Dml corporal 01

48
AN02FREV001/REV 4.0 1 PROGRAMA DE EDUCAÇÃO CONTINUADA A DISTÂNCIA Portal Educação CURSO DE Drenagem Linfática Corporal Aluno: EaD - Educação a Distância Portal Educação

Transcript of Dml corporal 01

Page 1: Dml corporal 01

AN02FREV001/REV 4.0

1

PROGRAMA DE EDUCAÇÃO CONTINUADA A DISTÂNCIA Portal Educação

CURSO DE

Drenagem Linfática Corporal

Aluno: EaD - Educação a Distância Portal Educação

Page 2: Dml corporal 01

AN02FREV001/REV 4.0

2

CURSO DE

Drenagem Linfática Corporal

Atenção: O material deste módulo está disponível apenas como parâmetro de estudos para este Programa de Educação Continuada. É proibida qualquer forma de comercialização ou distribuição do mesmo sem a autorização expressa do Portal Educação. Os créditos do conteúdo aqui contido são dados aos seus respectivos autores descritos nas Referências Bibliográficas.

Page 3: Dml corporal 01

AN02FREV001/REV 4.0

3

SUMÁRIO

1. Tecido epitelial

1.1 Epitélio de revestimento

1.2 Epitélio glandular

2. Tecido conjuntivo

2.1 Tecido conjuntivo propriamente dito

2.2 Tecido conjuntivo de propriedades especiais

2.3 Substância fundamental amorfa

2.4 Fibras do tecido conjuntivo

2.4.1 Fibras colágenas

2.4.2 Fibras reticulares

2.4.3 Fibras elásticas

2.5 Células próprias do tecido conjuntivo

3. Sistema tegumentar

3.1 Pele

3.1.1 Epiderme

3.1.2 Derme

3.2 Hipoderme (tela subcutânea)

Page 4: Dml corporal 01

AN02FREV001/REV 4.0

4

3.3 Anexos da pele

3.4 Funções do sistema tegumentar

3.5 Propriedades do sistema tegumentar

4. Sistema linfático

4.1 Órgãos linfóides

4.2 Linfa

4.3 Topografia do sistema linfático

4.3.1 Capilares linfáticos

4.3.2 Pré-coletores linfáticos

4.3.3 Coletores linfáticos

4.3.4 Troncos linfáticos

4.3.5 Linfonodos (gânglios ou nodos linfáticos)

4.4 Circulação linfática

4.5 Anatomia dos linfáticos

5. Edema

5.1 Fisiopatologia do edema

5.1.1 Aumento da pressão hidrostática

5.1.2 Redução da pressão oncótica

5.1.3 Aumento da permeabilidade capilar

5.1.4 Obstrução da drenagem linfática

Page 5: Dml corporal 01

AN02FREV001/REV 4.0

5

5.1.5 Aumento da pressão coloidosmótica do líquido intersticial

6. Linfedema

7. Glossário

02_Drenagem Linfatica Corporal

1. A massagem terapêutica

2. A drenagem linfática manual

2.1 Histórico

2.2 Conceitos gerais

2.3 Efeitos da drenagem linfática manual

2.4 Indicações

2.5 Contra-indicações

2.6 Componentes da drenagem linfática manual

2.6.1 Pressão

2.6.2 Direção

2.6.3 Ritmo e freqüência

2.6.4 Repetição

2.6.5 Etapas

2.6.6 Caminho

2.6.7 Tempo

Page 6: Dml corporal 01

AN02FREV001/REV 4.0

6

2.6.8 Produtos

2.6.9 Manobras de evacuação

2.6.10 Manobras de captação

3. A drenagem linfática reversa

4. Medidas complementares para o tratamento do linfedema

5. Avaliação físico-funcional para realização da drenagem linfática

5.1 Anamnese

5.2 Exame Físico

5.3 Perimetria

5.4 Volumetria

5.5 Modelo de protocolo de avaliação físico-funcional

6. Glossário

03_Drenagem Linfática Corporal

1. Requisitos para a massagem de drenagem linfática manual

1.1 Autopreparação

1.2 Relaxamento

1.3 O ambiente

1.4 Palpação e desenvolvimento da percepção sensorial

1.5 Exame do paciente a cada atendimento

Page 7: Dml corporal 01

AN02FREV001/REV 4.0

7

1.6 Preparação do paciente

2. Técnicas de drenagem linfática manual

2.1 Principais manobras da DLM segundo o método Leduc

2.2 Principais manobras da DLM segundo o método Vodder

2.3 Método Ganância

2.4 Método Godoy

3. Seqüência de manobras de drenagem linfática manual corporal

3.1 Drenagem da mama

3.2 Drenagem dos membros superiores

3.3 Drenagem do abdômen

3.4 Drenagem da região glútea

3.5 Drenagem dos membros inferiores

3.6 Drenagem da região dorsal

4. Glossário

04_Drenagem Linfática Corporal

1. Pressoterapia

1.1 Efeitos fisiológicos

1.2 Indicações

1.3 Contra-indicações

Page 8: Dml corporal 01

AN02FREV001/REV 4.0

8

1.4 Técnicas de aplicação

1.4.1 Pressão de insuflação

1.4.2 Tempo ligado e desligado

1.4.3 Tempo total de tratamento

1.5 Precauções

2. Depressodrenagem linfática (dermotonia)

2.1 Efeitos fisiológicos

2.2 Indicações

2.3 Contra-indicações

2.4 Técnicas de aplicação

3. Drenagem linfática seqüencial (eletroestimulação russa)

3.1 Conceitos de eletroestimulação

3.2 Efeitos fisiológicos

3.3 Indicações

3.4 Contra-indicações

3.5 Técnicas de aplicação

3.6 Precauções

4. Glossário

BIBLIOGRAFIA CONSULTADA

Page 9: Dml corporal 01

AN02FREV001/REV 4.0

9

1. Tecido epitelial

O tecido epitelial, também denominado epitélio é um dos quatro tipos de

tecidos básicos no nosso organismo, juntamente com os tecidos conjuntivo,

muscular e nervoso. É formado por células justapostas com pouca substância

intercelular entre elas. Esse tecido é avascular, sendo a nutrição de suas células

feita a partir do tecido conjuntivo adjacente, por difusão, através da membrana basal.

Esta membrana promove a adesão entre os tecidos, permitindo, contudo, a difusão

de alimentos, catabólitos e oxigênio. Os epitélios são inervados, recebendo

terminações nervosas livres que formam uma rica rede intra-epitelial.

Figura 01 – Tecido epitelial

Fonte: WIKIPÉDIA, 2008.

O tecido epitelial pode ser classificado em duas categorias: epitélio de revestimento e epitélio glandular.

1.1 Epitélio de revestimento O tecido epitelial de revestimento (ou proteção) é o revestimento externo

do corpo, que cobre todos os tipos de cavidades. Quando os epitélios são formados

por uma só camada de células, são classificados como epitélios simples ou

uniestratificados. Já os epitélios formados por mais de uma camada de células são

chamadas estratificados. Existem ainda epitélios que, apesar de formados por uma

única camada celular, têm células de diferentes alturas, o que dá a impressão de

Page 10: Dml corporal 01

AN02FREV001/REV 4.0

10

serem estratificados. Por isso, eles costumam ser denominados

pseudoestratificados. Quanto à forma das células, os epitélios podem ser classificados em

pavimentosos, quando as células são achatadas como ladrilhos; cúbicos, quando

as células têm a forma de cubo; ou prismáticos, quando as células são alongadas,

em forma de coluna. No epitélio que reveste a bexiga, a forma das células é

originalmente cúbica, mas elas se tornam achatadas quando submetidas ao

estiramento causado pela dilatação do órgão. Por isso, esse tipo de epitélio é

denominado, epitélio de transição.

1.2 Epitélio glandular

Conjunto de células especializadas cuja função é a produção e liberação de

secreção. As células secretoras são denominadas parênquima e o tecido conjuntivo

no interior da glândula é denominado estroma. O estroma sustenta também vasos

sangüíneos, linfáticos e nervos.

As moléculas a serem secretadas geralmente são armazenadas nas células

em pequenas vesículas envolvidas por uma membrana, chamadas grânulos de secreção. As células epiteliais glandulares podem sintetizar, armazenar e secretar proteínas, lipídios ou complexos de carboidratos e proteínas.

Existem parâmetros para classificar os diferentes tipos glandulares, como o

número de células e o local onde a secreção é lançada.

Quanto à organização das células, as glândulas podem ser unicelulares

(a secreção é realizada por células especializadas. Espalhadas entre outras células

não-secretoras) ou multicelulares (

Quanto ao local em que a secreção é lançada, as glândulas podem ser

classificadas como e

a secreção é realizada por um conjunto de

células).

ndócrinas (glândulas sem ductos em que a secreção é lançada

na corrente sangüínea e é distribuída para todo o corpo. A secreção endócrina é a

secreção de hormônios, que atuam em locais distantes de onde foram produzidos);

ou exócrinas (glândulas com ducto excretor que transportam a secreção glandular

para a superfície do corpo ou para o interior de um órgão).

