INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA … · na Amazônia e uma na transição da Amazônia...

71
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA VULNERABILIDADE DO LAGARTO KENTROPYX CALCARATA ÀS MUDANÇAS CLIMÁTICAS: EFEITOS DAS VARIACÕES NA BIOLOGIA TÉRMICA EM NÍVEL INTRAESPECÍFICO EMERSON PONTES DA SILVA Manaus, Amazonas Junho 2016

Transcript of INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA … · na Amazônia e uma na transição da Amazônia...

  • INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA

    PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

    VULNERABILIDADE DO LAGARTO KENTROPYX CALCARATA ÀS MUDANÇAS

    CLIMÁTICAS: EFEITOS DAS VARIACÕES NA BIOLOGIA TÉRMICA EM NÍVEL

    INTRAESPECÍFICO

    EMERSON PONTES DA SILVA

    Manaus, Amazonas

    Junho 2016

  • i

    EMERSON PONTES DA SILVA

    VULNERABILIDADE DO LAGARTO KENTROPYX CALCARATA ÀS MUDANÇAS

    CLIMÁTICAS: EFEITOS DAS VARIACÕES NA BIOLOGIA TÉRMICA EM NÍVEL

    INTRAESPECÍFICO

    DRA. FERNANDA DE PINHO WERNECK

    Orientadora

    DR. WILLIAM ERNEST MAGNUSSON

    Coorientador

    Dissertação apresentada ao Instituto

    Nacional de Pesquisas da Amazônia

    como parte dos requisitos para obtenção

    do título de Mestre em Biologia

    (Ecologia).

    Manaus, Amazonas

    Junho 2016

  • i

    BANCA EXAMINADORA DA DEFESA ORAL PÚBLICA

    Jaydione Luiz Marcon

    (Universidade Ferderal do Amazonas)

    Albertina Pimentel Lima

    (Instituto Nacional de Pesquisas da Amazônia)

    George Henrique Rebêlo

    (Instituto Nacional de Pesquisas da Amazônia)

  • ii

    AGRADECIMENTOS

    À minha mãe Josenira Pontes, mulher guerreira que inspira a cada chão que pisa. Agradeço à

    ela e à minha família pela força e compreensão em todos momentos.

    À Dra. Fernanda Werneck pela orientação e confiança em cada etapa deste trabalho. Ao Dr.

    William Magnusson pelo ânimo sempre explícíto e disposição em colaborar durante a

    coorientação.

    À Elizabeth Franklin, Pedro Ivo, Cinara Calvin, Lúcia Tinoco e Jason Telêmaco

    (eterno!) pela orientação durante as Iniciações Científicas e demais projetos. Sou um pedaço

    de vocês.

    A cada amiga e amigo por sua presença, sorrisos e pelos “vai dar certo!”.

    Às amigas e amigos da turma ECO 2014, eu definitivamente não consigo imaginar como

    poderia ter sido a caminhada nessa estrada sem vocês.

    Ao Dr. Guarino Colli e Dra. Teresa Avila Pires pelo apoio na orientação da coleta de dados

    e companhia profissional inspiradora em Tocantins e no Pará, respectivamente.

    Ao Gabriel Caetano e Juan Santos, pela força fundamental com a modelagem e

    intermináveis trocas de idéias.

    À todas as pessoas que colaboraram com a coleta de dados em cada local: Carla, Jessica,

    Derek, Ana, Luisa, Liriann, Gueviston, Janet, Orsolya, Kate, Dona Maria, Jesus, Seu

    Compensa, Dorinha, Seu Móh, Madinson, Sarah e Carlos. Nada seria possível sem a essencial

    ajuda que deram (o que inclui os sorrisos, banhos de igarapé e conversas descontraídas pós-

    rango).

    À Val (nossa futura presidente da república!), à Cida, ao Seu Valdir, ao Rubenildo e a todo

    o pessoal do INPA pelo apoio incondicional ao desenvolvimento das atividades de pesquisa

    mas, principalmente, pelo apoio à contrução de profissionais humanos por meio da ajuda

    mútua.

    Ao pessoal do Centro de Pesquisas Canguçú (TO) e ao pessoal da Estação Ferreira Pena

    (PA), lugares que por si só são incríveis, mas que com a presença de vocês se tornam lugares

    inesquecíveis na vida de quem estuda biologia.

    Ao CNPq pela bolsa de pesquisa e ao Programa de Pós-Graduação em Ecologia do INPA,

    por proporcionar oportunidades e vivências fascinantes na Amazônia. Ao Partnerships for

    Enhanced Engagement in Research da US National Academy of Sciences and US Agency

    of International Development pelo financiamento ao projeto.

  • iii

    Dois anos de mestrado, aprox. 670 dias de múltiplas vivências nos mais variados lugares e

    companhias de pessoas. Da calmaria ao desespero, da pele seca no conforto à enxarcada de

    suor com mais quilômetros à frente. Momentos instáveis que exigiram força e fé. Meu último

    agradecimento, portanto, é para àquelas/àqueles que também me motivam a seguir e resistir:

    mulheres e LGBT’s de todos os corpos, cores, crenças e lugares.

  • iv

    B743 Pontes-da-Silva, Emerson

    Vulnerabilidade do lagarto Kentropyx calcarata às mudanças climáticas: efeitos

    das variacões na biologia térmica em nível intraespecífico / Emerson Pontes da

    Silva. --- Manaus: [s.n.], 2016.

    69 f. : il. color.

    Dissertação (Mestrado) --- INPA, Manaus, 2016.

    Orientadora : Fernanda de Pinho Werneck.

    Coorientador : William Ernest Magnusson.

    Área de concentração : Ecologia

    1. Aquecimento global. 2. Ecologia termica. 3. Lagartos amazônicos I.

    Título.

    CDD 631.4

    Sinopse:

    Investigamos os riscos de extinção e a variação dos traços da biologia térmica de

    lagartos entre localidades na Amazônia e no ecótono Amazônia-Cerrado.

    Combinamos os traços térmicos do ambiente e dos lagartos para estimar sua

    vulnerabilidade aos aumentos globais de temperatura. Para tanto, foram avaliados

    aspectos como preferência térmica, limites térmicos críticos, desempenho

    locomotor e temperaturas operacionais.

