UNIVERSIDADE ESTADUAL DE CAMPINAS -...

75
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA ALTERAÇÕES CARDIOVASCULARES INDUZIDAS PELO EXERCÍCIO EXTENUANTE DE LONGA DURAÇÃO EM RATOS SUPLEMENTADOS COM LEUCINA PROLONGED STRENUOUS EXERCISE INDUCED CARDIOVASCULAR CHANGES IN LEUCINE SUPPLEMENTED SWIM-TRAINED RATS GUSTAVO BARBOSA DOS SANTOS Campinas 2015

Transcript of UNIVERSIDADE ESTADUAL DE CAMPINAS -...

Page 1: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE BIOLOGIA

ALTERAÇÕES CARDIOVASCULARES INDUZIDAS PELO

EXERCÍCIO EXTENUANTE DE LONGA DURAÇÃO EM RATOS

SUPLEMENTADOS COM LEUCINA

PROLONGED STRENUOUS EXERCISE INDUCED

CARDIOVASCULAR CHANGES IN LEUCINE SUPPLEMENTED

SWIM-TRAINED RATS

GUSTAVO BARBOSA DOS SANTOS

Campinas

2015

Page 2: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro
Page 3: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro
Page 4: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro
Page 5: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

“Pouco conhecimento faz com que as pessoas se sintam

orgulhosas. Muito conhecimento, que se sintam humildes.

É assim que as espigas sem grãos erguem

desdenhosamente a cabeça para o céu, enquanto as

cheias as baixam para a terra, sua mãe”.

Leonardo Da Vinci

Page 6: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

Agradecimentos

Aos meus pais, Luiz Antônio e Neide, que sempre estiveram ao meu lado, me apoiando

em todas minhas decisões, fossem elas quais fossem. Pelo exemplo de honestidade,

ética e justiça que sempre me deram. Vocês são os principais responsáveis pela

realização deste trabalho e pela pessoa que sou. Amo vocês, muito obrigado. À minha

família, em especial ao meu irmão Rafael. São poucas as pessoas com quem podemos

contar incondicionalmente e você é uma delas. Conte comigo sempre.

À Elisa Jackix (Lisa), pessoa muito importante em minha vida. É muito bom poder contar

com você sempre, saiba que é uma das maiores responsáveis por esta conquista. Muito

obrigado pela sua ajuda e compreensão durante este período. Te amo.

Aos meus grandes amigos Fernando Catanho e Renato Buscariolli. Pessoas que

contribuem muito em minha vida acadêmica e pessoal. Espero que nossa amizade

perdure para sempre, assim como nossas "boleiragens". Aos amigos de laboratório, Luís

Alberto, e Rafael Soares. Ao amigo Bernardo Neme Ide, profissional a quem admiro

muito e aprendo constantemente. Agradeço de forma especial ao Bread Leandro Gomes

da Cruz e André Gustavo de Oliveira, a amizade de vocês foi importantíssima e tornou

todo o processo mais valioso.

Registro aqui minha grande gratidão ao André Gustavo de Oliveira (Roma). Muito

obrigado pela sua paciência em ensinar os protocolos do laboratório durante os

experimentos e por ter me ajudado em todas as etapas deste trabalho. Espero poder

retribuir toda ajuda que me deu nesses quatro anos, aprendi muito com você. Muito

obrigado!

Aos amigos da AABB, Valter César, Paulo André, Fernando (Juv), Vitor (Mundinho) e

Matheus (Di) por fazerem parte da minha vida há tanto tempo e serem exemplos de

amizade e companheirismo. Agradeço de forma especial ao Rodrigo Freston pela

amizade e contribuição neste trabalho. Muito obrigado English!

Ao Prof. Dr. Miguel Arcanjo Areas, meu orientador, por tudo que passamos nesses doze

anos de convivência. Sem dúvida, aprendi muito com ele pelo lado acadêmico, mas não

se compara com o que aprendi pelo lado pessoal: com sua humildade, respeito com que

trata a todos, pela sua amizade e companheirismo. Sentirei muita falta de nossas

conversas. Muito obrigado por tudo!

Page 7: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

À Profa. Dra. Dora Maria Grassi-Kassisse por ter aceito, mais uma vez, o convite para

fazer parte da minha banca. Sinto-me honrado por ter sua participação durante todas as

etapas da minha formação. Foi minha professora durante a graduação e mestrado, além

de ter sido membro titular tanto da banca de mestrado quanto de doutorado. É um

exemplo de profissional e ser humano, a forma gentil e educada como trata a todos é

exemplar. Muito obrigado!

À Profa. Dra. Maria Cristina C. G. Marcondes pela gentileza de nos ceder seu laboratório

para realização de grande parte dos procedimentos experimentais. Muito obrigado!

Aos membros da banca, Prof. Dr. Carlos Alberto da Silva, Prof. Dr. Felix Guillermo Reyes

Reyes pelas correções e sugestões, contribuindo de maneira extremamente significativa

para a melhoria da qualidade desse trabalho. Ao Prof. Dr. Alexandre Gabarra de Oliveira,

por ter aceitado prontamente o convite. À Prof. Dra. Mara Patrícia Traina Chacon Mikahil,

pessoa muito importante em minha formação como educador físico, agradeço a forma tão

gentil como me recebeu em seu laboratório e o convite. À Prof. Dra. Celene Fernandes

Bernardes, pessoa que tive o prazer de conhecer há pouco tempo e, agora, tenho a

honra de tê-la em minha banca. Muito obrigado a todos.

Ao departamento de Departamento de Anatomia, Biologia Celular e Fisiologia e Biofísica

do Instituto de Biologia da Unicamp e a todos seus funcionários, assim como aos

funcionários da secretaria de pós-graduação.

À CAPES pelo apoio financeiro.

Page 8: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

Resumo

O exercício físico regular de intensidade moderada traz benefícios incontestáveis

à saúde e, em especial, à saúde cardíaca. Já no exercício físico extenuante de longa

duração, típico de esportes de resistência (maratonas, triatlos, remo, etc.), esses efeitos

não são tão bem caracterizados. Estudos prévios têm mostrado que tais eventos podem

levar a disfunções cardíacas transitórias, denominadas “Fadiga Cardíaca”. Essas

disfunções vão desde alterações de permeabilidade da membrana dos cardiomiócitos e

da função ventricular, até elevações de biomarcadores utilizados no diagnóstico de

disfunção e dano celular cardíaco. Dessa forma, a exposição crônica à fadiga cardíaca

poderia evoluir para alterações elétricas e morfológicas semelhantes àquelas observadas

em algumas condições patológicas, como arritmias e insuficiência cardíaca. Em teoria, o

controle do turnover proteico, além da disponibilidade de substrato energético, poderia

atenuar ou impedir a fadiga cardíaca. Existe crescente evidência sobre a importância dos

BCAA (aminoácidos de cadeia ramificada), em especial da leucina, na regulação do

metabolismo proteico. Essa regulação se dá tanto via estimulação proteica quanto pela

inibição da proteólise. O entendimento dos processos funcionais e moleculares que

levam à fadiga cardíaca poderia ajudar na prevenção de distúrbios cardíacos tanto no

âmbito esportivo quanto clínico. Assim, considerando-se o potencial risco de alterações

cardíacas induzidas pelo exercício e o aumento do número de praticantes de eventos

esportivos de longa duração, este trabalho teve como objetivo determinar o efeito do

exercício físico de longa duração sobre parâmetros cardíacos funcionais e biomarcadores

de lesão cardíaca em ratos wistar machos adultos submetidos a treinamento físico de

natação. Em adição, foi avaliado o uso da suplementação de leucina como substância

auxiliar na prevenção dos prováveis efeitos adversos causados pelo exercício de longa

duração. Os animais foram divididos em quatro grupos de acordo com a dieta

(suplementado com leucina ou não) e nível de condicionamento físico (treinado ou não).

Após uma sessão de exercício à exaustão, foram avaliadas as funções cardiovasculares

pelo ECG e pressão arterial, biomarcadores plasmáticos de lesão cardíaca (IL-6, TNF-α,

Troponina I e T), além de substrato energético (glicogênio) e proteínas-chave da via de

sinalização do turnover proteico (AKT, AMPK, mTOR, 19S e 20S) e do metabolismo

oxidativo (citrato sintase) no musculo cardíaco e esquelético. Os resultados mostraram

que o exercício à exaustão elevou significativamente os biomarcadores de lesão cardíaca

e citocinas, além de causar distúrbios elétricos cardíacos e inibir a sinalização para

síntese proteica tanto no músculo cardíaco quanto esquelético. Quando combinado ao

exercício, a suplementação de leucina levou à piora dos parâmetros mencionados, além

de elevar a pressão arterial e a sinalização para degradação proteica. Embora a

suplementação de leucina tenha aumentado a concentração de glicogênio e a atividade

Page 9: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

da citrato sintase, no músculo esquelético, isto não melhorou o desempenho dos ratos

treinados submetidos a um teste de exaustão. Dessa forma, o exercício à exaustão pode

induzir a distúrbios elétricos cardíacos e lesão no cardiomiócito. Além disso, a

suplementação de leucina, nas condições experimentais utilizadas, causou efeitos

deletérios no sistema cardiovascular dos ratos exercitados, além de não melhorar a

performance.

Palavras-chave: Leucina; exercício; fadiga; marcadores biológicos, metabolismo.

Page 10: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

Abstract

Regular physical exercise of moderate intensity has unarguable benefits to health,

especially cardiac health. However, in prolonged strenuous exercise, typical of endurance

sports (marathons, triathlons, rowing, etc.); these effects are not as pronounced. Recent

studies have shown that such events may lead to transitory cardiac dysfunctions, called

"Cardiac Fatigue". These dysfunctions range from alterations to the permeability of the

membrane of the cardiomyocytes and of the ventricular function to elevations of

biomarkers used in the dysfunction diagnosis and cellular cardiac damage. Therefore,

chronic exposure to cardiac fatigue may evolve into electrical and morphological

alterations similar to the ones observed in some pathological conditions, such as

arrhythmia and heart failure. In theory, management over protein turnover, as well as the

availability of the energy substrate, may mitigate or impede cardiac fatigue. There is

growing evidence about the importance of BCAA (Branch Chain Amino Acids), especially

leucine, in the regulation of protein metabolism. This regulation occurs both through

protein stimulation and inhibition of proteolysis. Understanding of the functional and

molecular processes that lead to cardiac fatigue may help in the prevention of cardiac

disorders both in the sporting sphere and in the clinical sphere. Thus, considering the

potential risks of exercise-induced cardiac alterations and the increase in the number of

practitioners of prolonged sporting events, this work´s goal was to determine the effect of

prolonged physical exercise on functional cardiac parameters and biomarkers of cardiac

injuries on sedentary adult male wistar rats submitted to swimming training. Additionally,

the use of leucine supplementation as an auxiliary substance in the prevention of the

probable adverse effects caused by prolonged exercising was evaluated. The animals

were divided into four groups according to diet (with or without leucine supplementation)

and level of physical conditioning (with or without training). After a session of exercising

until exhaustion, they were evaluated in terms of their cardiovascular functions through

ECG and arterial pressure, biomarkers of cardiac injury (IL-6, TNF-α, Troponin I and T),

as well as energy substrate (glycogen) and key proteins of the signaling pathways of the

protein turnover (AKT, AMPK, mTOR, 19S and 20S) and of the oxidative metabolism

(citrate synthase) in the cardiac and skeletal muscle. The results show that exercising until

exhaustion significantly elevated the biomarkers of cardiac injury and cytokines, besides

causing electrical cardiac disorders and inhibiting the signaling for protein synthesis both

in the heart and skeletal muscle. When combined with exercise, leucine supplementation

led to the worsening of the parameters above, as well as elevating the arterial pressure

and the signaling for protein degradation. Although leucine supplementation has

increased the concentration of glycogen and the activity of citrate synthase in the skeletal

muscle, this has not improved the performance of the trained rats submitted to an

Page 11: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

exhaustion test. Therefore, exercising until exhaustion may induce electrical cardiac

disorders and injury to the cardiomyocyte. Moreover, in the experimental conditions used,

leucine supplementation caused harmful effects to the cardiovascular system of the rats,

as well as not improving their performance.

Keywords for review: Leucine; exercise; fatigue; biological markers; metabolism.

Page 12: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

Lista de Abreviaturas Akt, Proteína Quinase B;

AMPK, proteína quinase ativada por AMP;

BCAA, Aminoácidos de Cadeia Ramificada (Branched Chain Amino Acids)

CS, Citrato sintase;

cTnI, Troponina cardíaca I;

cTnT, Troponina cardíaca T;

ECG, Eletrocardiograma;

IL-6, interleucina 6;

mTOR, alvo da rapamicina em mamíferos;

PGC-1α, coativador-1 alfa do receptor ativado por proliferador de peroxissoma

TNF-α, fator de necrose tumoral-α;

C, Grupo controle sedentário;

T, Grupo treinado;

CL, Grupo sedentário, suplementado com leucina;

TL, Grupo treinado, suplementado com leucina;

Page 13: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

Sumário

Resumo .............................................................................................................. 8

Abstract ............................................................................................................ 10

1. Introdução ................................................................................................. 14

1.1. Fadiga Cardíaca em atletas de endurance ......................................... 14

1.2. Fadiga periférica em exercício prolongados ........................................ 15

1.3. Biomarcadores de lesão cardíaca e degradação muscular proteica ... 16

1.4. Biomarcadores de fadiga durante o exercício ..................................... 17

1.5. Leucina ................................................................................................ 18

2. Objetivos ................................................................................................... 21

3. Resultados e Discussão ............................................................................ 22

3.1. Artigo 1 ................................................................................................... 23

3.2. Artigo 2 .................................................................................................. 45

4. Conclusão ................................................................................................. 64

5. Atividade concomitante à tese .................................................................. 65

6. Referências Bibliográficas ......................................................................... 66

7. Anexos ...................................................................................................... 73

Page 14: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

14

1. Introdução

1.1. Fadiga Cardíaca em atletas de endurance

Atletas de endurance são tidos como exemplo de saúde cardiovascular, por

serem capazes de gerar altas taxas de captação de oxigênio em virtude de um

extraordinário sistema de transporte de oxigênio desenvolvido por estes indivíduos em

consequência do treinamento (BHELLA; LEVINE, 2010). O aumento do

condicionamento cardiorrespiratório e o exercício físico regular estão associados à

redução da mortalidade e de várias doenças cardíacas, além da melhora do

desempenho físico (TRIVAX et al., 2010). Por estes motivos, eventos esportivos de

longa duração como corridas de rua, maratonas e triátlons, tiveram sua popularidade

muito aumentada nos últimos anos, como parte de um estilo de vida saudável.

Uma das principais adaptações cardiovasculares do atleta de endurance que

permite tal desempenho aeróbio é o aumento do volume sistólico alcançado por um

coração hipertrofiado, mais complacente e que relaxa mais rapidamente. Embora

essas adaptações possibilitem melhor desempenho físico e cardiovascular, há quem

questione se estas não poderiam trazer danos cardíacos em longo prazo. Assim,

existem relatos de que o exercício de longa duração traz consequências adversas

para o sistema cardiovascular (BHELLA; LEVINE, 2010; LAKHAN; HARLE, 2008;

LINDSAY; DUNN, 2007; SHAVE et al., 2010; TRIVAX et al., 2010).

Para descrever essas alterações cardíacas transitórias no desempenho

ventricular esquerdo após eventos de longa duração foi criado o termo “Fadiga

Cardíaca”. Esse termo refere-se às elevações dos biomarcadores cardíacos após

exercícios de longa duração, às alterações de permeabilidade na membrana dos

cardiomiócitos e da função ventricular esquerda que, em longo prazo, podem evoluir

para alterações morfológicas cardíacas (desvio do eixo elétrico cardíaco, hipertrofia

ventricular esquerda, etc.) que se assemelham àquelas observadas em algumas

condições patológicas (BHELLA; LEVINE, 2010; PELLICCIA et al., 2010).