Quanto à função as glândulas podem ser:

Page 11: Dml corporal 01

AN02FREV001/REV 4.0

11

- holócrinas quando as células são eliminadas juntamente com os produtos

de secreção. As células eliminadas são substituídas a partir de células-fonte

existentes na glândula;

- apócrinas, quando as células eliminam, juntamente com os produtos de

secreção, parte do citoplasma no qual a secreção fica acumulada; ou

- merócrinas, quando as células eliminam somente o produto de secreção,

permanecendo o restante da célula intacto.

2. Tecido conjuntivo Ao contrário dos epitélios, os tecidos conjuntivos caracterizam-se por

apresentar elevada quantidade de substância intercelular. As células que constituem

esses tecidos possuem formas e funções bastante variadas. Trata-se, portanto, de

um tecido com diversas especializações. Entre suas funções estão: preenchimento,

estabelecimento de conexão entre os diversos tipos de tecidos ou órgãos,

sustentação (osso e cartilagem), transporte de substâncias (sangue) e auxílio na

defesa orgânica (glóbulos brancos).

Pode ser dividido em:

Figura 02 – Tecido conjuntivo

Fonte: UFBA, 2008.

2.1 Tecido conjuntivo propriamente dito O tecido conjuntivo propriamente dito é, dos tecidos conjuntivos, o menos

diferenciado e o mais genérico, preenchendo todos os espaços entre os tecidos

restantes. Logo, está presente em todos os órgãos, e abaixo da derme,

estabelecendo a ligação entre eles. Permite igualmente o transporte de metabólitos

e participa na defesa do organismo. É constituído por vários tipos de células que

Page 12: Dml corporal 01

AN02FREV001/REV 4.0

12

encontram-se imersas em uma substância intercelular, designada como matriz extracelular.

Pode ser classificado como frouxo (tecido de consistência delicada, flexível

e pouco resistente às trações) ou denso (com predominância acentuada de fibras

colágenas. Os conjuntivos densos podem ser irregulares, com feixes colágenos em

trama tridimensional, conferindo ao tecido, resistência às trações em qualquer

direção ou regulares, com feixes colágenos seguindo uma organização fixa, em

respostas a trações exercidas em um mesmo sentido, como por exemplo, nos

tendões).

2.2 Tecido conjuntivo de propriedades especiais

Enquadram-se neste grupo os tecidos adiposo, elástico, reticular, mucoso, cartilaginoso e ósseo.

O tecido adiposo apresenta células adiposas (adipócitos), que armazenam

gordura. Estas células possuem um vacúolo central (pode aumentar ou diminuir de

acordo com o metabolismo do indivíduo). A quantidade de gordura difere nas partes

do corpo. Suas principais funções são de isolante térmico, de proteção dos órgãos

contra choques mecânicos e de reserva energética.

O tecido elástico é formado por fibras elásticas grossas, por fibras

colágenas finas e por fibroblastos. Também é um tecido pouco freqüente, sendo

encontrado nos ligamentos da coluna vertebral e no ligamento suspensor do pênis.

O tecido reticular é formado por fibras reticulares e por células reticulares.

É um tecido muito delicado que forma uma rede para sustentar as células. Encontra-

se nos órgãos que formam as células do sangue (medula óssea).

O tecido mucoso tem aspecto gelatinoso, e é o principal constituinte do

cordão umbilical. Também é encontrado na polpa dental jovem. Neste tecido há

predominância de substância fundamental amorfa e poucas fibras.

O tecido cartilaginoso é formado por células denominadas condroblastos e

condrócitos. Os condroblastos produzem grande quantidade de fibras protéicas;

quando sua atividade metabólica diminui, passam a ser denominados condrócitos. O

tecido cartilaginoso é desprovido de vasos sanguíneos e de nervos; é nutrido pelo

tecido conjuntivo denso que o envolve.

Page 13: Dml corporal 01

AN02FREV001/REV 4.0

13

O tecido ósseo é o principal componente dos ossos. É bem mais resistente

que o cartilaginoso, pois é constituído de uma matriz rígida (formada basicamente

por fibras colágenas e sais de cálcio), e composto por vários tipos de células;

osteoblastos, osteócitos e osteoclastos.

2.3 Substância fundamental amorfa

A substância fundamental amorfa ocupa os espaços entre as fibras elásticas

e colágenas, funcionando como lubrificante para esta microarquitetura móvel. É

formada pelo fluido intersticial, acido hialurônico e complexos de

glicosaminoglicanas e proteínas, denominados proteoglicanas e glicoproteínas.

Caracteriza-se por uma substância incolor, transparente e homogênea que

representa uma barreira à penetração de partículas estranhas no interior dos

tecidos. Apresenta-se como um elemento não fibroso da matriz, em que as células e

outros elementos estão mergulhados.

2.4 Fibras do tecido conjuntivo

São proteínas que se polimerizam formando estruturas alongadas presentes

em proporções variáveis nos diversos tipos de tecido conjuntivo. Podem ser

classificadas em três tipos principais: colágenas, reticulares e elásticas. Como as

fibras colágenas e reticulares são constituídas de colágeno, existem na verdade

apenas dois tipos de sistemas de fibras: o sistema colágeno e o sistema elástico.

2.4.1 Fibras colágenas

São as fibras mais freqüentes no tecido conjuntivo. São brancas e alongadas

e têm diâmetro entre 01 e 20um (micrômetro) mostrando uma estriação longitudinal,

pois são constituídas por fibrilas. São constituídas por colágeno que é uma

glicoproteína formada principalmente pelo aminoácido glicina. O colágeno é a

proteína mais abundante do corpo humano, representando 30% das proteínas totais.

Page 14: Dml corporal 01

AN02FREV001/REV 4.0

14

Representa cerca de 70% do peso da pele seca e tem como função fornecer

resistência e integridade estrutural a diversos órgãos e tecidos.

Os tipos de colágenos mais freqüentes são:

- tipo I, que é o mais abundante e representam 90% do total de colágeno do

organismo, encontrado nos tendões, ligamentos, derme, cápsula de órgãos, tecido

conjuntivo frouxo, ossos, dentina e outros. É sintetizado pelos fibroblastos,

odontoblastos e osteoblastos;

- tipo II é encontrado nas cartilagens: hialina e elástica. É sintetizado pelas

células cartilaginosas;

- tipo III forma as fibras reticulares e é produzido pelos fibroblastos e células

reticulares;

- tipo IV está presente nas lâminas basais e no tecido epitelial (não faz parte

do tecido conjuntivo) e é sintetizado pelas células do último;

- tipo V associa-se ao colágeno do tipo I para formar as fibrilas e é

sintetizado pelos fibroblastos; e

- tipo VI, encontrado junto com o colágeno do tipo II e produzido pelos

condroblastos.

2.4.2 Fibras reticulares

Fibras anastomosadas umas às outras que se dispõem formando uma

estrutura semelhante a uma rede. Possuem diâmetro de 0,5 a 2 um. São formadas

por colágeno do tipo III, associado e elevado teor de glicídios. Formam o arcabouço

dos órgãos hemopoiéticos (baço, linfonodos, medula vermelha...) e redes em torno

das células musculares e órgãos epiteliais (fígado, glândulas endócrinas). São fibras

curtas, finas e inelásticas, compostas principalmente por um tipo de colágeno

denominado reticulina.

2.4.3 Fibras elásticas

Page 15: Dml corporal 01

AN02FREV001/REV 4.0

15

Fibras delgadas, que se distinguem facilmente dos outros tipos de fibras por

não apresentar estriações longitudinais. Possuem cor amarelada e são sintetizadas

por diversas células (condrócitos, fibroblastos e células musculares lisas). Seu

principal componente é a elastina que é bem mais resistente que o colágeno, mas é

facilmente hidrolisada pela elastase (enzima pancreática). Essas fibras cedem

facilmente a trações mínimas, porém retornam rapidamente à sua forma original, tão

logo cessem as forças deformantes.

As fibras elásticas são formadas por fibrotúbulos com 10nm de espessura,

envolvendo uma parte central amorfa (constituída de elastina). O sistema elástico

apresenta ainda as fibras elaunínicas, encontradas na pele (formadas de

fibrotúbulos e elastina) e as oxitalânicas (só fibrotúbulos) encontradas no ligamento

periodontal e nos tendões.

2.2 Células próprias do tecido conjuntivo

As células mais comuns do conjuntivo são os fibroblastos, responsáveis

pela formação das fibras e do material intercelular amorfo. Eles sintetizam colágeno,

mucopolissacarídeos e fibras elásticas. É dotado de certa mobilidade. Quando

inativo, o fibroblasto passa a se chamar fibrócito. O fibroblasto tem prolongamentos citoplasmáticos, seu núcleo é claro,

grande, de forma ovóide com a cromatina e nucléolo evidente. É rico em retículos

endoplasmáticos rugosos e o complexo de Golgi é bem desenvolvido. Já o fibrócito,

é menor, tende a ser fusiforme com menos prolongamentos. Seu núcleo é menor,

alongado e escuro; seu citoplasma é acidófilo, deficiente em retículos

endoplasmáticos rugosos e o complexo de Golgi. Contudo, mediante estímulos de

cicatrização, o fibrócito reassume aspecto de fibroblasto. Nos adultos, os fibroblastos

não se dividem com freqüência, entrando em mitose apenas quando há lesão do

tecido conjuntivo.

O miofibroblasto é uma célula com características entre o fibroblasto e a

célula muscular lisa (tem actina e miosina), sendo responsável pelo fechamento das

feridas.