    Palavras chaves: Aquecimento global, lagartos, extincão local, biologia térmica,

    Amazônia,variação intraespecífica

  • v

    RESUMO

    Aumentos de temperatura podem gerar impactos sobre os organismos e a predição destes

    efeitos sobre a biodiversidade é um dos maiores desafios atuais da ciência. Ectotérmicos são

    sensíveis a alterações de temperatura. Ainda que predições indiquem que as linhagens

    tropicais possuem alta vulnerabilidade ao aquecimento global, elas permanecem como as

    menos estudadas com relação à sua vulnerabilidade aos aumentos de temperatura e à extensão

    pela qual traços da fisiologia térmica variam dentro de espécies. Aqui, usando uma versão

    modificada do modelo de Sinervo et al. (2010) parametrizado com estimativas fisiológicas

    feitas em campo, estimamos a vulnerabilidade de um lagarto tropical (Kentropyx calcarata) e

    a extensão da variação geográfica intraespecífica dos traços de sua biologia térmica entre

    diferentes locais. Nós quantificamos as horas de restrição de atividade e calculamos os riscos

    de extinção previstos para K. calcarata para os anos de 2050 e 2070 com base na

    adequabilidade térmica prevista para cada ambiente e em um amplo conjunto de dados

    geográficos da espécie. Adicionalmente, mensuramos e comparamos a temperatura

    preferencial, os limites críticos, as temperaturas operacionais e a sensibilidade do desempenho

    locomotor de indivíduos de K. calcarata entre quatro localidades amostrais, três localizadas

    na Amazônia e uma na transição da Amazônia com o Cerrado. Os riscos de extinção previstos

    para K. calcarata variaram de 2.6% a 52.4% para o ano de 2050 com moderado aumento para

    2070, variando de 8.0% a 66.8% de risco entre as grandes regiões investigadas. Mostramos

    que existem diferenças do nicho térmico e que ambientes térmicos distintos favorecem a

    variação da tolerância térmica máxima de K. calcarata. Nossos resultados mostram que

    temperaturas ambientais operacionais mais elevadas impõem a seleção de limites térmicos

    máximos. Nossos resultados sugerem que os aumentos de temperatura reduzirão a

    favorabilidade da ocorrência de K. calcarata em regiões florestais na Amazônia. Nossos

  • vi

    resultados apontam que lagartos tropicais estão sob risco de extinção local e que esses riscos

    podem ser geograficamente estruturados, pois parte da variação no nicho térmico de K.

    calcarata ocorre por diferenças ambientais locais. Concluímos que as diferenças em

    características fisiológicas entre indivíduos de uma mesma localidade e entre diferentes

    localidades poderão ser a base de adaptação local e permitir maior persistência para este

    ectotérmico tropical em um cenário de aquecimento global.

    Palavras-chave: Lagartos amazônicos, fisiologia térmica, aquecimento global, variação

    intraespecífica

  • vii

    ABSTRACT

    Vulnerability forced by climatic change and intraspecific variation on the thermal

    physiology in a tropical lizard

    Temperature increases can have impacts on organisms and predicting these effects is one of

    the main challenges for climate change research. Ectothermics are sensitive to temperature

    change. However, although predictions indicate that tropical ectotherms are highly vulnerable

    to global warming, they remain poorly studied with respect to vunerability and the extent that

    thermal physiological traits vary within species. Here, we predicted the consequences of

    thermal variation forced by increasing temperatures using a modified version of Sinervo et al.

    (2010) model parameterized with field physiological estimates and investigated how thermal

    biology traits of a tropical lizard species (Kentropyx calcarata) vary intraespecifically

    between different locations. We quantified the restriction hours suitable for activity and

    calculated the extinction risk for K. calcarata for the years 2050 and 2070 based on the

    environmental thermal suitability and a large geographic database. We also measured and

    compared preferred temperatures, thermal critical limits, operative temperatures, and

    locomotor-performance sensitivity of K. calcarata in three locations in the Amazon rainforest

    and one in the transition between the Amazon and the Cerrado biome. Extinction risks

    estimated for K.calcarata ranged from 2.6% to 52.4% for the year 2050 with a moderate

    increase for 2070, ranging from 8.0% to 66.8% among the major regions investigated. We

    show thermal niche differences and that different thermal environments favor variation in K.

    calcarata upper thermal limits. Our results show that higher operative environmental

    temperatures determine the selection of higher thermal limits. Our results show that tropical

    lizards are under local extinction risks and that these risks can be geographically structured,

    because part of the variation in K. calcarata thermal niche is by local environmental

    differences. We conclude that differences in physiological characteristics between individuals

    of the same locality and between different locations may be the local adaptation base and

    allow greater persistence to this tropical ectothermic in a global warming scenario.

    Key-Words: Amazonian lizards, themal physiology, global warming, intraespecific variation

  • viii

    SUMÁRIO

    RESUMO ........................................................................................................................................ IV

    ABSTRACT.................................................................................................................................... VI

    LISTA DE TABELAS ..................................................................................................................IX

    LISTA DE FIGURAS ....................................................................................................................X

    LISTA DE APÊNDICES .............................................................................................................XI

    INTRODUÇÃO GERAL ........................................................................................................... 12

    OBJETIVO GERAL.................................................................................................................... 16

    OBJETIVOS ESPECÍFICOS. .................................................................................................. 16

    CAPÍTULO 1: VULNERABILITY FORCED BY CLIMATIC CHANGE AND INTRASPECIFIC VARIATION ON THE

    THERMAL PHYSIOLOGY IN A TROPICAL LIZARD ................................................................................... 18

    SUMMARY .................................................................................................................................... 20

    INTRODUCTION ........................................................................................................................ 22

    MATERIAL E METHODS ....................................................................................................... 26

    RESULTS ........................................................................................................................................ 36

    DISCUSSION................................................................................................................................. 39

    ACKNOWLEDGEMENTS ................................................................................................................ 44

    REFERENCES ................................................................................................................................... 46

    REFERENCIAS ADICIONAIS ............................................................................................... 53

    TABLES .......................................................................................................................................... 53

    FIGURES ........................................................................................................................................ 59

    APÊNDICES .................................................................................................................................. 64

    CONCLUSÃO ............................................................................................................................... 67

  • ix

    LISTA DE TABELAS

    Tabela 01: Fisiologia térmica (temperatura preferida - Tpref, e limites térmicos críticos - CTmin

    e CTmax) e temperaturas operacionais (Top) de Kentropyx calcarata das quatro localidades

    amostradas. São apresentados o tamanho de cada amostra (n) e as estimativas da

    média/variância (var) e entre parênteses os valores mínimo e máximo para cada

    localidade..................................................................................................................................54

    Tabela 02: Coeficientes obtidos com Generalized Linear Model (GLM). São apresentados os

    parâmetros do modelo: horas de restrição acumuladas (Total_hr), horas de atividade

    (Total_ha) e precipitação (Total_prec). Também são apresentados os termos quadráticos:

    precipitação -sqprec (Total_prec^2), horas de restrição -sqhr (Total_hr^2) e as interações

    entre precipitação e horas de restrição -Prechr (Total_prec x Total_hr) e precipitação e horas

    de atividade -Precha (Total_prec x Total_ha). ........................................................................55

    Tabela 03: Coeficientes obtidos com Generalized Linear Model (GLM). São apresentados os

    parâmetros do modelo: horas de restrição acumuladas (Total_hr), horas de atividade

