Matemática Básica · Demonstração por absurdo Nesta técnica, para demonstrar que a sentença...

Post on 20-Nov-2018

216 views 0 download

Transcript of Matemática Básica · Demonstração por absurdo Nesta técnica, para demonstrar que a sentença...

Matemática Básica

Humberto José Bortolossi

Departamento de Matemática Aplicada

Universidade Federal Fluminense

Aula 2

9 de março de 2012

Aula 2 Matemática Básica 1

Se A, então B: notações

Aula 2 Matemática Básica 2

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 3

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 4

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 5

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 6

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 7

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 8

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 9

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 10

Se A, então B: notações

Notação Exemplo

Se A, então B. Se 0 < a < b, então a2 < b2.

A⇒ B. 0 < a < b ⇒ a2 < b2.

A implica B. 0 < a < b implica a2 < b2.

A é condição suficiente para B. 0 < a < b é condição suficiente para a2 < b2.

B é condição necessária para A. a2 < b2 é condição necessária para 0 < a < b.

Aula 2 Matemática Básica 11

Demonstrações: direta e por absurdo

Aula 2 Matemática Básica 12

Demonstração direta

Nesta técnica, para demonstrar que a sentença “se A, então B” é verdadeira,mostramos que todas os objetos matemáticos que satisfazem a hipótese Atambém satisfazem a tese B. Se fizermos isso, teremos mostrado quea sentença “se A, então B” não possui contraexemplos, uma vez que umcontraexemplo é um objeto matemático que satisfaz a hipótese A, mas nãosatisfaz a tese B.

Demonstração direta

Aula 2 Matemática Básica 13

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 14

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 15

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 16

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 17

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 18

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 19

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 20

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 21

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 22

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 23

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 24

Demonstração direta: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro par, então m2 é um inteiro par.

Demonstração: se m é um inteiro par, então m é divisível por 2, isto é,m = 2 · k para algum inteiro k . Então,

m2 = (2 · k)2 = 4 · k2 = 2 · (2 · k2).

Segue-se que m2 é divisível por 2. Logo, m2 é um número par.

Aula 2 Matemática Básica 25

Demonstração por absurdo

Nesta técnica, para demonstrar que a sentença “se A, então B” é verdadeira,supomos inicialmente que ela seja falsa. A seguir, a partir desse pressuposto,usando argumentos válidos, deve-se chegar a dois fatos contraditórios (porexemplo, que um número inteiro é par e ímpar ao mesmo tempo ou queuma sentença é verdadeira ou falsa ao mesmo tempo). Feito isto, comoem uma teoria consistente não podem existir contradições, concluímos quenosso pressuposto da sentença “se A, então B” ser falsa está errado e, assim,a sentença “se A, então B” deve ser verdadeira.

Demonstração por absurdo

Aula 2 Matemática Básica 26

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 27

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 28

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 29

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 30

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 31

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 32

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 33

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 34

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 35

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 36

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 37

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 38

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 39

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 40

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 41

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 42

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 43

Demonstração por absurdo: exercício resolvido

Mostre que a sentença abaixo é verdadeira!

Se m é um inteiro e m2 é par, então m é par.

Demonstração: suponha, por absurdo, que a sentença seja falsa. Entãoela possui um contraexemplo! Portanto, existe um m que satisfaza hipótese, mas não satisfaz a tese, isto é, existe um m tal que m inteiroe m2 é par, mas m é ímpar. Mas, se m é ímpar, existe inteiro k tal que

m = 2 · k + 1.

Então m2 = (2 · k + 1)2 = 4 · k2 + 4 · k + 1 = 2 · (2 · k2 + 2 · k) + 1.

Segue-se que m2 é ímpar. Um número inteiro não pode ser par e ímparao mesmo tempo. Temos então uma contradição. Assim, a premissa deque a sentença inicial é falsa está errada, o que nos leva a concluir que asentença inicial é verdadeira!

Aula 2 Matemática Básica 44

A se, e somente se, B

Aula 2 Matemática Básica 45

A se, e somente se, B

Dizemos que uma sentença

A se, e somente se, B

é verdadeira quando as sentenças

“se A, então B” e “se B, então A”

são simultaneamente verdadeiras.

Regras do Jogo

Aula 2 Matemática Básica 46

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 47

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 48

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 49

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 50

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 51

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro e m2 é par se, e somente se, m é um inteiro par.

A sentença é verdadeira, pois as duas sentenças

se m é um inteiro e m2 é par, então m é um inteiro par

e

m é um inteiro par, então m é um inteiro e m2 é par

são simultaneamente verdadeiras (justificativas já foram apresentadasanteriormente).

Aula 2 Matemática Básica 52

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 53

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 54

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 55

A se, e somente se, B: verdadeira ou falsa?

m e n são inteiros pares se, e somente se, o produto m · n é um inteiro par.

A sentença é falsa, pois a sentença

se o produto m · n é um inteiro par, então m e n são inteiros pares

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 56

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 57

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 58

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 59

A se, e somente se, B: verdadeira ou falsa?

m é um inteiro múltiplo de 3 se, e somente se, m é um inteiro múltiplo de 9.

A sentença é falsa, pois a sentença

se m é um inteiro múltiplo de 3, então m é um inteiro múltiplo de 9

é falsa (justificativas já foram apresentadas anteriormente).

Aula 2 Matemática Básica 60

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 61

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 62

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 63

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 64

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 65

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 66

A se, e somente se, B: notações

Notação Exemplo

A se, e somente se, B. m é um inteiro e m2 é par se, e somente se, m é par.

A⇔ B. m é um inteiro e m2 é par⇔ m é par.

A se, e só se, B. m é um inteiro e m2 é par se, e só se, m é par.