Figura 03 – Componentes do tecido conjuntivo

Page 16: Dml corporal 01

AN02FREV001/REV 4.0

16

Fonte: BARLACH, GIANESI e MURA, 2008.

Além dos fibroblastos, dentro do tecido conjuntivo há os macrófagos, que desempenham papel importante na remoção de elementos intercelulares que se

formam nos processos involutivos fisiológicos, como o retorno do útero ao tamanho

original, após a gestação; as células mesenquimatosas indiferenciadas que

possuem a capacidade de originar qualquer outra célula do tecido conjuntivo; os

mastócitos; plasmócitos e leucócitos, que atuam nos processos inflamatórios e

infecciosos; e finalmente os adipócitos que são células derivadas dos fibroblastos, que compõem o tecido adiposo e são especializadas no

armazenamento de gorduras neutras.

3. Sistema tegumentar O sistema tegumentar é formado pela pele e pela hipoderme (tela

subcutânea), juntamente com os anexos cutâneos. O tegumento constitui o manto

contínuo que envolve todo o organismo, protegendo-o e adaptando-o ao meio

ambiente. Esse invólucro somente é interrompido ao nível dos orifícios naturais

(narinas, boca, olhos, orelha, ânus, vagina e pênis) onde se prolonga pela respectiva

mucosa. As principais funções do sistema tegumentar são: proteção, regulação da

temperatura do organismo, excreção, sensibilidade tátil e produção de vitamina D.

Figura 04 – Estrutura do sistema tegumentar

Page 17: Dml corporal 01

AN02FREV001/REV 4.0

17

Fonte: WIKIPÉDIA, 2008.

A pele possui uma porção epitelial, a epiderme e uma porção conjuntiva, a

derme. Abaixo e em continuidade com a derme está a hipoderme (tela subcutânea), que embora tenha a mesma morfologia da derme, não faz parte da

pele, que é formada por apenas duas camadas. A hipoderme serve de suporte da

derme com os órgãos subjacentes, além de permitir a pele uma considerável

amplitude de movimento.

As unhas, pêlos, glândulas sudoríparas e glândulas sebáceas constituem os

anexos cutâneos. A abertura dos folículos pilossebáceos e das glândulas

sudoríparas na pele formam os orifícios conhecidos como poros.

3.1 Pele

A pele, cútis ou tez é o órgão de revestimento externo do corpo,

constituindo o maior órgão do corpo humano e o mais pesado, principal responsável

pela proteção do organismo. Representa aproximadamente 12% do peso seco total

do corpo. A pele protege o corpo da perda excessiva de água, do atrito e dos raios

solares ultravioletas, graças a uma camada de queratina relativamente impermeável

que recobre a epiderme.

Page 18: Dml corporal 01

AN02FREV001/REV 4.0

18

Também recebe estímulos do ambiente e colabora com mecanismos para

regular a temperatura corporal, por meio de vasos e glândulas, oferecendo uma

grande superfície de dispersão calórica e evaporação. A função protetora da pele é

desempenhada por intermédio da percepção sensorial exercida pelos numerosos

receptores especializados e terminações nervosas que fazem da pele uma estrutura:

sensorial, tátil, térmica, dolorosa e de pressão.

Compõe-se por duas camadas principais: a epiderme, que é a camada

superficial composta de células epiteliais intimamente unidas e a derme que é a

camada mais profunda composta por tecido conjuntivo denso e irregular.

3.1.1 Epiderme Superfície mais externa da pele, formada por um revestimento de células

sobrepostas. É constituída por epitélio estratificado pavimentoso queratinizado, de

origem ectodérmica. A epiderme apresenta ainda três tipos de células: os

melanócitos, as células de Langerhans e de Merkel. A espessura e a estrutura da

epiderme variam com o local do corpo, sendo mais espessa e complexa na palma

da mão e planta do pé. Com essas características, as principais funções do epitélio

incluem a absorção, difusão, excreção, filtração, secreção e proteção. É formada por

quatro camadas:

A camada córnea é a mais superficial. Embora seja de pequena espessura,

sua capacidade de retenção hídrica conserva a superfície da pele macia. Essa

camada forma uma cobertura ao redor de toda a superfície do corpo e protege o

organismo contra a invasão de vários tipos de agressores do meio externo. As

células mais superficiais são continuamente eliminadas como resultado da abrasão,

como pelo atrito com a roupa e substituídas por células oriundas das camadas mais

profundas da epiderme.

Logo abaixo, está à camada granulosa, caracterizada pela presença de

células poligonais com núcleo central, nitidamente achatadas, em cujo citoplasma

são observados grânulos grosseiros e basófilos. São os grânulos de querato- hialina, que contribuem para a constituição do material interfilamento da camada

córnea.

Estes grânulos são expulsos das células e formam uma camada de

substância intercelular que age vedando esta camada de células, impedindo a

Page 19: Dml corporal 01

AN02FREV001/REV 4.0

19

passagem de compostos, inclusive a água, entre elas. As células da camada

granulosa e também as da parte mais alta da camada espinhosa apresentam uma

camada protéica, elétron-densa, com 10nm de espessura, presa à superfície interna

da membrana celular. Este material protéico confere grande resistência à membrana

celular.

Abaixo da camada granulosa, está a camada espinhosa constituída por

quatro a oito fileiras de células poligonais cubóides ou ligeiramente achatadas, de

núcleo central com pequenas expansões citoplasmáticas que contêm tonofibrilas

partindo de cada uma das células adjacentes. Essas expansões se aproximam e se

mantém unidas através dos desmossomas, o que dá à célula um aspecto espinhoso.

As tonofibrilas e os desmossomas têm importante função na manutenção

da coesão das células da epiderme e, conseqüentemente, na sua resistência ao

atrito. Observa-se que, quanto maior a ação de pressões e fricções sobre a

epiderme, maior é a sua camada espinhosa.

A camada germinativa (basal) é a camada mais profunda da epiderme e

apresenta intensa atividade mitótica gerando novas células. É responsável pela

constante renovação da epiderme, fornecendo células para substituir as que são

perdidas na camada córnea. Nesse processo, as células partem da camada

germinativa e vão sendo deslocadas para a periferia até a camada córnea, num

período de 21 a 28 dias. É constituída por células prismáticas ou cubóides que

repousam sobre a membrana basal que separa a epiderme da derme. Os

queratinócitos e os melanócitos são as células dessa camada que repousam em

fileira única.

3.1.2 Derme

É uma espessa camada de tecido conjuntivo sobre a qual se apóia a

epiderme. Está conectada com a fáscia dos músculos subjacentes por uma camada

de tecido conjuntivo frouxo, a hipoderme. Na derme há fibras elásticas, reticulares e

muitas fibras colágenas. Apresenta vasos sangüíneos, linfáticos e inervações.

Contem glândulas especializadas e órgãos dos sentidos. Sua superfície externa é

muito irregular e varia de região para região.

Page 20: Dml corporal 01

AN02FREV001/REV 4.0

20

Em contraste com a epiderme, a derme desenvolve-se a partir da

mesoderme embrionária, assim como os músculos e o esqueleto. A espessura da

derme varia em diferentes locais, mas em média é de cerca de 2 mm. É composta

de duas camadas indistintamente separadas: camada papilar e camada reticular. A mais externa é a camada papilar, constituída por tecido conjuntivo frouxo

e assim denominada porque as papilas dérmicas constituem sua parte mais

importante. A função das papilas é aumentar a zona de contato da derme com a

epiderme, trazendo maior resistência à pele. Estende-se pouco abaixo das bases da

papila onde se une à camada reticular. Apresenta rico suprimento sangüíneo. A

camada reticular é a mais espessa, constituída por tecido conjuntivo denso, e é

assim denominada devido ao fato de que os feixes de fibras colágenas que a

compõem entrelaçam-se como uma rede.

3.2 Hipoderme (tela subcutânea)

Tecido sobre o qual a pele repousa, formada por tecido conjuntivo que varia

do tipo frouxo ao denso nas várias localizações e nos diferentes indivíduos. A

hipoderme não faz parte da pele, porém a fixa às estruturas subjacentes. Pode ter

uma camada variável de tecido adiposo dependendo da região do corpo. Além da

função de reservatório energético, a hipoderme apresenta a função de isolamento

térmico, modelagem da superfície corporal, absorção de choques e preenchimento

para a fixação de órgãos. Em algumas regiões como no abdome e na nádega, o

acúmulo de gordura no tecido subcutâneo pode ser muito amplo. A hipoderme é

bem suprida de vasos sangüíneos e terminações nervosas.

Compõe-se por duas camadas: A superficial é chamada de areolar e possui

adipócitos globulares e volumosos, e é ricamente irrigada; A mais profunda é

chamada de lamelar e é onde ocorre aumento de espessura no ganho de peso.

3.3 Anexos da pele

Na pele existem várias estruturas anexas: os pêlos, as unhas e as

glândulas.

Os pêlos se originam de uma invaginação da epiderme, o folículo piloso.

Page 21: Dml corporal 01

AN02FREV001/REV 4.0

21

São visíveis externamente por sua haste e estão distribuídos por quase todo o

corpo. Em certas regiões exercem papel de proteção, principalmente nas aberturas

do corpo.

