Apostila Geometria Espacial -2013

Post on 05-Dec-2014

62.694 views 8 download

description

 

Transcript of Apostila Geometria Espacial -2013

1

LICEU MUNICIPAL PREFEITO CORDOLINO AMBRÓSIO

Apostila de Matemática – 3º Bimestre

3001 – 3002 – 3003

1 PRISMA

1.1 Conceito

Suas superfícies são constituídas de polígonos;

Cada um tem pelo menos duas faces contidas

em planos paralelos;

Os planos que contêm as outras faces

interceptam-se dois a dois em retas paralelas

entre si.

Considerando α e β como sendo dois planos

paralelos diferentes, podemos considerar uma região

poligonal contendo n lados que está contida em α e

uma reta r que interrompe os planos α e β nos pontos

A e B respectivamente.

Podemos chamar de prisma, a união dos diversos

segmentos paralelos ao segmento da reta AB.

1.2 Elementos

bases (polígonos);

faces (paralelogramos);

arestas das bases (lados das bases);

arestas laterais (lados das faces que não

pertencem às bases);

vértices (pontos de encontro das arestas);

altura (distância entre os planos das bases).

2

1.3 Classificação

1.3.1 Quanto ao número de lados

Classifica-se quanto ao número de lados dos polígonos de cada base: triangular, quadrangular, pentagonal, etc.

1.3.2 Quanto à inclinação

Classifica-se devido à inclinação de suas arestas laterais em relação aos planos das bases.

1.4 Paralelepípedo

Um prisma cujas bases são paralelogramos é chamado paralelepípedo.

O paralelepípedo pode ser:

Oblíquo: a superfície total é a reunião de seis paralelogramos.

Reto: a superfície total é a reunião de quatro retângulos (faces laterais) com dois paralelogramos (bases).

3

Retângulo ou reto-retângulo: a superfície total é a reunião de seis retângulos.

Cubo (paralelepípedo retângulo cujas arestas são congruentes): a superfície total é a reunião de seis

quadrados.

1.4.1 Paralelepípedo Retângulo

Vamos considerar o paralelepípedo representado na figura abaixo, no qual os lados do retângulo da base medem

a e b e a altura mede c; dizemos que a, b e c são as dimensões do paralelepípedo.

1.4.1.1 Cálculo da área total

Fazendo uma planificação do paralelepípedo

retângulo dado, observa-se que a sua área total S é

igual à soma das áreas de seis retângulos, dois a dois

congruentes.

Assim:

321 .2.2.2 AAAS

ou seja:

bcacabS 222

Note que:

Área lateral bcacSl 22

Área das bases abSb 2

4

1.4.1.2 Cálculo da diagonal

Sejam d a medida da diagonal do paralelepípedo e d’ a medida da diagonal da base, observe que os triângulos

BAD e D’DB são retângulos:

Temos:

No ∆BAD: 222' bad (1)

No ∆D’DB: 222 ' cdd (2)

Substituindo (1) em (2) temos: 2222 cbad

ou seja 222 cbad

1.4.1.3 Cálculo do volume

O volume V de um paralelepípedo retângulo de

dimensões a, b e c é dado pela fórmula:

cbaV ..

Sendo ba. a área da base bA e c a altura h do

paralelepípedo, temos:

cbaV .. hAV b .

5

Exemplo 1

Um marceneiro deve construir um tabuleiro de xadrez na forma de um paralelepípedo retângulo, para construí-

lo recebeu as seguintes instruções:

As dimensões do tabuleiro deveriam ser de 40 cm de comprimento por 20 cm de largura, por 5 cm de

altura;

Ele deveria ser envernizado apenas na superfície superior e nas superfícies laterais;

A madeira deveria ser o ipê.

a) Se esse marceneiro gasta, em média, R$ 15,00 para revestir de verniz uma superfície de 1m², quanto gastará

para envernizar o tabuleiro?

Primeiro, calculemos a área S da superfície a ser envernizada.

Essa superfície é composta de uma das bases e das quatro

faces laterais do paralelepípedo retângulo de dimensões

a=40cm, b=20cm e c=5cm.

Assim, bcacabS 22 , e temos:

22 14,01400

200400800

5.20.25.40.220.40

mcmS

S

S

O custo para envernizar o tabuleiro pode ser obtido pela regra de três simples:

xm

reaism

2

2

14,0

151reaisxx 10,215.14,0

b) Se por 1m³ de ipê ele paga R$ 900,00 ao seu fornecedor, qual será o custo da madeira a ser usada na

confecção do tabuleiro?

O volume V da madeira a ser usada na confecção do tabuleiro é igual ao volume do paralelepípedo retângulo de dimensões a=40cm,

b=20cm e c=5cm.

Assim, cbaV .. , e temos:

33 004,04000

5.20.40

mcmV

V

O custo da madeira pode ser obtido pela regra de três:

xm

reaism

3

3

004,0

9001reaisxx 60,3900.004,0

6

1.4.2 Cubo

O cubo é um paralelepípedo retângulo cujas seis faces

são quadrados. Assim, suas 12 arestas são congruentes

entre si.

