Curso de Termodinâmica Aplicada Prof. Luís Mauro Moura Curso de Engenharia Mecânica - CEM...

Post on 18-Apr-2015

111 views 1 download

Transcript of Curso de Termodinâmica Aplicada Prof. Luís Mauro Moura Curso de Engenharia Mecânica - CEM...

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

Prof. Luís Mauro Moura  Curso de Engenharia Mecânica - CEM  Pontifícia Universidade Católica do Paraná - PUCPR   Telefone: (41) 3271-1341  e-mail:    Luis.moura@pucpr.br

Engenheiro Mecânico formado pela UFSC em 1990 com mestrado em Ciências Térmicas também pela UFSC em 1993. Realizou doutorado No Institut de Sciences Appliquées de Lyon, INSA de Lyon - França na área de Ciências Térmicas e Energia, com obtenção em 1998.

Iniciou a carreira docente em 1999 na Pontifícia Universidade Católica do Paraná (PUCPR) onde hoje é professor Titular. Trabalha com pesquisa na área de Ciências Térmicas e Aproveitamento de Energia, onde possui até o primeiro semestre de 2006, 13 orientações de mestrado e 11 orientações de iniciação científica. Orienta atualmente 3 alunos de doutorado e 4 alunos de mestrado.

Exerceu o cargo de Diretor do curso de Engenharia Mecânica da PUCPR entre os anos de 2001 e 2006 e é atualmente o secretário da Regional Paraná da Associação Brasileira de Ciências Mecânicas. Pertence Conselho do Centro de Ciências e Tecnologia da PUCPR e Conselho Universitário da PUCPR.(CONSUN, CAMGRAD).

Professor do Programa de Formação em Motores e Combustíveis desde a primeira turma.

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

www.autoblog.it

Bugatti - Veyron 16.4

Curso de Termodinâmica Aplicada

Histórico

• Termodinâmica– THERME: Calor– DYNAMIS: Potência, força

Curso de Termodinâmica Aplicada www.df.ufscar.br/Termodinamica.pdf

Curso de Termodinâmica Aplicada

www.df.ufscar.br/Termodinamica.pdf

Curso de Termodinâmica Aplicada

www.df.ufscar.br/Termodinamica.pdf

Curso de Termodinâmica Aplicada

• Antoine-Laurent de Lavoisier (Paris, 26 de agosto de 1743 — Paris, 8 de maio de 1794) foi um químico francês, considerado o criador da Química moderna.

• Foi o primeiro cientista a enunciar o princípio da conservação da matéria. Além disso identificou e batizou o oxigênio.

• Os trabalhos de Lavoisier assinalam, no século XVIII, o início da Química moderna.• Escreveu um grande Tratado Elementar de Química, assumindo a inspeção nacional das

companhias de fabricação de pólvora e foi arrecadador de impostos, cargo pelo qual foi guilhotinado durante o período de Terror durante a Revolução Francesa.

• Além de químico, Lavoisier também foi um financista.• Afirmava nesta teoria que o calor era uma substância elástica, indestrutível e imponderável que os

materiais libertavam, aquecendo-os tendo origem no fogo. No entanto esta teoria nunca foi muito bem aceite, sendo contestada desde a sua apresentação.