Vários estudos (BHELLA; LEVINE, 2010; SAHLEN et al., 2010; TRIVAX et al.,

2010) mostram elevação de troponinas I e T e creatina quinase (biomarcadores

plasmáticos cardíacos específicos, utilizados no diagnóstico de lesão e/ou doença

cardíaca) após eventos de resistência, consistentes com os valores encontrados em

certas patologias cardíacas. Além disso, a ocorrência da “Fadiga Cardíaca” tem sido

relatada como consequência de exercícios prolongados de resistência, com duração

entre 3 a 17 horas (como no caso de corridas de triátlon Iron-man) (PELLICCIA et al.,

2010). Assim, o questionamento sobre a possibilidade destes episódios de lesão

cardíaca sutis, causados pelo exercício, induzir, em longo prazo, alterações

Page 15: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

15

permanentes na morfologia e função ventricular esquerda, se faz pertinente (GEORGE

et al., 2008).

Apesar desses eventos cardiovasculares serem bastante incomuns em atletas, o

risco em corredores menos treinados parece ser significativamente maior. Já foi

demonstrado que a fadiga cardíaca e o aumento de biomarcadores plasmáticos de

lesão cardíaca ocorrem, em maior magnitude, em indivíduos menos treinados

(SAHLEN et al., 2010).

Muitas são as causas atribuídas à ocorrência da fadiga cardíaca em atletas de

resistência: disfunção do ventrículo direito pelo aumento da pré e pós-carga; dilatação

das câmaras cardíacas e consequente perda da integridade das junções

intracelulares; depleção de substrato energético e desidratação (BHELLA; LEVINE,

2010; DAWSON et al., 2003; PELLICCIA et al., 2010; SAHLEN et al., 2010; TRIVAX

et al., 2010).

Alguns estudos sugerem possível relação entre a exposição crônica ao exercício

prolongado e o desenvolvimento de fibrose miocárdica (LINDSAY; DUNN, 2007;

WHYTE, G. P., 2008). Essa exposição crônica e o desenvolvimento de fibrose

poderiam deflagrar arritmias fatais (WHYTE, G. P., 2008). Ainda segundo o mesmo

autor, este fenômeno poderia estar ligado ao processo inflamatório induzido pelo

exercício observado em modelos animais.

Enquanto alguns estudos mostram que as consequências da fadiga cardíaca

são transitórias e benignas, não trazendo riscos à saúde, outros sugerem que as

consequências desse fenômeno podem levar à fibrose cardíaca (em resposta às

lesões induzidas pelo exercício), arritmias, isquemia, fibrilação e até morte súbita

(BHELLA; LEVINE, 2010; DAWSON et al., 2003; PELLICCIA et al., 2010; SAHLEN

et al., 2009; SAHLEN et al., 2010; TRIVAX et al., 2010).

1.2. Fadiga periférica em exercício prolongados

A fadiga muscular pode ser definida como qualquer perda, induzida pelo

exercício, da capacidade de produzir força de um músculo ou grupo de músculos.

Esse processo envolve todos os níveis da ativação motora, desde o disparo do

potencial de ação, pelo sistema nervoso central, até a interação actina-miosina, no

músculo. A redução progressiva, induzida pelo exercício, na ativação muscular

voluntária ou na estimulação neural da unidade motora é definida como fadiga central

(TAYLOR; TODD; GANDEVIA, 2006).

As sensações de fadiga e exaustão representam um fenômeno psicológico, que,

cedo ou tarde, induzem mudanças no comportamento. Já, as alterações físicas e

bioquímicas simultâneas que ocorrem durante o exercício, são efeitos fisiológicos. Na

Page 16: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

16

fisiologia do exercício estes efeitos são definidos como fadiga, e pode ser monitorado

objetivamente. Entretanto, a fadiga também possui um aspecto psicológico. Assim,

apesar da ativação motora durante o exercício permanecer constante, a sensação de

esforço, pode aumentar gradualmente. Eventualmente, essa sensação de esforço

pode ser tão intensa que sobrepõe a própria força de vontade para manter o exercício,

forçando o sujeito a reduzir a intensidade ou mesmo interromper o exercício. Este

momento é definido como exaustão (AMENT; VERKERKE, 2009).

Existem numerosos relatos sobre os mecanismos bioquímicos e/ou fisiológicos

de fadiga periférica: a depleção de glicogênio e fosfocreatina, diminuição no potencial

de repouso da membrana ou disfunção da bomba de cálcio no retículo

sarcoplasmático em músculos esqueléticos, e, ainda, falha de transmissão

neuromuscular (MIZUNO et al., 2008).

1.3. Biomarcadores de lesão cardíaca e degradação muscular proteica

Dentre os muitos biomarcadores plasmáticos utilizados na avaliação da lesão

cardíaca após exercício prolongado e extenuante, destacam-se as troponinas

cardíacas, por serem marcadores de dano celular cardíaco extremamente específicos,

sendo amplamente utilizadas no diagnóstico de síndromes agudas coronarianas

(SHAVE et al., 2010).

O complexo troponina é composto de três subunidades: troponina T (TnT), a

qual ancora o complexo ao filamento de tropomiosina do filamento fino da fibra

muscular; troponina C (TnC) que se liga aos íons cálcio liberados do reticulo

sarcoplasmático; troponina I (TnI) que inibe a hidrólise enzimática do ATP, que fornece

energia para a contração muscular. Apesar dos músculos esquelético e cardíaco

dividirem a mesma via de desenvolvimento, originam-se de diferentes precursores

embrionários, apresentando, consequentemente, diferentes isoformas de TnT e TnI

(músculos cardíaco - cTnT e cTnI e esquelético - eTnT e eTnI) cada um codificado por

diferentes genes, o que aumenta ainda mais a especificidade destes biomarcadores

(SHAVE et al., 2010).

Estudos tem examinado a resposta da cTn após o esforço físico, a maioria deles

em eventos atléticos competitivos que requerem, do participante, manter um elevado

nível de debito cardíaco, frequência cardíaca e pressão sistólica por várias horas. O

aumento sustentado do trabalho cardíaco estressa o miocárdio, que junto ao ambiente

fisiológico do exercício prolongado (elevação de EROs, pH alterado e aumento da

temperatura corporal) pode, teoricamente, lesar as células cardíacas (KNEBEL et al.,

2009; SHAVE et al., 2010; WHYTE, G. et al., 2008).

Page 17: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

17

Fibras musculares esqueléticas estão sujeitas ao estresse metabólico e

mecânico durante a realização de uma atividade física, o que contribui para o dano

das proteínas celulares, solicitando que estas sejam continuamente degradadas e

ressintetizadas para que possam manter sua função. O exercício físico influência, de

maneira significativa, o equilíbrio entre esses dois processos (degradação e síntese

proteica). Aumento ou diminuição na atividade física traz adaptações da fibra muscular

(hipertrofia vs. atrofia), alterando a expressão proteica e o tamanho da fibra (REID,

2005).

Do mesmo modo, as proteínas do músculo cardíaco estão em contínuo estado

dinâmico de degradação e ressíntese. Este processo é, extremamente seletivo,

rigorosamente regulado e crucial para a função celular. Proteases estão localizadas

em muitas organelas, dentre elas, lisossomos e proteassomas e possuem papel

importante na degradação de proteínas cardíacas. Enquanto os lisossomos degradam

a maioria das proteínas de membrana, a via ubiquitina-proteassoma degrada proteínas

intracelulares (ZOLK; SCHENKE; SARIKAS, 2006).

A via da ubiquitina-proteassoma é a principal reguladora da degradação proteica

nas células eucarióticas, e é a responsável por degradar a maior parte (entre 80 a

90%) das proteínas intracelulares durante o remodelamento muscular. Em resumo,

essa via reconhece proteínas mal dobradas ou com danos e as rotula através da

conjugação do polipeptídio ubiquitina. Proteínas conjugadas com ubiquitina são então

reconhecidas e degradadas por um complexo enzimático chamado 26S proteassoma

(REID, 2005; ZOLK et al., 2006). As troponinas são uma das principais proteínas

miofibrilares que são predominantemente degradadas pela via da ubiquitina-

proteassoma (ZOLK et al., 2006).

1.4. Biomarcadores de fadiga durante o exercício

A escolha mais plausível de biomarcadores de fadiga muscular acompanha os

mecanismos de fadiga e as alterações metabólicas durante o exercício. Uma vez que

não há uma única causa de fadiga muscular, também não há um biomarcador único

para avaliá-la. Além disso, a escolha dos biomarcadores de fadiga muscular é

dependente da intensidade e duração do exercício. Assim, o biomarcador de fadiga

para um exercício que dura 20 segundos (com demanda de energia anaeróbia de até

90%), será diferente do escolhido para avaliar a fadiga em um exercício com duração

acima de 180 segundos (onde a contribuição do metabolismo oxidativo é maior)

(FINSTERER, 2012).

Além da depleção de ATP e da produção de espécies reativas de oxigênio, o

exercício e a fadiga deflagram um processo inflamatório. Após o exercício, linfócitos T

Page 18: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

18

são mobilizados para o sangue. Sabe-se que o músculo em contração libera miocinas

(citocinas produzidas pelos músculos), criando um ambiente anti-inflamatório

sistêmico, modulando o processo inflamatório além de exercer efeito endócrino sobre

o tecido adiposo visceral (FINSTERER, 2012).

Embora controverso, alguns estudos apontam papel importante das citocinas na

fadiga aguda e crônica induzida pelo exercício. Outra hipótese para a causa da fadiga,

seria a sobrecarga mecânica crônica das sessões de treinamento frequentes, o que

induz a microtraumas. Estes, por sua vez, induziriam a um processo inflamatório

crônico, pela ativação de algumas citocinas, especialmente a interleucina-1 e 6 (IL-6) e

o fator de necrose tumoral-α (TNF-α) (AMENT; VERKERKE, 2009).

A IL-6 pertence a um grupo de citocinas que modula o processo inflamatório.

Pode agir tanto como pró-inflamatória quanto anti-inflamatória. Durante o exercício, a

IL-6 parece agir de maneira endócrina, mobilizando substratos energéticos ou

aumentando a captação destes (FINSTERER, 2012).

O TNF-α é uma citocina pró-inflamatória, predominantemente produzida por

macrófagos e capaz de induzir apoptose, inflamação, diferenciação e proliferação

celular, além de inibir a tumorigênese e replicação viral. Durante o exercício de longa

duração o TNF-α causa resistência à insulina transitória e aumento da lipólise

(FINSTERER, 2012). Estes efeitos são de grande importância para a continuação do

exercício, pois disponibiliza substrato energético para os músculos ativos, além de

causar efeito poupador da glicose, ajudando na manutenção da glicemia.

Nas últimas duas décadas, os efeitos fisiológicos das citocinas tem sido

extensivamente investigado. Foi demonstrado, ainda, que a IL-6 aumenta a sensação

de fadiga, em atletas. Além disso, várias doenças são acompanhadas pelo aumento

da concentração plasmáticas das citocinas citadas (AMENT; VERKERKE, 2009).

Assim, os efeitos das diferentes citocinas sobre a fadiga induzida pelo exercício

precisa ser melhor investigada.

1.5. Leucina

Leucina é um aminoácido indispensável, ou seja, que não pode ser produzido

pelo nosso organismo e compõe um dos três aminoácidos de cadeia ramificada

(Branched-chain amino acids – BCAA), mostrados na figura 1. Existe crescente

evidência sobre o papel dos BCAAs na regulação do processo anabólico envolvendo

tanto a síntese quanto a degradação proteica via estimulação direta da síntese

proteica e liberação de hormônios anabólicos, como a insulina e/ou através da inibição

da proteólise (DE OLIVEIRA et al., 2011; GREER et al., 2007; MANNINEN, 2006). A

Leucina possui também potencial terapêutico devido aos seus efeitos sobre a

Page 19: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

19

manutenção da massa magra durante a perda de peso, promoção de cura de

ferimentos e anabolismo muscular na sarcopenia relacionada à idade ou a caquexia

em decorrência de câncer (DE OLIVEIRA et al., 2011).

Figura 1. Aminoácidos de cadeia ramificada – BCAA.

Estudos in vivo e in vitro verificaram que dietas hiperproteicas influenciam a

síntese proteica e regulam vários processos celulares. Dentre os aminoácidos, a

leucina é a mais eficaz em estimular a síntese proteica, reduzir a proteólise e,

portanto, favorecer o balanço nitrogenado positivo. Além disso, este aminoácido

influencia direta e indiretamente a síntese e secreção de insulina podendo, assim,

aumentar as propriedades anabólicas celulares (DE OLIVEIRA et al., 2011; RENNIE,

2007; VIANNA et al., 2010). A leucina também pode estimular a síntese proteica

durante condições catabólicas como na restrição alimentar aguda e no exercício

exaustivo (VIANNA et al., 2010).

Alguns estudos sugerem que o efeito anabólico da leucina é mais evidente em

situações catabólicas, quando as concentrações plasmáticas e intracelulares da

leucina estão baixas (GREER et al., 2007; PHILLIPS, 2004; VIANNA et al., 2010). Em

um artigo de revisão, foi demonstrado que a síntese proteica está bastante reduzida

em comparação a taxa de degradação proteica no músculo após o exercício intenso

ou uma noite de jejum (PHILLIPS, 2004). Esse estado catabólico persiste até que

quantidade adequada de proteína e, especificamente, leucina, seja consumida para

reverter este estado, aumentando as concentrações plasmáticas e intracelulares deste

aminoácido. Entretanto, embora o efeito da ingestão aguda de leucina sobre a

estimulação da síntese proteica tenha sido verificado, poucos estudos avaliaram a

eficiência da ingestão crônica de leucina (VIANNA et al., 2010).

Devido ao seu papel na regulação da síntese e degradação proteica, muitos

atletas utilizam a suplementação de leucina com a intenção de diminuir a extensão do

dano muscular, reduzir a fadiga e aumentar o desempenho. Indivíduos suplementados

Page 20: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

20

com carboidratos e leucina mantiveram os níveis de creatina quinase sanguínea

inalterados, além de apresentarem níveis de percepção subjetiva de dor, menores

quando comparados aos indivíduos suplementados apenas com carboidratos ou

solução placebo (GREER et al., 2007).

Os BCAA também exercem ações anabólicas no metabolismo proteico cardíaco

e a sua captação pelo miocárdio é amplamente dependente da sua concentração

plasmática (BIANCHI et al., 2005). Assim, fica evidente o potencial ergogênico da

leucina, principalmente em contexto de exercício extenuante de longa duração e alta

frequência de treinamento de endurance.

Page 21: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

21

2. Objetivos

2.1. Objetivo Geral

O objetivo geral deste trabalho foi avaliar o efeito do exercício físico de longa

duração sobre parâmetros cardiovasculares moleculares, funcionais, metabólicos e

hemodinâmicos em ratos Wistar machos adultos treinados; concomitante, ou não, à

ingestão de dieta suplementada com leucina. E, desta forma, avaliar o uso da leucina

como substância auxiliar na prevenção dos prováveis efeitos adversos causados pelo

exercício físico extenuante de longa duração.