Já temos as fórmulas da área, da diagonal e do

volume de um paralelepípedo retângulo que são:

bcacabS 222 222 cbad

hAV b .

Fazendo cba , em cada fórmula temos:

1.4.2.1 Área do cubo S

aaaaaaS 222 26aS

1.4.2.2 Diagonal do cubo d

222 cbad = 23a 3ad

1.4.2.3 Volume do cubo V

aaaV .. 3aV

Exemplo 2

Na figura ao lado tem-se um peso feito de ferro.

Ele tem a forma de um cubo, cuja área total é de 150

cm².

Sabendo-se que a densidade do ferro é 7,8 g/cm³,

qual é a massa desse peso?

Sabe-se que a área total de um cubo de aresta a é dada por:

cmaaaaS 52561506 222

O volume do peso (cubo) é: 333 1255 cmVVaV

Como a densidade do ferro é 7,8g/cm³, isto é, a massa de 1cm³ de ferro é igual a 7,8g, a regra de três nos permite obter a

massa do peso:

xm

gcm

3

3

125

8,71gxx 9758,7.125

7

Exercícios propostos

1- Calcule a diagonal, a área e o volume de cada um dos paralelepípedos, cujas medidas estão indicadas abaixo:

a) cubo

b) paralelepípedo retângulo

c) paralelepípedo retângulo

2- Represente, por meio de expressões algébricas, a diagonal, a área total e o volume de cada um dos

paralelepípedos cujas medidas estão indicadas abaixo:

a) cubo

b) paralelepípedo retângulo

c) paralelepípedo retângulo

3- Calcule a terceira dimensão de um paralelepípedo, sabendo que duas delas medem 4 cm e 7 cm e que sua

diagonal mede 103 cm.

4- Determine a diagonal de um paralelepípedo, sendo 62cm² sua área total e 10 cm a soma de suas dimensões.

5- Para revestir a superfície do cubo representado na

figura ao lado, um artesão usou 300 cm² de papel. Se

ele usou a menor quantidade possível de papel,

determine:

a) a aresta do cubo;

b) o volume do cubo.

5- Calcule a aresta de um cubo de 27 m³ de volume.

6- Calcule a diagonal, a área total e o volume de um cubo cuja soma das medidas das arestas vale 30 cm.

8

7- (UF-PR, adaptado) Pelo regulamento de uma companhia de transportes aéreos, é permitido levar a bordo

objetos de tamanho tal que a soma de suas dimensões (comprimento, largura e altura) não exceda a 115 cm.

Assim, quais das afirmações seguintes estão corretas?

a) É permitido levar uma caixa em forma de cubo com altura de 0,35 m.

b) É permitido levar um pacote com 55 cm de comprimento, 30 cm de largura e 40 cm de altura.

c) Para que possa ser levada a bordo uma caixa de comprimento, largura e altura, respectivamente indicados

por a, b e c, em centímetros, é necessário que as medidas verifiquem a condição 115 cba .

d) Um pacote com formato de paralelepípedo reto de base quadrada de lado 30 cm poderá ser levado a bordo

se qualquer face lateral tiver uma de suas diagonais medindo 530 cm.

e) Se um objeto a bordo tem formato de paralelepípedo reto-retângulo de dimensões 20 cm, 30 cm e 40 cm,

então o seu volume é 100% maior do que o volume de outro objeto com mesmo formato e de dimensões

10 cm, 15 cm e 80 cm.

8- (UF-AL, adaptado) Considere o paralelepípedo retangular representado abaixo.

Assinale V ou F, conforme as proposições seguintes sejam, respectivamente, verdadeiras ou falsas.

a) ( ) Seu volume é xxx 107 23 .

b) ( ) A área da face ABCD é xx 22 .

c) ( ) Se a área da face ABCD é 24cm², então x = 6 cm.

d) ( ) A área total é 10216 2 xx .

e) ( ) Se x = 2 cm, então a área total é 10 cm².

1.5 Áreas e Volumes de um Prisma

1.5.1 Área da base ( bA )

Como a base de um prisma é um polígono, a área da base de um prisma é a área de um polígono.

Por exemplo, se a base de um prisma for um quadrado de lado a, então 2aAb ; se a base do prisma for um

triângulo de base b e altura h, então 2

.hbAb .

1.5.2 Área lateral ( lA )

Como a superfície lateral de um prisma é a reunião de suas faces laterais, então a área dessa superfície é a soma

das áreas das faces laterais.

lA = soma das áreas das faces laterais

9

1.5.3 Área total ( tA )

Como a superfície total de um prisma é a reunião da superfície lateral com as bases, a área total de um prisma é

dada por:

blt AAA .2

1.5.4 Volume (V )

O volume de um prisma, como o de um paralelepípedo retângulo, é igual ao produto da área da base pela medida

da altura:

hAV b .