Curso de Termodinâmica Aplicada

Benjamin Thompson (Conde de Rumford), Massachusetts (1753 - 1814)Foi aprendiz numa loja, professor a tempo parcial, ginasta e estudante de medicina, interessando em máquinas elétricas. Aos 18 anos casou-se com uma senhora viúva muito rica de 30 anos e decidiu tornar-se um cavalheiro militar e fazendeiro. Atuou como agente secreto a favor da Inglaterra e em 1776 prudente mudar-se para lá e retomando assim os seus interesses científicos. Em 1782, voltou para a América tendo cumprindo o seu papel como soldado na guerra que iria terminar no ano seguinte. Foi nomeado Sir por George III e indicado como Conselheiro do Governador da Bavária reformulando as condições do exército, estabelecendo serviços de assistência social para os pobres. Ganhou assim o título de “Conde de Rumford” e muito prestígio entre a sociedade. Permaneceu durante 14 anos, altura em que se mudou para Londres, em 1798. Mudou-se para Paris em 1805 e casou-se com Marie Lavoisier, viúva do seu famoso “rival” das suas teorias sobre o calor. No entanto, as freqüentes brigas e desentendimentos levam o casal ao divórcio. Morre a 1814 com 61 anos. “Quando dois corpos dotados de temperaturas diferentes são postos em contato, ambos tendem a alcançar uma temperatura de equilíbrio, situada entre os dois valores iniciais: o corpo mais quente se torna mais frio e, reciprocamente, o mais frio se aquece. Durante muito tempo, explicou-se esse fenômeno atribuindo aos corpos a posse de uma substância a que se chamava calórico. Um corpo a alta temperatura conteria muito calórico, ao passo que outro a baixa temperatura conteria pouco. Assim, quando dois objetos nessas condições eram colocados em contato, o mais rico em calórico transferiria uma parte dele para o outro.Tal teoria era capaz de explicar satisfatoriamente muitos fenômenos físicos, como por exemplo a condução do calor. A idéia de que o calor é uma substância não podia, contudo, resistir às evidências em contrário que começaram a surgir no fim do século XVIII; foi, assim, substituída pela concepção de que o calor é uma forma de energia; esse feito deveu-se principalmente a Benjamin Thompson, o conde Rumford. Thompson trabalhava para o governo da Baviera, como supervisão na fabricação de canhões para o Exército. Esse trabalho era executado cavando-se um orifício no interior de um cilindro maciço de ferro. Durante o processo, o ferro se aquecia, e o orifício era então mantido cheio de água. Mas a água fervia, precisando ser periodicamente substituída; ora, na época aceitava-se a hipótese de que, para fazer a água ferver, era necessário fornecer-lhe calórico. Portanto, segundo as concepções vigentes, havia uma transferência aparentemente ininterrupta de calórico do ferro para a água. Tentava-se explicar o fato pela hipótese de que, quanto mais finamente dividido um material, menor sua capacidade em reter calórico. Thompson, porém, observou que a água fervia mesmo depois que as ferramentas perdiam seu corte, e não mais eram capazes de subdividir o metal do canhão. Além disso, esse mecanismo não obedecia a um princípio que justifica a aceitação de muitas idéias abstratas em física: o princípio da conservação. De fato, neste caso havia duas quantidades que não se conservavam: a energia mecânica, que devia ser continuamente despendida, e o calórico, que era incessantemente criado.Após realizar uma série de experiências e tentar explicá-las a partir da teoria do calórico, Thompson resolveu tentar outro caminho. Em 1798, comunicou à Royal Society inglesa que " ... raciocinando sobre esse assunto, não devemos nos esquecer de considerar circunstância mais notável, ou seja, a de que a fonte de calor gerado por atrito, nessas experiências, era visivelmente inexaurível... parece ser extremamente difícil, se não realmente impossível, formar uma idéia definida de alguma coisa capaz de ser excitada e transmitida na maneira pela qual o calor era excitado e transmitido nessas experiências, a menos que essa coisa seja movimento".”

Curso de Termodinâmica Aplicada

Um Experimento de Benjamin Thompson

Curso de Termodinâmica Aplicada

Joule e seu experimento

JOULE, James Prescott (1818 – 1889)

“A quantidade de calor necessária para elevar de 1°Fuma libra de água equivale ao trabalho mecânicocapaz de erguer 772 libras à altura de 1 pé [1cal=4,8 J]”

Curso de Termodinâmica Aplicada

A primeira locomotiva a vapor foi construída por Richard Trevithick e fez o seu primeiro percurso em 21 de Fevereiro de 1804.

Richard Trevithick (13 de Abril de 1771 - 22 de Abril de 1833) foi um inventor britânico nascido em Illogan, Cornwall.Trevithick foi um pioneiro cujas invenções eram avançadas demais para a sua época; além das locomotivas, construiu barcos a vapor, máquinas de debulhar e de dragar, no entanto nunca conseguiu investidores que o ajudassem a desenvolver as suas invenções.Em 1816, Trevithick mudou-se para o Peru para trabalhar como engenheiro nas minas e construir locomotivas que as servissem. Apesar do suceeso inicial, o começo da guerra civil em 1826 forçou-o a voltar a Inglaterra sem um tostão.Apesar do seu génio inventivo, Trevithick morreu na pobreza e na obscuridade e os seus inventos muito pouco reconhecidos.