As unhas são lâminas córneas formadas pela camada córnea. Em sua

extremidade proximal uma estreita prega da epiderme se estende, formando o

eponíquo (cutícula). Possuem coloração rosada e crescem cerca de 1 mm por

semana.

As glândulas sebáceas são encontradas anexas aos pêlos em todas as

regiões do corpo, sendo mais numerosas, mas de menor volume, nas regiões onde

os pêlos são abundantes. Sua secreção é uma mistura complexa de lipídios cuja

função é a lubrificação da pele, além da ação bactericida.

As glândulas sudoríparas distribuem-se em quase todo o corpo. Seu

número varia em cada região e diminui com a idade. A estimulação dos nervos

simpáticos faz com que estas glândulas secretem um fluido de cloreto de sódio,

uréia, sulfatos e fosfatos a depender de fatores como temperatura e umidade do

meio e atividade muscular.

3.4 Funções do sistema tegumentar

Sensibilidade: as sensações cutâneas como: tato, dor, calor e frio são

captados por receptores especializados. Os receptores para dor são terminações

nervosas livres situadas abaixo da epiderme. As sensações táteis são dadas pelos

corpúsculos de Paccini e de Meissner, a sensação de frio pelos corpúsculos de

Krause e a de calor pelos de Ruffini.

Proteção: a pele cobre o corpo e fornece uma barreira física que protege os

tecidos subjacentes de abrasão física, invasão bacteriana, desidratação e radiação

UV.

Regulação da temperatura corporal: a pele desempenha um papel

importante na regulação da temperatura corporal. O calor é perdido através da pele

pelos processos de radiação, convecção, condução e evaporação. A sudorese é um

processo útil somente quando o suor pode evaporar. As alterações no fluxo

sangüíneo na pele também auxiliam a regular a temperatura corporal.

Page 22: Dml corporal 01

AN02FREV001/REV 4.0

22

Excreção: a pele contém dois tipos de glândulas sudoríparas: as glândulas

écrinas, que são glândulas sudoríparas pequenas, e as apócrinas, ou glândulas

sudoríparas grandes. As glândulas estão distribuídas por todo o corpo e são as

verdadeiras secretoras que produzem o suor transparente e aquoso, responsável

pela regulação térmica.

Imunidade: certas células da epiderme (células de Langerhans) são

componentes importantes do sistema imunológico, que expulsa os elementos

invasores do corpo.

Absorção percutânea: esta se refere à penetração de substâncias através

da pele, o que permite que elas entrem na corrente sangüínea. O estrato córneo é a

principal barreira à difusão.

Síntese de vitamina D: a exposição da pele à radiação ultravioleta (UV)

auxilia na produção de vitamina D, uma substância que ajuda na absorção de cálcio

e fósforo no sistema digestório, e para a circulação sangüínea.

3.5 Propriedades físicas do sistema tegumentar

A tensão e a elasticidade são propriedades físicas relacionadas com:

macromoléculas estruturais, colágeno e elastina contidas na pele. A tensão é a

característica que explica o fato da pele resistir ao estiramento por ação de forças

fracas. A tensão varia em áreas diferentes, sendo mais marcantes nos locais em que

a pele contém fibras elásticas densas, em particular em regiões na qual a pele é

fina.

4. Sistema linfático

O sistema linfático é uma via acessória da circulação sanguínea, pela qual:

líquidos, proteínas e pequenas células provenientes do interstício são devolvidas ao

sistema venoso. É um sistema fechado, intimamente ligado a circulação sangüínea e

importante na manutenção da homeostase corporal. Tem sua origem embrionária no

mesoderma, desenvolvendo-se junto aos vasos sanguíneos.

Page 23: Dml corporal 01

AN02FREV001/REV 4.0

23

Suas principais funções são:

Promover o retorno de líquido dos tecidos para a circulação: cerca de

10% do líquido que extravasa dos capilares para o tecido retorna para a circulação

através dos capilares linfáticos. A linfa da parte inferior do corpo flui pelo canal

torácico e retorna à circulação nas grandes veias do pescoço (jugular interna

esquerda e subclávia). A linfa do lado esquerdo do corpo também entra no canal

torácico. A linfa do lado direito flui pelo canal linfático direito e retorna à circulação na

junção da veia subclávia direita e da veia jugular interna direita;

Promover a remoção de proteínas e outras substâncias de alto peso molecular do Líquido Extra Celular (LEC): os vasos linfáticos têm paredes finas e

com extremidades fechadas (em dedo de luva). A borda de uma célula endotelial

sobrepõe-se à borda da célula adjacente, formando uma válvula que se abre para o

interior do capilar. As substâncias de alto peso molecular penetram nos linfáticos por

estas aberturas;

Transportar lipídios do intestino para a circulação sangüínea: os

lipídios absorvidos na forma de quilomicrons são lançados diretamente na circulação

linfática, ao contrário dos outros nutrientes, que caem direto na circulação

sangüínea;

Destruir bactérias e remover outras partículas por filtração nos linfonodos,

além de participar de reações imunológicas de defesa.

O sistema linfático não possui um elemento de bombeamento como o

sistema circulatório sangüíneo. A circulação linfática acontece por meio de

contrações do sistema muscular ou de pulsações de artérias próximas aos vasos

linfáticos.

Page 24: Dml corporal 01

AN02FREV001/REV 4.0

24

Figura 05 – Distribuição do sistema linfático

Fonte: JÚNIOR e CASTRO, 2008.

4.1 Órgãos linfóides

Os órgãos linfóides são o baço, timo e tonsilas (amídalas). Tais órgãos não

possuem associação direta com os vasos do sistema linfático ou com a linfa, mas

fazem parte do sistema imune do organismo. A produção de linfócitos é a principal

função dos tecidos linfóides e órgãos linfáticos.

Os linfócitos têm importante papel no desenvolvimento das respostas

imunológicas, produção de anticorpos e reações imunes. A ação dos tecidos

linfáticos servindo como filtros em certas condições patológicas deram origem à

teoria de barreira, segundo a qual esses tecidos desempenham importante papel

nos mecanismos de defesa do corpo. Partículas inertes, como o carbono, bactérias,

vírus, células cancerosas e hemácias são retidas nos tecidos linfáticos.

Page 25: Dml corporal 01

AN02FREV001/REV 4.0

25

Os tecidos linfáticos, no entanto, só são barreiras até certo ponto, pois os

seus vasos aferentes podem permitir a disseminação de infecções e neoplasias

malignas para outros órgãos e tecidos.

O baço é um órgão linfóide situado no lado esquerdo da cavidade

abdominal, junto ao diafragma, ao nível das 9ª, 10ª e 11ª costelas. Apresentam duas

faces distintas, uma relacionada com o diafragma (face diafragmática) e outra

voltada para as vísceras abdominais (face visceral). Na face visceral localiza-se o

hilo do baço, por onde penetram vasos e nervos.

Figura 06 - Baço

Fonte: WIKIPEDIA, 2008.

O timo é uma massa bilobada de tecido linfóide localizada abaixo do

esterno, na região do mediastino anterior. Ele aumenta de tamanho durante a

infância, quando então começa a atrofiar-se lentamente, diminuindo após a

puberdade. No adulto, pode ser inteiramente substituído por tecido adiposo. O timo

confere a determinados linfócitos a capacidade de se diferenciarem e maturarem em

células que podem efetuar o processo de imunidade mediada por células.

Figura 07 - Timo

Page 26: Dml corporal 01

AN02FREV001/REV 4.0

26

Fonte: WIKIPEDIA, 2008.

As amídalas (tonsilas) são massas pequenas de tecido linfóide incluídas da

mucosa de revestimento das cavidades bucal e faríngea. As tonsilas palatinas estão

localizadas na parede póstero-lateral da garganta, uma em cada lado. As tonsilas

faríngeas se localizam na parte nasal da faringe. As tonsilas linguais estão

localizadas na face dorsal da língua, próxima a sua base. Compostas por tecido

linfóide e circundando a união das vias bucal e nasal, as tonsilas desempenham

papel adicional contra invasão bacteriana.

Figura 08 - Amídalas

Fonte: UNIFESP, 2008.

4.2 Linfa

O termo linfa é derivado da palavra latina lympha, que significa água –

especificamente, rio claro ou água nascente. Divide com os outros líquidos

extracelulares a responsabilidade de manter o equilíbrio do meio interno do

organismo.

É um líquido incolor e viscoso com composição quase igual a do plasma

sangüíneo que consiste principalmente de água, eletrólitos e proteínas que escapam

do sangue através dos capilares. O que difere a linfa do sangue é a ausência de

células sangüíneas. Juntamente com o líquido cefalorraquidiano, é considerada do

líquido mais nobre do organismo.

Representa aproximadamente 15% do peso corporal e seu escoamento

diário no nível do ducto torácico fica em torno de 2 a 5 litros, podendo alcançar 20

litros em caso de um aumento patológico de demanda. O fluxo da linfa é

Page 27: Dml corporal 01

AN02FREV001/REV 4.0

27

relativamente lento. Cerca de três litros de linfa penetram no sistema cardiovascular

em 24 horas. Em média, o fluxo total de linfa é da ordem de 1,5 ml por minuto.

O mecanismo de formação da linfa envolve três processos simultâneos:

Ultrafiltração: movimento de saída de água, oxigênio e nutrientes do

interior do capilar arterial para o interstício.