    (Total_ha) e precipitação (Total_prec). São apresentados os termos quadráticos: precipitação -

    sqprec (Total_prec^2), horas de restrição -sqhr (Total_hr^2) e as interações entre precipitação

    e horas de restrição -Prechr (Total_prec x Total_hr), precipitação e horas de atividade -Precha

    (Total_prec x Total_ha) e índice de vegetação (Forest Layer). Também são apresentados os

    valores de graus de liberdade (edf / Ref.df) e qui-quadrado (Chi.sq)................................56

    Tabela 04: Estimativas de riscos de extinção de Kentropyx calcarata para Unidades de

    Conservação e Terras Indígenas da Amazônia (TI’s). Os valores para cada ano representam as

    probabilidades de não ocorrência da espécie devido a redução de áreas favoráveis, baseados

    no cálculo de Hr usando a amplitude térmica de atividade registrada em

    campo........................................................................................................................................57

    Tabela 05: Resultados das modelagens de curvas de desempenho térmico para indivíduos de

    Kentropyx calcarata de quatro localidades. São mostradas as estatísticas do efeito da

    temperatura e do CRC no desempenho (Temperatura-Temp e comprimento rostro-cloacal-

    CRC, respectivamente) e valor de r2 do modelo, além das estimativas de temperatura ótima

    para o desempenho (Totima) e da amplitude térmica na qual é possível pelo menos 80% do

    desempenho máximo do indivíduo..........................................................................................58

  • x

    LISTA DE FIGURAS

    Figura 01: Kentropyx calcarata fotografado em Ribeirão Cascalheira, Mato Grosso, Brasil.

    Foto de G. R. Colli. …………………................ .....................................................................59

    Figura 02: Áreas estudadas e pontos de distribuição geográfica de Kentropyx calcarata

    usados para a modelagem de riscos de extinção entre quatro sub-regiões. Os limites

    geográficos usados para sub-selecionar pontos de amostragem foram baseadas na distribuição

    de linhagens intra-específicas de Kentropyx calcarata inferidas a partir de Cronemberger

    (2015) como segue: círculos verdes referem-se à sub-região do Amazonas, que corresponde

    ao Estado Amazonas (AM) ao norte do Rio Amazonas estendendo-se até Roraima (RR);

    círculos amarelos referem-se à sub-região do Amapá que corresponde ao Estado Amapá (AP);

    círculos brancos referem-se à sub-região do Tocantins, que corresponde a pontos de

    amostragem no Estado do Tocantins (TO) e se estende até Maranhão (MA) e leste do Pará

    (PA); círculos azuis referem-se à sub-região do Pará que corresponde a pontos de amostragem

    no Estado do Pará, interflúvio dos Rios Xingu (oeste), Araguaia (leste) e Rio Amazonas

    (norte). Estrelas vermelhas representam os pontos de amostragem de dados ecofisiológicos

    para K. calcarata, como segue: 1 - Florestal Nacional do Amapá, Amapá; 2 - Floresta

    Nacional de Caxiuanã, Pará; 3 - Reserva Florestal Adolpho Ducke, Amazonas; e 4 - Estação

    de Pesquisa Canguçu, Tocantins...............................................................................................60

    Figura 03: Estimativas de ocorrência de Kentropyx calcarata para as sub-regiões estudadas,

    baseadas na adequabilidade do hábitat à espécie para o presente e anos de 2050 e 2070 . A

    escala de cor indica um gradiente de áreas favoráveis a ocorrência da espécie, que varia de

    azul (1.0): áreas adequadas a vermelho (0.0) áreas inadequadas. Os pontos pretos referem-se a

    ocorrência atual de K. calcarata na região...............................................................................61

    Figura 04: Frequência absoluta de sítios com riscos de extinção de Kentropyx calcarata para

    cada período na região Amazônica............................................................................................62

    Figura 07: Relação entre máxima temperatura operacional (TEMAX) e limite térmico máximo

    (CTMAX) de K. calcarata estimado em laboratório para as quatro localidades

    amostradas.................................................................................................................................63

  • xi

    LISTA DE APÊNDICES

    APÊNDICE I: Mapa de altitude da região estudada e pontos de distribuição geográfica de

    Kentropyx calcarata usados para a modelagem de riscos de extinção. As siglas se referem aos

    estados do Amazonas (AM), Roraima (RR), Amapá (AP), Tocantins (TO), Maranhão (MA) e

    Pará (PA). Estrelas vermelhas representam os sítios de amostragem de dados ecofisiológicos

    para K. calcarata e as setas verdes indicam as áreas de maior altitude com ocorrência atual de

    K. calcarata...............................................................................................................................64

    APÊNDICE II: Temperaturas preferidas (Tpref) por indivíduos de Kentropyx calcarata das

    quatro localidades amostradas. As linhas horizontais grossas representam medianas, as caixas

    contém 50% dos valores dos dados e as linha horizontais finas indicam os valores máximos e

    mínimos de temperatura preferida pelos indivíduos........ ........................................................65

    APÊNDICE III: Curvas de desempenho térmico mostrando os efeitos da temperatura

    corporal (oC) no desempenho locomotor (m/s - metros/segundo) de indivíduos de Kentropyx

    calcarata de quatro locais……................... .............................................................................66

  • 12

    INTRODUÇÃO GERAL

    A temperatura afeta muitos aspectos da ecologia, fisiologia e evolução animal

    (Adolph & Porter, 1993). Organismos ectotérmicos, tais como lagartos, frequentemente

    experimentam variações na temperatura corpórea durante a atividade que influenciam o

    metabolismo e a fisiologia e, consequentemente, o sucesso das atividades de forrageio e

    reprodução. Temperaturas ambientais podem, portanto, afetar muitos parâmetros

    fisiológicos (Huey & Berrigan, 2001), de desempenho ecológico e reprodutivo em

    ectotérmicos, tais como a velocidade de corrida, taxa metabólica, fecundidade e

    sobrevivência (Angilletta, 2009).

    O desempenho de qualquer atividade em ectotérmicos aumenta com a elevação

    da temperatura até estabilizar-se em uma faixa de temperatura ótima para o

    desempenho, na qual ele pode decair até o limite térmico mínimo-CTmin ou aumentar até

    o denominado limite térmico máximo-CTmax (Angilletta, 2009). Com base nestas

    características fisiológicas os lagartos podem ser classificados dentro de uma faixa

    contínua de sensibilidade térmica para determinadas atividades, onde espécies cujo

    desempenho ocorre apenas em uma estreita faixa de temperaturas são consideradas

    termoespecialistas (muitas dessas são termoconformadoras), enquanto aquelas que

    possuem desempenho adequado em um intervalo maior de temperaturas são

    consideradas termogeneralistas (muitas dessas são heliotérmicas) (Angilletta, 2009).

