Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de...

107
Universidade do Vale do Rio dos Sinos – UNISINOS Programa de Pós-Graduação em Engenharia Mecânica 1 Ciclos de refrigeração 2017/2

Transcript of Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de...

Page 1: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

Universidade do Vale do Rio dos Sinos – UNISINOSPrograma de Pós-Graduação em Engenharia Mecânica

1

Ciclos de refrigeração

2017/2

Page 2: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

2

Organização:

� Ciclo de Carnot� Ciclo padrão de um estágio de compressão� Subresfriamento e superaquecimento� Refrigerantes� Compressores� Ciclos de dois estágios de compressão� Ciclo em cascata� Ciclo transcrítico do CO2

Material:http://www.professor.unisinos.br/mhmac/

Refrigeração: Capítulos 1 a 7

Page 3: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

3

Ciclo ideal (reversível) é o modelo ideal para o ciclo de refrigeração operando entre duas temperaturas fixas ou entre dois fluidos a diferentes temperaturas e cada um com capacidade térmica infinita (duas bacias térmicas).

� Nenhum ciclo de refrigeração pode possuir um coeficiente de performance, COP, maior que o ciclo de Carnot, operando entre as mesmas temperaturas;

Ciclo de Carnot

Page 4: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

4

líquido Trabalho

útil ãoRefrigeraç=COP

Efeitos das temperaturas

T2 ↓ COP ↑

T1 ↑ COP ↑

Ciclo de Carnot

(1)

(2)

Page 5: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

5

Refrigerante com mudança de fase

Compressão “seca”

Expansão irreversível

Refrigerante

Page 6: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

6

Irreversibilidades

Redução do efeito de refrigeração

Aumento do trabalho mecânico

Page 7: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

7

Ciclo padrão de refrigeração por compressão mecânica

Ou ciclo reverso de Rankine ou ciclo de Evans-Perkins

Page 8: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

8

Circuito básico de um sistema de refrigeração de um

estágio de compressão

Page 9: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

9

Refrigerador doméstico

Page 10: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

10

Diagrama pressão vs. entalpia

Page 11: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

11

Diagrama pressão vs. entalpia: R134a e R717

TC = 35 °CTE = -10 °C

R134a

R717

Page 12: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

12

Ciclo real de refrigeração

Page 13: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

13

Balanço de energia nos dispositivos

Pela 1ª. Lei da Termodinâmica:

saientra EE && =

++−

++=− e

eees

sss gz

Vhmgz

VhmWQ

22

22&&&&

(3)

(4)

onde é a taxa de massa do refrigerante, é a taxa de calor e a taxa de trabalho cruzando as fronteiras do v.c. Nessa mesma equação, h é a entalpia, V a velocidade, z a altura e g a aceleração da gravidade.

m& Q& W&

Page 14: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

14

Hipóteses aplicadas ao balanço de energia

permanente Regime

ldesprezíve potencial energia de Variação 0 EP

ldesprezíve cinética energia de Variação 0

→==→=→=

mmm

EC

es &&&

∆∆

Assim:

( )es hhmWQ −=− &&&

Para os dois trocadores de calor (condensador e evaporador):

( )es hhmQ −= &&

Para o compressor, considerando um processo isentrópico e adiabático:

( )es hhmW −= &&

Para o processo de expansão, considerando a taxa de transferência de calor desprezível:

es hh =

(5)

(6)

(7)

(8)

Page 15: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

15

Chamando de a capacidade do evaporador (ou sua potência frigorífica):

( )41 hhmQmQ EE −== &&&

( )[ ]s/kghh

Qm E

41 −=

&&

A potência térmica dissipada no condensador:

( )32 hhmQmQ CC −== &&&

A taxa de deslocamento do compressor:

= smmV

311 && ν

A potência mecânica do compressor, considerando um processo isentrópico:

( ) compsms,comp QhhmWmW &&&& +−== 12

(9)

Balanço de energia

EQ&

(10)

(11)

(12)

(13)

Page 16: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

16

O título do refrigerante na entrada do evaporador é dado :

( )

( )( )l

l

ll

hh

hhx

hhxhh

−−=

−+=

1

44

144

Lembrando que:

O COP do ciclo é dado por:

comp

E

W

QCOP

&

&=

O afastamento do ciclo padrão em relação ao ciclo reversível é chamado de rendimento de refrigeração:

( )revR COP

COP=η

Balanço de energia

(14)

(15)

34 hh = (16)

(17)

(18)

lh

Page 17: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

17

Utilizando as Equações (9) e (12), a capacidade do evaporador pode ser escrita como:

O último termo no lado direito da equação é chamado de efeito volumétrico de refrigeração, dado em kJ/m3 ou kPa, sendo uma característica de cada refrigerante.Da mesma forma, a Eq. (13) pode ser reescrita como:

O termo marcado no lado direito da Eq. (20) é chamado de trabalho volumétrico do compressor ou pressão media efetiva.A potência real entregue ao compressor pode ser encontrada através da sua eficiência isentrópica:

Observações

(19)

(20)

(21)

( ) ( )1

41141 v

hhVhhmQE

−=−= &&&

( )1

121 v

hhVW s

s,comp−

= &&

( )1

121 v

hhVW

isen

ss,comp η

−= &&

Page 18: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

18

Subresfriamento e superaquecimento

Subresfriamento

Subresfriamento

Subresfriamento (∆Tsub) é a diminuição da temperatura do líquido, na saída do condensador, abaixo da temperatura de saturação.

liqc,satsub TTT −=∆

Superaquecimento

(22)

Page 19: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

19

Superaquecimento

Subresfriamento

Superaquecimento (∆Tsup) é o aumento da temperatura na saída do evaporador, acima da temperatura de saturação.

e,satvapsup TTT −=∆

Subresfriamento e superaquecimento

Superaquecimento

(23)

Page 20: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

20

Superaquecimento

Função:Impedir a entrada de líquido no compressor → diluição do óleo lubrificante, desgaste peças móveis, etc.

Page 21: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

21

Subresfriamento

Função:Evitar a formação de vapor do refrigerante na entrada do dispositivo de expansão, devido às perdas de pressão na linha de líquido, prejudicando o seu desempenho.

Page 22: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

22

Subresfriamento e superaquecimento

Uso de um trocador de calor (LSHX) que realiza os dois processos simultaneamente.