Absorção venosa: movimento de entrada de água, gás carbônico,

pequenas moléculas e catabólitos do interstício para o interior do

capilar venoso, que ocorre por difusão.

Absorção linfática: início da circulação linfática determinada pela

entrada de líquido intersticial, proteínas de alto peso molecular e

pequenas células, no interior do capilar linfático, caracterizando a

formação da linfa.

4.3 Topografia do sistema linfático

A rede linfática é formada pelos capilares linfáticos, que desembocam nos

pré-coletores, que por sua vez, desembocam nos vasos coletores e por fim nos

troncos linfáticos. Os vasos linfáticos estão ausentes no: sistema nervoso central,

músculo esquelético, medula óssea, polpa esplênica e cartilagem hialina.

Page 28: Dml corporal 01

AN02FREV001/REV 4.0

28

Figura 09 – Estrutura do sistema linfático

Fonte: SANCHEZ, 2008.

4.3.1 Capilares linfáticos

Os capilares linfáticos são os vasos iniciais da circulação linfática. São pequenos vasos condutores constituídos por células endoteliais que se sobrepõem em escamas, formando microválvulas que se tornam pérvias, permitindo sua abertura ou fechamento, conforme o afrouxamento ou a tração dos filamentos de proteção. Quando tracionados, os filamentos permitem a penetração de água, partículas, pequenas células e moléculas de proteínas no interior do capilar, iniciando então a formação da linfa. O refluxo linfático não ocorre devido ao fechamento das microválvulas linfáticas.

A rede capilar linfática é rica em anastomoses, sobretudo na pele, onde os

capilares linfáticos estão dispostos de forma superficial e profunda, em relação à

rede capilar sangüínea. O mesmo não ocorre nos vasos e ductos linfáticos. Nos

capilares linfáticos, os espaços intercelulares são mais amplos, permitindo que as

trocas líquidas entre o interstício e o capilar linfático ocorram facilmente não só de

dentro para fora, como de fora para dentro do vaso.

Page 29: Dml corporal 01

AN02FREV001/REV 4.0

29

4.3.2 Pré-coletores linfáticos

Os pré-coletores linfáticos são vasos intermediários entre os capilares e os

coletores linfáticos. Possuem estrutura semelhante aos capilares. Seu endotélio é

recoberto por tecido conjuntivo, que em certos pontos se prolonga juntamente com

as células endoteliais, para o lúmen do vaso, formando as válvulas que direcionam

o fluxo da linfa. Seguem um trajeto sinuoso e possuem fibras colágenas, elementos

elásticos e musculares, que lhe proporcionam propriedades de alongamento e

contratibilidade.

4.3.3 Coletores linfáticos

São os vasos mais calibrosos, possuindo estrutura semelhante a das

grandes veias. Compõem-se por três camadas: a túnica íntima, mais interna, com

fibras elásticas longitudinais que formam numerosas válvulas; a túnica média que

envolve a anterior e possui células da musculatura lisa, responsáveis pela

contratilidade do vaso e pela propulsão da linfa e a túnica adventícia, mais externa

e espessa formada por fibras colágenas longitudinais e por terminações nervosas.

Os coletores podem ser pré-nodais (aferentes) ou pós-nodais (eferentes).

O coletor linfático quer superficial ou profundo, possui numerosas válvulas

bivalvulares, sendo os espaços compreendidos entre cada válvula denominados

linfangions. As válvulas linfáticas asseguram o fluxo da linfa numa só direção, ou seja,

para o coração. Assim como para as veias, as válvulas linfáticas se projetam na

direção da corrente linfática e estão dispostas de tal maneira que permitem um

escoamento livre em direção aos grandes vasos linfáticos e impedem o refluxo. As

válvulas são semilunares e formadas por finas camadas de tecidos fibrosos,

cobertos em ambas as faces por endotélio. Estão inseridas por sua borda convexa à

parede do vaso.

Nos vasos linfáticos, as válvulas são mais numerosas próximas aos

linfonodos e são encontradas mais freqüentemente nos vasos linfáticos do pescoço

e do membro superior do que nos do membro inferior. A parede do vaso linfático

Page 30: Dml corporal 01

AN02FREV001/REV 4.0

30

logo acima do local de inserção de cada válvula é dilatada em uma bolsa ou seio,

que dá a esses vasos, quando distendidos, o aspecto nodoso ou em rosário.

Figura 10 – Válvulas linfáticas

Fonte: CK, 2001.

O linfangion é a unidade funcional do sistema linfático, responsável pela

propulsão da linfa. Sua estrutura corresponde a um segmento com uma camada

muscular central e válvulas formadas por prolongamentos da túnica íntima em

ambas as extremidades. A borda de um linfangion forma a válvula do seguinte.

A propulsão da linfa se inicia quando o linfangion apresenta sua válvula

inicial aberta e a final fechada, então começa a se encher de linfa e, quando estiver

totalmente cheia, a linfa pressiona suas paredes estimulando as fibras musculares

da túnica média que abrem à válvula final e fecham à inicial. Esse processo

acontece sucessivamente nos linfagions seguintes, num movimento peristáltico, com

pulsações variando entre oito e vinte e duas vezes por minuto, resultando em fluxo

circulante no organismo de 2 a 5 litros de linfa em situações normais.

Ao lado do sistema linfático, outras ações podem interferir na motilidade dos

linfangions: o bombeamento do sistema arterial; o bombeamento muscular; os

movimentos respiratórios que provocam mudanças na pressão da cavidade torácica,

estimulando o ducto torácico; o peristaltismo intestinal; a massagem de drenagem

linfática e a pressão externa promovida por enfaixamentos e contensão elástica.

4.3.4 Troncos linfáticos

Page 31: Dml corporal 01

AN02FREV001/REV 4.0

31

Os troncos linfáticos, ou coletores terminais são vasos de maior calibre que

recebem o fluxo linfático, e compreendem os vasos linfáticos lombares, intestinais, mediastinais, subclávios, jugulares e descendentes intercostais. A união dos

troncos intestinais, lombares e intercostais forma o ducto torácico. Os troncos

jugulares, subclávios e broncos mediastinal direito formam o ducto linfático direito.

Figura 11 – Ductos linfáticos

Fonte: CK, 2001.

O ducto torácico é o maior tronco linfático e geralmente desemboca na

junção da veia jugular interna com a veia subclávia, do lado esquerdo. Origina-se na

cisterna do quilo, uma dilatação situada anteriormente á segunda vértebra lombar,

onde desembocam os vasos que recolhem o quilo intestinal. Recebe a linfa oriunda

dos membros inferiores, do hemitronco esquerdo, do pescoço e da cabeça, além do

membro superior esquerdo.

O ducto linfático direito corre ao longo da borda medial do músculo

escaleno anterior na base do pescoço e termina na junção da veia subclávia direita

com a veia jugular interna direita. Seu orifício possui duas válvulas semilunares, que

evitam a entrada de sangue venoso. Recolhe a linfa oriunda do membro superior e

hemitórax direito, do pescoço e da cabeça.

4.3.5 Linfonodos (gânglios ou nodos linfáticos)

Page 32: Dml corporal 01

AN02FREV001/REV 4.0

32

Aglomerados de tecido retículo-endotelial revestido por uma cápsula de

tecido conjuntivo, que se dispõem ao longo dos vasos do sistema linfático.

Pesquisadores afirmam existir entre 400 e 600 linfonodos no homem (entre

superficiais e profundos) os quais geralmente estão dispostos em cadeia. O número

de linfonodos varia entre as regiões e os indivíduos, e seu volume também é

variável, ocorrendo um importante aumento com a idade, em decorrência dos

processos patológicos ou agressões que a área de drenagem tenha sofrido.

Apresentam variações: na forma, tamanho e coloração, ocorrendo

normalmente em grupos e desempenham em geral o papel de reguladores da

corrente linfática, cuja função é filtrar impurezas da linfa e produzir linfócitos, células

de defesa especializadas. Estão geralmente situados na face anterior das

articulações, ao longo do trajeto dos vasos sangüíneos, como ocorre no pescoço e

nas cavidades torácicas, abdominal e pélvica. Na axila e na região inguinal são

abundantes, sendo inclusive palpáveis.

O linfonodo é formado por uma cápsula conjuntiva periférica que se adere ao

tecido adiposo. É constituído por dois tipos de células: as células reticulares, cuja

atividade primordial é a fagocitose e a pinocitose e as células linfóides, que são

muito especializadas, contêm a memória imunológica e que, portanto, são

essenciais no mecanismo das reações imunológicas, podendo reagir diretamente,

ou através de anticorpos, contra um único tipo de antígeno.

Figura 12 – Linfonodo

Page 33: Dml corporal 01

AN02FREV001/REV 4.0

33

Fonte: UNIFESP, 2008.

4.4 Circulação linfática

As circulações linfáticas e sangüíneas estão intimamente relacionadas. As

moléculas pequenas vão, em sua maioria, diretamente para o sangue, sendo

conduzidas pelos capilares sangüíneos, e as grandes partículas alcançam a

circulação através do sistema linfático. Entretanto, mesmo macromoléculas passam

para o sangue via capilares venosos, sendo que o maior volume do fluxo venoso faz

com que, no total, o sistema venoso capte muito mais proteínas que o sistema

linfático. Contudo, a pequena drenagem linfática é vital para o organismo ao baixar a

concentração protéica média dos tecidos e propiciar a pressão tecidual negativa

fisiológica que previne a formação do edema e recupera a proteína extravasada.