Outra notação:A é condição necessária e suficiente para B.

Exemplo:m ser um número inteiro e m2 ser um número par é condição necessária e suficiente

para que m seja par.

Aula 2 Matemática Básica 67

Quatro observações

Aula 2 Matemática Básica 68

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 69

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 70

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 71

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 72

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 73

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 74

Observação 1

O pai de João disse que:

Se João for aprovado no vestibular, então João terá um carro novo.

Admita que o pai de João esteja dizendo a verdade. João não foi aprovado no vestibular.Podemos então garantir que João não vai ganhar um carro novo de seu pai?

Resposta: não! O pai de João disse que se João passar no vestibular, então João vaiganhar um carro novo. O pai de João não fez nenhuma promessa (nada afirmou) casoJoão não fosse aprovado no vestibular. João pode ganhar ou não um carro novo de seupai. Nada podemos afirmar.

Aula 2 Matemática Básica 75

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = log10 2.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Aula 2 Matemática Básica 76

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = log10 2.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Aula 2 Matemática Básica 77

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = log10 2.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Aula 2 Matemática Básica 78

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = log10 2.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Aula 2 Matemática Básica 79

Observação 2

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x2 < 0, então x = log10 2.

Resposta: a sentença é verdadeira, pois ela não possui contraexemplos uma vez quenão existe nenhum x que satisfaça a hipótese. Neste caso, dizemos que a sentença éverdadeira por vacuidade.

Aula 2 Matemática Básica 80

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x (x2 − 2 x + 1) = 0, então x = 0 ou x = 1 ou x = 2.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 0 e x = 1) também satisfazem a tese.

Aula 2 Matemática Básica 81

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x (x2 − 2 x + 1) = 0, então x = 0 ou x = 1 ou x = 2.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 0 e x = 1) também satisfazem a tese.

Aula 2 Matemática Básica 82

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x (x2 − 2 x + 1) = 0, então x = 0 ou x = 1 ou x = 2.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 0 e x = 1) também satisfazem a tese.

Aula 2 Matemática Básica 83

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x (x2 − 2 x + 1) = 0, então x = 0 ou x = 1 ou x = 2.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 0 e x = 1) também satisfazem a tese.

Aula 2 Matemática Básica 84

Observação 3

A sentença abaixo é verdadeira ou falsa?

Se x ∈ R e x (x2 − 2 x + 1) = 0, então x = 0 ou x = 1 ou x = 2.

Resposta: a sentença é verdadeira, pois todas as situações que satisfazem a hipótese(no caso, os números x = 0 e x = 1) também satisfazem a tese.

Aula 2 Matemática Básica 85

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importân-cia central no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração deuma outra proposição.

Um corolário é uma proposição que é consequência imediata de umaoutra proposição.

Uma conjectura é uma proposição que suspeita-se ter um determinadoatributo (verdadeira, por exemplo), mas ainda não se tem uma justificativa parao atributo.

Aula 2 Matemática Básica 86

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importân-cia central no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração deuma outra proposição.

Um corolário é uma proposição que é consequência imediata de umaoutra proposição.

Uma conjectura é uma proposição que suspeita-se ter um determinadoatributo (verdadeira, por exemplo), mas ainda não se tem uma justificativa parao atributo.

Aula 2 Matemática Básica 87

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importân-cia central no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração deuma outra proposição.

Um corolário é uma proposição que é consequência imediata de umaoutra proposição.

Uma conjectura é uma proposição que suspeita-se ter um determinadoatributo (verdadeira, por exemplo), mas ainda não se tem uma justificativa parao atributo.

Aula 2 Matemática Básica 88

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importân-cia central no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração deuma outra proposição.

Um corolário é uma proposição que é consequência imediata de umaoutra proposição.

Uma conjectura é uma proposição que suspeita-se ter um determinadoatributo (verdadeira, por exemplo), mas ainda não se tem uma justificativa parao atributo.

Aula 2 Matemática Básica 89

Observação 4

Proposição é sinônimo de sentença.

Um teorema é uma proposição que merece destaque e tem importân-cia central no desenvolvimento de uma determinada teoria.

Um lema é uma proposição auxiliar usada na demonstração deuma outra proposição.

Um corolário é uma proposição que é consequência imediata de umaoutra proposição.

Uma conjectura é uma proposição que suspeita-se ter um determinadoatributo (verdadeira, por exemplo), mas ainda não se tem uma justificativa parao atributo.

Aula 2 Matemática Básica 90

Uma demonstração por absurdo famosa

Aula 2 Matemática Básica 91

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 92

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 93

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 94

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 95

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 96

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 97

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 98

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 99

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 100

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 101

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 102

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 103

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 104

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 105

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 106

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 107

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 108

Demonstração por absurdo: exercício resolvido

Se x ∈ R, x > 0 e x2 = 2, então x não é um número racional

Demonstração: Suponha, por absurdo, que exista x ∈ R tal que x > 0,x2 = 2 e x = m/n, com m,n ∈ N. Sem perda de generalidade, podemossupor que x = m/n, onde m e n não possuem fatores em comum. Sex = m/n e x2 = 2, então (m/n)2 = 2 e, por conseguinte, m2 = 2 · n2.Então, m2 é um número par. Por um exercício resolvido anteriormente,concluímos que m deve ser par: m = 2 · k para algum inteiro k . Destamaneira, 2 · n2 = m2 = (2 · k)2 = 4 · k2. Daí, segue-se que n2 = 2 · k2.Logo, n2 é par. Por um exercício resolvido anteriormente, concluímos quen é par. Mas se m é par e n é par, então m e n possuem um fator emcomum (2), uma contradição.

Aula 2 Matemática Básica 109