    Em ambientes onde existe variação térmica espacial qualquer organismo está

    sujeito a processos biofísicos de troca de calor com o ambiente, como absorção de

    radiação solar, transferência de calor com o fluido à sua volta por convecção e

    transferência de calor por condução com o substrato (Pough et al., 2003). Os lagartos

    podem regular a taxa dessas trocas energéticas por meio de estratégias comportamentais

  • 13

    (Bauwens, 1996; Díaz & Cabezas-Díaz, 2004) ou fisiológicas (Seebacher & Franklin,

    2005) e, como consequência, podem responder às variações ambientais e obter certo

    controle sobre suas temperaturas corporais. A termorregulação pode ser um processo

    relativamente preciso, dependendo dos custos e benefícios associados a outras

    atividades ecológicas, como fuga de predadores, forrageamento e comportamento

    reprodutivo (Huey & Slatkin, 1976).

    Indivíduos podem responder às pressões seletivas locais, como o aumento da

    temperatura, por meio de plasticidade fenotípica ou adaptação evolutiva (Hoffman &

    Sgro, 2011). Mudanças climáticas estão ocorrendo em diferentes escalas espaciais

    (IPCC 2014) e diversos efeitos sobre os organismos e a biodiversidade causados por

    incrementos da temperatura têm sido registrados (Colwell et al., 2008; Both et al., 2009;

    Sinervo et al., 2010). A vulnerabilidade das espécies depende de três fatores-chave: sua

    sensibilidade metabólica, que pode ser medida através de estimativas de desempenho

    locomotor ou digestivo, por exemplo (Angilletta, 2009); sua exposição à mudança de

    temperatura, que pode ser medida através de estimativas do CTmax e CTmin; e de sua

    resiliência às perturbações, para a qual a variabilidade de traços térmicos representa um

    indicador do potencial de adaptação (Williams et al., 2008).

    Ectotérmicos tropicais possuem a preferência térmica próxima do limite de

    tolerância máxima (Sunday et al., 2010), de forma que sua amplitude de

    termorregulação tende a ser mais estreita quando comparada aos ectotérmicos de

    regiões temperadas (Huey et al., 2012) e o limite térmico máximo tende a ser mais

    conservado entre espécies e linhagens de uma mesma espécie (Addo-Bediako et al.,

    2000). Tais características, são apontadas por conferirem alta vulnerabilidade ao

    aumento da temperatura, independente da escala avaliada (Parmesan 2006; Deutsch et

  • 14

    al., 2008; Dillon et al., 2010; Huey et al., 2012). Assim, considera-se que as mudanças

    climáticas em regiões tropicais poderão ter profundas consequências locais e globais,

    uma vez que estas regiões concentram altos níveis da biodiversidade e produtividade

    primária (Dillon et al., 2010).

    A intensidade na qual o aumento de temperatura afetará os riscos de extinção

    dos organismos dependerá da capacidade de migração, das estratégias comportamentais

    e fisiológicas de aclimatização e da evolução das tolerâncias fisiológicas (Hoffmann &

    Sgro 2011). Considerando a magnitude das mudanças climáticas e a fisiologia dos

    organismos, o aquecimento pode ter impactos diferentes entre táxons, podendo

    beneficiar algumas linhagens (Chamaille-Jammes et al., 2006; Gunderson & Leal, 2012;

    Logan et al., 2014) e levar outras à extinção (Sinervo et al., 2010). Portanto, predizer os

    impactos do aumento de temperatura depende de estimativas da flexibilidade de

    características térmicas, que podem variar de acordo com a especialização da linhagem

    e características ambientais (Hoffmann & Sgro, 2011).

    Para entender a resposta de ectotérmicos a aumentos de temperatura local, é

    essencial estimar a variação geografíca de traços da fisiologia dentro de espécies para

    acessar como a vulnerabilidade está espacialmente estruturada (Paranjpe et al., 2013).

    No entanto, ectotérmicos tropicais permanecem como os organismos menos estudados

    com relação aos traços fisiológicos (Huey et al. 2009) e os resultados encontrados

    geralmente são conflitantes, sem que a estrutura espacial da variação de traços que

    conferem vulnerabilidade possa ser definida com confiança.

    Abordagens correlacionistas de modelagem descrevem o nicho das espécies

    através de correlações entre dados climáticos macroespaciais e dados atuais de

    distribuição, mas sem a possibilidade de extrapolação para microambientes devido à

  • 15

    limitação do uso de estimativas de traços não diretamente tomadas das espécies e do seu

    ambiente (Kearney & Porter, 2009). Abordagens mecanísticas mais modernas superam

    tais limitações usando dados coletados a partir dos organismos para acessar a complexa

    rede de inter-relações entre a fisiologia, o ambiente térmico, o comportamento e as

    distribuições do organismo (Gunderson & Leal, 2012; Kearney & Porter, 2009). No

    entanto a quantidade de estudos mecanísticos em escala refinada ainda é incipiente

    (Lara-Rezendiz et al., 2013, Kubisch et al., 2016).

    Nesse contexto, a compreensão da fisiologia térmica ao longo da distribuição

    das espécies em escalas locais é essencial para determinar se as atuais mudanças

    climáticas globais possuem o potencial de selecionar diferencialmente populações

    adaptadas a temperaturas mais elevadas (Corlett, 2011), o que pode ser de particular

    relevância dentro de uma região com organismos potencialmente mais vulneráveis ao

    aumento de temperatura.

    Sinervo e colaboradores (2010) reuniram dados de diversas espécies de lagartos

    do mundo e mostraram que o aquecimento global pode reduzir as horas de atividade das

    espécies, comprometendo sua busca por alimento e reprodução e, potencialmente,

    causar extinções locais ou regionais. O principal fator limitante da abordagem utilizada

    por Sinervo et al., (2010) foi a macroescala térmica ambiental utilizada para prever os

    impactos do aumentos de temperatura sobre as espécies, pois tal abordagem não foi

    refinada para acessar diferenças térmicas micrambientais que utilizam estimativas

    diretamente tomadas das espécies e do ambiente no qual vivem.

    Sinervo et al. (2010) acessaram a vulnerabilidade de 34 famílias de lagartos do

    mundo utilizando as médias de temperatura corporal durante a atividade. Para muitas

    espécies termonconformadoras, que possuem temperaturas corporais baixas e mais

  • 16

    próximas da ambiental (Huey et al 2012), o valor médio como limitante da atividade

    deve ser mais adequado do que para espécies heliotérmicas, pois estas geralmente

    mantêm sua temperatua corporal bem acima da temperatura do ar e do substrato e

    movimentam-se entre o sol e a sombra para evitar o aquecimento corporal. Lagartos

    heliotérmicos possuem o potencial para evitar o superaquecimento através da

    termorregulação comportamental (Kearney et al. 2009) e a temperatura máxima de

    atividade registrada em campo, ao invés da média, deve refletir melhor o início da

    restrição da atividade, representando um melhor preditor para acessar a vulnerabilidade

    de heliotérmicos frente aos aumentos de temperatura.

