Download - Zona de forte gradiente de temperatura , umidade e vorticidade .

Transcript
Page 1: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Zona de forte gradiente de temperatura, umidade e vorticidade.

• Uma zona de confluência ao longo da frente.

• Movimento vertical.

• Grande estabilidade estática.

• Um mínimo relativo de pressão, isto é, uma baixa.

• Mudanças rápidas das propriedades das nuvens e da precipitação.

• Forte cisalhamento vertical e horizontal ao longo da frente.

* Estas propriedades não, necessariamente, coincidem espacialmente ou movem com a mesma velocidade.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS– CARACTERÍSTICAS GERAIS

Page 2: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Estão associadas às ondas baroclínicas de latitudes médias (o cisalhamento vertical do vento está diretamente ligado a gradientes horizontais de temperatura).

• Agem no sentido de diminuir o gradiente horizontal de temperatura (levando o ar polar para a região tropical e ar tropical para a região polar).

• Causam variações na distribuição de precipitação e temperatura em quase todo o país.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – DEFINIÇÃO– DEFINIÇÃO

Imagem de satélite GOES, 24/08/2005 às 12UTC.Fonte: Czarnobai et al., 2006.

Page 3: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Zona frontal: quando duas massas de ar de diferentes regiões de origem e, portanto com diferentes características, aproximam-se, formam uma zona de transição chamada zona frontal, caracterizada pelos elevados gradientes horizontais de temperatura e umidade (Kousky e Elias, 1982). Em alguns casos esta zona é bastante abrupta enquanto em outros ela pode ser bastante gradual.

• As frentes são classificadas de acordo com o movimento relativo das massas de ar quente e fria envolvidas:

• Frente fria (quente): linha de confluência que define o limite entre uma massa de ar quente homogênea e a zona frontal. Borda anterior (posterior) da zona frontal, quando o ar frio (quente) avança e substitui o ar mais quente (frio) (Wallace e Hobbs, 1977).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – DEFINIÇÃO– DEFINIÇÃO

Esquema que ilustra frente fria e frente quente para o Hemisfério Sul.

Page 4: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – DEFINIÇÃO– DEFINIÇÃO

Frente Fria Frente Quente

Se a massa fria avança em direção à massa quente, a frente é denominada FRIA

Se a massa quente avança em direção à massa fria, a frente é denominada QUENTE

• Quando ocorre o encontro de duas massas de ar, elas não se misturam imediatamente. A massa mais fria (mais densa) é sobreposta pela massa mais quente (menos densa), formando uma zona de transição, denominada de frente.

Page 5: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Frente estacionária: quando não há o avanço do ar frio e quente relativamente um ao outro.

• Frente oclusa: ocorre quando o setor frio (move-se mais rápido) de uma frente alcança o setor quente, e o ar quente é forçado a subir. A camada limite onde a frente fria encontra a frente quente é chamada de frente oclusa.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – DEFINIÇÃO– DEFINIÇÃO

Esquema que ilustra frente estacionária para o Hemisfério Sul.

Page 6: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Um sistema frontal clássico é geralmente composto de frente fria, frente quente e centro de baixa pressão na superfície (ciclone).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS– CARACTERÍSTICAS GERAIS

Page 7: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Na superfície frontal, o ar frio e denso ao descer força o ar quente a subir e se condensar em uma série de nuvens cumuliformes.

• O vento de altos níveis desprende cristais de gelo do topo dos Cbs formando uma faixa de cirrus.

• A inclinação da superfície frontal está relacionada com a velocidade da frente: para frentes rápidas (12m/s), a inclinação é de 1 para 50; para frentes lentas (7m/s), a inclinação é de 1 para 100.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS– CARACTERÍSTICAS GERAIS

Page 8: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS: SP– CARACTERÍSTICAS GERAIS: SP

• No inverno, o vento dois dias antes da passagem é de noroeste o que implica em um ar quente e seco, como mostra a UR maior para o dia -2 em relação ao dia seguinte.

• Para o inverno e verão o vento médio no dia da passagem e nos dois que seguem são de sudeste, trazendo para São Paulo ar frio.

• Diferentemente do inverno no qual a UR diminui um dia antes da passagem da frente fria, para o verão há um pequeno aumento.

• A temperatura sofre um aumento um dia antes da passagem e uma diminuição um dia depois.

• A pressão diminui um dia antes da passagem e sobe nos dois dias que seguem.

Síntese das variáveis meteorológicas na passagem de frentes frias na cidade de São Paulo (1981-2002).Fonte: Dametto e Rocha, 2006.