Page 23: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

23

Subresfriamento e superaquecimento

h1 h1’

h3h3’

Balanço de energia no trocador (LSHX)

( ) ( )1133 hhmhhmQ ''LSHX −=−= &&&

( ) ( )1133 TTcTTc 'v,p'l,p −=−

( ) ( )1133 TTc

cTT '

l,p

v,p' −=−

<1

( ) ( )1133 TTTT '' −<−

( )( )

( )( )13

11

13

11

TT

TT

TTcm

TTcm

Q

Q '

v,p

'v,p

max

realLSHX −

−=−−

==&

&

&

(24)

(25)

(26)

(27)

(28)

mcp é a máxima taxa de capacidade calorífica

Page 24: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

24

Compressores

O compressor é um dos quatro componentes principais de um sistema de refrigeração por compressão mecânica de vapor. O compressor é o responsável pela circulação do refrigerante no ciclo, de forma contínua. Nesse processo o compressor aumenta a pressão do refrigerante (e, consequentemente, sua temperatura), enviando o vapor ao condensador. Há dois tipos básicos de compressores: os de deslocamento positivo e os dinâmicos, conforme esquema mostrado na figura abaixo.

Page 25: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

25

Compressores

Os compressores de deslocamento positivo aumentam a pressão do vapor do refrigerante através da redução do volume da câmara de compressão através da aplicação de trabalho mecânico no mecanismo de compressão. Exemplos desses compressores são os alternativos, os rotativos (parafuso, scroll, pistão rolante e palhetas). Os compressores dinâmicos aumentam a pressão do vapor do refrigerante através da transferência contínua de momento angular pelas pás do rotor, acelerando o refrigerante, seguido de uma conversão desse momento em um aumento de pressão, isso é, a conversão da energia cinética em energia de pressão. Os compressores centrífugos são exemplos de compressores dinâmicos.

Page 26: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

26

Compressores alternativos

Se baseiam no movimento de um pistão dentro de um cilindro. Quando o pistão desloca-se do ponto morto superior (PMS) para o ponto morto inferior (PMI), o vapor entra no cilindro através de uma válvula se sucção, que se abre automaticamente pela diferença de pressão. Nesse deslocamento, o volume do cilindro é quase que totalmente preenchido pelo vapor do refrigerante.

No movimento ascendente, o pistão se movimenta desde o PMI até o PMS. Nesse momento a válvula de sucção encontra-se fechada pela ação de uma mola e a pressão no interior do cilindro aumenta pela diminuição do volume do cilindro. Esse processo continua até que a pressão no interior do cilindro consiga vencer a pressão da mola da válvula de descarga, próxima da pressão de condensação.

Nesse processo, parte do vapor permanece dentro do cilindro, na pressão de descarga, uma vez que o pistão não consegue varrer todo o volume do cilindro.

Page 27: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

27

Compressores alternativos

O espaço morto ou também chamado de espaço nocivo é definido como Vc e é geralmente representado como uma fração do volume varrido, Vsw.

sw

c

V

Vc = (29)

Page 28: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

28

Compressores alternativos

O efeito do espaço morto no diagrama pressão vs. volume para um compressor ideal é mostrado na figura abaixo. Assim, o volume de vapor Vc no ponto C expande à medida que o pistão se movimenta desde o PMS até o PMI. Nesse processo, a pressão no interior do cilindro não se reduz imediatamente para p1, mas segue a curva C-D. Para o caso de um compressor ideal, o processo C-D é considerado adiabático e reversível, isso é, a entropia constante.

Compressor ideal Compressor ideal com espaço morto

Page 29: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

29

Compressores alternativos

O primeiro efeito observável no diagrama é que o espaço morto reduz o volume de vapor aspirado desde VA, no caso de compressor sem espaço morto, para (VA-VD), conforme a figura. Assim, define-se rendimento volumétrico do compressor como:

sw

DA

CA

DA

max

realidc,v V

VV

VV

VV

V

V −=−−==η

Depois de algumas elucubrações matemáticas, pode-se chegar na seguinte equação:

onde vD e vC são os volumes específicos do refrigerante nas condições de aspiração e descarga do compressor, similarmente a v1 e v2.

(30)

(31)ssC

Didc,v v

vcc

v

vcc

−+=

−+=

2

111η

Page 30: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

30

Compressores alternativos

Se o valor de k (coeficiente isentrópico) é conhecido e o refrigerante puder ser tratado como um gás ideal:

a Eq. (31) pode ser reescrita como:

Entre os valores limites de ηv, id = 1 quando (p2/p1) = 1 e ηv, id = 0 quando (p2/p1)max, a variação do ηv, id é mostrada na fig. abaixo, onde a condição k = 1,3 é para o caso do R-717. Na prática, elevadas relações de pressão não são utilizadas, pois implicam em baixos rendimentos volumétricos e elevadas temperaturas de descarga.

v

p

c

ck =

(32)kkkk

p

p

v

v

p

p

v

vvpvp

1

1

2

2

1

1

2

2

12211

=⇒=

⇒=

k

idc,v p

pcc

1

1

21

−+=η (33)

(34)

Page 31: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

31

Compressores alternativos

Para relações de pressão usualmente utilizadas, o ηv, id é apresentado abaixo, em função da relação de pressões.

A taxa de massa circulada em um compressor ideal com espaço morto é dada por:

e a potência do compressor em um processo isentrópico:

onde a taxa do volume varrido é dada por:

1v

Vm swidc,v

&&

η= (35)

( ) ( )1

1212 v

hhVhhmW s

swidc,vsidc

−=−= &&& η

(36)

LNnD

Vsw 4

2π=& (37)

Page 32: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

32

Compressor alternativo real

A diferença mais óbvia entre o comportamento de um compressor real e de um compressor ideal com espaço morto é que a sucção e a descarga não acontecem com pressão constante, como mostrado na figura abaixo. Como as válvulas possuem massa, uma diferença de pressão é necessária para acelerá-las desde o repouso até o momento em que ficam totalmente abertas.

Além disso, as curvas relativas aos processos de compressão não são mais isentrópicas, devido aos efeitos de transferência de calor entre o fluido e as paredes do cilindro e também devido aos vazamentos.

