Ensino Superior 2.5.2 Revisões Fundamentais Equações Diferenciais Amintas Paiva Afonso...

Post on 17-Apr-2015

105 views 1 download

Transcript of Ensino Superior 2.5.2 Revisões Fundamentais Equações Diferenciais Amintas Paiva Afonso...

Ensino Superior

2.5.2 Revisões Fundamentais Equações Diferenciais

Amintas Paiva Afonso

Introdução aos Sistemas de Controle

Soluções Numéricas de EDO’s

Amintas Paiva Afonso

Equações Diferenciais

Equações contendo derivadas são equações diferenciais.

É necessário conhecer equações diferenciais para:

• Compreender e investigar problemas envolvendo o fluxo de corrente elétrica em circuitos, a dissipação de calor em objetos sólidos, a propagação e detecção de ondas sísmica, o aumento ou diminuição de populações, o movimento de fluidos, entre outros.

Note que toda a parte do cálculo chamado de cálculo de primitivas compreende a determinação de soluções de uma equação diferencial.

Equações Diferenciais

Você aprendeu, em cálculo, que a derivada dy/dx de uma função y = (x) é em si uma outra função ’(x).

210 xey , A função é diferencial no intervalo (-, ), e a sua derivada é . Se substituirmos no lado direito da derivada pelo símbolo y, obteremos 21020 xxedxdy ,,/

210 xe ,

xydx

dy20,

Como resolver essa equação na função incógnita y = (x)?

A equação construída em (1) é chamada de equação diferencial.

(1)

Definição de Equação Diferencial

Uma equação que contém as derivadas (ou diferenciais) de uma ou mais variáveis dependentes em relação a uma ou mais variáveis independentes é chamada de equação diferencial (ED).

Para poder discuti-las melhor, classificaremos as equações diferenciais por tipo, ordem e linearidade.

Classificação quanto ao Tipo

,xeydx

dy5 ,06

2

2

ydx

dy

dx

yd

Equações Diferenciais Ordinárias (EDO): se a função desconhecida depende de uma única variável independente. Neste caso, aparecem apenas derivadas simples.

yxdt

dy

dt

dx 2

,02

2

2

2

y

u

x

u,

t

u

t

u

x

u

22

2

2

2

Equações Diferenciais Parciais (EDP): se a função desconhecida depende de diversas variáveis independentes. Neste caso, aparecem as derivadas parciais.

x

v

y

u

(2)

(3)

Classificação de Equações Diferenciais

Notação de Leibniz: ,...,,3

3

2

2

dx

yd

dx

yd

dx

dyNotação linha: ```,...``,`, yyy

Notação de Leibniz:

Notação linha:

,xeydx

dy5 ,06

2

2

ydx

dy

dx

ydyx

dt

dy

dt

dx 2

,` xeyy 5 ,``` 06 yyy

A notação linha é usada somente para denotar as três primeiras derivadas; a quarta derivada é escrita como y(4), em vez de y’’’’.

Classificação de Equações Diferenciais

Sistema de equações diferenciais: se existem duas ou mais funções que devem ser determinadas, precisamos de um sistema de equações.

Uma solução de um sistema como (8) é um par de funções diferenciais x = 1(t), y = 2(t), definidas em um intervalo comum I,

que satisfazem cada equação do sistema neste intervalo.

),,( yxtfdt

dx

),,( yxtgdt

dy

(8)

Classificação de Equações Diferenciais

Notação ponto de Newton (cocô de mosca): é às vezes usada em Física ou Engenharia para denotar derivadas em relação ao tempo. Assim sendo, a equação diferencial

322

2

dt

sdtorna-se 32s

Derivadas parciais são geralmente denotadas por uma notação em subscrito. Assim sendo, a equação diferencial

tttxx uuu 2torna-se,t

u

t

u

x

u

22

2

2

2

Equações Diferenciais

Ao estudar alguns fenômenos, é difícil estabelecer diretamente a relação de dependência entre uma

variável independente x e uma dependente y.

Todavia, é mais fácil estabelecer a relação entre

x, y e as derivadas y’(x), y’’(x), …, Y(n)(x).