Page 9: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Mudanças importantes nas condições de tempo são observadas durante a passagem de uma frente fria, tais como: mudança da direção do vento, presença de nuvens e precipitação, variações no conteúdo de umidade, decréscimo da temperatura, aumento da pressão atmosférica, forte cisalhamento vertical e horizontal (Petterssen, 1956).

• Após a passagem de uma frente fria, normalmente, observa-se queda de temperatura acentuada, aumento de pressão, rajadas de vento, quando o gradiente de pressão é intenso, e a precipitação cessa.

• Nas Regiões Sul e Sudeste do Brasil os ventos em baixos níveis têm direção de nordeste influenciados pela presença da alta subtropical que fica climatologicamente situada sobre o Oceano Atlântico. Numa situação pré-frontal o vento gira tipicamente para noroeste e depois para sudoeste e sudeste na medida em que a frente passa.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS– CARACTERÍSTICAS GERAIS

Síntese das variáveis meteorológicas na passagem de frentes frias na cidade de São Paulo (1981-2002).Fonte: Dametto e Rocha, 2006.

Page 10: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• As frentes frias que atingem o Sudeste do Brasil são orientadas na direção noroeste-sudeste com deslocamento típico de sudoeste para nordeste.

• Algumas frentes atingem latitudes mais baixas, chegando na região amazônica inclusive, provocando o fenômeno conhecido como friagem descrita em Marengo et al. (1997).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CARACTERÍSTICAS GERAIS– CARACTERÍSTICAS GERAIS

Page 11: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Cθe: gradiente na região frontal, onda com altos (baixos) valores na vanguarda (retaguarda).

• CAθe: advecções positiva (negativa) na vanguarda (retaguarda). O CAθe é um ótimo identificador para o início de uma ciclogênese.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO– EXEMPLO

Imagem de satélite com campos sobrepostos em 850hPa para o dia 30/04/2005 às 18UTC: PNM (hPa) e LC; Cθe(K) e advecção de temperatura (°C/s*103); CAθe(K/s*103). Fonte: Cruz et al., 2008.

Page 12: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Iniciou o processo de oclusão do sistema (CAθe).

• A frente fria estende-se sobre a costa do NEB, organizando e intensificando a convecção sobre o centro-norte do Brasil.

• Padrão clássico: advecção de ar quente na vanguarda e frio na retaguarda.

• Forte adv. + de θe na vanguarda evidencia a entrada de ar úmido proveniente da esteira transportadora da zona frontal e do flanco NW do anticiclone a leste.

• Forte adv. - de θe na retaguarda, confirmando o deslocamento de ar seco na região do anticiclone pós-frontal e mostrando o posicionamento da rampa frontal.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO– EXEMPLO

Imagem de satélite com campos sobrepostos em 850hPa para o dia 01/05/2005 às 18UTC: PNM (hPa) e LC; Cθe(K) e advecção de temperatura (°C/s*103); CAθe(K/s*103). Fonte: Cruz et al., 2008.

Page 13: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• O Cθe mostra a região oclusa com o rompimento do padrão ondulatório, formando dois núcleos bem definidos.

• Na vanguarda do sistema, é possível observar uma extensa região apresentando valores positivos de advecção de θe, conectando-se a vanguarda de outro ciclone mais ao sul.

• Na retaguarda da frente fria, há uma extensa região com advecções negativas de θe, indicando seu posicionamento.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO– EXEMPLO

Imagem de satélite com campos sobrepostos em 850hPa para o dia 02/05/2005 às 18UTC: PNM (hPa) e LC; Cθe(K) e advecção de temperatura (°C/s*103); CAθe(K/s*103). Fonte: Cruz et al., 2008.

Page 14: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• No setor ocluso do sistema, são observadas advecções positivas de θe na retaguarda do centro do vórtice (entre a oclusão e o anticiclone pós-frontal), com sentido SW-NE. Essa faixa com advecções positivas de θe atravessa a frente fria, recebendo um incremento advindo de outra extremidade frontal mais ao sul, associada a família de ciclones passando em torno dos 55S de latitude.

• Na vanguarda do centro do vórtice (entre a oclusão e frente quente), são observadas advecções negativas de θe, no sentido SW-NE. Essa faixa com advecções negativas de θe atravessa a frente fria, estendendo-se para SW onde corta a frente quente. Tal configuração demonstra claramente a ruptura total do sistema, apresentando a separação do setor ocluso e a fratura das frentes.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO– EXEMPLO

Imagem de satélite com campos sobrepostos em 850hPa para o dia 02/05/2005 às 18UTC: PNM (hPa) e LC; Cθe(K) e advecção de temperatura (°C/s*103); CAθe(K/s*103). Fonte: Cruz et al., 2008.