Page 33: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

33

Compressor alternativo real

O rendimento volumétrico real é obtido através de testes onde a taxa de massa é medida em condições de regime permanente e o volume específico, na entrada do compressor, calculado a partir da temperatura e pressão.

swteórica

realv V

vm

m

m&

&

&

& 1==η (38)

Page 34: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

34

Compressor alternativo real

Através dos dados medidos é possível então obter uma equação representativa do desempenho do compressor, como por exemplo, o polinômio mostrado abaixo.

onde a variável X pode representar a taxa de massa, , o rendimento volumétrico, ηv e/ou a potência absorvida pelo compressor, . .Nessa equação, Te é a temperatura de vaporização e Tc a temperatura de condensação. As constantes Ci são obtidas através de ajuste.

(39)

compW&m&

310

29

28

37

265

24321 cceececceece TcTTcTTcTcTcTTcTcTcTccX +++++++++=

Page 35: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

35

Compressor parafuso

Na figura abaixo é apresentado um corte transversal dos parafusos macho e fêmea, onde o rotor macho tem 4 lóbulos enquanto o rotor fêmea tem 6 reentrâncias, que é um desenho usual desses compressores para aplicações de refrigeração.

Nesses compressores, o rotor macho geralmente é o acionado. Se esse rotor gira a uma velocidade w1 = N, a velocidade de giro do rotor fêmea será igual a w2 = 2N/3, conforme a equação:

3

2

6

42

1

2

2

1 NNw

z

z

w

w==→= (40)

Page 36: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

36

Compressor parafuso

Utilizando a nomenclatura mostra na figura anterior, onde af é a área transversal livre do rotor fêmea e am é a área transversal livre do rotor macho, a taxa de deslocamento do compressor é dada por:

onde N é a velocidade de rotação do rotor macho e L é o comprimento dos rotores (fusos). Definindo uma nova variável:

a taxa de deslocamento do compressor pode ser reescrita conforme

( )LaaNLaaNV fmfmsw +=

+= 43

264& (41)

42D

aaK

fm

π+

= (42)

LNDKVsw2π=& (43)

Page 37: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

37

Rendimento isentrópico de um compressor real

O rendimento isentrópico (ou adiabático) de um compressor real é dado pela relação entre o trabalho de compressão ideal, isentrópico, e o trabalho de compressão real, como definido pela equação:

( )( )real compressão de trabalho

oisentrópic compressão de trabalho=iseη (44)

( )( ) 100

12

12 xhh

hh

r

sise −

−=η (45)

Page 38: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

38

Quando a diferença entre as temperaturas de condensação e de evaporação torna-se muito elevada:

Ciclos de múltiplos estágios de compressão

i. Redução da capacidade de refrigeração;ii. As perdas no processo de estrangulamento aumentam;iii. As perdas pelo superaquecimento aumentam;iv. A temperatura na descarga no compressor aumenta;v. O título do refrigerante na entrada do evaporador aumenta;vi. O volume específico na entrada do compressor aumenta, com redução do rendimento volumétrico do

compressor;vii. Problemas de resfriamento e de lubrificação do compressor;viii. A relação entre as pressões também aumenta.

Page 39: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

39

Ciclos de múltiplos estágios de compressão

A análise do sistema de compressão com múltiplos estágios oportuniza o estudo dedois conceitos presentes nesses sistemas: o resfriamento intermediário e a remoçãodo vapor de “flash”.

Resfriamento intermediário

O resfriamento intermediário é um processo normalmente adotado em instalaçõesde múltiplos estágios de compressão. Sua função é reduzir a temperatura do vaporna saída de um estágio antes de ser aspirado pelo compressor do estágio seguinte.

Page 40: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

40

Ciclos de múltiplos estágios de compressão

Utilização de um trocador de calor com água ou ar:

No caso de compressor para refrigeração, a transferência de calor através da águaou do ar apresenta um uso relativamente limitado. No caso de um compressor deR-717, por exemplo, a temperatura de entrada do vapor no primeiro estágio émuito inferior à temperatura ambiente e o que pode ser esperado é desuperaquecero vapor do primeiro estágio até uma temperatura próxima a temperatura decondensação.

Page 41: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

41

Resfriamento intermediário com injeção de líquido

Uma forma mais efetiva de realizar o resfriamento intermediário é através dainjeção de refrigerante líquido no vapor entre os estágios, como mostradoesquematicamente nas figuras abaixo.

Nesse processo, a temperatura do vapor pode ser reduzida até a temperatura desaturação, dependendo da quantidade de líquido injetado. Uma importante questãoé como a injeção de líquido afeta o coeficiente de performance do ciclo uma vezque o refrigerante líquido utilizado para o desuperaquecimento é aparentementeperdido uma vez que não produzirá efeito de refrigeração no evaporador.

Page 42: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

42

Resfriamento intermediário com injeção de líquido

332266 hmhmhm &&& =+

252

63

2

33

2

32

2

26

2

6 hhm

mh

m

mh

m

mh

m

mh

m

m+=⇒=+

&

&

&

&

&

&

&

&

&

&

1por dividindo e como 2

6

2

32263 +=→+=

m

m

m

mmmmm

&

&

&

&&&&&

( )ym

m

m

my +== 1 então e

2

3

2

6

&

&

&

&

(46)

(47)

(48)

(49)

ondey é a fração da massa de líquido injetada em relação à massa que circula noevaporador e (1+y) a fração de massa que passa pelo compressor do segundoestágio em relação à massa que passa pelo compressor do primeiro estágio.

h6=h5

y

Lembrar que 21 mm && =

Page 43: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

43

Introduzindo a Eq. (49) na Eq. (47):

Resfriamento intermediário com injeção de líquido

325 1 h)y(hyh +=+

Resolvendo a Eq. (50) paray:

(50)

( ) ( )( )53

325332 hh

hhyhhyhh

−−

=→−=− (51)

3

25

3

2

3

51h

hyh

h

h

h

hy)y(

+=+=+

Resolvendo a Eq. (50) para (1+y)

( )( )( )533

523

353

53321hhh

hhh

hhh

hhhh)y(

−−=

−−=+

E substituindo a Eq. (51) em (52)

(52)

(53)

( ) ( )( )53

521hh

hhy

−−

=+

Page 44: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

44

Resfriamento intermediário com injeção de líquido

Considerando uma vazão mássica unitária circulando pelo evaporador, odeslocamento volumétrico através do compressor do segundo estágio do ciclo 1-2-3-4-5 será proporcional a (1+y)v3 e para o ciclo 1-2-4’-5 será proporcional a (1.v2),ondev3 ev2 são os volumes específicos na sucção dos compressores.