Esta relação constitui uma equação diferencial.

• Note que a grande maioria dos fenômenos físicos é modelada através de equações diferenciais.

Equações Diferenciais

Equação diferencial:• é uma equação envolvendo uma função desconhecida

e algumas de suas derivadas.

Equação diferencial ordinária de ordem n:

• equação que envolve derivadas até a ordem n da forma

Y(n)(x) = f(x, y(x), y’(x), y’’(x), …, Y(n-1)(x))

a ≤ x ≤b.

Ordem: a ordem de uma ED é a ordem da mais alta derivada que aparece na equação.

Exemplos: ,35 xdxdy 12

2

3

3

4

4

ydtdy

dt

yd

dt

yd

dt

yd

Classificação por Ordem

É uma equação diferencial de segunda ordem.

xeydx

dy

dx

yd

45

3

2

2segunda ordem primeira ordem

Equações diferenciais ordinárias de primeira ordem são ocasionalmente escritas na forma diferencial

Classificação por Ordem

M(x, y) dy + N(x, y) dx = 0

Por exemplo, supondo que y seja a variável dependente em

(y - x) dx + 4x dy = 0, então y’ = dy/dx

Portanto, dividindo pela diferencial dx, obtemos a forma alternativa

4xy’ + y = x

Por razões práticas e teóricas, também consideraremos

),...,",',,( )( 1 nnn

n

yyyyxfydx

yd

Classificação por Ordem

Geralmente a equação

F(y, y’, y”, ..., y(n)) = 0 (4)

é uma equação diferencial ordinária de ordem n em uma variável dependente.

Onde F é uma função de valores reais de n + 2 variáveis, x, y, y’, ..., y(n), e onde y(n) = dny / dxn.

(5)

para representar equações diferenciais ordinárias de primeira e segunda ordem.

Classificação por Ordem

Quando servir aos nossos propósitos, usaremos a forma normal

),( yxfdx

dy )',,( yyxf

dx

yd

2

2

e

Por exemplo, a forma normal da equação de primeira ordem

4xy’ + y = x é y’ = (x – y)/4x

Equações Lineares e não-lineares: A equação diferencial

0),...,",',( )(nyyyxF

É dita linear se F é uma função linear das varáveis y, y’, y”,..., y(n-1)

Assim a equação diferencial ordinária linear geral de ordem n é

0011

1 )()(')()()( )()( xgyxayxayxayxa n

nn

n

Classificação por Linearidade

)()()()()( xgyxadx

dyxa

dx

ydxa

dx

ydxa

n

n

nn

n

n

011

1

1 (6)

(4)

Em (2) observamos as duas propriedades características de uma equação diferencial linear:

1) A variável dependente e todas as suas derivadas são do 1º grau, isto é, a potência de cada termo envolvendo y é 1.

2) Cada coeficiente depende no máximo da variável independente x. As equações diferenciais ordinárias lineares abaixo são, respectivamente, de 1ª, 2ª e 3ª ordem.

Classificação por Linearidade

)()()()()( xgyxadx

dyxa

dx

ydxa

dx

ydxa

n

n

nn

n

n

011

1

1 )(2

(y - x) dx + 4x dy = 0, y’’ – 2y’ + y = 0 e xdtdy

dx

yd eyx 53

3

A equação diferencial que não é da forma (1) é uma equação

não-linear. Exemplo:4'"2''' tyyyey t

Classificação por Linearidade

Equações não-lineares: Uma equação diferencial ordinária não-linear é simplesmente uma que não é linear.

Funções não-lineares da variável dependente ou de suas derivadas,

como seny ou e y’, não podem aparecer em uma equação linear. Assim sendo,

,02

2

senydx

yd,')( xeyyy 21 02

4

4

ydx

yd

Termo não-linearCoeficiente dependente de y

Termo não-linearFunção não-linear de y

Termo não-linearPotência diferente de 1

Solução de uma EDO

Definição: Toda função , definida em um intervalo I que

tem pelo menos n derivadas contínuas em I, as quais quando

substituídas em uma equação diferencial ordinária de ordem n reduzem a equação a uma identidade, é denominada uma solução da equação diferencial no intervalo.