Page 15: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO– EXEMPLO

Modelo conceitual para evolução de um ciclone mostrado na baixa troposfera, com campo de pressão, CAθ e e frentes: (I) disparo ciclogenético; (II) perturbação na onda; (III) estreitamento do setor quente; (IV) oclusão e (V) fratura das zonas frontais. Fonte: Cruz et al., 2008.

• Síntese para o modelo conceitual do evento: aplicável a sistemas que surgem próximo a regiões subtropicais e se deslocam para baixas latitudes.

Page 16: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CICLO DE VIDA– CICLO DE VIDA

Modelo conceitual para evolução de um ciclone mostrado na baixa troposfera, com campo de pressão, CAθ e e frentes: (I) disparo ciclogenético; (II) perturbação na onda; (III) estreitamento do setor quente; (IV) oclusão e (V) fratura das zonas frontais. Fonte: Cruz et al., 2008.

Page 17: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Variação de temperatura de até 20°C ao longo do sistema frontal.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO TRIDIMENSIONAL– EXEMPLO TRIDIMENSIONAL

Frente Termal – isoterma de 10°C, 24/08/2005 às 00UTC.Fonte: Czarnobai et al., 2006.Imagem de satélite GOES, 24/08/2005 às 12UTC.

Fonte: Czarnobai et al., 2006.

Page 18: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• As linhas de corrente na vertical correspondem a 10000 vezes o valor real.

• O centro da circulação ciclônica (em vermelho, latitude 40°S) indica que ocorre convergência do vento, caracterizando-se assim o centro da baixa pressão.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO TRIDIMENSIONAL– EXEMPLO TRIDIMENSIONAL

Velocidade vertical relativa e linha de corrente do vento, 24/08/2005 às 00UTC. Fonte: Czarnobai et al., 2006.

Imagem de satélite GOES, 24/08/2005 às 12UTC. Fonte: Czarnobai et al., 2006.

Page 19: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Para a identificação do sistema, geralmente observa-se a área em que ocorre confluência dos ventos.

• Essa convergência do vento estende-se até 700 hPa, sendo associada à atuação do sistema frontal.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – EXEMPLO TRIDIMENSIONAL– EXEMPLO TRIDIMENSIONAL

Convergência do vento, 24/08/2005 às 00UTC.Fonte: Czarnobai et al., 2006.

Imagem de satélite GOES, 24/08/2005 às 12UTC. Fonte: Czarnobai et al., 2006.

Page 20: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Frontogênese: formação ou intensificação de uma frente através do aumento do gradiente de temperatura (densidade), isto é, quando ocorre um aumento na concentração de isotermas (isopicnas).

• Mecanismos que favorecem a frontogênese:

• Campo de deformação horizontal (frentes frias entre dois anticiclones).

• Campo de cisalhamento horizontal (confluência de massas de ar).

• Campo de dilatação vertical (região de baixa pressão).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – FORMAÇÃO– FORMAÇÃO

Deformação horizontal.

Dilatação vertical.

Cisalhamento horizontal.

Situação sinótica esquemática na qual o campo de deformação horizontal é dominante sobre o continente sul americano. Linhas cheias são isóbaras, linhas tracejadas são isotermas, as flechas representam o campo do fluxo no qual o eixo de dilatação é destacado.

Page 21: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Frontólise: enfraquecimento ou destruição de uma frente (Petterssen, 1956) através da diminuição do gradiente de temperatura.

• Mecanismos que favorecem a frontólise: liberação de calor latente, atrito com a superfície, turbulência e mistura, e radiação.

• Movimentos verticais diferenciados podem ser frontogenético ou frontolítico.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – DISSIPAÇÃO– DISSIPAÇÃO

Movimento vertical.

Page 22: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

Satyamurty e Mattos, 1989

• Dados mensais do National Meteorological Center (NMC) de 1975-1981.

• Função frontogenética depende da deformação horizontal (D) e do campo de divergência (ς) (Pettersen, 1956):

onde é o ângulo entre o eixo de dilatação e o gradiente de temperatura. Se F é positivo (negativo) as isotermas tendem a se aproximar (afastar) – frontogênese (frontólise).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

2cosDT2

1F

2/122

y

T

x

TT

2/122

21 DDD

y

u

x

vD1

y

v

x

uD2

y

v

x

u

2

1D

D)2tan(

x

Ty

Ttan

Representação esquemática do eixo de dilatação e contração do campo de deformação.Fonte: Satyamurty e Mattos, 1989.