    Neste trabalho utilizei a amplitude térmica de atividade de Kentropyx calcarata

    para modelar seus riscos de extinção e avaliei como a a variação da fisiologia térmica

    entre distintas localidades na Amazônia e no ecótono Amazonia-Cerrado se relaciona à

    persistência da espécie nos diferentes cenários de aumento de temperatura.

    OBJETIVO GERAL

    Avaliar como a fisiologia térmica de uma espécie de lagarto de ampla

    distribuição em formações florestais da América do Sul (Kentropyx calcarata) é afetada

    por diferentes ambientes térmicos onde ela está presente e como a combinação de traços

    fisiológicos em cada local pode gerar vulnerabilidade e afetar os riscos de extinção que

    estimamos para a maior parte da Amazônia e transição Amazônia-Cerrado.

    OBJETIVOS ESPECÍFICOS

  • 17

    1 – Mensurar traços ecofisiológicos termais (preferência térmica, limites da tolerância

    térmica, sensibilidade térmica do desempenho locomotor) de indivíduos de Kentropyx

    calcarata e temperaturas ambientais operacionais e a extensão em que estes variam

    entre quatro localidades na Amazônia e no ecótono Cerrado-Amazônia.

    2 – Estimar os riscos de extinção de Kentropyx calcarata em cenários de mudanças

    climáticas globais

  • 18

    Capítulo 1

    Pontes-da-Silva E, Magnusson WE, Sinervo BR, Oliveira GC, Miles DV, Colli GR,

    Antunes JF, Santos JC & Werneck FP. Extinction risks forced by climatic change and

    intraspecific variation in the thermal physiology of a tropical lizard. Manuscrito

    formatado para a revista Functional Ecology.

  • 19

    Extinction risks forced by climatic change and intraspecific 1

    variation in the thermal physiology of a tropical lizard 2

    3

    Emerson Pontes-da-Silva*a

    , William E. Magnussona, Barry R. Sinervo

    b, 4

    Gabriel C. de Oliveirab, Donald B. Miles

    c, Guarino R. Colli

    d, Jessica 5

    Fenkere, Juan C. Santos

    f and Fernanda P. Werneck

    a 6

    7

    a Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, 8

    Manaus, Brazil 9

    b Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, 10

    United States 11

    c Department of Biological Sciences, Ohio University, Athens, Ohio, United States 12

    d Department of Zoology, University of Brasília, Brasília, Brazil 13

    e Division of Evolution, Ecology and Genetics, Australian National University, 14

    Canberra, Australia 15

    f Biology Department, Brigham Young University, Utah, United States 16

    17

    Running headline: extinction risks of a tropical lizard 18

    19

    * Corresponding author: [email protected] 20

    21

    22

    mailto:[email protected]

  • 20

    23

    Summary 24

    1. Temperature increases can impact biodiversity and predicting their effects is one 25

    of the main challenges facing global climate change research. Ectotherms are 26

    sensitive to temperature change and, although predictions indicate that tropical 27

    species are highly vulnerable to global warming, they remain one of the groups 28

    least studied with respect to local extinction risk and the extent of physiological 29

    variation. 30

    2. Here, we model the extinction risks of a tropical heliothermic teiid lizard 31

    (Kentropyx calcarata) based on eco-physiological traits and contemporary 32

    species distributions (occupancy) for specific intraspecific evolutionary lineages. 33

    Our model represents an update of methods used in the recent physiological-34

    behavioral models of lizard vulnerability to extinction. We also investigated how 35

    thermal biology traits vary throughout the species geographic ranges and the 36

    consequences of such variation for lineage vulnerability. 37

    3. We investigated the thermo-physiological profile of K. calcarata by measuring 38

    preferred temperatures, critical limits, operative model temperatures, and 39

    locomotor performance sensitivity for the species in four sites in the Amazon 40

    rainforest and in the ecotone between the Amazon and savannah in the Cerrado 41

    biome. We forecast the relative extinction risk for K. calcarata in four regions 42

    for the years 2050 and 2070, based on thermal adequacy predicted for each 43

    region and a dense geographic database of the species known occurrences. 44

    4. We show substantial variation in thermal tolerance of individuals among 45

    thermally distinct sites, such as in the Amazon and in the Amazon-Cerrado 46

  • 21

    ecotone. Thermal critical limits were highly correlated with operative 47

    environmental temperatures. As individuals from different localities show 48

    distinct degrees of variability in the thermal tolerance, the strength of natural 49

    selection in response to climate change is likely to vary geographically. 50

    5. Our physiological model predicted 2.6% to 52.4% relative extinction risks for 51

    clades of K. calcarata for 2050, while for 2070, extinction risks ranged from 52

    8.0% to 66.8%. Individuals from forested Amazon areas are anticipated to 53

    experience a reduction in suitable habitat. However, our laboratory studies 54

    revealed large thermophysiological differences among individuals from the same 55

    site and from different sites that suggest local adaptation and may allow greater 56

    persistence for tropical ectotherm in a global warming scenario. 57

    58

    Key-words Ecophysiology, local extinction, global warming, Amazon, lizard 59

    60

  • 22

    Introduction 61

    Climate change is occurring at different spatial scales (IPCC 2014), and various 62

    effects on organisms caused by rising temperature have been recorded (Colwell et al. 63

    2008; Both et al 2009; Sinervo et al. 2010).Several studies suggest that tropical 64

    ectotherms are more vulnerable to rising temperatures than species further from the 65

    equator (e.g., Parmesan 2006; Deutsch et al. 2008; Dillon, Wang & Huey 2010; Sinervo 66

    et al. 2010; Huey et al. 2012). Thus, climate change in tropical regions is expected to 67

    induce a decrease in biodiversity, because these regions support the highest levels of 68

    biodiversity (Dillon et al. 2010). 69

    Current species distribution models (SDMs) largely describe the environmental 70

    niches of the focal species through correlations between climatic factors and 71

    distributional data, without incorporating species-specific ecophysiological predictors 72

    (e.g., body and operative environmental temperatures) in the modeling (Kearney & 73

    Porter 2009). However, such SDMs may be limited because they are not based on traits 74

    measured directly from the physiology of species. In contrast, mechanistic SDMs might 75

    overcome these drawbacks by using physiological data to portrait the complexity of 76

    interrelationships between organismal physiology, microclimate, behavior and 77

    geographic distribution (Gunderson & Leal 2012). 78

    Local declines in lizard diversity associated with global temperature increases 79

    were reported by Sinervo et al. (2010) and these were associated with global 80

    temperature increases. These environmental disturbances likely caused changes in 81

    thermal niches by reducing hours of activity (Ha) and increasing restriction (i.e., Hr or 82

    the total number of daylight hours in which environmental temperatures above or below 83

    critical limits restrict lizard activity). Models estimating extinction risks on a global 84