Exemplo 3

Uma marmoraria fabrica mesas como a mostrada

na figura ao lado, a qual é composta de dois

prismas de mármore acoplados:

O tampo, com 0,5 m de altura, é um

prisma regular hexagonal cuja aresta da

base mede 0,70 m;

O suporte do tampo é um paralelepípedo

retângulo que tem 0,70m de altura e cuja

base é um quadrado com 0,50 m de lado.

Considerando esses dados, responda:

a) Qual o volume do mármore que compõe a estrutura da mesa?

Devemos calcular o volume dos dois prismas.

V1: volume do prisma regular hexagonal

4

3

2

2

3.

2

3

2

.2

.

lA

ll

Al

h

hlA

eq

, assim

2

3.3

4

3.6

22 llAhex

Logo, a área da base é:

22

3735,02

349,0.3

2

3.7,0.3 mAhex

227,1 mAhex

Como hAV b .1 , então:

3

11 064,005,0.3735,0 mVV

10

V2: volume do paralelepípedo retângulo

222 25,050,0 mlAb

3

222 175,070,0.25,0. mVVhAV b

Volume total do mármore: 3

21 239,0175,0064,0 mVVVVV

b) Se para aplicar uma resina impermeabilizante na pedra o fabricante cobra R$ 20,00 o metro quadrado, quanto

custaria aplicar essa resina na superfície dos dois prismas que compõem a mesa?

Vamos calcular as áreas totais dos dois prismas.

At:área total do prisma regular hexagonal

)____.(2)____.(6 regularhexágonoumdeárealateralfaceumadeáreaAt

Como

),___(27,1___

035,005,0.70,0____

2

2

anterioritemnocalculadamregularheágonodoárea

mmmlateralfaceumadeárea

Temos: 275,227,1.2035,0.6 mAA tt

A’t:área total do paralelepípedo retângulo

2

2

90,1'

50,0.270,0.50,0.4'

)___.(2)____.(4'

mA

A

quadradoumdeárealateralfaceumadeáreaA

t

t

t

Logo, a área total a ser impermeabilizada é: 265,490,175,2' mAA tt

Se o fabricante cobra R$ 20,00 para aplicar a resina em uma superfície de 1 m², então pagará pela aplicação nas superfícies dos

prismas: 9320.65,4 reais.

11

Exercícios propostos

9- Calcule a área lateral, a área total e o volume de cada um dos prismas abaixo.

a) prisma reto (triangular)

b) prisma regular (hexagonal)

c) prisma oblíquo (base

quadrado)

10- Represente, por meio de expressões algébricas, a área lateral, a área total e o volume de cada um dos prismas.

a) prisma regular (triangular)

b) prisma regular (hexagonal)

c) prisma reto (triangular)

11- A base de um prisma de 10 cm de altura é um triângulo retângulo isósceles de 6 cm de hipotenusa. Calcule a

área lateral e o volume do prisma.

12- Determine a área lateral e o volume de um prisma reto de 25 cm de altura, cuja base é um hexágono regular

de apótema 34 cm.

13- Determine a aresta da base de um prisma triangular regular, sendo seu volume 8 m³ e sua altura 80 cm.

14- Um prisma reto tem por base um hexágono regular. Qual é o lado do hexágono e a altura do prisma, sabendo-

se que o volume é de 4 m³ e a superfície lateral de 12 m²?

15- Um prisma pentagonal regular tem 8 cm de altura, sendo 7 cm a medida da aresta da base. Calcule a área

lateral desse prisma.

12

16- (UF-GO) A figura ao lado representa um prisma

reto, de altura 10 cm e cuja base é um pentágono

ABCDE. Sabendo-se que AB = 3 cm e BC = CD =

DE = EA = 2 cm, calcule o volume do prisma.

17- (Vunesp-SP) Um tanque para criação de peixes tem a forma da figura abaixo.

Em que ABCDEFGH representa um paralelepípedo retângulo e EFGHII, um prisma cuja base EHI é um triângulo

retângulo (com ângulo reto no vértice H e ângulo α no vértice I tal que 5

3sen ). A superfície interna do tanque

será pintada com material impermeabilizante líquido. Cada metro quadrado necessita de 2 litros de

impermeabilizante, cujo preço é R$ 2,00 o litro.Sabendo-se que AB = 3 m, AE = 6 m e AD = 4 m, determine:

a) as medidas EI e HI;

b) a área da superfície a ser pintada e quanto será gasto, em reais.

18- (UF-MG) O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal, em centímetros é:

a) 38,0

b) 6

c) 60

d) 360

e) 3900

13

2.0 PIRÂMIDE

2.1 Conceito

Consideremos um polígono num plano α e um

ponto V fora de α. Tomemos segmentos de reta, cada

um com uma extremidade em V e a outra num ponto

do polígono: a reunião desses segmentos é um sólido

chamado pirâmide.

Note que, na figura ao lado, o polígono ABCD é

um quadrilátero – daí a pirâmide ser chamada de

pirâmide quadrangular.