Em outras palavras, uma solução de uma equação diferencial ordinária de ordem n (4) é uma função que tem pelo menos n derivadas e para qual

F(x, (x), ’(x), ..., (n)(x)) = 0 para todo x em I.

Soluções: Uma solução da equação

y(n) = f (x, y, y`, y``, ..., y(n-1) ) em < x <

é uma função tal que `, ``, ... (n) existem e satisfazem

(n)(x) = f [x, (x), `(x), ``(x), ... (n-1) (x)]

para todo x em < x <

Soluções

210 xey ,Em nossa discussão introdutória, vimos que é uma solução de no intervalo (-, ).

21020 xxedxdy ,,/

Verificação de uma Solução

Exemplo 1: Verifique se a função indicada é uma solução da equação diferencial dada no intervalo (-, ).

a) dy/dx = xy1/2; y = x4/16 b) y’’ – 2y’ + y = 0; y = xex

Solução: Uma maneira de verificar se a solução dada é uma solução é observar depois de substituir, se ambos os lados da equação são iguais para cada x no intervalo.

a) dy/dx = xy1/2; y = x4/16

lado esquerdo:

lado direito:

33

4

14

16

1xx

dx

dy .

3221

421

4

1

4

1

16

1xxxxxxy

.

//

Verificação de uma Solução

Verifique se a função indicada é uma solução da equação diferencial dada no intervalo (-, ).

a) dy/dx = xy1/2; y = x4/16

lado esquerdo:

lado direito:

33

4

14

16

1xx

dx

dy .

3221

421

4

1

4

1

16

1xxxxxxy

.

//

Vemos que ambos os lados são iguais para cada número real x.

Note que y1/2 = ¼ x2 é, por definição, a raiz quadrada não negativa de 1/16 . x4

Verificação de uma Solução

Verifique se a função indicada é uma solução da equação diferencial dada no intervalo (-, ).

b) y’’ – 2y’ + y = 0; y = xex

Das derivadas y’ = xex + ex e y’’ = xex + 2ex, temos, para x

lado esquerdo:

lado direito: 0

02 xxxx xeexexeyyy )e2( )2 (''' x

Observe que neste exercício, cada equação diferencial tem a solução constante y = 0, - < x < . Uma solução de uma equação diferencial identicamente nula no intervalo I é chamada de solução trivial.

Curva Integral

O gráfico de uma solução de uma EDO é chamado de curva integral. Uma vez que é uma função diferenciável, ela é contínua no intervalo de definição I. Assim sendo, pode haver uma diferença entre o gráfico da função e a solução da função .

Posto de outra forma, o domínio da função não precisa ser igual ao intervalo I de definição (ou domínio) da solução .

O exemplo 2 ilustra a diferença.

Domínio versus intervalo I de Definição

Exemplo 2: O domínio de y = 1/x é - {0}. A função racional y = 1/x, é descontínua em zero. A função não é diferenciável em x = 0, uma vez que o eixo y (cuja equação é x = 0) é uma assíntota vertical do gráfico.

Entretanto, y = 1/x é também solução da equação diferencial linear de primeira ordem xy’ + y = 0. (verifique)

Mas quando afirmamos que y = 1/x é uma solução dessa ED, queremos dizer que é uma função definida em um intervalo I no qual é diferenciável e satisfaz a equação.

Portanto, tomamos I como sendo (-, 0) ou (0, ). O gráfico ilustra as duas curvas integrais.

Domínio versus intervalo I de Definição

Exemplo 2:

(a) Função y = 1/x, x 0 (b) Solução y = 1/x, (0, )

Soluções Explícitas e Implícitas

Solução Explícita: É quando numa solução a variável dependente é expressa somente em termos da variável independente e das constantes.

y = x4/16, y = xex e y = 1/x são soluções explícitas de

dy/dx = xy1/2, y’’ – 2y’ + y = 0 e xy’ + y = 0

Além disso, a solução trivial y = 0 é uma solução explícita de todas as três equações.