2.2. Objetivo Específico

De forma paralela, investigamos o papel da suplementação de leucina sobre

respostas moleculares e metabólicas no músculo esquelético de ratos treinados,

submetidos a uma sessão de exercício exaustivo de longa duração, concomitante ou

não, à suplementação de leucina. De forma específica, avaliamos parâmetros

metabólicos através da atividade da enzima citrato sintase, no coração e no músculo

gastrocnêmio, além da concentração de glicogênio nos dois tecidos. Avaliamos

parâmetros moleculares pelas vias de sinalização de síntese proteica, através da

concentração das proteínas Akt, mTOR e AMPK, nos tecidos citados e a sinalização

de degradação proteica através da concentração das proteínas 19s e 20s, no músculo

cardíaco. Os parâmetros cardíacos funcionais foram avaliados através do ECG, dos

biomarcadores de lesão cardíaca (troponinas T e I) e das citocinas IL-6 e TNF-α.

Avaliamos, também, parâmetros hemodinâmicos através da pressão arterial.

Page 22: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

22

3. Resultados e Discussão

Os resultados e discussão estão apresentados na forma de dois capítulos compostos

por artigos científicos, compilando os dados referentes às respostas cardíacas e

musculares funcionais, moleculares e metabólicas induzidas pelo exercício extenuante

de longa duração em ratos treinados, submetidos ou não à dieta rica em leucina.

Encontram-se a seguir os dois artigos resultantes do desenvolvimento desse trabalho.

O primeiro artigo será submetido à revista The Journal of Physiology, já o segundo

artigo foi submetido à revista Nutrition, ambos, de acordo com a indexação Capes,

em classificação Qualis A.

Page 23: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

23

3.1. Artigo 1 será submetido ao periódico “The Journal of Physiology”

_____________________________________________________________________

LONG-TERM LEUCINE SUPPLEMENTATION AGGRAVATES PROLONGED

STRENUOUS EXERCISE-INDUCED CARDIOVASCULAR CHANGES IN TRAINED

RATS

Authors:

Gustavo Barbosa dos Santos1, MSc

André Gustavo de Oliveira1, MSc

Luiz Alberto Ferreira Ramos1, PhD

Maria Cristina Cintra Gomes Marcondes1, PhD

Miguel Arcanjo Areas1, PhD

Affiliation:

1Department of Structural and Functional Biology, Institute of Biology, University of

Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Corresponding author:

G.B. Santos, +55 (019) 3521-6196, [email protected]

Departamento de Biologia Funcional e Molecular

Instituto de Biologia - Caixa Postal 6109

Av. Bertrand Russell - Bloco O

Universidade Estadual de Campinas - UNICAMP

CEP-13083-865

Campinas - SP

Keywords for review: Leucine; prolonged exercise; electrocardiogram; cardiac

biomarkers.

Total word count (excluding references and figure captions): 3948

Number of Figures: 6

Page 24: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

24

Key points Summary

Prolonged endurance exercise does not seem to exceed cardiac energetic

capacity, hence does not represent an energy threat to this organ, at least in

trained subjects.

Prolonged endurance exercise may induce, in susceptible individuals, a state of

cardiac electrical instability, which has been associated with ventricular

arrhythmias and cardiac sudden death. This situation may be worsened when

combined with leucine supplementation, which led to increased blood pressure

and cardiac injury.

Leucine supplementation failed to prevent cardiac fatigue symptoms, and may

also aggravate prolonged strenuous exercise-induced cardiovascular

disturbances in trained rats.

Abstract Aim: Observational studies have raised concerns that prolonged strenuous exercise

training may be associated with increased risk of cardiac arrhythmia and even primary

cardiac arrest or sudden death. It has been demonstrated that leucine can reduce

prolonged exercise-induced muscle damage and accelerate the recovery process. The

aim of this study was to investigate the effects of prolonged strenuous endurance

exercise on cardiovascular parameters and biomarkers of cardiac injury in trained adult

male rats and assess the use of leucine as an auxiliary substance to prevent the likely

cardiac adverse effects caused by strenuous exercise.

Methods: Twenty-four male Wistar rats were randomly allocated to receive a balanced

control diet (18% protein) or a leucine-rich diet (15% protein with 3% leucine) for 6

weeks. The rats were submitted to 1 hour of swimming exercise, 5 d.wk−1 for 6 wk.

Three days after the exercise training period rats were submitted to swimming

exercises until exhaustion and cardiac parameters were assessed.

Results: Exercising until exhaustion significantly increased serum cardiac biomarker

levels and cytokines, glycogen content and inhibited protein synthesis signaling also

led to cardiac electrical disturbances. When combined with exercise, leucine

supplementation led to further increases in the aforementioned parameters and also

significant increase in blood pressure and protein degradation signaling.

Conclusion: We report, for the first time, that leucine supplementation not only does not

prevent cardiac fatigue symptoms, but may also aggravate prolonged strenuous

exercise-induced cardiovascular disturbances in trained rats. Furthermore, we find that

exercising until exhaustion can cause cardiac electrical disturbances and cardiac

myocyte damage.

Page 25: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

25

Abbreviations list Akt, Protein kinase B; AMPK, AMP-activated protein kinase α; CS, citrate synthase;

cTnI, Troponin I; cTnT, Troponin T; ECG, Electrocardiogram; IL-6, interleukin-6;

mTOR, mammalian target of rapamycin; p-AMPK, AMPK phosphorylation; TNF-α,

tumor necrosis factor-α;

Introduction

It is well established that exercise training induces a variety of cardiovascular

adaptations leading to enhanced sporting performances and health benefits. A meta-

analysis quantifying the dose-response relationship between physical activity and risk

of coronary heart disease stated that even low-to moderate-intensity leisure-time

exercise could induce cardioprotection (SATTELMAIR et al., 2011). Despite such

positive outcomes, numerous observational studies have raised concerns that

prolonged strenuous exercise training may be associated with increased risk of cardiac

arrhythmia and even primary cardiac arrest or sudden death (BENITO et al., 2011;

GEORGE et al., 2008; O'KEEFE et al., 2012).

Since prolonged exercising has been reported to result in skeletal muscle fatigue and

damage, as well as reduced performance, it seems reasonable to expect the same

response, namely cardiac fatigue, from cardiac muscle (DAWSON et al., 2003).

Concerns over the clinical consequences of individual acute bouts of prolonged

exercise are often dismissed because the changes reported are quite small and

transitory, however, there has been speculation in recent years that prolonged

exercising, whether in a single exposure or in a lifetime of activity, may actually have

some negative consequences for cardiovascular performance or health (GEORGE et

al., 2008). These prolonged strenuous exercise-induced cardiac disturbances can be

attributed to morphologic and metabolic factors. Morphologic factors range from

changes in cardiomyocytes membrane permeability and left ventricular dysfunction, to

elevations in cardiac-specific biomarkers, and metabolic factors from energy substrate

depletion to cardiac electrical abnormalities (BHELLA; LEVINE, 2010; SAHLEN et al.,

2009).

It has been demonstrated that branched chain amino acids, particularly leucine, can

reduce prolonged exercise-induced muscle damage and accelerate the recovery

process (GREER et al., 2007). Furthermore, leucine seems to be the most potent one

regarding the effects on protein synthesis and degradation and not only provides

substrates for gluconeogenesis, but also can supply tricarboxylic acid cycle with

different anaplerotic substrates (LI et al., 2011). Crowe et al. (CROWE;

Page 26: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

26

WEATHERSON; BOWDEN, 2006) showed that six weeks’ dietary leucine

supplementation significantly improved endurance performance and upper body power

in outrigger canoeists. While leucine’s effects on skeletal muscle, i.e. preventing

muscle damage and fatigue are well established; it’s not known if the same occurs with

cardiac muscles.

The aim of this study was to investigate the effects of prolonged strenuous endurance

exercise with cardiovascular parameters and biomarkers of cardiac injury in trained

adult male rats and assess the use of leucine as an auxiliary substance to prevent the

likely cardiac adverse effects caused by strenuous exercise. Since the current

evidence is promising, we hypothesized that prolonged strenuous exercise would

induce cardiac disturbances (electrical, structural and biochemical) and that leucine

supplementation could prevent, or at least mitigate, those outcomes.

Material and Methods

Animals and diets

Twenty-four male wistar rats (12 weeks old, weighing 351 g ± 28.87) were obtained

from the animal facilities of the University of Campinas (São Paulo, Brazil). They were

housed in collective cages at 22-24°C on a 12-h light-and-dark cycle, with free access

to tap water and food. The semi-purified isocaloric diets were a normal protein (C),

containing 18% protein (REEVES; NIELSEN; FAHEY, 1993); or leucine (L), containing

15% protein plus 3% of L-leucine. Approximately 70% carbohydrate (sucrose, dextrin

and starch), 7% fat (soybean oil) and 5% fiber (purified micro-cellulose) were added to

the diets. Vitamin and mineral mix, as well as cystine and choline, supplemented the

diets. The control diet had 1.6% of L-leucine, and a leucine-rich diet contained 4.6% L-

leucine, according to a previous study from our group (CRUZ; GOMES-MARCONDES,

2014). Leucine-supplemented diet has led to a significant increase in plasma leucine

concentration in fetuses from tumor-bearing pregnant mice (VIANA; GOMES-

MARCONDES, 2013) and adults rats (data not shown). Two groups were fed the

control diet: sedentary control (C) and trained (T); and two other groups were fed the

leucine-rich diet: control-leucine supplemented (CL) and trained-leucine supplemented

(TL). All the experimental procedures employed were in accordance with the Ethics

Committee on Animal Experimentation of Unicamp (CEEA/IB/UNICAMP, protocol

2888-1).

Training Protocol

The T and TL groups were submitted to the swimming protocol adapted from Santos et

al. (BARBOSA DOS SANTOS et al., 2013), 5 d.wk−1 for 6 wk, in a water tank (90 x 70

Page 27: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

27

x 70 cm and water temperature at 31 ± 1ºC). All of the rats were adapted to the water

during the first week of the experiment. The adaptation process consisted of keeping

the animals in shallow water, initially for 20 min and then progressively increasing 10

min/day and 10 cm water/day for 5 days. Exercise sessions began with 60 min/day at

the second experimental week, carrying constant loads (added to the tail) of 20 g

(approximately 6% of initial body weight). Initially for 10 minutes of these 60 minutes,

increased by 10 more minutes each week, until it reached 60 min of loaded swimming

training in the sixth and last week of experiment. Three days after the exercise-training

period, rats were submitted to swimming exercise carrying the same load until

exhaustion. Animals were sacrificed under anesthesia (ketamine and xylazine, 90

mg/kg/bw and 45 mg/kg/bw, respectively, i.p.) between 3-4 hours after exercise bout, in

order to reach cytokine peak after swimming exhaustion test (LOUIS et al., 2007;

SUZUKI et al., 2002).

Electrocardiogram (ECG)

ECG was performed before and after experiment periods. Anesthetized rats (ketamine

and xylazine, 90mg/kg/bw and 45mg/kg/bw, respectively, i.p.) were kept in the supine

position with spontaneous breathing for ECG recording. The electrodes were

connected to the computer channels (Heart Ware System), and six standard waves

were recorded (BARBOSA DOS SANTOS et al., 2013).

Blood Pressure

To determine arterial systolic and diastolic blood pressure, a cannula was inserted into

the left femoral artery and connected to BP-1-Analog single-channel transducer signal

conditioner (World Precision Instruments, USA) (KANG et al., 2006).

Glycogen content

Gastrocnemius muscles were quickly removed, frozen immediately in liquid nitrogen

and stored at -80°C until further analysis. Muscle glycogen content was estimated

colorimetrically based on the method described by Lo et al. (LO; RUSSELL; TAYLOR,

1970). The absorbance was read on a plate CHAMELEON V Multilabel Microplate

Reader (Hidex, Finland) at 620nm.

Citrate synthase activity

For citrate synthase analyses ≈30 mg of gastrocnemius muscle was homogenized

in ice cold extraction buffer (175 mM KCl, 2 mM EDTA, pH 7.4), centrifuged at 16.000 x

g, 20 min, at 4°C. An aliquot of supernatant was combined with reaction mixture

Page 28: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

28

containing 0.1 M Tris, pH 8.3, 1 mM DTNB, 3 mM acetyl-CoA. Reaction was initiated

by adding 10 mM oxaloacetic acid to the extract. The absorbance was

spectrophotometrically measured at 412 nm in 30 sec interval for 5 min using a Dynex

MRX plate reader controlled through personal computer software (Revelation,

Dynatech Laboratories), as previously described (SRERE, 1969). All samples were

tested for linearity up to 5 min of reaction and values were normalized by protein

concentration (BRADFORD, 1976).

Western Blot

Heart samples (40μg) were homogenized and protein concentration was measured

using a colorimetric method (BRADFORD, 1976). The proteins were revealed using

primary antibodies against α-tubulin (1:20.000), phospho-mTORSer2448 (1:1.000).

phospho-AktThr308 (1:1.000), phospho-AMPK-αThr172 (1:1.000) (Cell Signaling, USA) and

proteasome subunits 20S, 19S (1: 1.000) (Enzo, USA), and secondary anti-mouse,

anti-rabbit and anti-goat antibodies (1:10.000, Cell Signaling, USA) after reaction with a

chemiluminescent reagent (Thermo Fisher Scientific, USA) was added and band

volume was captured using Alliance Captura 2.7 (UVItec, UK) and quantified using UVI

band -1D (UVI tec, UK).

Specific cardiac biomarkers

Blood samples were taken from the heart by ventricle puncture. Serum was separated

by centrifugation at 1,000 x g for 10 min at 4 °C and stored at −80 °C. The analysis of

serum cardiac-specific markers (Troponin I and T) and serum inflammatory markers

(TNF-α, IL-6) was determined using beads coupled with capture antibodies specific for

each protein of interest as specified by the manufacture Millipore® (Merck Millipore

Corporation, Darmstadt, Germany). The analysis was carried out on Xponent software

used with the Luminex® 200 (Luminex Corporation, Austin, TX, USA) equipment,

following the manufacturer’s technical procedures.

Statistical Analysis

The data is expressed as the mean ± SD. The data was analyzed statistically by

analysis of variance (ANOVA) followed by Tukey’s test to establish differences

between groups. We used Prism software (Graphpad Software Inc., San Diego, CA,

USA). The results were considered significant when P<0.05.

Page 29: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

29

Results

Cardiac Functional Parameters

Relative heart weight increased in the T and TL groups when compared to the C and

CL group (figure 1). Although collectively there was no significant difference in

electrocardiographic parameters, individually there were some clinically relevant

changes (figure 2A and 2B), which are discussed later. Both arterial systolic and

diastolic blood pressure were determined approximately two hours after last exercise

bout. Systolic, diastolic and mean arterial pressure were significantly higher in TL group

when compared to all experimental groups (figure 3).

Cardiac Metabolic Parameters

The cardiac glycogen content was assessed in order to reveal the metabolic stress (i.e.

energetic demand) of exercising until exhaustion and was significantly elevated in

trained groups (T and TL) compared to sedentary groups (C and CL). This

enhancement was even higher in TL group when compared to T group (figure 1B).

AMP kinase α (AMPK) was also assessed to measure metabolic stress, since AMPK

reflects the energetic status of the cell. AMPK phosphorylation (p-AMPK) did not differ

significantly between groups (figure 4D)

Citrate synthase (CS) activity is the most important biomarker for mitochondrial density

in skeletal muscle and biochemical marker of the skeletal muscle oxidative adaptation

to a training intervention. CS activity did not differ significantly between groups (figure

1C).

Cardiac Structural Parameters - Protein Synthesis and Degradation Pathway

In order to evaluate treatment-induced cardiac protein synthesis, we assessed the

activation of two main key proteins in synthesis pathway, namely, Akt and mTOR.

Activation of Akt was inhibited in trained groups (T and TL) compared to control group.