O deslocamento volumétrico através do compressor do segundo estágio do ciclocom desuperaquecimento será menor do que o do ciclo sem desuperaquecimentose:

( ) 231 vvy <+

( )( )

( ) ( )3

53

2

5223

53

52

v

hh

v

hhvv

hh

hh −<

−⇒<

−−

(55)

(54)

( )ym

m

m +== 11

3

2

3 &

&

&

Isso é, se o descolamento volumétrico do compressor de alta for menor do que o deslocamento volumétrico do compressor sem resfriamento intermediário

Page 45: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

45

Resfriamento intermediário com injeção de líquido

O resfriamento intermediário não reduz somente o trabalho de compressão mastambém reduz, de maneira mais importante, a temperatura na descarga docompressor melhorando a lubrificação e aumentando sua vida útil.

No caso da amônia (R-717) o resfriamento intermediário reduz a potência decompressão enquanto que para o R-22, por exemplo, aumenta.

O maior benefício obtido pelo resfriamento intermediário é a redução datemperatura de descarga do refrigerante na saída do compressor.

Page 46: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

46

Remoção do vapor de “flash”

Como fica evidente pela análise anterior, à medida que a temperatura doevaporador diminui para uma temperatura de condensação constante, airreversibilidade associada ao processo de expansão aumenta.

Também pode ser verificada que a fração de vapor na saída do dispositivo deexpansão torna-se elevada, isso é, o título na entrada do evaporador aumenta.

Título do refrigerante

Temperatura descarga compressor

Page 47: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

47

Remoção do vapor de “flash”

Esse vapor formado no processo de estrangulamento, chamado “vapor de flash”,promove a redução da temperatura do refrigerante ao passar pelo dispositivo deexpansão, absorvendo a entalpia de vaporização.

No entanto, sua função no evaporador pouco ou nada contribui para a trocatérmica, pois já se encontra na fase vapor e, além disso, incrementa a perdadepressão (carga) no evaporador e deve ser recomprimido outra vez até a pressão docondensador, consumindo trabalho.

Uma forma de reduzir a irreversibilidade do processo de expansão é realizarumaexpansão fracionada.

Page 48: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

48

Expansão fracionada

Uma forma de aumentar o COP do sistema é remover o vapor de flash tão logoseja formado, evitando sua entrada no evaporador. Como a remoção contínuadesse vapor é um processo difícil de ser realizado, opta-se por fazer uma remoçãode vapor a uma pressão intermediária, utilizando um tanque de “flash”, chamadoaqui de tanque separador de líquido.

Esse ciclo é comumente chamado de “Economizer” e é muito utilizado paraaplicações a baixas temperaturas utilizando compressores parafuso, uma vez quepossuem uma porta capaz de aspirar o vapor a uma pressão intermediária.

Page 49: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

49

Expansão fracionada

O processo de separação do vapor pode ser visto representado em um diagramapxh abaixo. Pela análise dessa figura, se vê claramente que na ausência do tanqueseparador, a condição do refrigerante na entrada do evaporador seria aquelacorrespondente ao estado 8’, que possui um título consideravelmente maior que odo estado 8.

Page 50: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

50

Expansão fracionada

A capacidade de refrigeração do evaporador, , pode ser determinada por:

ou, conhecendo essa capacidade, determinar a taxa de massa no evaporador por:

Fazendo um balanço de massa e energia no tanque separador de líquido (SL),conforme esquema mostrado, obtém-se as seguintes relações:

EQ&

( ) 811 hhmQE −= && (56)

( )811

hh

Qm E

−=

&& (57)

765 mmm &&& +=

776655 hmhmhm &&& +=

(58)

(59)

( ) 7766576 hmhmhmm &&&& +=+

E substituindo (58) em (59):

(60)

Page 51: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

51

Expansão fracionada

( )( )57

65

1

7

hh

hh

m

m

−−

=&

&

A solução da Eq. (60) fornece então a relação entre a taxa de massa que circulapelo compressor de baixa e a taxa de massa que é fracionada no tanque separador,isso é:

A taxa de massa no compressor de alta é dada por:

O estado do vapor no ponto 3 é fixado pela pressão intermediária e a entalpiaespecífica é conhecida através de um balanço de energia na entrada do compressorde alta:

(61)

713 mmm &&& += (62)

3

77213 m

hmhmh

&

&& += (63)

Page 52: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

52

Expansão fracionada

Segundo Domanski (1995), a temperatura intermediária ótima,Ti, é praticamenteuniforme para a maioria dos refrigerantes utilizados e pode ser aproximadacorretamente pela temperatura média entre a temperatura do condensador e a doevaporador:

A pressão média geométrica, dada pela equação abaixo, utilizada para determinar apressão intermediária para minimizar o trabalho de compressão em sistemas dedois estágios, considerando um gás ideal com resfriamento completo, subestima apressão ótima para gases reais no cicloEconomizer.

(64)

(65)

2EC

iTT

T+

=

ECi PPP =

Page 53: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

53

Sistema combinado: expansão fracionada e resfriamento intermediário

A mistura do vapor proveniente do tanque separador com o vapor proveniente docompressor do primeiro estágio ocasiona algum desuperaquecimento mas aredução da temperatura do vapor que entra no segundo estágio de compressão nãoserá suficiente para aqueles refrigerantes que apresentem elevada temperatura dedescarga, como é o caso da amônia, principalmente.

Para esse refrigerante, o desuperaquecimento é geralmente realizadoem umsistema como o mostrado abaixo. Ali, o vapor do refrigerante proveniente docompressor do primeiro estágio é borbulhado, através de um tubo perfurado, norefrigerante líquido presente no tanque separador que, nesse caso, também é otanque resfriador intermediário.

Page 54: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

54

Sistema combinado: expansão fracionada e resfriamento intermediário

O processo de borbulhamento se caracteriza por uma elevada área de contato entreo vapor e o líquido, permitindo um resfriamento eficiente do vapor até,aproximadamente, a temperatura do líquido do tanque. A temperatura do líquidonesse tanque corresponde à temperatura de saturação na pressão intermediária.