Soluções Explícitas e Implícitas

Solução Implícita: Dizemos que uma relação G(x, y) = 0 é uma solução implícita de uma equação diferencial (4), em um intervalo I, quando existe pelo menos uma função que satisfaça a relação, bem como a equação diferencial em I.

Exemplo 3: A relação x2 + y2 = 25 é uma solução implícita da ED

y

x

dx

dy

no intervalo -5 < x < 5. Por diferenciação implícita, obtemos

0),...,",',( )(nyyyxF (4)

2522

dx

dy

dx

dx

dx

d ou 022

dx

dyx

Soluções Explícitas e Implícitas

Exemplo 3: Uma solução implícita e duas explícitas de y’ = - x/y

(a)Solução implícita

x2 + y2 = 25

(b) Solução explícita

5525 21 xxy ,

(c) Solução explícita

5525 22 xxy ,

Uso de computadores na solução de EDO

Exercícios destinados a Laboratório de Computação.

Use um SAC (Sistema Algérico Computacional) para computar todas as derivadas e fazer as simplificações necessárias à constatação de que a função indicada é uma solução particular da equação diferencial dada.

1) y(4) – 20 y’’’ + 158y’’ – 580y’ + 841y = 0; y = xe5x cos 2x

2) x3y’’’ + 2x2y’’ + 20xy’ - 78y = 0; x

xsen

x

xy

)ln()lncos( 53

520

Equações Diferenciais Ordinárias

A solução de (5’):

• y(n)(x) = f(x, y(x), y’(x), y’’(x), …, Y(n-1)(x)) (5)

a ≤ x ≤b.

• é qualquer função y = F(x) que é definida em [1, b] e tem n derivadas neste intervalo e que satisfaz (5).

• Se a função é de uma só variável, então a equação se chama ordinária.

• As equações que estabelecem relações entre uma variável e depende de duas ou mais variáveis independentes e as derivadas (agora parciais), são chamadas de equações diferenciais parciais.

Solução de uma EDO

Na solução de uma EDO, dois caminhos podem ser seguidos:

• Método analítico: O que tenta levar à uma solução exata do problema

• Método numérico: O que encontra uma solução aproximada.

Do ponto de vista analítico, resolver uma EDO do tipo y’ = f(x,y) é encontrar uma função y = F(x) que satisfaça a equação dada.

Por exemplo, dada equação diferencial y’ = f(x,y) = 2x + 3, sua solução é obtida por:

• y = ∫(2x+3)dx = x2 + 3x + C• Na verdade, temos uma família de soluções (para cada C RR tem

uma solução particular). A figura 1 (próximo slide) mostra algumas soluções para C = 0, C = 2 e C = 4.

Solução de uma EDO

Representações de soluções particulares, para alguns valores de C, da função

y = x 2 + 3 x + C.Figura 1

C = 0

C = 2

C = 4

x

y

Note que à medida que C varia, tem-se uma família de soluções.

Solução de uma EDO

Para determinarmos uma solução específi ca é necessária a atribuição do valor de y em um dado x. Em outras palavras, deve ser dado um ponto ( x = a , y = s ) por onde a solução particular deve obrigatoriamente passar.

O processo para encontrar esta solução específi ca y da equação y’ = f ( x, y ) com y ( a ) = s, onde a e s são dados numéricos, é chamado de problema de condição inicial.

Assim, podemos particularizar a solução do problema anterior atribuindo-lhe, por exemplo, a seguinte condição:

Logo, a solução geral é dada por y = x 2 + 3 + C, e a particular será

dada por y ( 0 ) = 0 = 0 2 + 3 x 0 + C C = 0. Ou seja, y = x 2 + 3 x .

0)0(

32

y

xdx

dy

x

Definindo as condições iniciais

Para especificar uma das curvas que formam a família de soluções, é preciso impor condições adicionais na função y. Essas condições são da forma:

• y(a) = 1 , y’(a) = 2 , y’’(a) = 3 ,… , y(n-1)(a) = n (2)

• Que são chamadas de condições iniciais.