Among trained groups, leucine supplementation increased Akt phosphorylation when

compared to exercise only (T group) (figure 4B). Compared to control group, mTOR

activation was significantly inhibited only in T group (figure 4C). The ubiquitin-

proteasome pathway is the most important pathway to protein degradation in cardiac

muscle during exercises. To analyze the effect of exercising until exhaustion in cardiac

protein degradation pathway and the modulatory effect of a leucine supplementation,

we evaluated some key proteins of this process as proteasome subunits 19S, and 20S

(Figures 5A, and 5B respectively). Both proteins were elevated only in TL group when

compared to all others groups.

Page 30: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

30

Cardiac cell damage and systemic inflammation

To determine cardiomyocyte integrity we assess specific serum cardiac biomarker

levels, namely Troponin T and I (cTnT and cTnI, respectively). Both were significantly

elevated in trained groups (T and TL) compared to sedentary groups (C and CL). This

enhancement was even higher in TL group when compared to T group (figure 6A and

6B, respectively).

Then, we assessed interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels as

inflammation markers. Although IL-6 level was significantly elevated in trained groups

compared to control groups (figure 6C), TNF-α level did not differ significantly between

groups (figure 6D).

Discussion

It is generally accepted that leucine supplementation, can mitigate endurance exercise-

induced skeletal muscle damage and fatigue, accentuate muscle protein synthesis and

also improve recovery and muscle performance (ROWLANDS et al., 2014). But it is

unclear if leucine supplementation would lead to these outcomes in cardiac muscle and

if it could prevent cardiac fatigue. Here we report, for the first time, that leucine

supplementation not only does not prevent cardiac fatigue symptoms, but may also

aggravate prolonged strenuous exercise-induced cardiovascular disturbances in

trained rats. Furthermore, we find that exercising until exhaustion can cause cardiac

electrical disturbances and cardiac myocyte damage.

Prolonged strenuous exercise presents a unique hemodynamic and metabolic

challenge to cardiac muscle and may lead to transient impairment of cardiac function,

so called cardiac fatigue (SAHLEN et al., 2009). Therefore, the primary novel finding of

the present study was that leucine supplementation, when combined with prolonged

endurance exercise, can induce high blood pressure. This finding was highly

unexpected since endurance exercise has previously been reported to reduce blood

pressure in both hypertensive and normotensive subjects, in humans and rats

(HALLIWILL et al., 2013; WHELTON et al., 2002). However, leucine has recently been

related to hypertensive response through mTOR-induced hypothalamic sympathetic

stimulation pathway (HARLAN et al., 2013). Although a leucine dose-related rise in

arterial pressure has been found in this study, leucine was administered

intracerebroventricularly. Moreover, previous studies reported higher circulating leucine

in hypertensive subjects (NEWGARD et al., 2009) and correlated plasma leucine levels

with cardiovascular events (SHAH et al., 2010). It is not clear why this hemodynamic

response appeared in the present study only when leucine supplementation was

combined with prolonged exercise, nevertheless, it is worth mentioning that our

Page 31: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

31

exercise protocol can be considered as high-intensity (imposed tail weight) and high-

volume, which could lead to overreaching syndrome and consequently to autonomic

cardiac dysfunction (BAUMERT et al., 2006).

In our study, both trained groups presented significant increase in IL-6 level. Even

though an association between serum IL-6 concentration and mortality (SU et al.,

2013) and myocardial remodeling (MELENDEZ et al., 2010) has recently been shown,

these outcomes occurred invariably when there was a preexisting disease. Thus, it is

important to keep in mind that although mostly regarded as a pro-inflammatory

cytokine, IL-6 also has many regenerative or anti-inflammatory activities (SCHELLER

et al., 2011). Furthermore, IL-6 has an important metabolic function during exercise

and may represent a link between skeletal muscle and organs such as liver and

adipose tissue, since studies have clearly demonstrated that contracting muscles

without any muscle damage can induce a marked elevation in plasma IL-6. In fact, it

has been suggested that an exercise-induced increase in plasma IL-6 level can exert

an important role in mediating the beneficial health effects of exercise in inactivity and

obesity-related disorders such as diabetes and cardiovascular disease (PEDERSEN et

al., 2004; SCHELLER et al., 2011).

As previously reported and as might be expected, exercising until exhaustion, when

alone, induced an increase in troponin levels, even in trained rats (CHEN et al., 2000).

Serum cTnT and cTnI measurements are specific in the assessment of cardiac injury

even in the presence of skeletal muscle damage. Another novel finding of our study

was that leucine supplementation associated to chronic high-intensity endurance

training may significantly increase myocardial injury when compared to training alone.

The arterial hypertension response found only in trained leucine supplementation group

may explain the significant increase in cTnI and cTnT found in this group, since it is

well established that hypertension can induce cardiac cell damage, endothelial

dysfunction and ultimately lead to strokes and cardiovascular events (VASAN et al.,

2001). Thus an arterial hypertensive condition combined with exercising until

exhaustion can have an additive effect on cardiac cell damage. Although someone

might argue that increases in cardiac troponins are only mild and transitory, reflecting a

physiological troponin release from the free cytosolic pool rather than damaged

contractile elements (SCHARHAG et al., 2008) this was definitely not the case in TL

group. Since the cTnT level was three times higher than the T group and clinically

relevant cardiac electrical disturbance was found in some ECG parameters.

Taken collectively, there was no significant difference in electrocardiographic

parameters between experimental groups. It is important to understand, however, that

there is a broad normal range in electrocardiogram parameters. Hence, some of them

Page 32: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

32

should not be taken collectively; otherwise, clinically relevant cardiac electrical

disturbance may not be noted. Moreover, the ECG provides indirect evidence of

structural cardiac changes and remodeling that affects automaticity, impulse

propagation and other mechanisms of arrhythmia. Thus, individual pre and post-

experimental period analysis should be advised in these studies. Although the ECG is

not a direct measurement of cardiac function, it may be used to infer the anatomical

orientation of the heart, disturbances of rhythm and conduction, the presence of

ischemic injury, and the influence of altered electrolyte concentrations, drugs, disease,

or nutritional deficiencies (FARRAJ; HAZARI; CASCIO, 2011). A number of studies

(MIDDLETON et al., 2007; SHAVE et al., 2004) have shown that these prolonged

exercises inducing diastolic and systolic changes are physiological, mainly in trained

subjects (PELLICCIA et al., 2000) and our results shows that it seems to be true in

most of the cases. However, despite no statistical relevance, we presented some

important individual changes in both trained and trained leucine supplemented groups.

In our study, one out of five rats of the T group presented significant QTc interval

prolongation (103ms to 207ms, pre and post-experimental period, respectively), which

is suggestive of increased life-threatening ventricular arrhythmias and risk of sudden

death (SAHLEN et al., 2009; STRAUS et al., 2006). Moreover, two out of five rats of

the TL group also presented QTc interval prolongation (90ms to 150ms and 50ms to

90ms) and one of them presented prolonged Tpeak-end (4ms to 18ms) and inverted T

wave (figure 2B), which taken together with troponin level, strongly suggested cardiac

injury and myocardial ischemia (SAHLEN et al., 2009). The transient characteristic of

ECG parameter changes reported in previous studies suggests that the impact of

prolonged endurance training upon cardiac electrical disturbances is not harmful. Our

individual data, however, suggests otherwise. It is likely that some subjects are more

susceptible to these prolonged strenuous exercise-induced cardiac disturbances than

others, as previously proposed (ARO et al., 2012; SAHLEN et al., 2009). Thus in

susceptible individuals (such as those with underlying cardiac disease or with a

particular genetic predisposition) these modest and mostly transient cardiac electrical

instability could, in fact, lead to a significant risk of cardiac events. It has already been

demonstrated that individuals can respond very differently to exercise training, and part

of these results have been related to genetics (ASTORINO; SCHUBERT, 2014). Our

results demonstrated that prolonged endurance exercise combined with leucine

supplementation may induce a state of electrical instability, which has been associated

with increased propensity for ventricular arrhythmias and cardiac sudden death.

As expected, exercise protocols lead to increased relative heart weight. It can be

explained by increased glycogen content and glycogen molecule bonded-water

Page 33: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

33

(PHILP; HARGREAVES; BAAR, 2012), furthermore, although not assessed, it is

reasonable to expect that exercise-induced miofibrilar hypertrophy may have occurred

(ROWLANDS et al., 2014). Endurance exercise led to significant glycogen content

enhancement and when combined with leucine supplementation, this enhancement

was even higher. It is well established that individuals who exercise on a regular basis

generally have higher muscle glycogen levels than their sedentary counterparts, due to

glycogen supercompensation after glycogen-depleting exercise. Part of this adaptation

comes from an endurance exercise-induced increase in GLUT-4 content in the skeletal

muscle. It seems that transportation of glucose is the rate-limiting step in muscle

glycogen accumulation under physiological conditions (GREIWE et al., 1999).

Although, there is still quite a bit of uncertainty on the precise role of leucine in

regulating glucose metabolism, it is known that leucine interacts positively with insulin

signaling pathway. It was recently demonstrated, in vitro, that leucine increases the

insulin-mediated glycogen synthesis by 50% (DI CAMILLO et al., 2014), which could

explain the significant increase in cardiac glycogen in the trained leucine supplemented

group when compared with the trained group only.

The endurance exercise training did not increase cardiac citrate synthase activity.

Although it is generally recognized that skeletal muscle citrate synthase activity is

elevated by endurance exercise training, it seems not to be the case in cardiac muscle.

Siu et al (SIU et al., 2003) showed that 8 weeks of endurance treadmill training did not

increase cardiac citrate synthase activity. It was suggested that myocardium has a

sufficient preexisting oxidative capacity to supply the energy requirement during

exercise. Interestingly, prolonged endurance exercise had no effect on p-AMPK level.

Our hypothesis was that great energetic stress induced by prolonged endurance bout

would increase p-AMPK level, and leucine supplementation would attenuate this

metabolic stress and AMPK activation. However, these results, as well as all cell

signaling pathways, are highly time point-dependent. As far as we know, very few

studies have examined cardiac p-AMPK level after endurance exercise, and one of

these (OGURA et al., 2011) showed that p-AMPK peaked immediately after 30 minutes

of endurance exercise and returned to basal level after only 30 minutes. It is likely that

we have failed to coincide with peak exercise-induced phosphorylation of cardiac

AMPK-mediated signaling. Furthermore, since the glycogen level did not decrease

significantly (when compared to control groups) after exercising until exhaustion, it is

expected that AMPK activation remains unaltered. Taken together these results

suggest that even high systemic metabolic stress induced by prolonged endurance

exercise does not exceed heart capacity and does not represent an energetic threat for

this organ, at least in trained subjects.

Page 34: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

34

Protein synthesis signaling was significantly inhibited after the endurance exercise and

leucine supplementation prevented it. Both Akt and mTOR phosphorylation was

significantly reduced in T group but not in TL. It has been previously demonstrated that

cardiac p-mTOR was also diminished during one hour after 30 minutes of endurance

training (OGURA et al., 2011). On the other hand, Mascher et al (MASCHER et al.,

2007) demonstrated increased skeletal muscle Akt and mTOR phosphorylation after

one hour of endurance training. The type of exercise, the intensity and duration of the

exercise, besides exercise training history are critical factors in the regulation of protein

synthesis (CAMERA et al., 2010; COFFEY et al., 2005), and could explain the different

Akt and mTOR responses to the endurance exercise previously reported. These results

are also highly time point-dependent, and it may explain why, in our study, both Akt

and mTOR activation were inhibited after exercise, since the previous study

(MASCHER et al., 2007) showed that both had already returned to basal level 3 hours

after endurance exercise. Furthermore, in the present study, exercise was done until

exhaustion, with a mean exercise duration of 3 hours and 22 minutes (± 10 minutes),

which could have led to this different protein synthesis signaling response. A very

recent study has also demonstrated increased mTOR phosphorylation after endurance

exercise and leucine supplementation (ROWLANDS et al., 2014). Although it has been

viewed only in skeletal muscle, it’s likely that cardiac mTOR response to endurance

exercise is similar.

Surprisingly, protein degradation signaling was significantly increased only after

endurance exercise and leucine supplementation (TL group). Autophagy has

physiological functions in maintaining cellular homeostasis especially during energy-

deficit situations. During exercise, mechanical and metabolic homeostasis is disturbed,

leading to muscle cell damage, thus, under such a stressful condition, muscle tissue

can remove damaged proteins and organelles by autophagy to release useful materials

to the nutrient pool inside the muscle cells (TAM; SIU, 2014). The reason for this result

is not entirely clear, but it seems reasonable to assume that it is a response to

hypertension-induced pressure overload (mechanical stress), since it has been

demonstrated that the cardiac proteasome system is activated during pressure

overload (CACCIAPUOTI, 2014).

In conclusion, and in contrast to our original hypothesis, leucine supplementation failed

to prevent cardiac fatigue symptoms, and may also aggravate prolonged strenuous

exercise-induced cardiovascular disturbances in trained rats. The major exercise-

induced cardiac disturbances do not appear to be metabolic/energetic but electrical

and structural. Prolonged endurance exercise does not seem to exceed cardiac

energetic capacity, hence does not represent an energy threat to this organ, at least in

Page 35: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

35

trained subjects. However, prolonged endurance exercise may induce, in susceptible

individuals, a state of cardiac electrical instability, which has been associated with

ventricular arrhythmias and cardiac sudden death. This situation may be worsened

when combined with leucine supplementation, which led to increased blood pressure

and cardiac injury. Additional studies are needed to fully elucidate which factors

(genetic and/or metabolic) lead to this electrical susceptibility.

Acknowledgments We are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES) for a fellowship granted to Santos, G.B., and to Ajinomoto Interamericana

Indústria e Comércio Ltda (Brazil) for supplying the leucine.

Conflict of Interest The authors declare no conflict of interest.

Author Contribution All authors approved the final version for publication.

References 1. Aro AL, Anttonen O, Tikkanen JT, Junttila MJ, Kerola T, Rissanen HA,

Reunanen A, and Huikuri HV. Prevalence and prognostic significance of T-wave

inversions in right precordial leads of a 12-lead electrocardiogram in the middle-aged

subjects. Circulation 125: 2572-2577, 2012.

2. Astorino TA, and Schubert MM. Individual responses to completion of short-

term and chronic interval training: a retrospective study. PloS one 9: e97638, 2014.

3. Santos GB, Machado Rodrigues MJ, Goncalves EM, Cintra Gomes

Marcondes MC, and Areas MA. Melatonin reduces oxidative stress and

cardiovascular changes induced by stanozolol in rats exposed to swimming exercise.

The Eurasian journal of medicine 45: 155-162, 2013.

4. Baumert M, Brechtel L, Lock J, Hermsdorf M, Wolff R, Baier V, and Voss A.

Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained

athletes. Clinical journal of sport medicine : official journal of the Canadian Academy of

Sport Medicine 16: 412-417, 2006.

5. Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi YF, Tardif JC,

Brugada J, Nattel S, and Mont L. Cardiac Arrhythmogenic Remodeling in a Rat

Model of Long-Term Intensive Exercise Training. Circulation 123: 13-U61, 2011.

6. Bhella PS, and Levine BD. The heart of a champion. Journal of the American

College of Cardiology 55: 1626-1628, 2010.

7. Bradford MM. A rapid and sensitive method for the quantitation of microgram

quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-

254, 1976.

8. Cacciapuoti F. Role of ubiquitin-proteasome system (UPS) in left ventricular

hypertrophy (LVH). American journal of cardiovascular disease 4: 1-5, 2014.

Page 36: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

36

9. Camera DM, Edge J, Short MJ, Hawley JA, and Coffey VG. Early time

course of Akt phosphorylation after endurance and resistance exercise. Medicine and

science in sports and exercise 42: 1843-1852, 2010.