  • 23

    scale indicated that by 2070, >39% of local populations of ~20% of lizard species could 85

    become extinct. These predictions are especially alarming for large and biodiverse 86

    areas, such as the Amazon, the Cerrado and their ecotone in South America; which are 87

    expected to become high extinction risk regions for lizards (Sinervo et al. 2010). 88

    Until recently, SDMs based on ecophysiology were premised on extinction risk 89

    across lizards families, i.e., not individual species, and need further refinement and 90

    validation with field data obtained in situ (Sinervo et al. 2010). Recent studies on lizards 91

    have refined the estimation of extinction risk rates at local scales, considering the 92

    interrelations between physiology and microclimate (e.g., Ceia-Hasse et al. 2014; Lara-93

    Resendiz et al. 2015; Kubisch et al. 2015). However, few such analyses exist for lizard 94

    species inhabiting tropical rainforests, which are vulnerable to the effects of global 95

    warning (Huey et al. 2009). 96

    Organisms of the same species at distinct locations are subject to variation in local 97

    environmental conditions, which is particularly true for species widely distributed 98

    across areas under different climatic regimes and selective pressures (Hoffmann & Sgro 99

    2011). Geographic variation in physiological traits can reveal the spatial structure of 100

    adaptive potential throughout species distributions (Moritz et al. 2012). For example, 101

    differences in physiological traits can confer differences in vulnerability of populations 102

    according to local habitat structure (Piantoni, Navas & Ibargüengoytía 2016). 103

    Differences in physiological traits have been revealed between organisms from 104

    temperate and tropical regions. For example, differences in locomotor performance at 105

    different body temperatures between different populations within a clade were detected 106

    in skinks in Australia (Moritz et al. 2012) and Anoles populations in the Bahamas 107

    (Logan, Cox & Calsbeek 2014). However, differences in performance were not found in 108

  • 24

    A. cristatellus, which is a close relative of A. sagrei, on Puerto Rican islands 109

    (Gunderson & Leal 2012). Body temperature can vary with sex, ontogeny, and climate 110

    seasonality, as well as between individuals at distinct locations (e.g.,Van Damme, 111

    Bauwens & Verheyen 1986; Van Damme, Bauwens & Verheyen 1987; Gunderson & 112

    Leal 2012). Clusella-Trullas, Blackburn & Chown (2011) suggested that differences in 113

    preferred temperature (measured in the laboratory as a proxy for body temperature in 114

    nature) may be more related to other climatic variables, such as variation in 115

    environmental temperature and precipitation, than to mean temperature. 116

    Critical thermal limits (CTmin and CTmax) are considered key predictors of 117

    ectotherm physiological sensitivity, and differences in both traits have been used to 118

    investigate physiological patterns relative to temperature and precipitation (e.g., 119

    Clusella-Trullas et al. 2011), latitude (e.g., Addo-Bediako, Chown & Gaston 2000; 120

    Araujo et al. 2013), and habitat (e.g., terrestrial versus marine; Sunday et al. 2011). 121

    Likewise, critical thermal limits may vary intraspecifically (e.g., Moritz et al. 2012; 122

    Logan et al. 2014), but the extent of their variation remains underexplored (Losos 123

    2008). Uncovering intraspecific differences may help clarify whether critical thermal 124

    limits are evolutionarily conserved or are evolutionarily labile (Pearman et al. 2008). 125

    The upper temperature limit is known to vary little and tends to be conserved among 126

    populations (Moritz et al. 2012), and among ectotherm species (Addo-Bediako et al. 127

    2000; Araujo et al. 2013). Thus, it is assumed that temperature increases will impose a 128

    seletive pressure over a wide range of species and populations (Sunday et al. 2011). 129

    The regional phylogenetic diversification of some tropical lineages has been 130

    described and can be integrated with evolutionary-physiological studies (Moritz et al. 131

    2012). Here, we aim to explore this using Kentropyx calcarata (Spix 1825), a whiptail 132

  • 25

    lizard (Squamata: Teiidae) widely distributed species in Brazil and the Guiana. 133

    Individuals are found in forest environments near streams, natural clearings or forest 134

    edges with open areas (Vitt1991; Avila-Pires 1995). The species has a relatively well 135

    known phylogeographic history (Werneck et al. 2009; Avila-Pires et al. 2012; 136

    Cronenberg 2015). Given this species distribution and the conservative nature of 137

    thermal traits typical of tropical ectotherms (Deutsch et al. 2008; Huey et al. 2009) , K. 138

    calcarata is assumed to be more sensitive to climate change. However, narrower critical 139

    limits for thermal traits may be more typical of K. calcarata (a forest heliotherm) and 140

    tropical thermoconforming species than for open-habitat heliotherms. Most open-habitat 141

    heliotherms may be thermal generalists and experience a wide variety of thermal 142

    environments, and this may explain their wide geographic distributions (Bonino et al. 143

    2015). The use of Kentropyx calcarata thermal microhabitat contrasts with those of 144

    heliotherms of open areas and thermoconformers (Vitt et al. 1991; Vitt et al. 1997). 145

    Thus, K. calcarata belongs to an under-explored group in relation to its thermal 146

    biology. 147

    Most teiid lizards are heliotherms that maintain body temperature above 148

    environmental temperature during activity and avoid heat stress by shuttling between 149

    the sun and shade (e.g., Sartorius et al. 1999). Behavioral thermoregulationmay buffer 150

    lizards from thermal-warming impacts (Kearney & Porter 2009), and estimates of mean 151

    field or laboratory body temperatures may not be suitable to estimate restriction in 152

    activity times for heliothermic lizards. For these species, the the voluntary thermal 153

    maximum (VTM) for activity is probably a better threshold to indicate activity 154

    limitation. 155

  • 26

    Here we estimate relative extinction risks for K. calcarata in large sub-regions 156

    within the Brazilian Amazon and the Cerrado-Amazon ecotone occupied by four major 157

    clades recognized by Cronemberg (2015), based on the calculation of thermally 158

    imposed hours of restriction, alone and in interaction with rainfall and vegetation cover. 159

    We also investigate how the thermal biology of K. calcarata is affected by different 160

    thermal environments to predict how differences in thermal biology might affect 161

    differences in vulnerability of populations from different regions. 162

    163

    Materials and methods 164

    Study area 165

    We sampled four localities within the wide distribution of K. calcarata (Fig 1), 166

    which are in regions occupied by different clades, based on a recent phylogeographic 167

    studies of the species (Avila-Pires et al. 2012; Cronenberg 2015). Specimen collection 168

    and experiments were done in September 2014 and between July and October 2015. 169