O problema (1) com as condições iniciais (2) é chamado de problema de valor inicial ou problema de condições iniciais.

y(n)(x) = f(x, y(x), y’(x), y’’(x), …, y(n-1)(x)) com a ≤ x ≤b (1)

Definindo as condições iniciais

O problema geral de primeira ordem é escrito como:

• y’(x) = f(x, y(x)), y(a) = com a ≤ x ≤ b (3)

ou

dy/dt = f(t, y(t)), y(a) = com a ≤ t ≤ b

Um problema de valor inicial de ordem n é escrito como:

• y(n)(x) = f(x, y’, y’’, …, y(n-1)), a ≤ x ≤b (4a)

• y(a) = 1 , y’(a) = 2 , y’’(a) = 3 ,… , y(n-1)(a) = n (4b)

Condições de contorno

Juntamente com o problema de valor inicial, podemos ter problemas com condições de contorno, isto é:

Além da condição no início do fenômeno, temos também uma condição a atingir no fim do fenômeno.

EXEMPLO: condição de contorno de segunda ordem é escrito como

y’’(x) = f(x, y, y’’) , a ≤ x ≤ b (5)

com

y(a) = 1 , y(b) = 2

Usando símbolos diferentes

Exemplo 2: As funções x = c1cos4t e x = c2sen4t, onde c1 e c2 são

constantes arbitrárias ou parâmetros, são ambas soluções da equação diferencial linear x’’ + 16x = 0.

Para x = c1cos4t x’ = - 4c1sen4t e x’’ = - 16c1cos4t.

Substituindo x’’ e x, obtemos

x’’ + 16x = - 16c1cos4t + 16c1cos4t = 0

Para x = c2sen4t x’’= - 16c2sen4t e, portanto,

x’’ + 16x = - 16c2sen4t + 16c2sen4t = 0

É fácil constatar que a combinação linear de soluções, ou a família a dois parâmetros x = c1cos4t + x = c2sen4t é também uma

solução da equação diferencial.

Verificação de uma Solução

Uma solução de uma equação diferencial na incógnita y e na variável independente x no intervalo é uma função y(x) que verifica a equação diferencial identicamente em todo x em .

Exemplo 3: Tem-se que y(x) = C2sen(2x) + C2cos(2x) é uma

solução de y’’ + 4y = 0. Isso pode ser visto através da substituição de y(x) na equação original. Assim:

y’(x) = C1cos(2x) - C1sen(2x)

y’’(x) = -4C1sen(2x) - 4C2cos(2x)

y(x) + 4y = (-4C1 + 4C1)sen(2x) + (4C2 - 4C2)cos(2x) = 0

Sistema de Equações Diferenciais

Um sistema de equações diferenciais de primeira ordem tem a seguinte forma geral:

• y’1(x) = f1(x, y1, y2, y3, … yn)

• y’2(x) = f2(x, y1, y2, y3, … yn)

• … a ≤ x ≤ b

• y’n(x) = fn(x, y1, y2, y3, … yn)

• Sujeito a yk(a) = k , k = 1(1)n (6b)

• Onde f1, f2, … f1n são funções de n + 1 variáveis.

• Nota: se o problema (6a) tem solução, então ele tem, em geral, várias soluções (uma família de soluções). Com as condições (6b), temos o problema do valor inicial.

(6a)

Sistema de Equações Diferenciais

As soluções do problema (6a) são derivadas da solução de uma única equação. Resolvendo o problema (6), podemos resolver o problema (4), utilizando mudanças de variáveis. Assim, basta definir um conjunto de n funções y1, y2, …, yn, da seguinte forma:

• y1(x) = y(x)

• y2(x) = y’(x)

• …

• yn(x) = y(n-1)(x)

• Então (4a) pode ser escrita como:

• y(n)(x) = f(x, y1, y2, … yn). (8a)

(7)

Sistema de Equações Diferenciais

Diferenciando (7), obtemos:

• y’1(x) = y2(x)

• y’2(x) = y3(x)

• …

• yn-1(x) = yn(x)

• De onde obtemos para (4) um sistema de equações diferenciais. As condições iniciais de (4b) tornam-se as condições iniciais do sistema.