10. Chen Y, Serfass RC, Mackey-Bojack SM, Kelly KL, Titus JL, and Apple FS.

Cardiac troponin T alterations in myocardium and serum of rats after stressful,

prolonged intense exercise. Journal of applied physiology 88: 1749-1755, 2000.

11. Coffey VG, Zhong ZH, Shield A, Canny BJ, Chibalin AV, Zierath JR, and

Hawley JA. Early signaling responses to divergent exercise stimuli in skeletal muscle

from well-trained humans. Faseb Journal 19: 190-+, 2005.

12. Crowe MJ, Weatherson JN, and Bowden BF. Effects of dietary leucine

supplementation on exercise performance. Eur J Appl Physiol 97: 664-672, 2006.

13. Cruz B, and Gomes-Marcondes MC. Leucine-rich diet supplementation

modulates foetal muscle protein metabolism impaired by Walker-256 tumour.

Reproductive biology and endocrinology : RB&E 12: 2, 2014.

14. Dawson E, George K, Shave R, Whyte G, and Ball D. Does the human heart

fatigue subsequent to prolonged exercise? Sports Med 33: 365-380, 2003.

15. Di Camillo B, Eduati F, Nair SK, Avogaro A, and Toffolo GM. Leucine

modulates dynamic phosphorylation events in insulin signaling pathway and enhances

insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC cell biology

15: 9, 2014.

16. Farraj AK, Hazari MS, and Cascio WE. The utility of the small rodent

electrocardiogram in toxicology. Toxicological sciences : an official journal of the

Society of Toxicology 121: 11-30, 2011.

17. George K, Shave R, Warburton D, Scharhag J, and Whyte G. Exercise and

the heart: Can you have too much of a good thing? Medicine and science in sports and

exercise 40: 1390-1392, 2008.

18. Greer BK, Woodard JL, White JP, Arguello EM, and Haymes EM. Branched-

chain amino acid supplementation and indicators of muscle damage after endurance

exercise. International journal of sport nutrition and exercise metabolism 17: 595-607,

2007.

19. Greiwe JS, Hickner RC, Hansen PA, Racette SB, Chen MM, and Holloszy

JO. Effects of endurance exercise training on muscle glycogen accumulation in

humans. Journal of applied physiology 87: 222-226, 1999.

20. Halliwill JR, Buck TM, Lacewell AN, and Romero SA. Postexercise

hypotension and sustained postexercise vasodilatation: what happens after we

exercise? Experimental physiology 98: 7-18, 2013.

21. Harlan SM, Guo DF, Morgan DA, Fernandes-Santos C, and Rahmouni K.

Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial

pressure and mediates leptin effects. Cell metabolism 17: 599-606, 2013.

22. Kang JJ, Toma I, Sipos A, McCulloch F, and Peti-Peterdi J. Quantitative

imaging of basic functions in renal (patho)physiology. Am J Physiol Renal Physiol 291:

F495-502, 2006.

23. Li F, Yin Y, Tan B, Kong X, and Wu G. Leucine nutrition in animals and

humans: mTOR signaling and beyond. Amino acids 41: 1185-1193, 2011.

24. Lo S, Russell JC, and Taylor AW. Determination of Glycogen in Small Tissue

Samples. Journal of applied physiology 28: 234-&, 1970.

Page 37: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

37

25. Louis E, Raue U, Yang Y, Jemiolo B, and Trappe S. Time course of

proteolytic, cytokine, and myostatin gene expression after acute exercise in human

skeletal muscle. Journal of applied physiology 103: 1744-1751, 2007.

26. Mascher H, Andersson H, Nilsson PA, Ekblom B, and Blomstrand E.

Changes in signalling pathways regulating protein synthesis in human muscle in the

recovery period after endurance exercise. Acta physiologica 191: 67-75, 2007.

27. Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, and Brower GL.

Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic

dysfunction in rats. Hypertension 56: 225-231, 2010.

28. Middleton N, Shave R, George K, Whyte G, Simpson R, Florida-James G,

and Gaze D. Impact of repeated prolonged exercise bouts on cardiac function and

biomarkers. Medicine and science in sports and exercise 39: 83-90, 2007.

29. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq

AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR,

Yancy WS, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, and

Svetkey LP. A Branched-Chain Amino Acid-Related Metabolic Signature that

Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell

metabolism 9: 311-326, 2009.

30. O'Keefe JH, Patil HR, Lavie CJ, Magalski A, Vogel RA, and McCullough PA.

Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin

Proc 87: 587-595, 2012.

31. Ogura Y, Iemitsu M, Naito H, Kakigi R, Kakehashi C, Maeda S, and Akema

T. Single bout of running exercise changes LC3-II expression in rat cardiac muscle.

Biochem Bioph Res Co 414: 756-760, 2011.

32. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P,

Wolsk-Petersen E, and Febbraio M. The metabolic role of IL-6 produced during

exercise: is IL-6 an exercise factor? The Proceedings of the Nutrition Society 63: 263-

267, 2004.

33. Pelliccia A, Maron BJ, Culasso F, Di Paolo FM, Spataro A, Biffi A, Caselli

G, and Piovano P. Clinical significance of abnormal electrocardiographic patterns in

trained athletes. Circulation 102: 278-284, 2000.

34. Philp A, Hargreaves M, and Baar K. More than a store: regulatory roles for

glycogen in skeletal muscle adaptation to exercise. American journal of physiology

Endocrinology and metabolism 302: E1343-1351, 2012.

35. Reeves PG, Nielsen FH, and Fahey GC, Jr. AIN-93 purified diets for

laboratory rodents: final report of the American Institute of Nutrition ad hoc writing

committee on the reformulation of the AIN-76A rodent diet. The Journal of nutrition 123:

1939-1951, 1993.

36. Rowlands DS, Nelson AR, Phillips SM, Faulkner JA, Clarke J, Burd NA,

Moore D, and Stellingwerff T. Protein-Leucine Fed Dose Effects on Muscle Protein

Synthesis After Endurance Exercise. Medicine and science in sports and exercise

2014.

37. Sahlen A, Rubulis A, Winter R, Jacobsen PH, Stahlberg M, Tornvall P,

Bergfeldt L, and Braunschweig F. Cardiac fatigue in long-distance runners is

associated with ventricular repolarization abnormalities. Heart Rhythm 6: 512-519,

2009.

Page 38: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

38

38. Sattelmair J, Pertman J, Ding EL, Kohl HW, Haskell W, and Lee IM. Dose

Response Between Physical Activity and Risk of Coronary Heart Disease A Meta-

Analysis. Circulation 124: 789-U784, 2011.

39. Scharhag J, George K, Shave R, Urhausen A, and Kindermann W.

Exercise-associated increases in cardiac biomarkers. Medicine and science in sports

and exercise 40: 1408-1415, 2008.

40. Scheller J, Chalaris A, Schmidt-Arras D, and Rose-John S. The pro- and

anti-inflammatory properties of the cytokine interleukin-6. Biochimica et biophysica acta

1813: 878-888, 2011.

41. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C,

Dungan J, Newby LK, Hauser ER, Ginsburg GS, Newgard CB, and Kraus WE.

Association of a peripheral blood metabolic profile with coronary artery disease and risk

of subsequent cardiovascular events. Circulation Cardiovascular genetics 3: 207-214,

2010.

42. Shave R, Dawson E, Whyte G, George K, Gaze D, and Collinson P. Altered

cardiac function and minimal cardiac damage during prolonged exercise. Medicine and

science in sports and exercise 36: 1098-1103, 2004.

43. Siu PM, Donley DA, Bryner RW, and Alway SE. Citrate synthase expression

and enzyme activity after endurance training in cardiac and skeletal muscles. Journal

of applied physiology 94: 555-560, 2003.

44. Srere PA. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-

acetylating)]. In: Methods in Enzymology, edited by John MLAcademic Press, 1969, p.

3-11.

45. Straus SM, Kors JA, De Bruin ML, van der Hooft CS, Hofman A, Heeringa

J, Deckers JW, Kingma JH, Sturkenboom MC, Stricker BH, and Witteman JC.

Prolonged QTc interval and risk of sudden cardiac death in a population of older adults.

Journal of the American College of Cardiology 47: 362-367, 2006.

46. Su D, Li Z, Li X, Chen Y, Zhang Y, Ding D, Deng X, Xia M, Qiu J, and Ling

W. Association between serum interleukin-6 concentration and mortality in patients with

coronary artery disease. Mediators of inflammation 2013: 726178, 2013.

47. Suzuki K, Nakaji S, Yamada M, Totsuka M, Sato K, and Sugawara K.

Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise

immunology review 8: 6-48, 2002.

48. Tam BT, and Siu PM. Autophagic Cellular Responses to Physical Exercise in

Skeletal Muscle. Sports Med 44: 625-640, 2014.

49. Vasan RS, Larson MG, Leip EP, Evans JC, O'Donnell CJ, Kannel WB, and

Levy D. Impact of high-normal blood pressure on the risk of cardiovascular disease.

The New England journal of medicine 345: 1291-1297, 2001.

50. Viana LR, and Gomes-Marcondes MC. Leucine-rich diet improves the serum

amino acid profile and body composition of fetuses from tumor-bearing pregnant mice.

Biology of reproduction 88: 121, 2013.

51. Whelton SP, Chin A, Xin X, and He J. Effect of aerobic exercise on blood

pressure: a meta-analysis of randomized, controlled trials. Annals of internal medicine

136: 493-503, 2002.

Page 39: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

39

Figure 1. Effects of a leucine supplementation and endurance training on: A, relative

heart weight (g/100g). B, cardiac glycogen content (g/100g). C, citrate synthase activity

(µmol/ml/min). Experimental groups were divided as follows: sedentary control (C),

control-supplemented (CL), trained (T) and trained-supplemented (TL). Data are

expressed as means ± SD (n=6). Different letters indicate significant differences

between groups (p<0.05).

Figure 1

Page 40: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

40

Figure 2. Effects of a leucine supplementation and endurance training on cardiac

electrical activity. A, QTc interval (ms). B, T wave amplitude (mV). Data are expressed

as means ± SD (bars) and individually (lines), before and after experimental period.

Figure 2

Page 41: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

41

Figure 3. Effects of a leucine supplementation and endurance training on

hemodynamics: A, systolic arterial pressure (mmHg). B, diastolic arterial pressure

(mmHg). C, mean arterial pressure (mmHg). Experimental groups were divided as

follows: sedentary control (C), control-supplemented (CL), trained (T) and trained-

supplemented (TL). Data are expressed as means ± SD (n=6). Different letters indicate

significant differences between groups (p<0.05).

Figure 3

Page 42: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

42

Figure 4. Effects of a leucine supplementation and endurance training on protein

synthesis signaling. A, representative blot for Akt, mTOR and AMPK phosphorylation.

B, Akt activation. C, mTOR activation. D, AMPK activation. Experimental groups were

divided as follows: sedentary control (C), control-supplemented (CL), trained (T) and

trained-supplemented (TL). Data are expressed as means ± SD (n=6). Different letters

indicate significant differences between groups (p<0.05).

Figure 4

Page 43: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

43

Figure 5. Effects of a leucine supplementation and endurance training on protein

degradation signaling. A, representative blot for 20S proteasome and 19S regulatory

units, B, 19S content. C, 20S content. Experimental groups were divided as follows:

sedentary control (C), control-supplemented (CL), trained (T) and trained-

supplemented (TL). Data are expressed as means ± SD (n=6). Different letters indicate

significant differences between groups (p<0.05).

Figure 5

Page 44: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

44

Figure 6. Effects of a leucine supplementation and endurance training on specific

cardiac biomarkers and inflammatory response: A, serum cardiac TnT (pg/ml). B,

serum cardiac TnI (pg/ml). C, serum IL-6 (pg/ml). D, serum TNF-α (pg/ml).

Experimental groups were divided as follows: sedentary control (C), control-

supplemented (CL), trained (T) and trained-supplemented (TL). Data are expressed as

means ± SD (n=6). Different letters indicate significant differences between groups

(p<0.05).

Figure 6

Page 45: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

45

3.2. Artigo 2 foi submetido ao periódico “Nutrition”

_____________________________________________________________________

EFFECTS OF LONG-TERM LEUCINE SUPPLEMENTATION ON METABOLIC AND

MOLECULAR RESPONSES IN THE SKELETAL MUSCLE OF TRAINED RATS

SUBMITTED TO EXHAUSTIVE EXERCISE

Authors:

Gustavo Barbosa dos Santos1, MSc

André Gustavo de Oliveira1, MSc

Maria Cristina Cintra Gomes Marcondes1, PhD

Miguel Arcanjo Areas1, PhD

Affiliation:

1Department of Structural and Functional Biology, Institute of Biology, University of

Campinas (UNICAMP), Campinas, São Paulo, Brazil.

Corresponding author:

G.B. Santos, +55 (019) 3521-6196, [email protected]

Departamento de Biologia Funcional e Molecular

Instituto de Biologia - Caixa Postal 6109

Av. Bertrand Russell - Bloco O

Universidade Estadual de Campinas - UNICAMP

CEP-13083-865

Campinas - SP

Keywords for review: Leucine; endurance performance; exercise; exhaustion;

skeletal muscle; metabolism;

Page 46: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

46

Abstract Background: Protein ingestion, during period of endurance training, may positively

affect performance and muscle glycogen resynthesis. Emerging evidence indicates a

role for dietary leucine in promoting adaptive remodeling. Although there is some

evidence of an ergogenic effect of leucine supplementation on acute response to

exercise, there is a paucity of information on whether long-term leucine

supplementation influences the adaptive response to chronic endurance training and

performance.

Aim: The main aim of our study was to assess the role of long-term leucine

supplementation on molecular and metabolic response in skeletal muscle of trained

rats after an exhaustion test.

Methods: Twenty-four male wistar rats were randomly allocated into four groups. Two

of them (control and trained groups) received a balanced control diet (18% protein) and

the other two (control leucine and trained leucine groups) leucine-rich diet (15% protein

with 3% leucine) for 6 weeks. The trained groups were submitted to 1 hour of

swimming exercise, 5 d.wk−1 for 6 wk. Three days after the exercise training period,

trained groups were submitted to swimming exercise until exhaustion and muscle

metabolic and molecular parameters were assessed.

Results: Endurance training increased citrate synthase activity significantly, while

exercise until exhaustion increased cytokine levels, and inhibited protein synthesis

signaling. Long-term leucine supplementation has enhanced muscle glycogen level in

trained rats (0.37±0.16 vs. 0.20±0.01 µmol/ml/min, in TL and C groups, respectively)

and citrate synthase activity in sedentary ones (0.27±0.04 vs. 0.17±0.03 g/100g, in CL

and C groups, respectively). However, it failed to enhance endurance performance of

trained rats submitted to an exhaustion test, and did not prevent exercise-induced

reduction in Akt (significant decrease of 49 and 62% in T and TL groups, respectively,

when compared to C group) and mTOR activation (significant decrease of 47 and 44%

in T and TL groups, respectively, when compared to C group).

Conclusion: Long-term leucine supplementation can improve metabolic parameters of

skeletal muscle (i.e. citrate synthase activity and glycogen content when combined with

exercise), however it does not improve endurance performance nor prevent Akt and

mTOR exercise-induced reduction.

Abbreviations list Akt, Protein kinase B; AMPK, AMP-activated protein kinase α; CS, citrate synthase; IL-

6, interleukin-6; mTOR (mammalian target of rapamycin); p-AMPK, AMPK

phosphorylation; PGC-1α, peroxisome proliferator-activated receptor-gamma

coactivator; TNF-α, tumor necrosis factor-α;

Page 47: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

47

Introduction Chronic adaptation of skeletal muscle to high-intensity endurance exercise is strongly

dependent on nutrition (HAWLEY et al., 2011). Protein ingestion, during period of

endurance training, may positively affect performance, muscle glycogen resynthesis.