2.2 Elementos

Considerando a pirâmide VABCDE, temos:

V (vértice da pirâmide);

O polígono ABCDE (base da pirâmide);

Os lados AB, BC, CD, DE e EA (arestas da base);

Os segmentos VA, VB, VC, VD e VE (arestas

laterais);

Os triângulos VAB, VBC, VCD, VDE e VEA

(faces laterais);

Distância de V ao plano da base (altura da pirâmide)

2.3 Classificação

São classificadas de acordo com as bases.

2.3.1 Pirâmide regular

Sua base é um polígono regular e suas arestas laterais são congruentes entre si.

14

Uma pirâmide regular tem as seguintes características:

A projeção ortogonal do vértice sobre o plano da base é o centro da base;

As faces laterais são triângulos isósceles congruentes;

O apótema da pirâmide regular, indicado por g, é a altura de uma face lateral.

Relação notável: 222 hmg

2.3.1.1 Áreas e Volume

2.3.1.1 Área da base ( bA )

Calcula-se pela área do polígono de base.

2.3.1.2 Área lateral ( lA )

A superfície lateral de uma pirâmide é constituída de triângulos, então:

lateraisfacesdasáreasdassomaAl _____

2.3.1.3 Área total ( tA )

lbt AAA

15

2.3.1.4 Volume ( V )

)__).(__(3

1alturadamedidabasedaáreaV

hAV b .3

1

2.4 Tetraedro regular

Tetraedro regular é uma pirâmide que tem as quatro

faces congruentes. Observe na figura:

As seis arestas são congruentes;

As faces ABC, ACD, ABD e BCD são

triângulos eqüiláteros, e qualquer uma delas

pode ser considerada base do tetraedro

regular.

2.4.1 Área total ( tA )

tA é quatro vezes a área de uma face, que é um triângulo equilátero de lado a.

4

3.4.4

2aAAA tfacet

32aAt

2.4.2 Altura ( h )

Para calcular a altura, olhando a pirâmide, temos: 222BOAOAB , onde procuramos AO.

3

3..

ah equiltriang Como:

3

3aOB

hAO

aAB

Aplicando no teorema de Pitágoras temos:

9

6

9

6

9

39

9

3

9

3.

3

3 222

222

222

222

2

22 ah

ah

aah

aah

aha

aha

3

6ah

16

2.4.3 Volume (V )

Temos a fórmula para calcular o volume de uma pirâmide hAV b .3

1 , assim:

3

6

4

3)__(___

2

ah

aequiláterotriângulofaceumadeáreaAb

Aplicando na fórmula:

3.4.3

23

3.4.3

18

3

6.

4

3.

3

1.

3

1 332 aV

aV

aaVhAV b

12

23aV

Exemplo

Quando a pirâmide de Quéops terminou de ser

construída tinha 146 m de altura e 233 m de aresta da

base.

Sabendo que essa pirâmide é uma pirâmide regular

quadrangular, vamos calcular sua área e seu volume.

Área

A área da base é: 222289.54233 mmABAb

A área lateral é a soma dos quatro triângulos isósceles:

2

2

2

22

222

78,186

25,34888

25,1357221316

2

233146

mVM

VM

VM

VM

MHVHVM

248,039.8778,186.2332

..2

2

..4

.4

mA

VMABA

VMABA

AA

l

l

l

AVBl

A área total é: 248,328.14148,039.87289.54 mAAA lbt

Volume

32 67,064.642.2146.289.54.3

1.

3

1mmmhAV b

17

Exercícios propostos

1- Classifique em cada caso a pirâmide, sabendo que possui:

a) 6 faces b) 8 faces c) 12 arestas d) 20 arestas

2- Calcule a área lateral, a área total e o volume da cada uma das pirâmides regulares.

a)

b)

3- Sabendo que a aresta de um tetraedro regular mede 3 cm, calcule sua altura, sua área total e seu volume.

4- Determine a área lateral e a área total de uma pirâmide regular triangular de 7 cm de apótema, sendo 2 cm o

raio do círculo circunscrito à base.

5- Uma pirâmide tem por base um retângulo cujas dimensões valem 10 cm e 24 cm, respectivamente. As arestas

laterais são iguais à diagonal da base. Calcule a área total da pirâmide.

6- A base de uma pirâmide de 6 cm de altura é um quadrado de 8 cm de perímetro. Calcule seu volume.

7- Pretende-se construir um obelisco de concreto, de forma piramidal regular, no qual a aresta da base

quadrangular mede 6 m e a aresta lateral mede 53 m. Determine:

a) a área total do obelisco;

b) o volume do obelisco;

c) o ângulo α, de inclinação, entre cada face lateral e a base do obelisco.

8- Calcule o volume de uma pirâmide de 12 cm de altura, sendo a base um losango cujas diagonais medem 6 cm e

10 cm.

18

9- De uma pirâmide regular de base quadrada sabe-se que a área da base é 32 dm² e que o apótema da pirâmide

mede 6 dm. Calcule:

a) a aresta da base(l);

b) o apótema da base(m)

c) a altura da pirâmide(h);

d) a aresta lateral(a);

e) a área lateral(Al);

f) a área total(At).