33772266 hmhmhmhm &&&& +=+ (66)

171263 e ; mmmmmm &&&&&& ===Como:

( )( )63

72

1

3

hh

hh

m

m

−−=

&

& (67)

Page 55: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

55

Sistema combinado: expansão fracionada e resfriamento intermediário

A vazão mássica de refrigerante que circula no evaporador, , é determinada apartir da capacidade de refrigeração requerida pelo processo:

As taxas de deslocamento dos compressores dos estágios de alta e baixa sãocalculadas através das equações:

A potência térmica dissipada no condensador é dada por:

As potencias dos compressores de alta e baixa, considerando processos decompressão isentrópicos, são dadas por:

E o COP:

1m&

( )811

hh

Qm E

−=

&& (68)

333111 e vmVvmV &&&& == (69)

( )543 hhmQC −= && (70)

( ) ( )s,comps,comp hhmWhhmW 34331211 e −=−= &&&& (71)

( )( ) ( ) 31343121

811

,comp,comp

E

ss WW

Q

hhmhhm

hhmCOP

&&

&

&&

&

+=

−+−−

= (72)

Page 56: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

56

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Os evaporadores podem ser classificados como:

Expansão direta: nesse caso, o refrigerante líquido, proveniente do condensador éalimentado através de um dispositivo de expansão. Assim, na entrada doevaporador existe uma mistura de líquido+vapor, cujo título é função dascaracterísticas termodinâmicas do refrigerante e da diferença entre as pressões deentrada e saída do dispositivo de expansão. Um dispositivo de expansão muitoutilizado é a válvula de expansão termostática,TXV. Ela controla o fluxo derefrigerante para o evaporador de tal forma que o vapor na saída esteja levementesuperaquecido, garantindo que não entre líquido no compressor. As válvulasTXVsão utilizadas quando o refrigerante vaporiza dentro dos tubos do evaporador.

Page 57: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

57

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Os evaporadores podem ser classificados como:

Evaporador inundado: nesse caso, o evaporador é alimentado exclusivamente porrefrigerante líquido proveniente de um tanque separador, na pressão devaporização, onde apenas uma fração do líquido vaporiza, isso é, a vazão mássicado refrigerante no evaporador é superior a sua capacidade de vaporização. Acirculação acontece por gravidade (ou termossifão), conforme representaçãoesquemática abaixo, onde a pressão estática na perna de líquido é maior que aquelada mistura de vapor e líquido no evaporador. Essa diferença de pressão é a forçamotora responsável pelo fluxo de refrigerante no evaporador.

Page 58: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

58

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

O coeficiente de transferência de calor do refrigerante no escoamento interno deum evaporador é uma função da fluxo do refrigerante, da taxa de transferência decalor mas, principalmente, do título do refrigerante, como pode ser visto abaixo.Nessa figura, o refrigerante é amônia (R-717) vaporizando em um tubo a -10°C.

Page 59: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

59

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Um valor elevado dehi produzirá uma menor diferença de temperatura deaproximação (entre o refrigerante e o ar) e uma maior efetividade do evaporador.

Como consequência, o evaporador poderá ter um volume menor, portanto maiscompacto, e de menor custo.

Na figura anterior, pode ser notado que o valor dehi é elevado quando o título dorefrigerante ficar entre a faixa de títulos de 0,2 a 0,7. Nessa faixa,o escoamentobifásico apresenta um padrão anular, formando um filme de líquido nas paredesdos tubos do evaporador, com o vapor escoando no centro do tubo.

No processo de secagem (dry out) há uma brusca redução do valor do coeficientede transferência de calor e, portanto, não é uma condição favorável para odesempenho do evaporador. Para títulos próximos da unidade e na região desuperaquecimento, o valor dehi é muito baixo, devido também à baixacondutividade térmica do vapor.

Page 60: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

60

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Esse problema pode ser resolvido utilizando um evaporador inundado, comsuperalimentação de líquido. Assim, o título do refrigerante será mantido emvalores adequados, evitando-se a condição de secagem.

Para isso, coloca-se o evaporador em um loop separado, cuja taxa de massa delíquido no evaporador é mantida através de uma bomba.

Page 61: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

61

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Uma representação desse ciclo em um diagrama pressão vs. entalpia é mostradaabaixo, onde utiliza como referência os estados definidos no esquema ao lado.

Page 62: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

62

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Utilizando o tanque separador (SL) como volume de controle erealizando um balanço deenergia, conforme representação na Fig. 6.18, chega-se nasseguintes expressões:

e como

9911101088 hmhmhmhm &&&& +=+

91018 e mmmm &&&& ==

( ) ( )9109811 hhmhhm −=− &&

( )( )81

910

9

1

hh

hh

m

m

−−

=&

&

(73)

(74)

(75)

(76)

1m&

9m&

3m&

Page 63: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

63

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

A vazão mássica no evaporador é determinada pela capacidadede refrigeração do sistema,conforme a Eq. 6.54.

Realizando um balanço de energia no tanque separador de líquido/resfriador intermediário,representado na figura abaixo, resulta em:

( )9109 hh

Qm E

−=

&&

77336621 hmhmhmhm &&&& +=+

Como:

36721 e mmmmm &&&&& ===

63

72

1

3

hh

hh

m

m

−−

=&

&

(77)

(78)

(79)

(80)1m&

9m&

3m&

Page 64: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

64

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Um benefício fundamental da recirculação de líquido é o incremento do coeficiente detransferência de calor do lado do refrigerante no evaporador, principalmente em função doaumento da velocidade do refrigerante.

O número de recirculação,Nr, é definido como:

ou seja, o evaporador é superalimentado de refrigerante onde apenas uma pequena parcela delíquido vaporiza.

A condição de saída da mistura líquido-vapor dos evaporadores (estadox10) está associadacom o número de recirculação,Nr, de acordo com

o vaporizadterefrigeran de mássica Vazão

evaporador ao fornecida terefrigeran do mássica Vazão=Nr

Nrx 110 =

(81)

(82)

Page 65: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

65

Sistema combinado: expansão fracionada, resfriamento intermediário e evaporador inundado

Valores recomendados para o número de recirculação,Nr,

Refrigerante Fator de recirculação

R-717

Alimentação por cima e tubos de grande diâmetro 6 a 7

Alimentação normal e tubos de pequeno diâmetro 2 a 4

R-134a 2

R-22 (alimentação por cima) 3

Page 66: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

66

Ciclo cascata

Em um ciclo cascata, ciclos separados de um estágio de compressão são arranjados em série.Os ciclos são integrados termicamente através de um trocador de calor, chamado de"condensador cascata”.

O ciclo do estágio superior rejeita calor para o ambiente, natemperatura de condensação.

O ciclo inferior rejeita calor para o estágio superior do ciclo cascata, no trocador de calor,enquanto o refrigerante vaporiza no evaporador, retirandocalor do meio.