Emerging evidence indicates a role for dietary protein and amino acids in mitigating

skeletal muscle damage and increasing muscle protein turnover to promote adaptive

remodeling (HAWLEY et al., 2007). It has been demonstrated that branched chain

amino acids, particularly leucine, can reduce prolonged exercise-induced muscle

damage and accelerate the recovery process (GREER et al., 2007). Leucine seems to

be the most potent one regarding the effects on protein synthesis and degradation. It

not only provides substrates for gluconeogenesis, but also can supply tricarboxylic acid

cycle with different anaplerotic substrates (LI et al., 2011). These effects are especially

important for competitive endurance athletes, since they often train or compete

intensely on a daily basis, sometimes until physical exhaustion, generating a constant

state of tissue catabolism and muscle wasting.

Crowe et al. (CROWE et al., 2006) showed that dietary leucine supplementation

significantly improved endurance performance and upper body power in outrigger

canoeists. Furthermore, Rowlands et al (ROWLANDS et al., 2008) assessed the effect

of a high protein recovery diet on endurance performance at different times. Under

these conditions, the high-protein diet had no impact on the 15-h subsequent

performance when compared to isocaloric low protein control group. However, it

substantially enhanced the 60-h subsequent performance, suggesting that the period

when performance is assessed is important, and that a protein supplementation could

have a role in chronic adaptive response to endurance training. Although some

evidence for an ergogenic effect of leucine supplementation on acute response to

exercise, mainly regarding protein synthesis (ROWLANDS et al., 2014) and muscle

recovery (NELSON et al., 2012; THOMSON; ALI; ROWLANDS, 2011), has been

reported, there is a paucity of information on whether long-term leucine

supplementation influences the adaptive response to chronic endurance training and

performance.

The aim of this study was to investigate the role of long-term leucine supplementation

on metabolic and molecular responses in skeletal muscle of trained adult rats

submitted to exercise until exhaustion. We hypothesized that exercise until exhaustion

would induce some muscle disturbances (energetic, structural and biochemical),

leading to fatigue. Also, leucine supplementation could prevent or mitigate these

outcomes, enhancing endurance training-induced muscle adaptation and contributing

to improve endurance exercise performance.

Page 48: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

48

Material and Methods

Animals and diets

Twenty-four male wistar rats (12 weeks old, weighing 351 g ± 28.87) were obtained

from the animal facilities of the University of Campinas (São Paulo, Brazil). They were

housed in collective cages at 22-24°C on a 12-h light-and-dark cycle, with free access

to tap water and food. The semi-purified isocaloric diets were a normal protein (C),

containing 18% protein (REEVES et al., 1993); or leucine (L), containing 15% protein

plus 3% of L-leucine. Approximately 70% carbohydrate (sucrose, dextrin and starch),

7% fat (soybean oil) and 5% fiber (purified micro-cellulose) were added to the diets.

Vitamin and mineral mix, as well as cystine and choline, supplemented the diets. The

control diet had 1.6% of L-leucine, and a leucine-rich diet contained 4.6% L-leucine,

according to a previous study from our group (CRUZ; GOMES-MARCONDES, 2014).

Leucine-supplemented diet has led to a significant increase in plasma leucine

concentration in fetuses from tumor-bearing pregnant mice (VIANA; GOMES-

MARCONDES, 2013) and adults rats (data not shown). Two groups were fed the

control diet: sedentary control (C) and trained (T); and two other groups were fed the

leucine-rich diet: control-leucine supplemented (CL) and trained-leucine supplemented

(TL). All the experimental procedures employed were in accordance with the Ethics

Committee on Animal Experimentation of Unicamp (CEEA/IB/UNICAMP, protocol

2888-1).

Training Protocol

The T and TL groups were submitted to the swimming protocol adapted from Santos et

al. (BARBOSA DOS SANTOS et al., 2013), 5 d.wk−1 for 6 wk, in a water tank (90 x 70

x 70 cm and water temperature at 31 ± 1ºC). All of the rats were adapted to the water

during the first week of the experiment. The adaptation process consisted of keeping

the animals in shallow water, initially for 20 min and then progressively increasing 10

min/day and 10 cm water/day for 5 days. Exercise sessions began with 60 min/day at

the second experimental week, carrying constant loads (added to the tail) of 20 g

(approximately 6% of initial body weight). Initially for 10 minutes of these 60 minutes,

increased by 10 more minutes each week, until it reached 60 min of loaded swimming

training in the sixth and last week of experiment. Three days after the exercise training

period, rats were submitted to swimming exercise carrying the same load until

exhaustion. Animals were sacrificed under anesthesia (ketamine and xylazine, 90

mg/kg/bw and 45 mg/kg/bw, respectively, i.p.) between 3-4 hours after exercise bout, in

order to reach cytokine peak after swimming exhaustion test (LOUIS et al., 2007;

SUZUKI et al., 2002).

Page 49: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

49

Glycogen content

Gastrocnemius muscles were quickly removed, frozen immediately in liquid nitrogen

and stored at -80°C until further analysis. Muscle glycogen content was estimated

colorimetrically based on the method described by Lo et al. (LO et al., 1970). The

absorbance was read on a plate CHAMELEON V Multilabel Microplate Reader (Hidex,

Finland) at 620nm.

Citrate synthase activity

For citrate synthase analyses ≈30 mg of gastrocnemius muscle was homogenized

in ice cold extraction buffer (175 mM KCl, 2 mM EDTA, pH 7.4), centrifuged at 16.000 x

g, 20 min, at 4°C. An aliquot of supernatant was combined with reaction mixture

containing 0.1 M Tris, pH 8.3, 1 mM DTNB, 3 mM actetyl-CoA. Reaction was initiated

by adding 10 mM oxaloacetic acid to the extract. The absorbance was

spectrophotometrically measured at 412 nm in 30 sec interval for 5 min using a Dynex

MRX plate reader controlled through personal computer software (Revelation,

Dynatech Laboratories), as previously described (SRERE, 1969). All samples were

tested for linearity up to 5 min of reaction and values were normalized by protein

concentration (BRADFORD, 1976).

Western Blot

Muscle samples (40 μg) were homogenized and protein concentration was measured

using a colorimetric method (BRADFORD, 1976). The proteins were revealed using

primary antibodies against α-tubulin (1:20.000), phospho-mTORSer2448 (1:1.000).

Phospho-AktThr308 (1:1.000), phospho-AMPK-αThr172 (1:1.000) (Cell Signaling, Danvers,

MA, USA), proteasome subunits 20S, 19S (1: 1.000) (Enzo, USA), and secondary anti-

mouse, anti-rabbit and anti-goat antibodies (1:10.000, Cell Signaling, Danvers, MA,

USA) after reaction with a chemiluminescent reagent (Thermo Fisher Scientific,

Waltham, MA, USA) were added and band volume was captured using Alliance

Captura 2.7 (UVItec, Cambridge, UK) and quantified using UVI band -1D (UVI tec,

Cambridge, UK).

Inflammatory biomarkers

Blood samples were taken from the heart by ventricle puncture. Serum was separated

by centrifugation at 1,000 x g for 10 min at 4 °C and stored at −80 °C. The analysis of

serum inflammatory markers (TNF-α, IL-6) was determined using beads coupled with

capture antibodies specific for each protein of interest as specified by the manufacture

Page 50: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

50

Millipore® (Merck Millipore Corporation, Darmstadt, Germany). The analysis was

carried out on Xponent software used with the Luminex® 200 (Luminex Corporation,

Austin, TX, USA) equipment, following the manufacturer’s technical procedures.

Statistical Analysis

The data is expressed as the mean ± SD. The data was analyzed statistically by

analysis of variance (ANOVA) followed by Tukey’s test to establish differences

between groups. We used Prism software (Graphpad Software Inc., San Diego, CA,

USA). The results were considered significant when P<0.05.

Results Functional Parameters Relative heart weight significantly increased in the T and TL groups when compared to

the C and CL group, although there were no differences in relative gastrocnemius and

soleus weight between groups. Leucine supplementation, regardless of whether they

were submitted to endurance training, significantly increased weight gain even when

compared to their respective control groups. Leucine supplementation did not enhance

exercise performance when compared with exercise only (table 1).

Muscle Metabolic Parameters Citrate synthase (CS) activity is the most important biomarker for mitochondrial density

in skeletal muscle. It is also a biochemical marker of the skeletal muscle oxidative

adaptation to a training intervention. Leucine supplementation significantly increased

CS activity when compared to sedentary groups, but this outcome was overcome when

leucine supplementation was combined with the exercise protocol (figure 1A). The

gastrocnemius glycogen content was assessed in order to reveal the metabolic stress

(i.e. energy demand) of exercise until exhaustion. Glycogen content was significantly

elevated only in trained leucine-supplemented group (TL), when compared to all

experimental groups (figure 1B). AMP kinase α (AMPK) was also assessed to measure

metabolic stress, since AMPK reflects the energy status of the cell. AMPK

phosphorylation (p-AMPK) was significantly enhanced in trained groups compared to

sedentary groups (figure 1C).

Muscle Structural Parameters - Protein Synthesis In order to evaluate treatment-induced muscle protein synthesis, we assessed the

activation of two main key proteins in synthesis pathway, namely, Akt and mTOR.

Activation of Akt was inhibited in trained groups (T and TL) compared to sedentary

groups (C and CL) after exercise until exhaustion. Surprisingly, among trained groups,

leucine supplementation did not prevent Akt inhibition, when compared with exercise

Page 51: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

51

only (T group) (figure 2B). A very similar pattern was found in mTOR activation, since

exercise until exhaustion significantly decreased mTOR phosphorylation when

compared to sedentary groups and leucine was not able to prevent this reduction

(figure 2C).

Exercise-induced systemic inflammation We assessed interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels as

inflammatory markers. Although IL-6 level was significantly elevated in trained groups

compared to control groups (figure 3A), TNF-α level did not differ significantly between

groups (figure 3B).

Discussion Although it is generally accepted that leucine supplementation can mitigate endurance

exercise-induced skeletal muscle damage and fatigue, while also improving recovery

and muscle performance (ROWLANDS et al., 2014), recent studies have challenged

this belief. They show no beneficial role of leucine supplementation on performance, or

demonstrate even worsened metabolic response (COSTA JUNIOR et al., 2015;

NELSON et al., 2012). Here we report that leucine supplementation, combined with

endurance training, failed to improve time to exhaustion when compared to endurance

training only. Furthermore, leucine supplementation in endurance-trained rats was not

better than only exercising in improving oxidative capacity and molecular response and

failed to mitigate exercise-induced inflammatory. On the other hand, endurance

exercise training combined with leucine supplementation significantly enhanced

glycogen content when compared to leucine supplementation only or exercise only.

During exercising skeletal muscle is damaged mechanically and metabolic

homeostasis is disturbed (TAM; SIU, 2014). It has been recently demonstrated that

leucine can significantly enhance protein synthesis (ROWLANDS et al., 2014),

glycogen resynthesis (BERARDI; NOREEN; LEMON, 2008) and subsequent high-

intensity endurance performance and may also mitigate muscle damage (GREER et

al., 2007; THOMSON et al., 2011) after endurance exercise. These enhanced

endurance training-induced adaptation, may eventually contribute to improve

endurance exercise performance (HAWLEY et al., 2007). Despite promising current

evidence that using leucine supplementation chronically boosts endurance

performance, our data suggests that it does not seem to be the case in an exercise

until exhaustion scenario. Therefore, the primary novel finding of the present study was

that leucine supplementation, combined with endurance training, does not enhance

exercise until exhaustion performance, nor does it prevent exercise-induced increased

inflammatory response or decreased molecular signaling of protein synthesis.

Page 52: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

52

Interestingly, leucine supplementation did not mitigate p-AMPK response until

exhaustive exercise. Since AMPK reflects the energy status of the cell, the great

metabolic stress induced by a bout of exercise until exhaustion was expected to

increase p-AMPK level, and leucine supplementation could mitigate this metabolic

stress and, therefore, AMPK activation. Our hypothesis was partly correct, since

exercise bout did enhance p-AMPK levels and glycogen content was significantly

higher (approximately 95%) in TL group when compared to T group, suggesting a

lower metabolic stress, or at least a higher energy availability. Thus, exercise-induced

fatigue did not occur due to energy substrate depletion in this case. However, the

reason why this lower metabolic stress (i.e. normal muscle glycogen) in TL group did

not lead to a lower p-AMPK concentration remains to be clarified, considering that

muscle glycogen seems to be an important factor in the regulation of muscle AMPK

activity. Also, studies have shown that glycogen can be a powerful negative controller

of AMPK (JORGENSEN; RICHTER; WOJTASZEWSKI, 2006). That calcium signaling

may also have a role in activating AMPK in muscle during exercise has been proposed

(JORGENSEN et al., 2006). It would be plausible to speculate that some other factors

(e.g. calcium signaling) can potentially overrule muscle glycogen depletion and

stimulate AMPK phosphorylation during exercise until exhaustion, even without the

occurrence of significant metabolic stress.

Besides its role as a constituent of protein, leucine also functions as regulator of

translation initiation of protein synthesis, a modulator of the insulin signal cascade, and

a nitrogen donor for muscle production of alanine and glutamine (NORTON; LAYMAN,

2006). Since the potential for leucine to impact on these metabolic processes depends

on its intracellular concentration, and leucine reaches peripheral tissues in direct

proportion to its dietary intake (NORTON; LAYMAN, 2006), we hypothesized that long-

term leucine supplementation could at least mitigate exhaustive endurance exercise-

induced reduction Akt and mTOR phosphorylation. However, protein synthesis

signaling was significantly inhibited after exercise until exhaustion and leucine

supplementation failed to prevent it. Both Akt and mTOR phosphorylation was

significantly reduced in exercise groups (T and TL). Contrary to our findings, Mascher

et al (MASCHER et al., 2007) demonstrated increased skeletal muscle Akt and mTOR

phosphorylation after one hour of endurance training. The type of exercise, the

intensity and duration of the exercise, as well as the exercise training history are critical

factors in the regulation of protein synthesis (CAMERA et al., 2010; COFFEY et al.,

2005) and could explain the different Akt and mTOR responses to the endurance

exercise previously reported. These results are also highly time-point dependent. In our

study they may explain why both Akt and mTOR activation was inhibited after exercise,

Page 53: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

53

since a previous study (MASCHER et al., 2007) showed that both have already

returned to basal level 3 hours after endurance exercise. Furthermore, in the present

study, exercise was done until exhaustion, with mean exercise duration of 3 hours and

22 minutes (±10 minutes), which could have led to the different protein synthesis

signaling response. Exhaustive endurance exercise seems to inhibit muscle protein

synthesis with the magnitude of the depression related to the intensity and duration of

the activity. It has been established that skeletal muscle protein synthesis decreases by

about 30% during contractile activity (ROSE; RICHTER, 2009) and protein turnover

remains negative after endurance exercise until adequate dietary protein and energy

are available for recovery (NORTON; LAYMAN, 2006).

In our study, after exercise until exhaustion rats remained in a fasted state, because we

wanted to assess the long-term effect of leucine supplementation. It has been

proposed that ingestion of leucine directly after endurance exercise stimulated protein

synthesis in the recovery period (BLOMSTRAND et al., 2006) which could contribute to

improve endurance exercise performance. Anthony et al (ANTHONY; ANTHONY;

LAYMAN, 1999), have previously demonstrated that leucine ingestion, along with

carbohydrates, after prolonged endurance exercise, enhances muscle glycogen

content, insulin level and muscle protein synthesis. A very recent study has also

demonstrated increased mTOR phosphorylation after endurance exercise and leucine

supplementation (ROWLANDS et al., 2014). Differently from our study, those three

aforementioned studies assessed protein synthesis acutely, that is, right after leucine

ingestion. Nonetheless, while it would be tempting to conclude that acute responses

within specific markers may provide insight into chronic adaptations, the extrapolation

of acute response to potential adaptive responses after a single bout of unfamiliar

exercise should be cautiously interpreted (ATHERTON; SMITH, 2012). Thereby, our

data suggests that leucine-induced enhancement on protein synthesis is rather acute,

and chronic supplementation has no effect on protein synthesis after a bout of

exercise until exhaustion.