Ao fluir pelos capilares, pré-coletores e coletores, o fluxo linfático

proveniente de várias regiões do corpo, desemboca nos dois principais ductos

coletores do corpo humano: o canal linfático direito e o ducto torácico. Os ductos

coletores transportam à linfa, em direção ás cadeias ganglionares.

O transporte da linfa pode ser explicado pela hipótese de Starling sobre o

equilíbrio existente entre os fenômenos de filtração e reabsorção que ocorrem nas

terminações capilares. A água, rica em elementos nutritivos, sais minerais e

vitaminas, ao deixar a luz do capilar arterial, desemboca no interstício, onde as

células retiram os elementos necessários ao seu metabolismo e eliminam os

produtos de degradação celular. Em seguida, o líquido intersticial, através das

pressões exercidas, retoma a rede de capilares venosos.

Page 34: Dml corporal 01

AN02FREV001/REV 4.0

34

Figura 13 – Trocas sangüíneas e linfáticas

Fonte: BIO_LOG, 2007.

Várias pressões são responsáveis pelas trocas através do capilar

sangüíneo: a pressão hidrostática sangüínea impulsiona o fluido pela membrana

capilar, em direção ao interstício. A pressão osmótica sangüínea tende a

movimentar o fluido do interstício em direção ao capilar. A pressão de filtração

surge da relação entre as pressões hidrostáticas e osmóticas. A pressão tissular é

a pressão exercida sobre o fluido livre nos canais tissulares.

O fluxo linfático depende de fatores extrínsecos e intrínsecos. Fazem parte

dos extrínsecos:

Contração e peristaltismo muscular: os movimentos de contração

muscular, pela própria fisiologia do movimento, influenciam a formação

Page 35: Dml corporal 01

AN02FREV001/REV 4.0

35

da linfa, a sua propulsão e o fluxo linfáticos. Promove movimentação dos

líquidos tanto da circulação sangüínea quanto da linfática. Essa

movimentação permite que os líquidos que se encontram em estase

alcancem os ductos linfáticos, facilitando sua drenagem.

Gradiente de pressão entre os espaços intersticiais e os vasos linfáticos: quanto maior a pressão dos espaços intersticiais, maior é a

quantidade de líquidos que alcançam os vasos, pois o líquido é formado

devido a um valor de pressão resultante, sendo grandezas diretamente

proporcionais.

Respiração e pressões intratorácicas: os movimentos respiratórios

promovem uma ação rítmica e contínua no fluxo linfático 24 horas por

dia. Ao inspirarmos ocorre um aumento no volume pulmonar. Entre os

pulmões existe um órgão chamado cisterna do quilo, que durante essa

fase da respiração, é comprimido. Essa compressão impulsiona a linfa

no sentido antigravitacional, para o ducto torácico.

Compressão externa dos tecidos: a compressão externa aumenta a

pressão resultante e conseqüentemente a quantidade do líquido

formado.

Alterações térmicas: o aumento da temperatura promove uma

dilatação das arteríolas e com isso ocorre uma elevação no volume

sangüíneo e conseqüentemente um aumento do volume filtrado.

Já os intrínsecos são:

Contractilidade dos vasos linfáticos: os vasos linfáticos realizam

contrações rítmicas as quais independem dos movimentos respiratórios

e da pulsação arterial. A linfa é conduzida na direção centrípeta, e

quanto maior é a contratilidade dos vasos, maior será a propulsão da

linfa.

Vias acessórias de fluxo: geralmente surgem em condições

patológicas como queimaduras e processos inflamatórios, facilitando o

transporte da linfa. Em condições normais, essas vias estão inativas.

Presença e localização das válvulas que evitam o refluxo da linfa: as válvulas são constituídas por filamentos contráteis, se encontram no

Page 36: Dml corporal 01

AN02FREV001/REV 4.0

36

interior dos vasos, se abrem quando a linfa passa, e se fecham logo

após essa passagem. Esse mecanismo impede que o fluxo que está em

direção contra a gravidade retorne, facilitando seu trajeto. O fluxo da linfa

ocorre de acordo com contrações rítmicas ao longo dos vasos coletores

e pré-coletores, os quais são constituídos por músculo liso. A propulsão

da linfa é determinada pelos seguintes mecanismos: dilatação das

paredes; fechamento e abertura da válvula; fluxo linfático.

4.5 Anatomia dos linfáticos

Os linfáticos do membro superior dividem-se em superficiais, localizados

na derme e no tecido celular subcutâneo sob a aponeurose e profundos localizados

abaixo dos superficiais. A rede superficial é mais densa nos dedos e na face palmar

da mão. Existem coletores interósseos anteriores e posteriores, dois coletores

radiais e dois coletores ulnares profundos. Os principais gânglios linfáticos do

membro superior são os gânglios supra-epitrocleares e gânglios do sulco

deltopeitoral.

Os linfáticos do membro inferior compreendem: os coletores superficiais

satélites da safena interna e externa e os coletores da região glútea. Os principais

gânglios linfáticos do membro inferior são os gânglios inguinais, poplíteos, o gânglio

tibial anterior, os gânglios ilíacos e lombo-aórticos.

O tórax é drenado pela via ântero-interna diretamente pelos gânglios

situados na altura das articulações condroesternais. Os linfáticos da região

abdominal média e supra-umbilical se dirigem igualmente aos gânglios mamários

internos.

Os linfáticos da parede abdominal se dirigem da linha abdominal média

infra-umbilical aos grupos ganglionares inguinal correspondente.

A face posterior do tórax é drenada em direção aos gânglios axilares em

direção aos grupos subescapulares homolaterais.

5. Edema

Page 37: Dml corporal 01

AN02FREV001/REV 4.0

37

O termo edema refere-se ao acúmulo de quantidades anormais de líquido

nos espaços intercelulares ou nas cavidades do organismo. Macroscopicamente, o

edema apresenta-se como aumento de volume dos tecidos que cedem facilmente à

pressão localizada, dando origem a uma depressão que rapidamente desaparece.

Microscopicamente o edema se expressa por alargamento dos espaços entre os

constituintes celulares.

A quantidade de líquido nos espaços intersticiais depende da pressão

capilar, da pressão do líquido intersticial, da pressão oncótica, da permeabilidade

dos capilares, do número de capilares ativos, do fluxo linfático e do volume total de

líquido extracelular. O surgimento do edema está ligado à circulação linfática, seja

diretamente, em conseqüência do aumento do aporte líquido, ou indiretamente, em

conseqüência de uma patologia linfática específica.

O edema é resultado do desequilíbrio verificado entre o aporte de líquido

retirado dos capilares sangüíneos pela filtragem e drenagem deste líquido. O estado

de equilíbrio, ou seja, o estado fisiológico é atingido quando as vias de drenagem

são suficientes para evacuar o líquido trazido pela filtragem. Ocorre uma constante

renovação do líquido intersticial na qual as células do corpo podem retirar os

elementos necessários ao seu metabolismo. Se não houver interrupção, não

ocorrerá edema. Quando o aporte de líquido filtrado se torna mais importante e o

sistema de drenagem não aumenta em conseqüência disso, ocorre um desequilíbrio

entre a filtragem e a evacuação a expensas desta última. Os tecidos se enchem de

líquido, a pressão intratecidual aumenta e a pele se distende. O tecido incha e

ocorre o edema.

Existem dois extremos de edema: um ligado ao excesso de aporte de líquido

e outro causado por insuficiência da rede de evacuação. Esse edema ligado ao

excesso de aporte de líquido é de origem vascular. Clinicamente, ele apresenta o

sinal de Godet ou cacifo, ou seja, uma pressão aplicada com o dedo o deprime e,

após a supressão desta pressão, a depressão persiste. O outro tipo de edema

ocorre quando a drenagem é insuficiente, enquanto o aporte de filtragem é normal.

As vias linfáticas possuem um poder de adaptação muito grande: elas podem drenar

uma média de 24 a 30 litros de linfa por dia. Pode ocorrer, entretanto, que, apesar

de tudo, a rede seja insuficiente. O edema se instala se organiza e se torna fibroso,

e as possibilidades de evacuação dependerão do seu grau de evolução e de

Page 38: Dml corporal 01

AN02FREV001/REV 4.0

38

organização. Clinicamente, ele não apresenta o sinal de Godet, não sendo, desta

forma, possível deslocá-lo por meio de pressões.

5.1 Fisiopatologia do edema

O estudo da fisiopatologia do edema deve ser feito levando-se em conta as

principais causas deste sinal. Em condições normais, os gradientes sangue-

interstício de pressão hidrostática e oncótica e a drenagem linfática são os

responsáveis pela filtração e absorção de líquidos na microcirculação sem que haja

acúmulo excessivo de água no interstício. O edema se forma quando surgem

transtornos nesses componentes.

A origem dos edemas está relacionada com os seguintes fatores: aumento

da pressão hidrostática do sangue na microcirculação; redução da pressão oncótica

(coloidosmótica) das proteínas plasmáticas; permeabilidade vascular aumentada;

alterações da drenagem linfática; alterações do interstício; retenção renal de sódio e

água. Os edemas podem resultar da ação isolada de qualquer dos fatores citados,

mas é mais freqüente e grave quando há participação de mais de um deles.