(8b)

Sistema de Equações Diferenciais

EXEMPLO:

• y’’’(x) = xy’(x) + exy(x) + x2 + 1 0 ≤ x ≤ 1

y(0) = 1 , y’(0) = 0 , y’’(0) = -1

• Fazendo a mudança de variáveis, obtemos:

• y’1(x) = y2(x)

• y’2(x) = y3(x) 0 ≤ x ≤ 1

• y’3(x) = xy2(x) + ex y1(x) + x2 + 1

y1(0) = 1, y2(0) = 0, y1(0) = -1

Uso de computadores na solução de EDO

Um computador pode ser uma ferramenta extremamente útil no estudo de equações diferenciais.

Algoritmos já estão sendo usados há muito tempo para solucioná-las como, por exemplo: o método de Euler e o de Runge-Kutta.

Além disso, há excelentes pacotes (software) de solução numérica que podem ser aplicados a diversos problemas matemáticos. Exemplo: Matlab, Mapple, Mathematica, Scilab.

Algumas questões relevantes

Uma equação diferencial sempre tem solução? (existência)

Quantas soluções tem uma equação diferencial dada que ela tem pelo menos uma? Que condições adicionais devem ser especificadas para se obter apenas uma única solução? (unicidade)

Dada uma ED, podemos determinar, de fato, uma solução? E, se for o caso, como?

Equações Diferenciais de Primeira Ordem

A forma geral das equações diferenciais ordinárias de primeira ordem é

dy/dx = f (x,y) (i)

Qualquer função diferencial y = (t) que satisfaça essa equação para todo t em um dado intervalo é uma solução desta equação.

Exemplo: y’ = 2y + 3et

Serão estudadas três subclasses de equações de primeira ordem: as equações lineares; as separáveis e as equações exatas.

Equações Lineares

Se a função f em (1) depende linearmente de y, então ela é chamada de uma equação linear de primeira ordem. Um exemplo com coeficientes constantes é

dy/dt = - ay + b,

onde a e b são constantes dadas.

Substituindo os coeficientes a e b por funções em t, temos a forma geral da equação linear de primeira ordem

dy/dt + p(t)y = g(t),

onde p e g são funções dadas da variável independente t.

Exemplo: Considere a equação diferencial

dy/dt + 2y = 3. Encontre sua solução.

Solução:

Temos que dy/dt = -2y + 3 ou dy/dt = -2y - 3/2

ln |y - 3/2| = -2t + c

Logo,

y = 3/2 + ce- 2t

Se g(t) = 0, então a equação é dita equação linear homogênea.

Equações Lineares

Fator integrante

Consiste em multiplicar a equação diferencial por uma determinada função (t) de modo que a equação resultante seja facilmente integrável.

Exemplo: Considere a equação dy/dt +2y = 3. Assim podemos ter (t) dy/dt + 2 (t) y = 3 (t)

Vamos tentar encontrar (t) de modo que a expressão anterior tenha a esquerda do sinal da igualdade a derivada de (t) y.

Assim, d[(t) y]/dt = (t) dy/dt + d (t)/dt y.

Comparando com a equação anterior temos que as duas primeiras parcelas são iguais e que as segundas podem ficar desde que (t) seja tal que d (t) /dt = 2 (t)

Logo [d (t) /dt] / (t) = 2

Donde d [ln| (t)|] / dt = 2 O que nos leva ao resultado

ln |(t)| = 2t +c ou (t) = c e 2 t

que é um fator integrante para a equação dada. Como não queremos um caso mais geral, tomamos

(t) = e 2 t

Fator integrante

Logo, a equação dada, fica:

e 2 t dy/dt + 2 e 2 t y = 3 e 2 t

Ora, d (e 2 t y)/dt = 3 e 2 t

Então e 2 t y = (3/2) e 2 t + c, donde y = (3/2) + c e - 2 t.

que é a mesma solução encontrada anteriormente.

Em várias equações pode-se ter fator integrante como em dy/dt + ay = b, o fator será (t) = ea t basta apenas fazer as devidas substituições de a e b.

Fator integrante

Exemplo : Resolver a seguinte equação diferencial com condição inicial

y ` + 2y = te –2t , y(1) = 0.