Page 23: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Regiões frontogenéticas: na ZCPS, sudoeste da África e da Austrália, na parte sul da AS e no Oceano Atlântico Subtropical.

• A frontogênese no HS é menos intensa do que no HN.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

Page 24: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Uma linha orientada NW-SE passando pelo Rio de Janeiro separa a região frontogenética, ao sudoeste, da região frontolítica, ao nordeste.

• As bandas frontogenéticas e frontolíticas no HS são alinhadas NW-SE.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

Page 25: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Relação com as zonas de convergência do HS (ZCPS e ZCAS).

• Sobre o centro-sul da Argentina, na AN e Japão a função frontogenética é mais forte em janeiro (verão no HS e inverno no HN).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

Page 26: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• O sul da AS é a única região do HS que apresenta condições frontogenéticas quase o ano todo.

• A região equatorial não é frontogeneticamente ativa devido ao fraco .

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

T

Page 27: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• A região frontogenética mais intensa em janeiro está situada no sul da Argentina e migra para norte em julho ocupando o noroeste da Argentina e vizinhança.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

Page 28: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Relação com as montanhas (Cordilheira dos Andes, Himalaia e Rochosas).

• As ondas baroclínicas de latitudes médias modificam-se ao atravessar os Andes e interagem com a circulação atmosférica sobre a AS.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Função frontogenética climatológica em 850hPa para os meses de janeiro, abril, julho, outubro e anual. As linhas tracejadas (contínuas) representam frontólise (frontogênese). Fonte: Satyamurty e Mattos, 1989.

ZCPSZCPS

Page 29: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Os cavados vindos do Pacífico Sul se desenvolvem como frentes depois de atravessarem a Cordilheira dos Andes sobre o norte e leste (sul) da Argentina no inverno e primavera (verão e outono). Estas frentes adquirem um movimento para nordeste e estão associadas a centros de baixa pressão com movimento leste-sudeste (Satyamurty e Mattos, 1989).

• As frentes podem se acoplar com mecanismos típicos de convecção, intensificando-se e permanecendo ativas durante vários dias (meses de primavera e verão).

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA– CLIMATOLOGIA

Page 30: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

Dametto e Rocha, 2006

• Os dados utilizados para estabelecer a climatologia das passagens frontais na cidade de São Paulo são as observações diárias entre 1981 e 2002 realizadas na estação meteorológica do IAG-USP.

• O critério utilizado para a identificação das frentes considerou o giro do vento meridional do quadrante norte para sul, sua manutenção no quadrante sul por pelo menos 24 horas e queda de temperatura entre o dia e mais dois dias após o giro do vento.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA: CIDADE DE SP– CLIMATOLOGIA: CIDADE DE SP

Page 31: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• No litoral Sudeste do Brasil, Oliveira (1986) e Justi da Silva e Silva Dias (2000) encontraram um número de sistemas frontais relativamente maior no inverno comparado ao verão.

• No verão as frentes frias tendem a atuar por mais tempo (frentes estacionárias), associadas à Zona de Convergência do Atlântico Sul (ZCAS), produzindo chuvas por uma vasta região por muitos dias.

• No inverno, são as principais (senão a única) causadoras das bruscas e acentuadas quedas de temperatura.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA: CIDADE DE SP– CLIMATOLOGIA: CIDADE DE SP

Frequência absoluta de frentes frias sobre São Paulo entre 1981-2002. Fonte: Dametto e Rocha, 2006.

Page 32: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

• Os maiores valores de frequência para o intervalo entre uma passagem frontal e outra são de 3 a 5 dias.

• Presença de eventos extremos: São Paulo fica mais de 15 dias sem ser afetada por passagem frontal, em ambas as estações.

FRENTES E FRONTOGÊNESE FRENTES E FRONTOGÊNESE – CLIMATOLOGIA: CIDADE DE SP– CLIMATOLOGIA: CIDADE DE SP

Distribuição de frequência do número de dias de intervalo entre passagens de frentes frias para o verão e inverno (1981-2002).Fonte: Dametto e Rocha, 2006.

05/06 – 28/07/198207/01 – 10/02/1998

Page 33: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

CICLONES E CICLOGÊNESE CICLONES E CICLOGÊNESE – REFERÊNCIAS– REFERÊNCIAS

ANDRADE, K. M.; CAVALCANTI, I. F. A. Climatologia dos sistemas frontais e padrões de comportamento para o verão na América do Sul In: XIII Congresso Brasileiro de Meteorologia, Fortaleza – CE. Anais do XIII Congresso Brasileiro de Meteorologia. SBMET, 2004.