Concerning endurance performance, it is hard to explain why long-term leucine

supplementation did not enhance exercise performance, since many metabolic

parameters were improved by leucine supplementation. Surprisingly, leucine

supplementation significantly enhanced CS activity. It was recently demonstrated

(COSTA JUNIOR et al., 2015) that leucine can stimulate PGC-1α activation which

would explain enhanced CS activity. This study also showed enhanced CS activity,

after 12 weeks of leucine supplementation. However, differently from our study, this

outcome was still present in trained leucine-supplemented group. It may have occurred

due to the different exercise intensities between these studies. While we used high

Page 54: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

54

intensity endurance exercise followed by a bout of exercise until exhaustion, they used

low intensity exercise. Thus, leucine seems to enhance CS activity but this outcome

can be overcome by exercising, if the intensity is high enough. Oddly, in this prior

study, increased CS activity in the sedentary leucine-supplemented group did not lead

to improvement in exercise performance (VO2max increase). Similarly, in our study, time

to exhaustion was not significantly different between trained groups (table 1),

demonstrating that long-term leucine supplementation did not enhance endurance

performance of the animals submitted to this exercise protocol. This result corroborates

with Araujo Jr. et al. (DE ARAUJO et al., 2006) , who also did not find significant

differences in the time to exhaustion in adult male wistar rats submitted to a swimming

exhaustion test, after six weeks of branched chain amino acids supplementation.

These authors pointed out that a significant decrease in glycaemia during exercise until

exhaustion could explain fatigue and, therefore, performance. Our results suggest that

this seems to be unlikely. Even though we have not assessed glycaemia in our study,

both trained groups presented normal levels of muscle glycogen after exercise until

exhaustion when compared to control groups. Also, TL group presented significant

enhancement of muscle glycogen compared to all experimental groups. Thus, when

combined with endurance exercise, long-term leucine supplementation has beneficial

effects on substrate availability. Furthermore, it has been demonstrated that higher pre-

exercise muscle glycogen concentration can delay fatigue (BERARDI et al., 2006).

Therefore, these results suggest that fatigue may have occurred due to any cause

other than substrate availability in our experimental conditions. Hence, the role of long-

term leucine supplementation on oxidative metabolism and endurance performance

should be further investigated. It has been proposed that exercise-induced ammonia

accumulation could generate fatigue due to excess cerebral ammonia and the inability

of peripheral organs to detoxify it (DE ARAUJO et al., 2006) should be considered.

In order to evaluate inflammation response due to exercise until exhaustion, we

assessed IL-6 and TNF-α levels. Both trained groups presented significant increase in

IL-6 level. It is important to keep in mind that, although mostly regarded as a pro-

inflammatory cytokine, IL-6 also has anti-inflammatory properties (REIHMANE; DELA,

2014; SCHELLER et al., 2011). The exercise-induced increase in plasma IL-6 leads to

increased circulating levels of well-known anti-inflammatory cytokines. Moreover, both

exercise and IL-6 infusion suppress TNF-α production in humans (REIHMANE; DELA,

2014). In our case, there was no difference of TNF-α level between the groups. It may

have occurred because TNF-α is only stimulated by very intense exercise (REIHMANE;

DELA, 2014). Despite its long duration, exercise until exhaustion does not impose

great intensity. Besides, there were no eccentric muscle contractions since it was

Page 55: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

55

performed in water. Moreover, IL-6 has an important metabolic function during exercise

and may represent a link between skeletal muscle and organs such as the liver and the

adipose tissue. Studies have clearly demonstrated that contracting muscles, without

any muscle damage, can induce a marked elevation in plasma IL-6 (PEDERSEN et al.,

2004; SCHELLER et al., 2011). IL-6 production is modulated by the carbohydrate

availability in skeletal muscles, suggesting that IL-6 acts as an “energy sensor”

(REIHMANE; DELA, 2014). IL-6 was shown to enhance AMPK activity in both skeletal

muscle and adipose tissue (PEDERSEN et al., 2007), which has occurred in the

present study.

In conclusion, although long-term leucine supplementation has enhanced the muscle

glycogen level in trained rats and citrate synthase activity in sedentary ones, it failed to

enhance endurance performance of trained rats submitted to an exhaustion test.

Furthermore, it did not prevent exercise-induced reduction in protein synthesis

signaling. These results suggest that nutrient-mediated acute molecular and metabolic

effects that may support homeostatic restoration and adaptive remodeling of skeletal

muscle to endurance exercise does not necessarily occur in long-term training.

Acknowledgments We are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES) for a fellowship granted to Santos, G.B., and to Ajinomoto Interamericana

Indústria e Comércio Ltda (Brazil) for supplying the leucine.

Conflict of Interest The authors declare no conflict of interest.

Author Contribution All authors approved the final version for publication.

References

1. ANTHONY, J. C.; ANTHONY, T. G.; LAYMAN, D. K. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J Nutr, v. 129, n. 6, p. 1102-6, Jun 1999.

2. ATHERTON, P. J.; SMITH, K. Muscle protein synthesis in response to nutrition and exercise. J Physiol, v. 590, n. Pt 5, p. 1049-57, Mar 1 2012.

3. BARBOSA DOS SANTOS, G. et al. Melatonin reduces oxidative stress and cardiovascular changes induced by stanozolol in rats exposed to swimming exercise. Eurasian J Med, v. 45, n. 3, p. 155-62, Oct 2013.

4. BERARDI, J. M.; NOREEN, E. E.; LEMON, P. W. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Int Soc Sports Nutr, v. 5, p. 24, 2008.

Page 56: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

56

5. BERARDI, J. M. et al. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc, v. 38, n. 6, p. 1106-13, Jun 2006.

6. BLOMSTRAND, E. et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr, v. 136, n. 1 Suppl, p. 269S-73S, Jan 2006.

7. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, v. 72, p. 248-54, May 7 1976.

8. CAMERA, D. M. et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc, v. 42, n. 10, p. 1843-52, Oct 2010.

9. COFFEY, V. G. et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. Faseb Journal, v. 19, n. 13, p. 190-+, Nov 2005.

10. COSTA JUNIOR, J. M. et al. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice. Amino Acids, Jan 10 2015.

11. CROWE, M. J.; WEATHERSON, J. N.; BOWDEN, B. F. Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol, v. 97, n. 6, p. 664-72, Aug 2006.

12. CRUZ, B.; GOMES-MARCONDES, M. C. Leucine-rich diet supplementation modulates foetal muscle protein metabolism impaired by Walker-256 tumour. Reprod Biol Endocrinol, v. 12, p. 2, 2014.

13. DE ARAUJO, J. A., JR. et al. Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats. Life Sci, v. 79, n. 14, p. 1343-8, Aug 29 2006.

14. GREER, B. K. et al. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, v. 17, n. 6, p. 595-607, Dec 2007.

15. HAWLEY, J. A. et al. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985), v. 110, n. 3, p. 834-45, Mar 2011.

16. HAWLEY, J. A. et al. Innovations in athletic preparation: role of substrate availability to modify training adaptation and performance. J Sports Sci, v. 25 Suppl 1, p. S115-24, 2007.

17. JORGENSEN, S. B.; RICHTER, E. A.; WOJTASZEWSKI, J. F. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol, v. 574, n. Pt 1, p. 17-31, Jul 1 2006.

18. LI, F. et al. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids, v. 41, n. 5, p. 1185-93, Nov 2011.

19. LO, S.; RUSSELL, J. C.; TAYLOR, A. W. Determination of Glycogen in Small Tissue Samples. Journal of Applied Physiology, v. 28, n. 2, p. 234-&, 1970.

Page 57: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

57

20. LOUIS, E. et al. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol (1985), v. 103, n. 5, p. 1744-51, Nov 2007.

21. MASCHER, H. et al. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol (Oxf), v. 191, n. 1, p. 67-75, Sep 2007.

22. NELSON, A. R. et al. A protein-leucine supplement increases branched-chain amino acid and nitrogen turnover but not performance. Med Sci Sports Exerc, v. 44, n. 1, p. 57-68, Jan 2012.

23. NORTON, L. E.; LAYMAN, D. K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr, v. 136, n. 2, p. 533S-537S, Feb 2006.

24. PEDERSEN, B. K. et al. Role of myokines in exercise and metabolism. J Appl Physiol (1985), v. 103, n. 3, p. 1093-8, Sep 2007.

25. PEDERSEN, B. K. et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc, v. 63, n. 2, p. 263-7, May 2004.

26. REEVES, P. G.; NIELSEN, F. H.; FAHEY, G. C., JR. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr, v. 123, n. 11, p. 1939-51, Nov 1993.

27. REIHMANE, D.; DELA, F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci, v. 14, n. 3, p. 242-50, 2014.

28. ROSE, A. J.; RICHTER, E. A. Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol (1985), v. 106, n. 5, p. 1702-11, May 2009.

29. ROWLANDS, D. S. et al. Protein-Leucine Fed Dose Effects on Muscle Protein Synthesis After Endurance Exercise. Med Sci Sports Exerc, Jul 14 2014.

30. ROWLANDS, D. S. et al. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab, v. 33, n. 1, p. 39-51, Feb 2008.

31. SCHELLER, J. et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, v. 1813, n. 5, p. 878-88, May 2011.

32. SRERE, P. A. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: JOHN, M. L. (Ed.). Methods in Enzymology: Academic Press, v.Volume 13, 1969. p.3-11. ISBN 0076-6879.

33. SUZUKI, K. et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev, v. 8, p. 6-48, 2002.

34. TAM, B. T.; SIU, P. M. Autophagic Cellular Responses to Physical Exercise in Skeletal Muscle. Sports Medicine, v. 44, n. 5, p. 625-640, May 2014.

35. THOMSON, J. S.; ALI, A.; ROWLANDS, D. S. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab, v. 36, n. 2, p. 242-53, Apr 2011.

Page 58: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

58

36. VIANA, L. R.; GOMES-MARCONDES, M. C. Leucine-rich diet improves the serum

amino acid profile and body composition of fetuses from tumor-bearing pregnant

mice. Biol Reprod, v. 88, n. 5, p. 121, May 2013.

Page 59: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

59

FIGURE CAPTIONS Figure 1. Effects of leucine supplementation and endurance training on: A, citrate

synthase activity (µmol/ml/min). B, gastrocnemius glycogen content (g/100g). C,

representative blot for AMPK phosphorylation. D, AMPK activation. Experimental

groups were divided as follows: sedentary control (C), control-supplemented (CL),

trained (T) and trained-supplemented (TL). Data are expressed as means ± SD (n=6).

Different letters indicate significant differences between groups (p<0.05).

Figure 2. Effects of leucine supplementation and endurance training on protein

synthesis signaling. A, representative blot for Akt and mTOR phosphorylation. B, Akt

activation. C, mTOR activation. Experimental groups were divided as follows:

sedentary control (C), control-supplemented (CL), trained (T) and trained-

supplemented (TL). Data are expressed as means ± SD (n=6). Different letters indicate

significant differences between groups (p<0.05).

Figure 3. Effects of leucine supplementation and endurance training on inflammatory

response biomarkers. A, IL-6 content. B, TNF-α content. Experimental groups were

divided as follows: sedentary control (C), control-supplemented (CL), trained (T) and

trained-supplemented (TL). Data are expressed as means ± SD (n=6). Different letters

indicate significant differences between groups (p<0.05).

Page 60: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

60

Table 1

Data are expressed as means±SD (n=6). Different letters indicate significant differences between groups (p<0.05).

C CL T TL

Body weight gain (g) 76.40±11.52a 102.2±10.57b 64.17±13.89a 92.17±11.99b

Heart (g/100g) 3.0±0.26a 2.8±0.19a 3.6±0.44b 3.5±0.19b

Gastrocnemius (g/100g)

6.9±0.43 6.2±1.6 6.8±0.84 5.6±0.44

Soleus (g/100g) 0.36±0.04 0.32±0.03 0.38±0.03 0.33±0.05

Time to exhaustion (min)

- - 208.9±19.5 195.3±9.8

Page 61: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

61

Figure 1

D

Page 62: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

62

Figure 2

Page 63: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

63

Figure 3

Page 64: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

64

4. Conclusão

Após a análise molecular e funcional dos músculos cardíaco e esquelético em ratos

suplementados com leucina e submetidos ao exercício prolongado e extenuante de

natação, concluímos que:

1. O exercício extenuante de endurance, nas condições experimentais deste

estudo, não excedeu a capacidade energética cardíaca, não representando,

portanto, uma ameaça energética a este órgão, pelo menos, em indivíduos

treinados.

2. O exercício extenuante de longa duração pode induzir, em indivíduos

suscetíveis, um estado de instabilidade elétrica cardíaca, associado a arritmias

e morte súbita. Esta situação pode ser potencializada quando combinada à

suplementação de leucina, que induziu ao aumento da pressão arterial e lesão

cardíaca.

3. A suplementação de leucina, além de não prevenir os sintomas da fadiga

cardíaca, pode ainda, agravar as alterações cardiovasculares induzidas pelo

exercício extenuante de longa duração.

4. Embora a suplementação de leucina possa aumentar a concentração de

glicogênio muscular (gastrocnêmio), em ratos treinados, e a atividade da

enzima citrato sintase, em ratos sedentários, ela falhou em melhorar o

desempenho de endurance em ratos treinados submetidos a um teste de

exaustão e não preveniu a diminuição na sinalização de síntese proteica no

musculo esquelético.

Assim, estes resultados sugerem que os efeitos metabólicos e moleculares agudos,

mediados pela leucina, que, em teoria, poderiam de forma crônica, potencializar a

resposta adaptativa do músculo cardíaco e esquelético ao exercício de endurance não

ocorrem. Concluímos, também, que os músculos cardíaco e esquelético, respondem

de forma diferente ao estresse mecânico e metabólico induzido pelo exercício

extenuante de longa duração. E por último, que a leucina não é uma substância capaz

de auxiliar na prevenção dos efeitos cardíacos adversos induzidos pelo exercício

extenuante de longa duração, podendo, inclusive, potencializar estes efeitos.

Page 65: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

65

5. Atividade concomitante à tese

Artigo publicado: “Melatonin reduces oxidative stress and cardiovascular

changes induced by stanozolol in rats exposed to swimming exercise” Barbosa

Dos Santos G, Machado Rodrigues MJ, Gonçalves EM, Cintra Gomes

Marcondes MC, Areas MA. Eurasian J Med. 2013 Oct;45(3):155-62. doi:

10.5152/eajm.2013.33.

Page 66: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

66

6. Referências Bibliográficas

AMENT, W.; VERKERKE, G. J. Exercise and fatigue. Sports Med, v. 39, n. 5, p. 389-422, 2009.

ANTHONY, J. C.; ANTHONY, T. G.; LAYMAN, D. K. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J Nutr, v. 129, n. 6, p. 1102-6, Jun 1999.

ARO, A. L. et al. Prevalence and prognostic significance of T-wave inversions in right precordial leads of a 12-lead electrocardiogram in the middle-aged subjects. Circulation, v. 125, n. 21, p. 2572-7, May 29 2012.