10- Calcule o volume de uma pirâmide hexagonal regular, sendo 24 cm o perímetro da base e 30 cm a soma dos

comprimentos de todas as arestas laterais.

11- Uma pirâmide regular hexagonal de 12 cm de altura tem aresta da base medindo 3

310cm. Calcule:

a) o apótema da base;

b) o apótema da pirâmide (g);

c) a aresta lateral;

d) a área da base (Ab);

e) a areal lateral (Al);

f) a área total (At);

g) o volume (V).

12- Um grupo de amigos foi acampar e levou uma barraca de lona que, depois de montada, tinha a forma de uma

pirâmide regular hexagonal cuja aresta da base media 2 m. Se, depois de montada, o ar em seu interior ocupava

um volume de 35 m³, quantos metros quadrados de lona tinha a barraca?

13- Calcule a aresta da base de uma pirâmide regular, sabendo que o apótema da pirâmide mede 6 cm e a aresta

lateral, 10 cm.

14- (Ucsal-BA) A aresta de um Tetraedro regular mede 4 cm. Sua área total, em centímetros quadrados, é:

a) 32

b) 34

c) 38

d) 316

e) 332

19

3 CILINDRO

3.1 Conceito

Um cilindro possui as seguintes características:

Apresenta duas superfícies regulares de

raios congruentes, que se situam em planos

paralelos;

Sua superfície lateral é constituída de todos

os segmentos congruentes que têm

extremidades nas circunferências dos

círculos e são paralelos à reta que contém

os centros desses círculos.

3.2 Elementos

No cilindro representado abaixo, temos:

Os círculos de centro O e O’ e raio r (bases

do cilindro);

Os segmentos paralelos a OO’, com

extremidades em pontos das circunferências

das bases (geratrizes do cilindro);

A reta OO’ (eixo do cilindro);

A distância h, entre os planos das bases

(altura do cilindro).

3.3 Classificação

Quanto à inclinação da geratriz em relação aos planos de suas bases, os cilindros classificam-se em:

Cilindro oblíquo – geratriz oblíqua às

bases;

Cilindro reto – geratriz perpendicular às

bases. Nesse caso, a geratriz é a altura do

cilindro.

20

Obs.: O cilindro reto é também

chamado de cilindro de revolução,

por ser gerado pela rotação de um

retângulo em torno de um de seus

lados.

3.4 Áreas e volume

3.4.1 Área da base ( bA )

A área de um círculo de raio r é a área da base: 2.rAb

3.4.2 Área lateral ( lA )

Área lateral refere-se à um retângulo de base r.2 ,

em que r é o raio do cilindro e h é sua altura.

Isso pode ser visualizado se planificarmos a

superfície lateral do cilindro.

Assim, retânguloumdelateraláreaAl ____

hrAl ..2

3.4.3 Área total ( tA )

A superfície total de um cilindro é a reunião da

superfície lateral com os cículos das bases.

Assim, a área total é:

blt AAA .2

Temos:

2.

..2

rA

hrA

b

l

Substituindo na fórmula:

2..2..2 rhrAt )(.2 rhrAt

3.4.4 Volume (V )

Seu volume é obtido da mesma forma que o volume de um prisma: hAV b .

Como 2.rAb , temos:

hrV .. 2

21

3.5 Seção meridiana e cilindro eqüilátero

Seção meridiana de um cilindro é a interseção deste com um plano que contém o segmento OO’.

A seção meridiana de um cilindro oblíquo é

um paralelogramo.

A seção meridiana de um cilindro reto é um

retângulo.

Cilindro eqüilátero é um cilindro cuja seção meridiana é um quadrado, onde rhg .2

Como obter a área lateral( lA ), a área total ( tA ) e o volume (V) de um cilindro eqüilátero de raio r:

Área lateral

rrA

rh

hrAl

l.2..2

.2

..2

2.4 rAl

Área total

22

2

2 ..2.4

.

.4

2

rrA

rA

rA

AAA

t

b

l

blt

2.6 rAt

Volume

rrV

rh

hrV.2..

.2

. 2

2

3.2 rV

Exemplo

Uma vela tem a forma de um cilindro reto, com área

total de 108π cm² e raio de base igual a 5

1 da altura.

Vamos determinar sua área lateral e seu volume.

Sendo r a medida do raio da base e h a medida da altura, temos:

108

5

1

tA

hr Se blt AAA .2 , então

2

2

54

54

..2108

..2...2108

rrh

rhr

rhr

rhr

22

Substituindo hr5

1 :

1522561350

2525

554

25554

5

1.

5

154

54

2

22

22

2

2

hhh

hh

hh

hhh

rrh

Agora calculamos o raio:

315.5

1

5

1

rr

hr

Logo

322

2

_13515.3...

_9015.3.2..2

cmVVhrV

cmAAhrA lll

Exercícios propostos

1- Calcule a área lateral de um cilindro circular reto, sabendo que o raio da base mede 4 cm e a geratriz, 10 cm.