    These months correspond to the dry season in all collection and experiment locations in 170

    the Brazilian Amazon:1 – Floresta Nacional (FLONA) de Caxiuanã (1°44’.199” S; 171

    51°27’.207” W; elevation 28m), Melgaço/Portel, Pará State, where the mean annual 172

    temperature is 25.7 °C; 2 – Área de Proteção Ambiental (APA) Adolpho Ducke 173

    (2°55’.458” S; 59°58’

    .23” W; elevation 68m), Manaus, Amazonas State, where the 174

    mean annual temperature is 26.0 °C; 3 – Floresta Nacional (FLONA) do Amapá 175

    (0.05°51’.42” S; 51°11’ W; elevation 14.4m), Amapá State, with a mean annual 176

    temperature of 25.5 °C; and the Cerrado-Amazon ecotone: 4 – Centro de Pesquisas 177

    Canguçu (9°97’.721” S; -50°03’

    .325”; elevation 150m), Pium, Tocantins State, with an 178

    annual mean temperature of 26.9 °C (Fig. 2). 179

  • 27

    At each sampling site, individuals were captured by active search, nooses, pitfall-180

    traps and funnel-traps. Each lizard was housed individually in containers measuring 181

    22.5 cm x 15.0 cm x 8.0 cm (L x W x H) at room temperature (approximately 25-30°C) 182

    and provided with water ad libitum until the experiments were performed on the same 183

    day of collection in a nearby field lab. 184

    We restricted extinction-risk modeling to distribution records from areas adjacent 185

    to where physiological data were collected and within areas occupied by four structured 186

    intraspecific clades defined on mitochondrial and nuclear data (Cronenberg 2015). For 187

    the Tocantins sub-region, we considered geographic points east of the Araguaia River, 188

    except for disjunct records on the east coast; for the Amazonas sub-region we 189

    considered geographic records in the area around Manaus extending to Boa Vista 190

    (Roraima) and south of Pantepui; for the Pará sub-region we considered geographic 191

    records in the interfluves of the Xingu River (west), Araguaia (east) and Amazonas 192

    (north) Rivers; and for the sub-region of Amapá we considered geographic records of 193

    the entire Amapá State (Fig. 2). 194

    Geographic (SDM-input) data were assembled that included a total of 2,013 195

    points distributed as follows between sub-regions: Pará (416), Amazonas (82), Amapá 196

    (449) and Tocantins (1066).When points were separated by 1 km or less from the next 197

    point (defined as one locality; Sinervo et al. 2010), only one was used. Geographic 198

    records were made available by various sources such as online databases (American 199

    Museum of Natural History (USA) - http://www.amnh.org), Scientific Collections and 200

    Museums records, and other references listed in the acknowledgments. 201

    Although localities had similar mean annual temperatures, the three Amazon 202

    sampling localities are covered by rainforests, have high mean annual precipitation 203

  • 28

    (2.200 mm, 2.272 mm and 2.300 mm for AM, PA and AP, respectively) and low annual 204

    temperature range (approx. 2 °C difference between the coldest and hottest months). 205

    The Cerrado-Amazon ecotone sampling locality is characterized by transitional forest, 206

    where many trees are seasonally deciduous (Marimon et al. 2006; Mews, Marimon & 207

    Ratter. 2012), with mean annual rainfall of 1.760 mm and a more variable climate, with 208

    an annual temperature range of approximately 6 °C (INMET 2016). 209

    Collected individuals and tissue samples were deposited at the following 210

    institutions: Coleção Herpetológica da Universidade de Brasília (Tocantins samples), 211

    Coleção de Anfíbios e Répteis do Instituto Nacional de Pesquisas da Amazônia 212

    (Amazonas and Pará samples), and Coleção Herpetológica do Museu Paraense Emílio 213

    Goeldi (Pará and Amapá samples). All protocols involving live animals were approved 214

    by the Comissão de Ética no Uso de Animais na Pesquisa of the Instituto Nacional de 215

    Pesquisas da Amazônia (INPA) (Code: 029/2014). 216

    217

    Operative temperatures and extinction-risk modeling 218

    To explore the natural thermal environment (i.e., microclimate) of K. calcarata 219

    individuals in each location, we recorded local operative (Te) and air (Tair) temperatures. 220

    Furthermore, laboratory data collection occurred simultaneously with operative 221

    temperature recording in all locations (Tocantins: August 31-16 September 2014, Pará: 222

    14-30 June 2015, Amazonas:14-29 July 2015, Amapá:05-17 September 2015). For this 223

    purpose, we used automatic temperature dataloggers (HOBO ™ Onset Pro V2) 224

    connected to a polyvinyl chloride (PVC) tube simulating adult K. calcarata in size and 225

    shape (3 cm in diameter, 14 cm long). We also used dataloggers unconnected to models 226

    to record air temperatures. Each temperature datalogger had two probes, each inserted in 227

  • 29

    at different ends of each model tube. We placed temperature recorders in microhabitats 228

    most likely occupied by lizards (natural clearings, edges of the forest and stream 229

    borders), always with a probe in the shade covered with leaves and the other placed in a 230

    position exposed to sunlight (Sinervo et al.2010). Temperature was recorded every two 231

    minutes throughout the field period. We also considered the temperature recorded by 232

    the probes to represent the operative temperature (Te) of K. calcarata in each sampling 233

    locality. We selected only temperature records within the time period when the species 234

    is active, based on the time of the first and the last sighting in the field (07:00 h and 235

    16:00 h). 236

    We estimated the activity hours (Ha) as the time that lizards are outside their 237

    shelters in activity and the restriction hours (Hr) as time that lizard activity would be 238

    limited due to temperatures above or below their thermal limits (Sinervo et al. 2010). 239

    For field data, the lower thermal limit (Tlower), i.e., the lowest air temperature at which 240

    the species was found active, was used to calculate Ha. We considered the estimated 241

    Tlower as the lowest body temperature for individual seen active. Therefore, air 242

    temperature can only be a surrogate for insolation at the beginning of the activity 243

    period. The upper limit (Tupper) was the highest body temperature at which the species 244

    was found voluntarily active and it was used to calculate Ha. As lizards usually do not 245

    use evaporative cooling to any large degree, we assume that they would not be able to 246

    maintain body temperatures within their preferred range when air temperatures are 247

    higher than the upper limit (Tupper). 248

    We used the lowest air temperature at which activity was recorded in the field and 249

    the highest body temperature recorded in the field as the upper and lower temperature 250

    bounds. Considering that this thermal activity breadth is similar for several Amazonian 251

  • 30

    locations where K. calcarata occurs, we calculated the activity hours based on mean 252

    temperature breadth: 26.9 - 40.2 °C for all the locations studied (collected data from 253