Solução: Temos (t) = e 2 t

Logo e 2 t y` + 2y e 2 t = t

(e 2 t y)` = t

e 2 t y = (t2/2) + c. Aplicando a condição inicial, y(1) = 0,

Obtemos c = ½. E finalmente, a resposta

y = (e –2t/2) (t2 – 1)

Fator integrante

Escolha de (t)

dy/dt + p(t)y = g(t)

(t) [dy/dt] + (t) p(t)y = (t) g(t) o segundo termo do lado esquerdo é igual a derivada do primeiro

[d(t)] /dt = p(t) (t), supondo que (t) > 0

{[d(t)] /dt} / (t) = p(t) então

ln (t) = p(t)dt + c, escolhendo c = 0, temos

(t) que é a função mais simples, ou seja,

(t) = exp [ p(t)dt] = e p(t)dt

Fator integrante

Exemplo: Seja dy/dt + y/2 = 2 + t.

Temos então a = 1/2, logo (t) = e t /2.

Então d[e t /2 y]/dt = 2 e t /2 + t e t /2.

Temos, integrando por partes,

e t /2 y = 4 e t / 2 + 2t e t /2 - 4 e t /2 + c,

Como c é constante, temos

y = 2t + c e - t / 2

Fator integrante

Equações separáveis

A equação geral de primeira ordem é dy/dx = f(x,y) que pode ser colocada na forma

M(x,y) + N(x,y)dy/dx = 0

Onde M(x,y) = - f(x,y) e N(x,y) = 1.

Porém se M depende apenas de x e N apenas de y, ela pode ser escrita como

M(x) + N(y)dy/dx = 0.

Esta equação é dita separável, pois se for escrita na forma diferencial

M(x)dx + N(y)dy = 0

Então as fórmulas envolvendo cada variável pode ser separada pelo sinal da igualdade.

Exemplo: Considere a equação diferencial

y` = -2xy.

Então podemos fazer y`/y = -2x e daí

ln|y| = - x2 + c,

logo para cada c R temos duas soluções:

y1 = e - x + c e y2 = - e - x + c

2 2

Equações separáveis

Equações exatas

Uma equação na forma M(x,y) + N(x,y) y` = 0 é uma equação exata em R (uma região) se, e somente se,

My (x,y) = Nx (x,y) em cada ponto de R.

Exemplo: Verifique se a equação

(x2 + 4y)y` + (2xy + 1 ) = 0 é exata.

Solução: Neste caso, M(x,y) = 2xy +1 e

N(x,y) = x2 + 4y.

Logo My = 2x e Nx = 2x, donde My = Nx e consequentemente ela é exata.

Teorema 2.6.1: Suponha que as funções M, N, My, Nx são contínuas na região retangular

R: < x < e < y < . Então a equação

M(x,y) + N(x,y)y` = 0 é uma equação exata em R se, e somente se, My(x,y) = Nx(x,y) (1) em cada ponto de R. Isto é, existe uma equação satisfazendo as equações x(x,y) = M(x,y), y(x,y) = N(x,y) se,

e somente se, M e N satisfazem a equação (1).

Equações exatas

As vezes é possível transformar uma equação diferencial que não é exata em uma exata multiplicando-se a equação por um fator integrante apropriado. Isto é, determinar uma função (x,y) tal que (M)y = (N)x seja uma equação exata.

Exemplo: A equação xy` - y = 0 não é exata.

Porém se multiplicarmos por 1/x2 = (x,y), temos

y`/x - y/x2 = 0 que é exata.

Facilmente podemos ver que M(x,y) = - y/x2

N(x,y) = 1/x e que My = - 1/x2 = Nx

Equações exatas

Exemplo: Resolva a seguinte equação diferencial

(3x2 – 2xy +2 ) dx + (6y2 - x2 + 3) dy = 0.

Solução: Temos My(x,y) = -2x = Nx(x,y). Logo exata.

Assim existe uma (x, y) tal que

x (x, y) = 3x2 – 2xy +2 , y (x, y) = 6y2 - x2 + 3

Integrando a x (x, y), temos (x, y) = (3x2 – 2xy +2) dx

= x3 – 2 x2 y +2x + h(y).