2- O raio de um cilindro circular reto mede 3 cm e a altura, 3 cm. Determine a área lateral, a área total e o volume

desse cilindro.

3- Qual a altura de um reservatório cilíndrico, sendo 150 m o raio da base e 900π m² sua área lateral?

4- Calcule a área lateral, a área total e o volume dos sólidos abaixo.

a) cilindro equilátero

b) cilindro reto

c) semicilindro reto

23

5- Na decoração de uma festa foram usadas

lanterninhas orientais, como as mostradas na figura

ao lado. Determine a área da superfície lateral de

uma lanterninha, sabendo que ela tem a forma de um

cilindro eqüilátero cuja geratriz mede 15 cm.

6- Determine a área total de um cilindro, sabendo que sua área lateral é de 80 cm² e sua seção meridiana é um

quadrado.

7- A cúpula do abajur mostrado na figura ao lado tem a

forma de um cilindro reto cuja área da base é 144π cm².

Se a altura da cúpula é igual a 3

5 do raio da base,

determine a área de sua superfície lateral.

8- Determine a área lateral e o volume de um cilindro de altura 10 cm, sabendo que a área total excede em 50π

cm² sua área lateral.

9- O bolo mostrado na figura ao lado tem a forma de

um cilindro reto cuja área total é 720π cm². Se a

altura desse bolo é igual a 5

3 do raio da base, qual é

o seu volume?

10- Determine a altura e o raio de um cilindro reto, sendo 5

9 sua razão, nessa ordem, e 270π cm² a área lateral.

24

11- Um fabricante de goiabada vende seu produto em latas cilíndricas (figura 1), ao preço de R$ 2,40 a lata. Ele

pretende substituir a embalagem que usa por outra lata, também cilíndrica, mostrada na figura 2. Se o preço de

venda de uma lata é diretamente proporcional ao volume de goiabada no seu interior, por quanto ele deverá

vender a nova lata?

12- O volume de um cilindro de revolução é 96π cm³ e a área de sua seção meridiana é 48 cm². Qual é a área total

desse cilindro?

13- Uma lata, cheia de manteiga, tem a forma de um cilindro eqüilátero de 8 cm de altura. Que volume ocupa a

manteiga no seu interior? (Use π = 3,14.)

14- O desenvolvimento de uma superfície cilíndrica de revolução é um retângulo de 4 cm de altura e 7 cm de

diagonal. Calcule o raio do cilindro.

15- (Ucsal-BA) Pode-se fabricar um cilindro reto, de volume V1, curvando-se uma placa metálica retangular de

maneira que coincidam os dois lados maiores:

Pode-se fabricar outro cilindro reto, de volume V2, com outra placa de mesmas dimensões, curvando-a de maneira

que coincidam os lados menores:

Nessas condições, de acordo com as medidas dadas nas figuras, expresse V2 em função de V1.

25

4 CONE

4.1 Conceito

Consideremos um círculo de centro O e raio r,

situado num plano α, e um ponto V, fora de α.

Chama-se cone circular, ou cone, a reunião dos

segmentos com uma extremidade em V e a outra em

um ponto do círculo.

4.2 Elementos

Ponto V ( vértice do cone );

Círculo de raio r ( base do cone );

Cada segmento com uma extremidade em V

e outra num ponto da circunferência da

base ( geratriz do cone );

Distância h do vértice ao plano da base (

altura do cone ).

4.3 Classificação

Classifica-se quanto à inclinação da reta OV em relação ao plano da base.

Cone oblíquo:

Cone reto:

Obs.: O cilindro reto é também

chamado de cilindro de revolução,

por ser gerado pela rotação de um

retângulo em torno de um de seus

lados.

26

4.4 Áreas e volume

4.4.1 Área da base ( bA )

É a área de um círculo de raio r: 2.rAb

4.4.2 Área lateral ( lA )

É a área de um setor circular cujo raio é g (geratriz do cone) e cujo comprimento do arco é r.2 (perímetro da

base):

Observe que o raio do setor é g e o comprimento do arco do setor é r.2 .

A área do setor circular de raio g e comprimento de arco r.2 , isto é, a área lateral lA , é obtida pela regra de

três:

g

rgAl

2

.22

rgAl .

4.4.3 Área total ( tA )

É a reunião da superfície lateral com o círculo da

base:

lbt AAA

Substituindo rgAl . e 2.rAb , temos:

2.. rrgAt rgrAt .

4.4.4 Volume (V)

Assim como a pirâmide:

hAV b .3

1

Como 2.rAb , temos:

hrV ..3

1 2

27

4.5 Seção meridiana e cone eqüilátero

Seção meridiana de um cone é a interseção dele

com um plano que contém o segmento OV .

Cada seção meridiana de um cone reto é um

triângulo isósceles.

Cone equilátero é um cone reto cuja seção

meridiana é um triângulo eqüilátero.

Num cone eqüilátero, rg 2 .