Page 67: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

67

A vantagem desse ciclo reside no fato de que, quando a diferença entre atemperatura na qual o calor é rejeitado (condensador) e a temperatura na qual arefrigeração é demandada é tão elevada que um único refrigerante com propriedadesadequadas para operar nessa faixa de pressões/temperaturas não é encontrado.

Como as curvas de pressão de vapor de todos os refrigerantes possuem formatosimilar, não é possível encontrar um refrigerante que apresente pressão elevadaadequada no evaporador e uma razoavelmente baixa pressão no condensadorquando as diferenças de temperatura são elevadas.

Ciclo cascata

Page 68: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

68

Para o ciclo superior (de alta), pode-se utilizar como refrigerantes o R-22, R-717, R-134a, R404a, etc.

Para o ciclo inferior (de baixa), as opções são: o dióxido de carbono (R-744), até -50°C, o R-508b, de -40 °C até -100 °C, o R-23, até -70 °C, etc.

Ciclo cascata

Page 69: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

69

Ciclo cascata – representação em um diagrama P vs h

� �

��

� �

Page 70: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

70

Usos:

� Congelamento de alimentos a temperaturas muito baixas (< -50 °C);

� Liquefação de vapores de petróleo;

� Liquefação de gases industriais;

� Fabricação de gelo seco;

� Aplicações específicas: câmaras climáticas para choques térmicos, congelamentode plasma sanguíneo, etc.

Ciclo cascata

Page 71: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

71

Ciclo cascata

A temperatura do refrigerante saindo do condensador é especificada pela diferença detemperatura de aproximação, conforme a equação:

onde TH é a temperatura do meio onde o calor será dissipado. Na ausência de subresfriamento nasaída do condensador, a condição de saída do refrigerante é de líquido saturado, x8 = 0.

A temperatura do refrigerante na saída do evaporador é especificada pela diferença detemperatura de aproximação no evaporador, conforme a equação:

onde TL é a temperatura do meio onde o calor será retirado. Na ausência de superaquecimento nasaída do evaporador, a condição de saída do refrigerante é de vapor saturado, x2 = 1.

HH TTT ∆+=8 (83)

LL TTT ∆−=2(84)

T

TL

TH

W

QH

QL

Tc

Te

HHc TTT ∆+=

LLe TTT ∆−=

∆∆∆∆TH

∆∆∆∆TL

Temp. condensação

Temp. vaporização

Page 72: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

72

Ciclo cascata

A temperatura do refrigerante do estágio superior na entrada do trocador de calor éespecificada pela temperatura intermediária, conforme a equação abaixo mas quedeve ser otimizada:

Caso a perda de pressão no TC seja desprezível:

Na ausência de superaquecimento na saída do trocador de calor, a condição de saídado refrigerante é de vapor saturado, x6 = 1.

→ A análise dos compressores é similar aos exemplos analisados nos ciclosanteriores.

A temperatura do refrigerante do estágio inferior, na saída do trocador de calor édada pela diferença de temperatura de aproximação no trocador, conforme aequação:

e na ausência de subresfriamento na saída do trocador, a condição de saída dorefrigerante é de líquido saturado, x4 = 0.

intTT =5 (85)

56 PP = (86)

CHXTTT ∆+= 54 (87)

Page 73: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

73

Ciclo cascata

Realizando um balanço de energia no trocador de calor:

(89)

(88)

ba mmmmmm &&&&&& ==== 4365 e

44663355 hmhmhmhm &&&& +=+

Como:

4635 hm

mh

m

mh

m

mh

m

m

a

b

a

a

a

b

a

a

&

&

&

&

&

&

&

&+=+ (90)

resultando em:

4635 hm

mhh

m

mh

a

b

a

b&

&

&

&+=+ (91)

A solução da Eq. (91) fornece a relação entre as taxas de massa do evaporador e docondensador, conforme:

43

56

hh

hh

m

m

a

b

−−=

&

& (92)

am&

bm&

Substituindo a Eq. (89) na (88) e dividindo poram&

Page 74: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

74

Ciclo cascata

A capacidade do evaporador (no estágio inferior) é dada por:

e a capacidade do evaporador em função da taxa de deslocamento dos compressorespode ser calculada como:

( )12 hhmQ bE −= &&

(94)

+

=+

=

2626 v

m

mvm

Q

vmvm

Q

V

Q

a

ba

E

ba

E

c

E

&

&&

&

&&

&

&

&

O cálculo do COP é realizado conforme visto anteriormente.

Obs.: A temperatura intermediária deverá ser otimizada em função dastemperaturas de condensação e de vaporização em cada um dos ciclos e também emfunção dos refrigerantes utilizados.

(93)

Page 75: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

75

Operação perto no ponto crítico

O uso do dióxido de carbono (R-744) foi bastante popular até a década de 60 doséculo passado, principalmente em aplicações industriais, como a indústriapesqueira (principalmente em navios e barcos).

Em função das questões ambientais surgidas com o uso de refrigeranteshalogenados (CFCs) seu uso intensificou nos últimos anos+.

Características do dióxido de carbono (R-744):

� Elevada pressão de operação;

� Ponto tríplice em pressão elevada (-56,6 °C e 5,2 bar);

� Ponto crítico em temperatura muito baixa (31 °C e 73,6 bar);

� Mas seu custo pode chegar de 1/10 a 1/20 do custo dos halogenados.

+Lorentzen, G., 1994. Revival of carbon dioxide as a refrigerant. International Journal of Refrigeration, 17(5); 292-301.

Page 76: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

76

Operação perto no ponto crítico

Temperatura, °°°°C Pressão, kPa

R717 CO2

26,7 951,5 6.577,6

1,7 455,1 3.543,9

-42,8 40,6 792,9

Page 77: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

77

Devido ao seu baixo ponto crítico de apenas 31 °C, a condensação do dióxido de carbono acontecemuito próxima à temperatura crítica quando se utiliza água entre 20 e 25 °C. Em temperaturasmais elevadas, a condensação não é mais possível devido à diferença de temperatura deaproximação que deve ser mantida no condensador, entre refrigerante e água.

Um ciclo considerando aspiração pelo compressor desde a condição de vapor saturado émostrada abaixo.

Pode-se notar que a diferença de entalpia (h1-h4) para uma dada temperatura de vaporização émuito pequena e diminui à medida que o estado 3 é movido sobre a linha de líquido saturado emdireção ao ponto crítico.