CAVALCANTI, I. F. A.; KOUSKY, V. E. Configuração de anomalias associadas à propagação de sistemas sinóticos sobre a América do Sul In: IX Congresso Brasileiro de Meteorologia, Campos do Jordão – SP. Anais do IX Congresso Brasileiro de Meteorologia, 1331-1332, 1996.

CAVALCANTE, I. F. A.; KOUSKY, V. E. Climatology of Sout American cold fronts In: VII International Conference on Southern Hemisphere Meteorology and Oceanography, Ellington, New Zealand, 2003.

CRUZ, C. D.; FIGUEIREDO, E. L.; FEDOROVA, N.; LEVIT, V. Utilização do campo de advecção de temperatura potencial equivalente para análise de um sistema frontal na região tropical In: XV Congresso Brasileiro de Meteorologia, São Paulo – SP. Anais do XV Congresso Brasileiro de Meteorologia. SBMET, 2008.

CZARNOBAI, A. F.; COMBAT, D. A. A.; BORTOLOTTO, J.; SANTIS, R. F.; ARAUJO, C. E. S. Visualização tridimensional de sistemas frontais: análise do dia 24 de agosto de 2005 In: IX Congresso Brasileiro de Meteorologia, Campos do Jordão – SP. Anais do IX Congresso Brasileiro de Meteorologia, 1331-1332, 1996.

DAMETTO, G. S.; ROCHA, R. P. Características climáticas dos sistemas frontais na cidade de São Paulo In: XIV Congresso Brasileiro de Meteorologia, Florianópolis – SC. Anais do XIV Congresso Brasileiro de Meteorologia. SBMET, 2006.

Page 34: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

CICLONES E CICLOGÊNESE CICLONES E CICLOGÊNESE – REFERÊNCIAS– REFERÊNCIAS

FERNANDES, D. S.; JACONDINO, C. R. Comparações em diferentes períodos de estudo de passagens de sistemas frontais no Brasil In: XIV Congresso Brasileiro de Meteorologia, Florianópolis – SC. Anais do XIV Congresso Brasileiro de Meteorologia. SBMET, 2006.

FERREIRA, A. G. Meteorologia Prática. São Paulo: Oficina de Textos, pp 188, 2006.

HARAKAWA, M. T.; PRUDÊNCIO, R. S.; RODRIGUES, M. L. G. Climatologia de frentes frias para a região da grande Florianópolis – SC In: XV Congresso Brasileiro de Meteorologia, São Paulo – SP. Anais do XV Congresso Brasileiro de Meteorologia. SBMET, 2008.

JUSTI DA SILVA, M. G. A.; SILVA DIAS, M. A. F. A Estatística dos Transientes na América do Sul In : XI Congresso Brasileiro de Meteorologia, Rio de Janeiro – RJ. Anais do XI Congresso Brasileiro de Meteorologia. SBMET, 2000.

KOUSKY, V. E.; ELIAS, M. Meteorologia Sinótica: Parte 1. INPE – 2605 – MD/021, pp 107, 1982.

LEMOS, C. F.; CALBETE, N. O. Sistemas Frontais que atuaram no Brasil de 1987 a 1995. Climanálise Especial, Edição comemorativa de 10 anos. CPTEC, 1996.

MARENGO, J.; CORNEJO, A.; SATYAMURTY, P.; NOBRE, C.; SEA, W. Cold surges in tropical and extratropical South America: The strong event in June 1994. Monthly Weather Review, 125, 2759-2786, 1977.

Page 35: Zona de forte  gradiente  de  temperatura ,  umidade  e  vorticidade .

CICLONES E CICLOGÊNESE CICLONES E CICLOGÊNESE – REFERÊNCIAS– REFERÊNCIAS

OLIVEIRA, A. S. Interações entre sistemas frontais na América do Sul e convecção na Amazônia, INPE – 4008 – TDI/239, 1986.

PETTERSSEN, S. Weather analysis and forecasting. Second Edition, McGraw-Hill, Ney York, v.1, pp 428, 1956.

RODRIGUES, M. L. G.; FRANCO, D.; SUGAHARA, S. Climatologia de frentes frias no litoral de Santa Catarina. Revista Brasileira de Geofísica, v. 22, n. 2, pp 135-151, 2004.

SATYAMURTY, P.; MATTOS, L. F. Climatological lower tropospheric frontogenesis in midlatitudes due to horizontal deformation and divergence. Monthly Weather Review, 117, 1355-1364, 1989.

WALLACE, J. M.; HOBBS, P. V. Atmospheric Science: An Introductory Survey. New York, Academic Press, 1977.