4.5.1 Áreas e volume do cone eqüilátero

4.5.1.1 Área lateral

rrA

rg

grAl

l.2..

.2

..

2.2 rAl

4.5.1.2 Área total

22

2..2

.rrA

rA

AAAt

b

blt

2.3 rAt

4.5.1.3 Volume

hrV ..3

1 2

Obs.: Para calcular a altura h:

22222222 32 rhrrhgrh 3rh

Exemplo 1

O receptáculo da taça mostrada a seguir tem a

forma de um cone reto de geratriz 7,5 cm e raio da

base 4,5 cm. Vamos determinar quantos milímetros

de uma bebida ocupariam 3

2 de sua capacidade.

28

Vamos primeiro determinar a altura h da taça, visto no esquema abaixo.

No AVOret :

cmhhhh 6365,45,75,75,4 2222222

Logo:

mlcmVVhrV 17,12717,1276.5,4.14,3.3

1..

3

1 322

Agora temos:

mlV 78,8417,127.3

2

3

2

Resposta: 84,78 ml da bebida ocupariam 3

2 da capacidade do receptáculo.

Exemplo 2

A superfície lateral de um cone reto desenvolvida num plano é um setor circular de 120º e 6 cm de raio.

Calculemos a área lateral, a área total e o volume desse cone.

Área lateral

12360

6..120

______120

6.______360 22

lo

o

l

l

o

o

AAA

Para calcular a área total precisamos ter o valor do raio.

Raio

Como grAl .. e 6g , vem:

cmrrrgrAl 26

126..12..

Área total

Como 2.rAb e 2r , vem:

22 _164122.12 cmAAAAAA tttblt

Para calcular o volume, precisamos antes calcular a altura.

Altura (h)

Como 222 ghr , temos:

cmhhhh 243236462 22222

Volume

322 _3

21624.4.

3

124.2..

3

1...

3

1..

3

1cmVVVhrVhAV b

Resposta: A área lateral é 12π cm², a área total é 16π cm² e o volume é 3

216 cm³

29

Exercícios propostos

1- Determine a medida da altura de um cone reto cuja geratriz mede 10 cm, sendo 12 cm o diâmetro de sua base.

2- Determine a medida do raio da base de um cone de revolução cuja altura mede 3 cm e cujo volume é 9π cm.

3- A geratriz de um cone reto mede 14 cm e a área da base, 80π cm². Calcule a medida da altura e o volume desse

cone.

4- O chapéu do bruxo mostrado na figura ao lado

tem a forma de um cone de revolução de 12 cm de

altura e 100π cm³ de volume. Se ele é feito de

cartolina, quanto desse material foi usado para fazer

a superfície lateral?

5- Calcule a área lateral, a área total e o volume de cada uma das figuras.

a) cone equilátero

b) cone reto

c) semicone

6- Determine a altura de um cone eqüilátero cuja área total é 54π cm².

7- Calcule a área total e o volume de um cone eqüilátero, sabendo que a área lateral é igual a 24π cm².

8- Determine a altura de um cone, sendo 42 cm o diâmetro da base e 1050π cm² sua área total.

30

9- Em uma festa foi servido doce de leite em cones

retos, cada um com 2 cm de raio da base e geratriz

medindo 53 cm. Determine quantos litros de doce

de leite foram necessários para encher 600 cones que

foram servidos nessa festa.

.

.Use

7

22

10- Determine a área total de um cone, sendo 40 cm o diâmetro de sua base e 420 cm² a área de sua seção

meridiana.

11- Determine a geratriz de um cone de revolução, sabendo que a área da base é equivalente à seção meridiana do

cone e que sua altura é 9π cm.

12- Determine o volume de um cone de revolução, sendo 126π cm² sua área lateral e 200π cm² sua área total.

13- Um semicone reto tem altura igual ao raio e seu volume é 576π cm³. Calcule a área lateral do semicone.

14- A hipotenusa de um triângulo retângulo mede 2 e um de seus ângulos agudos mede 60°. Girando-se o

triângulo em torno do cateto menor, obtém-se um cone. Qual é o volume desse cone?

15- Determine a área lateral, a área total e o volume do sólido que segue.

31

5 ESFERA

5.1 Conceito

1º) A superfície esférica é gerada pela rotação de uma semicircunferência em torno de um eixo que contém seu

diâmetro.

2º) A esfera é o sólido de revolução gerado pela rotação de um semicírculo em torno de um eixo que contém o

diâmetro.

5.2 Elementos

A nomenclatura seguinte deve-se ao fato de a Terra ser considerada aproximadamente uma esfera, tomando-se e

como eixo de rotação.

Interseções da superfície com o eixo (Pólos 1P e 2P ).

Seção (circunferência) perpendicular ao eixo, pelo

centro da superfície (Equador).

Seção (circunferência) paralela ao Equador (Paralelo)

Seção (circunferência) cujo plano passa pelo eixo

(Meridiano)

32

5.3 Seção da esfera

Toda seção plana de uma esfera é um círculo.