Operação perto no ponto crítico

Page 78: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

78

Se a temperatura do meio de condensação é mais alta para permitir a condensação, ovapor a alta pressão no “condensador” tem apenas sua temperatura reduzida,determinada pela temperatura do meio e da área disponível para a transferência decalor.

Esse ciclo, chamado de transcrítico, é apresentado abaixo. A temperatura final dovapor supercrítico situa-se sobre uma isoterma T3. O refrigerante no estado 3 entrano dispositivo de expansão, reduzindo sua pressão e temperatura, atingindo o estado4. O efeito específico de refrigeração (h1-h4) é bastante baixo, quase a metade daentalpia de vaporização na temperatura de saturação.

Operação perto no ponto crítico

Page 79: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

79

Page 80: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

80

Uma peculiaridade de operação nessa condição é que a capacidade de refrigeração eo coeficiente de performance (COP) do ciclo podem ser melhorados aumentando apressão no lado de alta.

Ou seja, mantendo a mesma temperatura final, T3, aumentando levemente apressão, do estado 2L para 2, até que o estado final atinja a condição 3. Isso faz comque o efeito específico de refrigeração passe de (h1-h4L) para (h1-h4). Pode-se notartambém que o aumento de pressão causa um aumento da diferença de entalpias (h2-h1) mas que, devido à pouca curvatura de linha de entropia constante, esse aumentoé insignificante perto do incremento de (h1-h4).

Operação perto no ponto crítico

Page 81: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

81

No entanto, esse incremento apresenta um limite acima do qual o aumento do efeito derefrigeração não compensa o aumento do trabalho mecânico.

Quando a pressão na descarga do compressor passa de 2 para 2H, para a mesma temperatura nasaída do gas cooler, o incremento da variação de entalpia no evaporador (h1-h4H) não é mais tãosignificativo como havia sido na primeira análise. Assim, há um aumento do trabalho decompressão mais significativo do que o aumento do efeito de refrigeração. Como resultado o COPdiminui.

Resumindo: existe uma pressão de alta ótima que maximiza o COP.

Operação perto no ponto crítico

Page 82: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

82

A pressão ótima que maximiza o COP depende da pressão (e temperatura) de vaporização.

Operação perto no ponto crítico

+Groll, E.A. e Kim, J.-H., 2007. Review of recent advances toward transcritical CO2 cycle technology. HVAC&R Research, 13(3); 499-520.

Page 83: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

83

Ciclo transcrítico simples de CO2

( )1

122 h

hhh

isen

is, +−

(95)

( )41 hhmQE −= && (96)

( )32 hhmQgc −= &&

Rejeição de calor no “gas cooler”:

( )12 hhmWcomp −= &&

comp

E

W

QCOP

&

&=

(97)

(98)

(99)

Page 84: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

84

Na figura abaixo é mostrada uma representação do ciclo transcrítico do CO2 em um diagrama T-s. Durante a expansão desse refrigerante em um dispositivo com restrição de área, o incrementoda entropia é significativo, reduzindo o efeito de refrigeração. Para compensar esse efeito,buscam-se outras alternativas de desenho do ciclo, como por exemplo, o uso de trocador de calorinterno, como mostrado na figura abaixo (direita).

Operação perto no ponto crítico

LSHX

LSHX

Page 85: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

85

Outra forma de aumentar o desempenho do ciclo é substituir o dispositivo de expansão por umdispositivo de recuperação do trabalho de expansão, como uma turbina, por exemplo:

Operação perto no ponto crítico

+Pérez-García, V., Belman-Flores, J.M., Navarro-Esbrí, J., Rubio-Maya, C., 2013. Comparative study oftranscritical vapor compression configurations using CO2 as refrigeration mode base on simulation. AppliedThermal Engineering, 51, 1038:1046.

Page 86: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

86

Dispositivos de expansão

Responsáveis pela redução da pressão do refrigerante, desde a pressão do condensador até apressão de evaporação ou condição similar para o caso de sistemas de múltiplos estágios.

Tipos:

� Restrição de área fixa (tubo capilar ou de orifício);

� Válvula de expansão termostática (VXT);

� Válvula de expansão eletrônica (EXT);

� Válvula de expansão tipo boia de baixa pressão;

� Válvula manual.

Page 87: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

87

Tubo capilar

Page 88: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

88

Tubo capilar - Modelo

Hipóteses do modelo:

� O tubo capilar é reto, horizontal e com área da seção transversal constante;

� O escoamento compressível viscoso é unidimensional na direção axial;

� As perdas de pressão na entrada e na saída do tubo são desprezíveis;

� O escoamento é bifásico e homogêneo;

� O escoamento meta estável é desprezado;

� O escoamento pode ser considerado isentálpico;

� A perda de pressão devido a aceleração é desprezível em relação ao termo de atrito.

Page 89: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

89

Tubo capilar - Modelo

Fonte: Hermes, C.J.L.; Melo, C.; Knabben, F.T. , 2010. Algebraic solution of capillary tube flows. Part I: Adiabatic capillary tubes. Applied Thermal Engineering, v. 30, p. 449-457.

Representação esquemática para o cálculo do ponto de flash.

(a) Líquido subresfriado (b) Estado bifásico

Page 90: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

90

Tubo capilar - Modelo

Conforme Hermes et al. (2010), a vazão mássica, em kg/s, pelocapilar pode ser calculadacomo:

Fonte: Hermes, C.J.L.; Melo, C.; Knabben, F.T. , 2010. Algebraic solution of capillary tube flows. Part I: Adiabatic capillary tubes. Applied Thermal Engineering, v. 30, p. 449-457.

( )d

f

eef

f

fcdf

ddd

bap

bapln

a

b

a

pp

v

pp

L

D

cm

−−−−

++−

+−

=2

1

2

5322 2

ηπ

&

onde L é o comprimento do tubo, em m; D é o diâmetro interno do tubo capilar, em m; pc, pe e pf são as pressões de condensação, evaporação e do ponto de “flash”, respectivamente, em Pa; vf é o volume específico no ponto de “flash”, em m3/kg

(95)

Page 91: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

91

Tubo capilar - Modelo

( )d

f

eef

f

fcdf

ddd

bap

bapln

a

b

a

pp

v

pp

L

D

cm

−−−−

++−

+−

=2

1

2

5322 2

ηπ

&

onde hi é a entalpia na entrada do capilar, em J/kg; f é o fator de atrito, adimensional, ηf é a viscosidade no ponto de “flash”, em Pa.s, c e d são constantes obtidas de regressão com dados experimentais.

