo da raiz AB de cada dente.Sol: Façamos o DCL com os momentos e Forças na seção;

Passando tudo para polegada (1ft=12in), o equilíbrio de momentos dará F:

Como a área é 1/6 da área do anel;A tensão média de cisalhamento será

Page 22: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

1.6-Tensão Admissível

1.7-Projeto de Acoplamentos Simples

O fator de segurança (F.S.) é a relação entre a carga de ruptura Frup e a carga admissível Fadm.

Se a carga aplicada ao elemento for relacionada linearmente à tensão, como σ= P/A e τ=V/A, então;

O F.S. é maior que 1.

Seja um elemento sujeito a uma força normal; a área requerida da seção será:

Seja um elemento sujeito a uma força cortante; a área requerida da seção será:

Vejamos 4 tipos comuns: Área da Seção Transversal de um Elemento de Tração

Área da Seção Transversal de um Acoplamento Submetido a Cisalhamento.

Área Requerida para Resistir ao Apoio

Área Requerida para Resistir ao Cisalhamento Provocado por Carga Axial

Page 23: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Exemplo: A estrutura está submetida a uma carga de 1,5 kip. Determinar o diâmetro necessário dos pinos em A e B se a tensão de cisalhamento admissível para o material for 6 ksi. O pino A está submetido a cisalhamento duplo, enquanto o pino B está submetido a cisalhamento simples.

Sol: Precisamos dos esforços em B e A;Usando DCL no braço DC:

Façamos DCL da estrutura:Pelas Eq. Equil. obtemos os esforços em A e D:

Vamos finalmente obter os diâmetros em A e B:

Page 24: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

Fazer: O mancal de encosto consiste de um colar circular A preso ao eixo B. Determinar a força axial máxima P que pode ser aplicada ao eixo de modo que não provoque tensão de cisalhamento admissível de 170 MPa ao longo das superfícies cilíndricas a ou b.

Page 25: UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em  Engenharia  Mecânica

MUITO OBRIGADO PELA ATENÇÃO!

– Bibliografia:

– R. C. Hibbeler – Resistência dos materiais – 5º Edição.