Na figura ao lado, o plano α determina uma seção

plana na esfera de centro O e raio r.

Sendo d a distância de α ao centro O e s o raio da

seção, temos: MOA é retângulo 222 dsr

Se o plano secante passa pelo

centro da esfera, temos como

seção um círculo máximo da

esfera.

5.4 Área e volume

5.4.1 Área da esfera (A) 2.4 rA

5.4.2 Volume da esfera (V)

3.3

4rV

Exemplo 1

Considere que as superfícies das bolhas de sabão

mostradas na figura têm áreas de 64π cm² e 100π cm².

Vamos calcular:

a) a razão entre os raios da menor e da maior

bolha;

b) o volume de ar contido no interior de cada

bolha.

a) Temos 1A e 2A as áreas das superfícies das bolhas maior e menor:

cmrrrrrA

cmrrrrrA

5254

100100.4.4

4164

6464.4.4

2

2

2

2

2

2

2

2

22

1

2

1

2

1

2

1

2

11

Logo: 5

4

2

1 r

r

33

b) Temos 1V e 2V os volumes das esferas representadas pelas bolhas menor e maior:

3

22

3

2

3

22

3

11

2

1

3

11

3

500125.

3

45.

3

4.

3

4

3

25664.

3

44.

3

4.

3

4

cmVVVrV

cmVVVrV

Logo, o volume de ar no interior da bolha menor é 3

3

265cm

e na bolha maior é 3

3

500cm

.

Exemplo 2

Duas esferas são concêntricas, e a menor tem 9 cm de raio. A área da seção feita na esfera maior por um plano

tangente à esfera menor é 144π cm².

Calculemos a área e o volume da esfera maior e o comprimento de sua circunferência máxima.

Interpretando o problema, temos a figura ao lado, na qual:

d – raio da esfera menor = 9cm

s – raio da seção

r – raio da esfera maior

12144

144.144 22 sssAseção

Substituindo d=9 e s=12 na relação 222 dsr , vem:

1522514481129 22222222 rrrrdsr

Substituindo r=15 nas expressões dos valores pedidos, vem:

Área da esfera 900225.415.4.4 22 AAArA

Volume da esfera 45003

135003375.

3

415.

3

4.

3

4 33 VVVVrV

Circunferência máxima 3015.2.2 CCrC

Logo, a área é 900 cm², o volume é 4500 cm³ e a circunferência mede 30 cm.

34

Exercícios propostos

1- Calcule a área e o volume de cada uma das esferas.

a)

b)

2- Determine a área e o volume de uma esfera de 58 cm de diâmetro.

3- Um fabricante de sucos vende seu produto em embalagens cilíndricas, todas com 6 cm de diâmetro da base e

12 cm de altura. Ele pretende substituir essas embalagens por outras de forma esférica. Qual deve ser o diâmetro

da nova embalagem para que possa conter a mesma quantidade de suco que a primeira?

4- Determine o raio de uma esfera de superfície 36π cm².

5- Determine a área uma esfera, sendo 2 304π cm³ o seu volume.

6- Considerando a Terra uma esfera cujo diâmetro é

12 800 km e considerando a Lua uma esfera cujo

diâmetro é 4

1do da Terra, calcule a razão entre os

volumes dos dois astros.

7- Considere uma esfera de 6 cm de raio, feita com massa de modelar. Divide-se essa massa em quatro partes

iguais e são construídas quatro novas esferas. Qual o raio de cada uma dessas quatro esferas?

35

8- Obtenha o raio de uma esfera, sabendo que um plano determina na esfera um cículo de raio 20 cm, sendo 21

cm a distância do plano ao centro da esfera.

9- Um plano seciona uma esfera de 34 cm de diâmetro. Determine o raio da seção obtida, sendo 8 cm a distância

do plano ao centro da esfera.

10- Um aquecedor a gás tem a forma de um cilindro

com duas semiesferas acopladas em suas

extremidades, conforme mostra a figura ao lado. Se o

diâmetro do aquecedor é 0,90 m e seu comprimento

total é 1,50 m, calcule:

a) a área de sua superfície;

b) o volume máximo de gás que o seu interior

pode conter.

11- A seção plana de uma esfera feita a 35 cm do centro tem 144π cm² de área. Calcule a área do círculo máximo

dessa esfera.

12- Determine a área de uma superfície esférica, sendo 26π cm o comprimento da circunferência do círculo

máximo.

13- Determine a área da superfície e o volume de uma esfera, sabendo que o seu raio mede 5

1 do raio de outra

esfera cujo volume é 4 500π cm³.

14- Os raios de duas esferas concêntricas medem, respectivamente, 15 cm e 8 cm. Calcule a areada seção feita na

esfera maior por um plano tangente à outra esfera.

15- (UF-CE) Um silo tem a forma de um cilindro

circular reto (com fundo) encimado por uma

semiesfera, como na figura ao lado.

Determine o volume e a área da superfície desse silo,

sabendo que o raio do cilindro mede 2 m e que a

altura do silo mede 8 m.