Fazendo y = N, temos - x2 + h’(y) = 6y2 - x2 + 3

h’(y) = 6y2 + 3 donde h(y) = 2y3 + 3y e por fim

(x, y) = x3 – 2 x2 y +2x + 2y3 + 3y = c.

Equações exatas

Fatores integrantes para equações exatas

Podemos multiplicar M(x,y) dx + N(x,y)dy = 0

por uma função e depois tentar escolhê-la de modo que a equação resultante (x,y) M(x,y) dx + (x,y N(x,y)dy = 0 seja exata.

Sabemos que ela será exata se, e somente se, (M)y = (N)x. Assim, ela deve satisfazer a equação diferencial

M y - N x + (My – Nx) = 0.

Vamos determinar as condições necessárias sobre M e N de modo que a equação dada tenha um fator integrante dependendo apenas de x.

Equações exatas

(M)y = (N)x, (Nx) = Nx + N[(d )/dx]

Logo, para que (M)y seja igual a (N)x, é necessário que

d )/dx = [(My – Nx) / N] .

Se [(My – Nx) / N] depende somente de x, então existe um fator integrante que depende apenas de x também.

Exemplo: Determine o fator integrante e resolva a seguinte equação diferencial dx – 2xydy = 0.

Solução: Temos que M = 1 e N = –2xy.

Logo My = 0 e Nx = -2y e, como são diferentes, a equação dada não é exata.

Vamos então determinar o fator que a torna exata.

Equações exatas

Temos (My – Nx ) / N = (0 + 2y) / (-2xy) = - 1 / x.

Logo (x,y) = exp (-1/x)dx = e – lnx = 1/ x.

Assim temos dx /x = 2y dy

Donde dx /x = 2y dy

E conseqüentemente ln|x| - y 2 + c = 0.

Equações exatas

Existência e unicidade de solução

Teorema 2.4.1: (Existência e Unicidade) Se as funções p e g são contínuas em um intervalo aberto

I : < t < contendo o ponto t = t0, então existe uma única função y = (t) que satisfaz a equação diferencial

y` + p(t)y = g(t)

para cada t em I e que também satisfaz a condição inicial y(t0) = y0, onde y0 é um valor inicial arbitrário prescrito.

Exemplo: Determine um intervalo no qual a equação

ty` + 2y = 4t2 e y(1) = 2 tem uma única solução.

Solução: y` + (2/t) y = 4t

Assim, p(t) = 2 / t e g(t) = 4t e consequentemente g(t) é contínua para todo t e p(t) contínua para t 0.

Logo, para t > 0 contém a condição inicial, dando o intervalo procurado 0 < t < .

A solução é y = t2 + 1 / t2 , t > 0.

Existência e unicidade de solução

.

Teorema: 2.4.2: Suponha que as funções f e f/y são contínuas em um retângulo

< t < e < y < contendo o ponto (to, yo). Então

em algum intervalo to – h < t < to + h contido em < t < ,

Existe uma única solução y = (t) do problema de valor inicial y’ = f(x,y) e y(to) = yo

Exemplo: Resolva o problema de valor inicial y’ = y2

e y(0) = 1 e determine o intervalo no qual a solução existe.

Existência e unicidade de solução

Solução: Pelo teorema 2.4.2 temos f(x,y) = y2 e f/y = 2y

contínuas em todo ponto de R.

Logo a solução dy/dt = y2 dy/ y2 = dt, logo

-y – 1 = t + c e y = 1 / (t+c).

Como y(0) = 1, temos y = 1 / (1 - t) que é a solução.

Portanto a solução existe apenas em - < t < 1.

Existência e unicidade de solução

Referências

HOPCROFT, J. E.; ULLMAN, J. D. Introdução à Teoria de Autômatos, Linguagens e Computação. Rio de Janeiro: Campus, 2002.

MENEZES, P. F.; DIVÉRIO, T. A. Linguagens Formais e Autômatos, Porto Alegre: Sagra-Luzzatto, 2001.

PAPADIMITRIOU, C. H.; LEWIS, H. F. Elementos de Teoria da Computação. Porto Alegre: Bookman, 2000.

GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação, Rio de Janeiro: LTC, 1995.