Curso de Termodinâmica Aplicada

Termodinâmica e suas aplicações

Curso de Termodinâmica Aplicada

Refrigeração

Curso de Termodinâmica Aplicada

CondensadorCompressor

Tubos & Mangueiras

Condicionador de Ar Automotivo

Evaporador

“HVAC”Caixa de ar

Curso de Termodinâmica Aplicada

Bancada experimental

MOTOR ELETRICO

COMPRESSOR

EVAPORADOR

VENTILADOR

CONDENSADOR

VÁLVULA DEEXPANSÃO

FLUXÍMETRO

INVERSOR DEFREQÜÊNCIA

MANGUEIRADE SUCÇÃO

MANGUEIRADE DESCARGA

TUBOLÍQUIDO

TRANSDUTORDE PRESSÃO 1

(região de alta pressãoantes do compressor)

TRANSDUTORDE PRESSÃO 2

(região de alta pressãodepois do compressor)

TRANSDUTORDE PRESSÃO 3

(região de baixa pressão)

PRESSOSTATO

TERMOSTATOMECÂNICO

Curso de Termodinâmica Aplicada

Geração de Energia

Curso de Termodinâmica Aplicada

Sistemas de Vapor

11

C

B

18

22

23

21

20

19

14

13

12

10

8

7

6 5

3

2

1

AR

GA

SE

S

EN

. E

TR

.

9

4

17

CH4 A

H

D

G

I

II

III

Curso de Termodinâmica Aplicada

Cap. 1 - Conceitos introdutórios e definições

Sistema, Meio, Fronteira;

•Sistema fechado e Volume de controle

Volume de controle ou sistema abertoSistema fechadocom as válvulas fechadas

Curso de Termodinâmica Aplicada

Conceitos introdutórios e definições

Propriedade, Estado, Processo;

•Propriedades intensivas e propriedades extensivas;

•Densidade, pressão, temperatura, energia específica.

•Massa, volume, energia.

•Ciclo termodinâmico;

•Regime permanente ou estado estacionário;

Fase (comp. quím. e física hom.) e Substância pura (comp. Quím. hom.).•Água e gelo é substância pura?•Ar é substância pura?

Curso de Termodinâmica Aplicada

Equilíbrio

• Um estado de um sistema é um estado de equilíbrio se ele tende a permanecer depois que as interações entre o sistema e o meio são interrompidas (isolado).

EquilíbrioMecânico

EquilíbrioTérmico

EquilíbrioQuímico

Equilíbriode Fases

Equilíbrio Termodinâmico

Curso de Termodinâmica Aplicada

Processo de não-equilíbrio e processo de quase-equilíbrio

Processo de não-equilíbrio:

Processo de quase-equilíbrio:

300°C

300°C30°C

30°C300°C

30,000000...1°C

Curso de Termodinâmica Aplicada

Processo de não-equilíbrio

www.castrol.com/castrol www.mailxmail.com/curso/vida/motoresdecombustion

www.martinoauto.it

Curso de Termodinâmica Aplicada

• Densidade e volume específico: [kg/m3 - m3/kg]

• Pressão: [Pa, bar, lbf/in2,...]

• Equilíbrio térmico e temperatura:• [K, °C, R, °F]

www.qmc.ufsc.br/

web.unido.it www.feiradeciencias.com.br

Lei Zero da Termodinâmica

Curso de Termodinâmica Aplicada

Temperatura Absoluta

curvas isobáricas de Charles (Jacques Charles, 1746- 1823)

Joseph-Louis Gay-Lussac “um gás teria um volume nulo (zero) se a temperatura for de -273,15 °C. Como qualquer volume menor do que isso é impensável, então pode-se concluir que esta temperatura é a menor possível de ser atingida. Esta temperatura é chamada de zero absoluto. A escala absoluta da temperatura foi desenvolvida (mais tarde) por Lord Kelvin e é conhecida, hoje, como Escala Kelvin. Nesta escala, -273,15 °C corresponde a 0 K. A temperatura de fusão do gelo, então, é de +273,15 K, e a de ebulição da água é de +373,15 K. A conversão entre as escalas pode ser feita conforme a expressão abaixo:T(K) = T(°C) - 273,15

www.qmc.ufsc.br

Curso de Termodinâmica Aplicada

Leis Principais da Termodinâmica

• A Lei Zero da Termodinâmica determina que, quando dois corpos têm igualdade de temperatura com um terceiro corpo, eles têm igualdade de temperatura entre si. Esta lei é a base para a medição de temperatura.

• Primeira Lei da Termodinâmica fornece o aspecto quantitativo de processos de conversão de energia. É o princípio da conservação da energia e da conservação da massa, agora familiar, : "A energia do Universo é constante".

• A Segunda Lei da Termodinâmica determina o aspecto qualitativo de processos em sistemas físicos, isto é, os processos ocorrem numa certa direção mas não podem ocorrer na direção oposta. Enunciada por Clausius da seguinte maneira: "A entropia do Universo tende a um máximo".

• A Terceira Lei da Termodinâmica estabelece um ponto de referência absoluto para a determinação da entropia, representado pelo estado derradeiro de ordem molecular máxima e mínima energia. Enunciada como "A entropia de uma substância cristalina pura na temperatura zero absoluto é zero". É extremamente útil na análise termodinâmica das reações químicas, como a combustão, por exemplo.