ASTORINO, T. A.; SCHUBERT, M. M. Individual responses to completion of short-term and chronic interval training: a retrospective study. PLoS One, v. 9, n. 5, p. e97638, 2014.

ATHERTON, P. J.; SMITH, K. Muscle protein synthesis in response to nutrition and exercise. J Physiol, v. 590, n. Pt 5, p. 1049-57, Mar 1 2012.

BARBOSA DOS SANTOS, G. et al. Melatonin reduces oxidative stress and cardiovascular changes induced by stanozolol in rats exposed to swimming exercise. Eurasian J Med, v. 45, n. 3, p. 155-62, Oct 2013.

BAUMERT, M. et al. Heart rate variability, blood pressure variability, and baroreflex sensitivity in overtrained athletes. Clin J Sport Med, v. 16, n. 5, p. 412-7, Sep 2006.

BENITO, B. et al. Cardiac Arrhythmogenic Remodeling in a Rat Model of Long-Term Intensive Exercise Training. Circulation, v. 123, n. 1, p. 13-U61, Jan 4 2011.

BERARDI, J. M.; NOREEN, E. E.; LEMON, P. W. Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation. J Int Soc Sports Nutr, v. 5, p. 24, 2008.

BERARDI, J. M. et al. Postexercise muscle glycogen recovery enhanced with a carbohydrate-protein supplement. Med Sci Sports Exerc, v. 38, n. 6, p. 1106-13, Jun 2006.

BHELLA, P. S.; LEVINE, B. D. The heart of a champion. J Am Coll Cardiol, v. 55, n. 15, p. 1626-8, Apr 13 2010.

BIANCHI, G. et al. Update on nutritional supplementation with branched-chain amino acids. Current Opinion in Clinical Nutrition and Metabolic Care, v. 8, n. 1, p. 83-87, Jan 2005.

Page 67: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

67

BLOMSTRAND, E. et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr, v. 136, n. 1 Suppl, p. 269S-73S, Jan 2006.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, v. 72, p. 248-54, May 7 1976.

CACCIAPUOTI, F. Role of ubiquitin-proteasome system (UPS) in left ventricular hypertrophy (LVH). Am J Cardiovasc Dis, v. 4, n. 1, p. 1-5, 2014.

CAMERA, D. M. et al. Early time course of Akt phosphorylation after endurance and resistance exercise. Med Sci Sports Exerc, v. 42, n. 10, p. 1843-52, Oct 2010.

CHEN, Y. et al. Cardiac troponin T alterations in myocardium and serum of rats after stressful, prolonged intense exercise. J Appl Physiol (1985), v. 88, n. 5, p. 1749-55, May 2000.

COFFEY, V. G. et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. Faseb Journal, v. 19, n. 13, p. 190-+, Nov 2005.

COSTA JUNIOR, J. M. et al. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice. Amino Acids, Jan 10 2015.

CROWE, M. J.; WEATHERSON, J. N.; BOWDEN, B. F. Effects of dietary leucine supplementation on exercise performance. Eur J Appl Physiol, v. 97, n. 6, p. 664-72, Aug 2006.

CRUZ, B.; GOMES-MARCONDES, M. C. Leucine-rich diet supplementation modulates foetal muscle protein metabolism impaired by Walker-256 tumour. Reprod Biol Endocrinol, v. 12, p. 2, 2014.

DAWSON, E. et al. Does the human heart fatigue subsequent to prolonged exercise? Sports Medicine, v. 33, n. 5, p. 365-380, 2003.

DE ARAUJO, J. A., JR. et al. Effect of chronic supplementation with branched-chain amino acids on the performance and hepatic and muscle glycogen content in trained rats. Life Sci, v. 79, n. 14, p. 1343-8, Aug 29 2006.

DE OLIVEIRA, C. A. et al. Mechanisms of insulin secretion in malnutrition: modulation by amino acids in rodent models. Amino Acids, v. 40, n. 4, p. 1027-34, Apr 2011.

DI CAMILLO, B. et al. Leucine modulates dynamic phosphorylation events in insulin signaling pathway and enhances insulin-dependent glycogen synthesis in human skeletal muscle cells. BMC Cell Biol, v. 15, p. 9, 2014.

Page 68: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

68

FARRAJ, A. K.; HAZARI, M. S.; CASCIO, W. E. The utility of the small rodent electrocardiogram in toxicology. Toxicol Sci, v. 121, n. 1, p. 11-30, May 2011.

FINSTERER, J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord, v. 13, p. 218, 2012.

GEORGE, K. et al. Exercise and the heart: can you have too much of a good thing? Med Sci Sports Exerc, v. 40, n. 8, p. 1390-2, Aug 2008.

GREER, B. K. et al. Branched-chain amino acid supplementation and indicators of muscle damage after endurance exercise. International Journal of Sport Nutrition and Exercise Metabolism, v. 17, n. 6, p. 595-607, Dec 2007.

GREIWE, J. S. et al. Effects of endurance exercise training on muscle glycogen accumulation in humans. J Appl Physiol (1985), v. 87, n. 1, p. 222-6, Jul 1999.

HALLIWILL, J. R. et al. Postexercise hypotension and sustained postexercise vasodilatation: what happens after we exercise? Exp Physiol, v. 98, n. 1, p. 7-18, Jan 2013.

HARLAN, S. M. et al. Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab, v. 17, n. 4, p. 599-606, Apr 2 2013.

HAWLEY, J. A. et al. Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985), v. 110, n. 3, p. 834-45, Mar 2011.

HAWLEY, J. A. et al. Innovations in athletic preparation: role of substrate availability to modify training adaptation and performance. J Sports Sci, v. 25 Suppl 1, p. S115-24, 2007.

JORGENSEN, S. B.; RICHTER, E. A.; WOJTASZEWSKI, J. F. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. J Physiol, v. 574, n. Pt 1, p. 17-31, Jul 1 2006.

KANG, J. J. et al. Quantitative imaging of basic functions in renal (patho)physiology. Am J Physiol Renal Physiol, v. 291, n. 2, p. F495-502, Aug 2006.

KNEBEL, F. et al. Myocardial Function in Older Male Amateur Marathon Runners: Assessment by Tissue Doppler Echocardiography, Speckle Tracking, and Cardiac Biomarkers. Journal of the American Society of Echocardiography, v. 22, n. 7, p. 803-809, Jul 2009.

Page 69: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

69

LAKHAN, S. E.; HARLE, L. Cardiac fibrosis in the elderly, normotensive athlete: case report and review of the literature. Diagn Pathol, v. 3, p. 12, 2008.

LI, F. et al. Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids, v. 41, n. 5, p. 1185-93, Nov 2011.

LINDSAY, M. M.; DUNN, F. G. Biochemical evidence of myocardial fibrosis in veteran endurance athletes. Br J Sports Med, v. 41, n. 7, p. 447-52, Jul 2007.

LO, S.; RUSSELL, J. C.; TAYLOR, A. W. Determination of Glycogen in Small Tissue Samples. Journal of Applied Physiology, v. 28, n. 2, p. 234-&, 1970.

LOUIS, E. et al. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol (1985), v. 103, n. 5, p. 1744-51, Nov 2007.

MANNINEN, A. H. Hyperinsulinaemia, hyperaminoacidaemia and post-exercise muscle anabolism: the search for the optimal recovery drink. Br J Sports Med, v. 40, n. 11, p. 900-5, Nov 2006.

MASCHER, H. et al. Changes in signalling pathways regulating protein synthesis in human muscle in the recovery period after endurance exercise. Acta Physiol (Oxf), v. 191, n. 1, p. 67-75, Sep 2007.

MELENDEZ, G. C. et al. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension, v. 56, n. 2, p. 225-31, Aug 2010.

MIDDLETON, N. et al. Impact of repeated prolonged exercise bouts on cardiac function and biomarkers. Med Sci Sports Exerc, v. 39, n. 1, p. 83-90, Jan 2007.

MIZUNO, K. et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition, v. 24, n. 4, p. 293-9, Apr 2008.

NELSON, A. R. et al. A protein-leucine supplement increases branched-chain amino acid and nitrogen turnover but not performance. Med Sci Sports Exerc, v. 44, n. 1, p. 57-68, Jan 2012.

NEWGARD, C. B. et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metabolism, v. 9, n. 4, p. 311-326, Apr 8 2009.

NORTON, L. E.; LAYMAN, D. K. Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr, v. 136, n. 2, p. 533S-537S, Feb 2006.

Page 70: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

70

O'KEEFE, J. H. et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc, v. 87, n. 6, p. 587-95, Jun 2012.

OGURA, Y. et al. Single bout of running exercise changes LC3-II expression in rat cardiac muscle. Biochemical and Biophysical Research Communications, v. 414, n. 4, p. 756-760, Nov 4 2011.

PEDERSEN, B. K. et al. Role of myokines in exercise and metabolism. J Appl Physiol (1985), v. 103, n. 3, p. 1093-8, Sep 2007.

PEDERSEN, B. K. et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc, v. 63, n. 2, p. 263-7, May 2004.

PELLICCIA, A. et al. Long-term clinical consequences of intense, uninterrupted endurance training in olympic athletes. J Am Coll Cardiol, v. 55, n. 15, p. 1619-25, Apr 13 2010.

PELLICCIA, A. et al. Clinical significance of abnormal electrocardiographic patterns in trained athletes. Circulation, v. 102, n. 3, p. 278-84, Jul 18 2000.

PHILLIPS, S. M. Protein requirements and supplementation in strength sports. Nutrition, v. 20, n. 7-8, p. 689-695, Jul-Aug 2004.

PHILP, A.; HARGREAVES, M.; BAAR, K. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab, v. 302, n. 11, p. E1343-51, Jun 1 2012.

REEVES, P. G.; NIELSEN, F. H.; FAHEY, G. C., JR. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr, v. 123, n. 11, p. 1939-51, Nov 1993.

REID, M. B. Response of the ubiquitin-proteasome pathway to changes in muscle activity. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, v. 288, n. 6, p. R1423-R1431, Jun 2005.

REIHMANE, D.; DELA, F. Interleukin-6: possible biological roles during exercise. Eur J Sport Sci, v. 14, n. 3, p. 242-50, 2014.

RENNIE, M. J. Exercise- and nutrient-controlled mechanisms involved in maintenance of the musculoskeletal mass. Biochem Soc Trans, v. 35, n. Pt 5, p. 1302-5, Nov 2007.

ROSE, A. J.; RICHTER, E. A. Regulatory mechanisms of skeletal muscle protein turnover during exercise. J Appl Physiol (1985), v. 106, n. 5, p. 1702-11, May 2009.

Page 71: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

71

ROWLANDS, D. S. et al. Protein-Leucine Fed Dose Effects on Muscle Protein Synthesis After Endurance Exercise. Med Sci Sports Exerc, Jul 14 2014.

ROWLANDS, D. S. et al. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab, v. 33, n. 1, p. 39-51, Feb 2008.

SAHLEN, A. et al. Cardiac fatigue in long-distance runners is associated with ventricular repolarization abnormalities. Heart Rhythm, v. 6, n. 4, p. 512-519, Apr 2009.

SAHLEN, A. et al. Effects of prolonged exercise on left ventricular mechanical synchrony in long-distance runners: importance of previous exposure to endurance races. J Am Soc Echocardiogr, v. 23, n. 9, p. 977-84, Sep 2010.

SATTELMAIR, J. et al. Dose Response Between Physical Activity and Risk of Coronary Heart Disease A Meta-Analysis. Circulation, v. 124, n. 7, p. 789-U84, Aug 16 2011.

SCHARHAG, J. et al. Exercise-associated increases in cardiac biomarkers. Med Sci Sports Exerc, v. 40, n. 8, p. 1408-15, Aug 2008.

SCHELLER, J. et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, v. 1813, n. 5, p. 878-88, May 2011.

SHAH, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet, v. 3, n. 2, p. 207-14, Apr 2010.

SHAVE, R. et al. Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol, v. 56, n. 3, p. 169-76, Jul 13 2010.

SHAVE, R. et al. Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc, v. 36, n. 7, p. 1098-103, Jul 2004.

SIU, P. M. et al. Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles. J Appl Physiol (1985), v. 94, n. 2, p. 555-60, Feb 2003.

SRERE, P. A. [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. In: JOHN, M. L. (Ed.). Methods in Enzymology: Academic Press, v.Volume 13, 1969. p.3-11. ISBN 0076-6879.

Page 72: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

72

STRAUS, S. M. et al. Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J Am Coll Cardiol, v. 47, n. 2, p. 362-7, Jan 17 2006.

SU, D. et al. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease. Mediators Inflamm, v. 2013, p. 726178, 2013.

SUZUKI, K. et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev, v. 8, p. 6-48, 2002.

TAM, B. T.; SIU, P. M. Autophagic Cellular Responses to Physical Exercise in Skeletal Muscle. Sports Medicine, v. 44, n. 5, p. 625-640, May 2014.

TAYLOR, J. L.; TODD, G.; GANDEVIA, S. C. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol, v. 33, n. 4, p. 400-5, Apr 2006.

THOMSON, J. S.; ALI, A.; ROWLANDS, D. S. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance in well-trained men. Appl Physiol Nutr Metab, v. 36, n. 2, p. 242-53, Apr 2011.

TRIVAX, J. E. et al. Acute cardiac effects of marathon running. J Appl Physiol (1985), v. 108, n. 5, p. 1148-53, May 2010.

VASAN, R. S. et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med, v. 345, n. 18, p. 1291-7, Nov 1 2001.

VIANA, L. R.; GOMES-MARCONDES, M. C. Leucine-rich diet improves the serum amino acid profile and body composition of fetuses from tumor-bearing pregnant mice. Biol Reprod, v. 88, n. 5, p. 121, May 2013.

VIANNA, D. et al. Protein synthesis regulation by leucine. Brazilian Journal of Pharmaceutical Sciences, v. 46, n. 1, p. 29-36, Jan-Mar 2010.

WHELTON, S. P. et al. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med, v. 136, n. 7, p. 493-503, Apr 2 2002.

WHYTE, G. et al. Post-mortem evidence of idiopathic left ventricular hypertrophy and idiopathic interstitial myocardial fibrosis: is exercise the cause? British Journal of Sports Medicine, v. 42, n. 4, p. 304-305, Apr 2008.

WHYTE, G. P. Clinical significance of cardiac damage and changes in function after exercise. Med Sci Sports Exerc, v. 40, n. 8, p. 1416-23, Aug 2008.

ZOLK, O.; SCHENKE, C.; SARIKAS, A. The ubiquitin-proteasome system: focus on the heart. Cardiovasc Res, v. 70, n. 3, p. 410-21, Jun 1 2006.

Page 73: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

73

7. Anexos

Profa. Dra. Rachel Meneguello

Presidente

Comissão Central de Pós-Graduação

Declaração

As cópias de artigos de minha autoria ou de minha co-autoria, já publicados ou

submetidos para publicação em revistas científicas ou anais de congressos sujeitos a

arbitragem, que constam da minha Dissertação/Tese de Mestrado/Doutorado,

intitulada "Alterações cardiovasculares induzidas pelo exercício extenuante de

longa duração em ratos suplementados com leucina", não infringem os

dispositivos da Lei n.° 9.610/98, nem o direito autoral de qualquer editora.

Campinas, 20 / 05 / 2015

__________________________________

Autor Gustavo Barbosa dos Santos

RG n.° 25.282.527-5

________________________________

Orientador Prof. Dr. Miguel Arcanjo Areas

RG n.° 6.874.289-7

Page 74: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

74

Page 75: UNIVERSIDADE ESTADUAL DE CAMPINAS - …repositorio.unicamp.br/bitstream/REPOSIP/314567/1/Santos_Gustavo... · INSTITUTO DE BIOLOGIA ... Agradeço de forma especial ao Bread Leandro

75