5.1.1 Aumento da pressão hidrostática

A pressão hidrostática varia em virtude da posição do indivíduo. Ela irá

aumentar nas veias ao se assumir a posição ortostática, será nula ao nível da

safena interna ao deitar-se e poderá atingir valores negativos quando o indivíduo

estiver deitado com os membros inferiores levantados. O aumento da pressão

hidrostática facilita a filtração líquida para o interstício. Qualquer variação na

dinâmica do transporte de líquido ao nível da membrana capilar que puder aumentar

a pressão do líquido intersticial desde seu valor normal negativo de – 6 mmHg até

valor positivo irá produzir edema.

O aumento da pressão hidrostática relaciona-se a hiperemia ativa ou passiva

(com suas diversas causas, como calor, traumas, inflamações, varizes, oclusões

venosas etc.). O edema assim determinado pode ser localizado (por exemplo, as

obstruções venosas) ou generalizado (por exemplo, na insuficiência cardíaca

congestiva).

Page 39: Dml corporal 01

AN02FREV001/REV 4.0

39

5.1.2 Redução da pressão oncótica A pressão oncótica está ligada à presença de proteínas em oposição à

filtração capilar, exercendo, em condições normais, uma pressão de

aproximadamente 25 mmHg. Qualquer diminuição das proteínas “circulantes” terá

como conseqüência à diminuição da pressão oncótica que se opõe à filtragem.

Disso resulta que a diminuição das proteínas plasmáticas aumenta a filtragem e

diminui a reabsorção.

5.1.3 Aumento da permeabilidade capilar

O aumento da permeabilidade traduz-se, morfologicamente, por ampliação

dos espaços interendoteliais, aumento da atividade pinocitótica do endotélio e

adelgaçamento da parede vascular. Quando o aumento da permeabilidade ocorre,

não apenas o líquido vaza muito rapidamente dos capilares para os espaços

teciduais, como também ocorre escapamento das proteínas plasmáticas, que se

acumulam, em excesso, nos espaços intersticiais. Por conseguinte, a

permeabilidade capilar aumentada pode ser causa de edema por pelo menos três

fatores diferentes: vazamento excessivo de líquido pelos poros dilatados para os

espaços intersticiais; pressão coloidosmótica plasmática diminuída, pela perda de

proteína; e pressão coloidosmótica intersticial aumentada, pelo acúmulo de proteína.

5.1.4 Obstrução da drenagem linfática (linfedema)

Na maioria dos edemas, o fluxo da linfa aumenta consideravelmente,

indicando que o sistema linfático desempenha nesses casos, papel antiedema.

Desde que o sistema linfático permaneça em condições de exercer sua função, a

maior oferta de líquido ao interstício ou a menor reabsorção de líquido pelos vasos

sangüíneos é compensada pelo aumento da drenagem linfática; o edema só

aparece quando é ultrapassada a capacidade de compensação do sistema linfático.

Page 40: Dml corporal 01

AN02FREV001/REV 4.0

40

A interferência com a drenagem linfática é uma causa óbvia de expansão do

líquido intersticial. A causa mais grave para essa condição é o bloqueio dos

linfáticos, que impede o retorno normal das proteínas à circulação.

Embora o revestimento endotelial normal seja impermeável à passagem de

proteínas, uma pequena quantidade de albumina passa para o espaço intersticial

juntamente com a troca de líquido entre os compartimentos vascular e intersticial.

Com a obstrução linfática, nem a pequena quantidade de líquido perdida do

compartimento intravascular, nem a proteína de dentro do líquido intersticial

consegue sair, assim reduzindo a pressão osmótica efetiva do sangue. Desse modo

surge o linfedema.

5.1.5 Aumento da pressão coloidosmótica do líquido intersticial Quando aumenta a permeabilidade capilar para macromoléculas e cresce o

conteúdo em proteínas no interstício, a pressão oncótica intersticial eleva-se,

favorecendo a retenção de líquido. As proteínas que vazam através das paredes

capilares vão ficar gradualmente acumuladas nos espaços intersticiais até que a

pressão coloidosmótica intersticial adquira valor próximo da pressão coloidosmótica

plasmática. Como resultado, os capilares perdem sua capacidade osmótica normal

de reter líquido na circulação, de modo que esse líquido passa a ficar acumulado

nos tecidos. Desta forma, a pressão oncótica plasmática diminui e a pressão

oncótica do líquido intersticial aumenta, levando ao acúmulo de líquido nos espaços

intersticiais e à conseqüente formação de edema.

6. Linfedema Desenvolve-se a partir de um desequilíbrio entre a demanda linfática e a

capacidade do sistema em drenar a linfa. Sendo as proteínas de alto peso molecular

extravasada para o interstício e absorvida exclusivamente pelo sistema linfático

inicial, no momento em que o mesmo perde sua capacidade de escoamento, por

destruição ou obstrução da via linfática em algum ponto de seu trajeto, ocorre a

estagnação da linfa no vaso, e posterior extravasamento de volta ao interstício.

O aumento da concentração de proteína no meio vascular causado pelo

extravasamento e não absorção das mesmas. Geram alteração da pressão osmótica

e acarreta a presença definitiva de fluído no interstício, o que constitui o linfedema.

Page 41: Dml corporal 01

AN02FREV001/REV 4.0

41

Uma vez que a linfa é um fluído com altas concentrações de proteínas, sua

presença no interstício propicia a proliferação e cultura de germes, tornando o

membro acometido sujeito a episódios de infecção, cada uma delas aumentando a

perda de vasos linfáticos.

A presença de proteínas gera também, fibrose, tornando o edema mais duro e

menos responsivo a drenagem postural. Estudos indicam que o linfedema é o

resultado de uma combinação de fatores, e não de uma única causa. Podem ser

classificados quanto à:

Origem: podem ser primários são subdivididos em precoce e

congênito. O linfedema precoce é de etiologia desconhecida, ocorre nos

membros inferiores, podendo ser decorrente de desequilíbrios hormonais

ou falhas no desenvolvimento dos vasos linfáticos. O linfedema

congênito aparece ao nascimento, sendo caracterizado por uma

estrutura inadequada dos vasos linfáticos. Ou secundários quando

decorrem de causas externas (lesões teciduais; patologias como a

filariose, insuficiência venosa, erisipela, linfangites ou celulites; quadros

infecciosos e inflamatórios e efeitos colaterais de tratamentos

oncológicos); Quanto à instalação e os achados clínicos: podem ser classificados

como agudos os linfedemas moderados e transitórios que ocorrem nos

primeiros dias após a cirurgia como resultado da incisão dos canais

linfáticos ou crônicos, que é a forma mais comum, sendo usualmente

insidioso, com ausência de dor, não sendo associado a eritemas,

normalmente, irreversível. Quanto à intensidade: o linfedema pode ser classificado em fases de I

a IV: Os linfedemas de fase I são os que se desenvolvem após

atividades físicas ou ao final do dia e melhoram espontaneamente ao

repouso e aos estímulos linfáticos; os de fase II são espontaneamente

irreversíveis, mas podem ser controlados com terapêuticas apropriadas.

Os de fase III são irreversíveis e mais graves. Apresentam grau elevado

de fibrose linfostática com grande estagnação da linfa nos vasos e

capilares. Possuem alterações de pele importantes, tornando-se

vulneráveis a erisipelas, eczemas, papilomatoses e fistulas linfáticas. Os

Page 42: Dml corporal 01

AN02FREV001/REV 4.0

42

de fase IV são as chamadas elefantíases, sendo irreversíveis e

apresentam complicações como papilomatose, queratoses, fistulas

linfáticas e angiomas. Traduz a total falência dos vasos linfáticos. Quanto à topografia: o linfedema de grau A ocorre em pacientes que

permanecem a maior parte do tempo sem edema, sendo portadoras de

uma insuficiência linfática crônica e compensada, apresentando todas as

medidas simétricas iguais e com ausência de edema em dorso de mão.

O linfedema de grau B ocorre em pacientes permanentemente com

edemas suaves, sem modificações estruturais da pele e do tecido

celular, tendo pelo menos uma medida desigual no braço, antebraço ou

mão. O linfedema de grau C ocorre em pacientes com modificações

estruturais definitivas da pele e tecido celular, consistindo as verdadeiras

elefantíases cirúrgicas.

7. Glossário

Page 43: Dml corporal 01

AN02FREV001/REV 4.0

43

Ácido hialurônico: mucopolissacarídeo natural de alta viscosidade. Angiomas: tumor circunscrito formado por uma aglomeração de vasos sanguíneos

(hemangioma) ou linfáticos (linfangioma).

Atrofia muscular: perda do trofismo muscular decorrente da inatividade ou de

denervações centrais ou periféricas. Avascular: relativo ao que não possui tecido de vascularização.

Capsulite: processo de aderência de pregas de uma cápsula articular, como

seqüela inflamatória, promovendo restrição de movimentos articulares normais. Cartilagem hialina: t

Células de Langerhans:

ipo de tecido cartilaginoso cuja substância fundamental, de aparência amorfa, é muito

resistente e elástica. A cartilagem hialina é a mais abundante dos tecidos cartilaginosos. Constitui o anel da traquéia e

dos brônquios, assim como as partes cartilaginosas do nariz e das costelas, e recobre as superfícies ósseas articulares

(joelho, cotovelo, punho, etc.).