Curso de Termodinâmica Aplicada

Cap. 2 – Energia e a Primeira Lei

A etimologia da palavra tem origem no idioma grego, onde εργοs (ergos) significa "trabalho". A rigor é um conceito primordial, aceito pela Física sem definição, se refere "ao potencial inato para executar trabalho ou realizar uma ação"

Formas de energia – pode ser armazenada, transferida ou convertida. A quantidade total é conservada (Princípio da Conservação da Energia).

Unidade: joule [J]=[N.m]=[kg.m2/s2]

- Energia cinética

- Energia potencial (ou gravitacional)

- Energia química, ....

cs

sEmwmwdsFW

21

22

2

121 2

121

12 mgzmgzEPG galileu.globo.com

www.fisica-potierj.pro.br

Curso de Termodinâmica Aplicada

Princípio da Conservação da Energia

Joule: “Não perderei tempo repetindo e estendendo essas experiências, pois estou seguro de que os grandes agentes danatureza são indestrutíveis, pelo fiat do Criador; e que quando se gasta poder mecânico, obtém-se sempre um calor exatamente equivalente.”

Curso de Termodinâmica Aplicada

Trabalho

2

121

s

sdsFW

Chutador de retaguarda www.humornaciencia.com.br

Q + W +

Curso de Termodinâmica Aplicada

Trabalho

Curso de Termodinâmica Aplicada

Trabalho

Curso de Termodinâmica Aplicada

Trabalho

relacao_p_v_.mov

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

Calor

• Energia em transito devido unicamente à diferença de temperatura e que não está associado à transferência de massa

• Processo adiabático

• Taxa de transferência de calor

][2

1 21 JQQ

02

1 21 QQ

][2121 W

sJ

tQ

Q

Curso de Termodinâmica Aplicada

Primeira Lei

][12 JWQUU

WQdU

WQdtdU

Curso de Termodinâmica Aplicada

Cap. 3 Propriedades Termodinâmicas

• Propriedades de substâncias puras

Substância impura

Curso de Termodinâmica Aplicada

A Superfície p-v-T

Subst. que expande quando solidifica Subst. que contrai quando solidifica

Curso de Termodinâmica Aplicada

Projeções da Superfície p-v-T

Subst. que expande quando solidifica Subst. que contrai quando solidifica

Curso de Termodinâmica Aplicada

Projeções da Superfície p-v-T

Subst. que expande quando solidifica Subst. que contrai quando solidifica

Curso de Termodinâmica Aplicada

Mudança de fase

Curso de Termodinâmica Aplicada

P-v

Curso de Termodinâmica Aplicada

A propriedade “título”

Curso de Termodinâmica Aplicada

Gás ideal

• Lei de Boyle processo isotérmico (T=cte)

• Lei de Charles

processo isocórico (V=cte)

• 2° Lei de Charles

processo isobárico (p=cte)

• Faixa de Validade

RTPv

Curso de Termodinâmica Aplicada

Fator de compressibilidade

crr

crr

crr

v

vv

T

TT

p

pp

Faixa de validade

Tr>2.0Pr<0.1 ou 0.01

Curso de Termodinâmica Aplicada

O Diagrama Generalizado de Compressibilidade

Curso de Termodinâmica Aplicada

Outras propriedades

• Entalpia

• • Entalpia específica

• Calores específicos, cv e cp

pVUH

pvuh

vv T

uc

pp T

hc

vv T

uc

pp T

hc

ii T

Qm

c

1

pdVdUQ

vcpck

Curso de Termodinâmica Aplicada

Gás ideal

Curso de Termodinâmica Aplicada

Curso de Termodinâmica Aplicada

cp para gases ideais

Curso de Termodinâmica Aplicada

A Segunda Lei da Termodinâmica

Pode qualquer processo acontecer?

Curso de Termodinâmica Aplicada

Pode qualquer processo acontecer?

Curso de Termodinâmica Aplicada

Pode qualquer processo acontecer?

Curso de Termodinâmica Aplicada

Usos da Segunda Lei

Curso de Termodinâmica Aplicada

Enunciado de Clausius

Curso de Termodinâmica Aplicada

Enunciado de Kelvin - Planck

Curso de Termodinâmica Aplicada

Os corolários de Carnot

Curso de Termodinâmica Aplicada

O corolário de Clausius

Curso de Termodinâmica Aplicada

Equação de balanço de entropia para sistema fechados

Curso de Termodinâmica Aplicada

Equações de balanço de entropia

Curso de Termodinâmica Aplicada

A escala Kelvin de temperatura