( )fliqf pvv =

( )kva f −= 1

kpvb ff=720510631 ,

fpx,k −=

( )iliqevapf hhpp ==

( ) 218 /f −= πΦ

d

fD

mcf

=

ηπ&4

140,c = 150,d =

(95)

Page 92: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

92

Válvula de expansão termostática

Fonte: Eames, I.W. , 2013. Modelling thermostatic expansion valves. International Journal of Refrigeration. In Press. http://dx.doi.org/10.1016/j.ijrefig.2013.06.010

Page 93: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

93

Fonte: ASERCON, 2005. Capacity rating of thermostatic expansion valves.

Lembrando que o superaquecimento é definido como a diferença entre a temperatura na saída do evaporador em relação a temperatura de saturação do refrigerante na pressão do evaporador.- Superaquecimento estático (SS) é definido como o superaquecimento no qual a válvula permanece fechada e acima do qual a válvula começa abrir;- Superaquecimento de abertura (OS) é o superaquecimento incremental acima de SS requerido para alcançar a capacidade nominal da válvula.- Superaquecimento de trabalho (WS) é a soma de SS+OS

Válvula de expansão termostática

Page 94: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

94

Válvula de expansão termostática

A capacidade de uma válvula termostática é dada por uma equação geral descrita como:

De tal forma que a taxa de massa é descrita como:

onde C é o coeficiente de descarga, Av é a área do estrangulamento, Pc é a pressão no condensador, Pe é a pressão no evaporador e ρ é massa específica do líquido saturado na pressão do condensador.

( )( )41 hhPPCAQ

m

ecvE −−=44 344 21

&

&

ρ

( )ecv PPCAm −= ρ&

Page 95: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

95

Existem diversos modelos na literatura, a maioria considerando que o produtoCAv pode serconsiderado como uma constante, tanto para válvulas TXV quanto EXV.

Válvula de expansão termostática

Fonte: Li, H.; Braun, J.E.; Shen, B. 2004. Modeling adjustable throat-area expansion valves. International Refrigeration and Air Conditioning Conference. Paper 705.

Page 96: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

96

Conforme Eames et al. (2013):

Fonte: Eames, I.W. , 2013. Modelling thermostatic expansion valves. International Journal of Refrigeration. In Press. http://dx.doi.org/10.1016/j.ijrefig.2013.06.010

( ) ( )[ ]oebebv PPPPA −−−= β

onde β é a constante da área de escoamento da válvula, Pb é a pressão no bulbo. O sub-índice “o” representa a condição dos pontos no momento de abertura da válvula. Dessa forma, a equação que representa a taxa de massa pela válvula é dada por:

( )[ ] ( )eceb PPPPm −−−= ραβ&

onde

( )oeb PP −=α

é o equivalente de pressão para o superaquecimento estático (SS).

Válvula de expansão termostática

Page 97: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

97

Válvula de expansão eletrônica

Page 98: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

98

Válvula tipo boia de baixa pressão

Page 99: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

99

Compressores

Modelos utilizando as curvas de desempenho do equipamentos

Page 100: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

100

A capacidade real do compressor pode ser corrigida à partir dos dados do fabricante:

Fonte: Manske, K.A., 1999. Performance optimization of industrial refrigeration systems. Master Thesis. University of Wiscosin-Madison. USA.

fab

real

real

fabfabreal h

h

v

vCapCap

∆∆=

onde Capfab é a capacidade (potência frigorífica) do compressor nas condições definidas pelo fabricante, vfab é o volume específico do vapor na condição nominal, vreal é o volume específico na condição real, ∆hreal é a diferença de entalpia entre a sucção do compressor e a entrada no evaporador na condição real e ∆hfab na condição nominal.

Correção da capacidade do compressor

Page 101: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

101

Condensador evaporativo

A capacidade de um condensador evaporativo é dada por:

( )cT,TbuFRCcapacidade

nominal capacidade=

onde FRC é o fator de rejeição de calor, função da TBU e da temperatura de condensação.

Page 102: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

102

Uma forma de modelar o condensador evaporativo é através da utilização do conceito deefetividade. Assim:

−==

i,aTo,aa

i,aTo,aa

hhm

hhm

sat,r

sat,o,a

&

&

capacidade máxima

nominal capacidadeε

onde o sub-índice “a” representa o ar, “o” a condição de saída e “i” a condição de entrada; Tr a temperatura do refrigerante e “sat” a condição de saturação.

Condensador evaporativo

Page 103: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

103

cTaa 21 −=ε

Efetividade do condensador evaporativo

Page 104: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

104

Pode ser modelado de forma similar ao condensador, onde a capacidade máxima é quando a condição do ar na saída do evaporador for igual a condição do refrigerante.

)Thh(m

)Thh(m

rs,are,are,ar

ars,are,are,arevap −

−==

&

&

capacidade máxima

nominal capacidadeε

onde o sub-índice “ar” representa o ar, “s” a condição de saída do ar, na saturação e “e” a condição de entrada do ar e Tr a temperatura do refrigerante.

Evaporador

Page 105: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

105

Efetividade do evaporador

eTaa 21 −=ε

Page 106: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

106

Bibliografia

Gosney, W.B., 1982. Principles of refrigeration. London: Cambridge UniversityPress.Stoecker, W.F., 1998. Industrial refrigeration handbook. New York: MacGraw-Hill.

Page 107: Ciclos de refrigeração - professor.unisinos.brprofessor.unisinos.br/mhmac/SistTerm/Ciclos de refrigeracao.pdf · 17 Utilizando as Equações (9) e (12), a capacidade do evaporador

107

Apêndices

Eq.(53):

como: e 3

251h

hyh)y(

+=+

( )( )53

521hh

hh)y(

−−=+

( )( )53

32

hh

hhy

−−=

( )( )

( )( ) ( )

( ) 3

2

353

5352

3

253

5352

3

2553

32

1h

h

hhh

hhhh

h

hhh

hhhh

h

hhhh

hh

)y( +−−=

+−−

=+

−−

=+

( )( ) ( )

( ) ( )( )( )533

523

353

5323

353

2353

353

52235352

353

25353521

hhh

hhh

hhh

hhhh

hhh

hhhh

hhh

hhhhhhhh

hhh

hhhhhhh)y(

−−=

−−=

−+−=

=−

−+−=−

−+−=+