Catabolismo: parte do metabolismo em que predominam reações químicas de

decomposição.

células dendríticas abundantes na epiderme. Estão

normalmente presente em linfonodos, pondedo ser encontradas em outros órgãos

na condição de histiocitose.

Células de Merkel: células da epiderme que realizam síntese de catecolaminas. Celulite: inflamação aguda das estruturas cutâneas, incluindo o tecido adiposo

subjacente. Geralmente produzidas por um agente infeccioso e manifestadas por

dor, rubor, aumento da temperatura local, febre e mal estar geral.

Cloreto de sódio: sal de sódio, que desempenha um papel biológico importante na

manutenção da pressão osmótica do sangue e tecidos e na manutenção de

Page 44: Dml corporal 01

AN02FREV001/REV 4.0

44

balanços eletróliticos.

Condroblastos:

Difusão: fenômeno de transporte de matéria em que um soluto é transportado

devido aos movimentos das moléculas de um

célula cartilaginosa jovem, de origem conjuntiva, mergulhada na substância fundamental da

cartilagem em vias de formação, da qual deriva o condrócito. Corpúsculos de Krause: equivalentes aos corpúsculos de Meissner na pele,

presentes também nos lábios, língua e órgãos genitais. Apresenta-se como uma

dilatação com terminações nervosas ramificadas, envolta por uma cápsula

conjuntiva.

Corpúsculos de Meissner: receptores táteis, alongados ou ovóides, encontrados

dentro das papilas dérmicas. São numerosos nos dedos das mãos e dos pés.

Apresentam uma bainha fina de tecido conjuntivo e, no seu interior, células

achatadas que subdividem o corpúsculo em pequenos compartimentos transversais.

Corpúsculos de Paccini: mecanorreceptores de pressão que se apresentam sob a

forma de uma terminação nervosa, envolvida por camadas concêntricas de tecido

conjuntivo rico em fibrilas, cujas células são contínuas com o endoneuro. Presente

nas camadas subcutânea da pele, nos ligamentos, periósteo, peritônio, mesentério,

pâncreas e outras vísceras.

Corpúsculos de Ruffini: presentes na pele e nas articulações. Os terminais são

associados com fibrilas colágenas na cápsula, confundindo-se com o colágeno

dérmico. Uma fibra mielinizada entra na cápsula e divide-se em pequenos ramos

não mielinizados. Semelhantes aos bulbos terminais de Krause, porém são mais

achatados.

fluido. Estes movimentos fazem com

que, do ponto de vista macroscópico, seja transportado soluto das zonas de

concentração mais elevada para as zonas de concentração mais baixa.

Page 45: Dml corporal 01

AN02FREV001/REV 4.0

45

Discrasias sangüíneas: qualquer alteração envolvendo os elementos celulares do

sangue, glóbulos vermelhos, glóbulos brancos e plaquetas. Doença de Raynaud: condição que afeta o fluxo sanguíneo nas extremidades do

corpo humano — mãos e pés, assim como os dedos destes, nariz, lóbulos das

orelhas — quando submetidos a uma mudança de temperatura inferior ou estresse. Eczema: dermatite pápulo-vesicular que ocorre como reação a muitos agentes

endógenos e exógenos, caracterizada na fase aguda por eritema, edema associado

com um exsudato seroso entre as células da epiderme (espongiose) e um infiltrado

inflamatório na derme, exsudação e vesiculação, e encrostamento e escamação; e

sinais de escoriações e hiperpigmentação ou hipopigmentação ou ambas. Elefantíase (filariose): doença causada pelos parasitas nematóides Wuchereria

bancrofti, Brugia malayi e Brugia timori, comumente chamados filária, que se alojam

nos vasos linfáticos, causando linfedema. Esta doença é também conhecida como

elefantíase, devido ao aspecto de perna de elefante do paciente com esta doença. Eletrólitos: condutor iônico, líquido, sólido ou pastoso, que ao ser dissolvido na

água, forma uma solução que pode conduzir eletricidade.

Erisipela (linfangite): infecção cutânea causada geralmente por bactérias de tipo

streptococcus do grupo A e aureus. Cursa usualmente com eritema, edema e dor.

Na maioria dos casos também com febre e leucocitose. Escleroproteína: proteínas longas e filamentosas e uma das duas principais

classes de estrutura terciária de proteínas (a segunda sendo as proteínas

globulares). Encontram-se exclusivamente em animais, na construção de tecido

conectivo, tendões, matriz óssea e fibras musculares. Fagocitose: englobamento de partículas sólidas pela célula, através da membrana

celular - a partícula é envolvida num vacúolo digestivo, a partir do qual a matéria

digerida passa depois para o citoplasma.

Page 46: Dml corporal 01

AN02FREV001/REV 4.0

46

Fibrilas: pequenas fibras rearranjadas. Fístulas linfáticas: comunicação anormal entre vasos linfáticos.

Fosfatos: sais inorgânicos do ácido fosfórico.

Glicoproteínas estruturais: são proteínas associadas a glicídios. Fibronectina é

uma proteína de aderência para colágeno e glicosaminoglicanas. A laminina é outra

responsável pela aderência das células epiteliais às lâminas basais.

Glicosaminoglicanas: são glicídios de alto peso molecular formados pela

polarização de uma unidade constituída por ácido hialurônico e hesoxamina.

Doenças relacionadas são chamadas de mucopolissacaridoses. São poliânions

(muitos grupos negativos) podendo ligar-se á muitos cátions (sódio, geralmente).

São muito hidrófilas.

Homeostase: processo sangüíneo fisiológico mantido em estado de equilíbrio

dinâmico constante pelo organismo.

Linfangiectasia: dilatação patológica dos vasos linfáticos. Linfangite: processo infeccioso comprometendo um ou mais vasos linfáticos. Linfócitos: tipo de leucócito (glóbulo branco) do sangue. Há duas categorias: os

linfócitos grande granulares e os pequenos linfócitos. Os linfócitos grande granulares

são conhecidos como Natural Killer (células NK ou exterminadoras naturais) e os

pequenos podem ser linfócitos T ou B. Exercem um papel importante na defesa do

corpo humano contra microrganismos.

Lipídios: substância orgânica que é composta de ácidos graxos, insolúvel em água,

formando uma reserva calórica para o organismo ou fornecendo elementos para

produção de compostos complexos como hormônios.

Page 47: Dml corporal 01

AN02FREV001/REV 4.0

47

Melanócitos: célula dendrítica que produz melanina, substância pigmentar que

envolve a célula protegendo seu núcleo dos raios solares. No homem, os

melanócitos se encontram na pele, na camada basal da epiderme, no sistema

nervoso central e na retina. A melanina é um dos responsáveis pela coloração da

pele e auxiliam na proteção celular contra a radiação solar.

Mesoderma: tecido que forma folheto embrionário que se localiza entre a ectoderme

e endoderme.

Mucopolissacarídeos: polímeros de condensação que geralmente contêm

centenas de moléculas de monossacarídeos interligadas por pontes oxídicas.

Odontoblastos: célula responsável pela síntese ou produção da dentina, a camada

situada na parte de baixo do esmalte, sua principal função é a dentinogênese.

Osteoblastos: células de revestimento responsáveis pelos constituintes da matriz,

como o colágeno e a camada básica de proteoglicanos e glicoproteinas e se

originam do tecido mesenquimal. O principal produto dos osteoblastos é o colágeno

tipo 1.

Peristaltismo: contrações segmentares da musculatura lisa, que configura a

atividade motora de vísceras como: intestino e ureteres.

Pinocitose: processo de endocitose em que a célula engloba uma substância em

estado líquido por transporte ativo através da membrana celular. É um sistema de

alimentação celular complementar à fagocitose.

Plasma sanguíneo: hemocomponente rico em fatores de coagulação. Proteínas: grande molécula composta de uma ou mais cadeias de aminoácidos

dispostas em uma ordem específica, determinada pela seqüência base dos

nucleotídeos no código de DNA da proteína. As proteínas são necessárias para a

estrutura, função e regulação das células, dos tecidos e dos órgãos do corpo. Cada

Page 48: Dml corporal 01

AN02FREV001/REV 4.0

48

proteína tem uma função única. São componentes essenciais para os músculos,

pele, ossos e para o corpo como um todo. A proteína é um dos três tipos de

nutrientes usados como fontes de energia pelo corpo.

Queratose: alteração de pele, caracterizada por crescimento excessivo do epitélio

cornificado. Sudorese: mecanismo fisiológico presente em alguns animais superiores e no ser

humano. Caracteriza a produção e eliminação de suor pelas glândulas sudoríparas.

Através da sudorese, o organismo pode perder calor para o meio externo através do

fenômeno da evaporação do suor. Além disso, as glândulas sudoríparas têm a

capacidade de filtrar do sangue algumas substâncias tóxicas resultantes do

metabolismo, como a uréia.

Sulfatos: sais inorgânicos do ácido sulfúrico

Uréia: um composto gerado no fígado a partir da amônia produzida pela

desaminação dos aminoácidos. É o principal produto final do catabolismo das

proteínas e constitui aproximadamente metade do total de sólidos urinários.

-----------xxxxxxx-------------