    Gasnier et al. 1994; Vitt 1991; Vitt et al. 1997). Therefore, the daily activity hours were 254

    considered as those when Tair was higher than 26.9 °C and lower than 40.2 °C for the all 255

    sub-regions. 256

    We model the interaction of biophysical variables and traits through a function for 257

    hours of restriction, Hr, during the peak breeding season and hours of potential activity, 258

    Ha, during the entire year. For ectotherms, hours of restriction (Hr) is a crucial constraint 259

    during the breeding season, as it limits reproductive output (Sinervo et al. 2010). 260

    Outside of the breeding period, ectotherms use behavioral and physiological 261

    mechanisms to escape excessive cold (brumation in winter), heat, or drought (estivation 262

    during warm or dry periods), so ignoring Hr during these times, accounts for such 263

    strategies. 264

    265

    (Eq. 1) – adapted from Sinervo et al. 2010 266

    267

    Net hours of activity is thus the difference between Ha (h,t) and Hr (h,t) across the 268

    same seasonal time period. However, as noted above, Hr may be most relevant during 269

    the breeding season, while Ha is most important across the entire activity season. 270

    Accordingly, we keep Ha and Hr as separate functions in our models. 271

    For many ectotherms specialized for shaded environments, referred to as 272

    thermoconformers, Te can be estimated from daily excursions in Tair,m (lowest air 273

    temperature) into Tair,max (highest air temperature) with a sinusoidal function. However, 274

    Kentropyx calcarata is often found concentrated around forests clearings where a tree-275

  • 31

    fall event has opened up the habitat and it can be seen basking to raise its temperature in 276

    the clearings during the day but then moving into the forest and slowly cooling down to 277

    ambient temperatures, only to return to bask. Sinervo et al. (2010) considered the 278

    dichotomy between heliothermy and thermoconforming modes of regulation to be strict. 279

    Here we illustrate a model that considers a forest heliothermic, which can have its 280

    frequency of shuttling to the sun reduced when air temperatures are higher, thus 281

    effectively giving the species less activity restriction as it spends a smaller proportion of 282

    the time basking. 283

    The equations for Hr and Ha of a heliotherm can be estimated from the measured 284

    Te data according to a Richard’s Growth equation, which well captures the interaction 285

    of T(air,max)–Tupper on Hr and Ha. These values must be computed from deployed 286

    operative environmental temperature models designed to mimic the thermal properties 287

    of the studied species (Bakken 1992). 288

    To quantify how reptile activity relates empirically to local environmental 289

    temperatures, we used sigmoidal curves (Richard's four parameter growth curve) to map 290

    Ha or Hr onto daily maximum air temperature (Tair,max –Tupper) from a nearby 291

    meteorological station. The calculations were computed on a daily basis. Following 292

    Sinervo et al. (2010), we use this relationship to predict Ha and Hr at any site from 293

    Ti,air,max (i=month) at a nearby weather station, or from a single cell in a climate surface, 294

    even where Te data are unavailable. Specifically, we used the sigmoidal curve to 295

    compute the cumulative hours of activity during the entire adult activity season, over 296

    months, [N.B. the integration of Te models to compute Ha and Hr is built into data 297

    analysis step]: 298

    299

  • 32

    (Eq. 2) – adapted from Sinervo et al. 2010 300

    301

    We used the same approach to compute cumulative “hours of restriction,” Hr, 302

    during each month and then averaged across the number of months of the breeding 303

    season (NBreed), given T(i,max) for each sample period: 304

    305

    (Eq. 3) – adapted from Sinervo et al. 2010 306

    307

    Here, we develop a modified model of the two thermoregulatory modes in the 308

    case where a species evolves to local conditions across a wide geographic region. In the 309

    southern part of the range, K. calcarata is found in the Cerrado–Amazon ecotone, with 310

    more openings in the forest than in the northern parts of its range. While it is still only 311

    abundant in true Amazonian forest ecosystems, it has more thermoregulatory 312

    opportunities in the south, compared to the Amazonian forest environments to the north. 313

    Accordingly, we used another structural habitat feature, the presence or absence of 314

    Amazonian forest, as an index of the macroscale habitat structure, which K. calcarata 315

    might evolve, to become locally adapted. We also computed Hr and Ha, using a 316

    combination of equations for thermoconforming modes (based on simple sinusoidal 317

    relationships) and the equations derived from operative environmental temperature 318

    models deployed in various thermal habitats in which the various clades of K. calcarata 319

    are found. 320

    The modified Hr and Ha equations can be computed across the landscape of sites 321

    as a simple proportion of the mixture of Amazonian versus non-Amazonian forest 322

    environments, in which the distribution of species occurrences is found. 323

  • 33

    To forecast future favorable areas for the occurrence of Kentropyx calcarata, we 324

    used RCP 4.5 from the Representative Concentration Pathways (RCP) database. We 325

    used the temperature values (Tair,max and Tair,min) to assess how Ha and Hr will be 326

    affected. RCPs are the different scenarios of emission and concentration of greenhouse 327

    gases by 2100, which are based on the set of all available information on climate 328

    predictions in the literature (reviewed by van Vuuren et al. 2011).The RPCs are 329

    categorized into four different scenarios in an optimistic scale of emissions mitigation 330

    (RCP 2.6) to a less optimistic scenario with higher emissions (RCP 8.5). We selected 331

    RCP 4.5 which represents an intermediate stage of relative stabilization of emissions by 332

    2100. 333

    Using the R Programming Environment, we calculated the relative proportion of 334

    the current species distribution where Ha and Hr values were favorable to the occurrence 335

    of K. calcarata for the years 2050 and 2070. The favorability for occurrence in an area 336

    (proxy of habitat suitability) is represented by the occupancy index, and the percentage 337

    of extinction risk is calculated by comparing the present with future occupancy 338

    index.(Sinervo et al. 2010). In each of the four sub-regions, we compared occupancy 339

    index based on K. calcarata distribution points from three data sets of interest: 1 – 340

    points within the sub-region where physiological data was collected (physiological 341

    populations); 2 - points within the largest integral protection conservation units and 342

    indigenous lands in each major sub-region (protected areas), which under a scenario of 343

    temperature rise may be useful as future potential refuges for the species; and 3 – points 344

    randomly selected from all the sub-regions together (n = 150). 345

    346

    Estimation of thermal traits 347

  • 34

    Preferred temperature (Tpref) 348

    The preferred temperature of individual lizards was estimated in a thermal 349

    gradient that measured 2.0 m x 0.3 m x 0.65 m (L x W x H).The gradient was divided 350

    into lanes, where an individual was placed. A heat lamp was placed at one end of the 351

    lane to maintain a substrate temperature of 48 °C simulating direct daylight, while gel 352

    ice packs and a fan kept the other end of the lane at an approximate temperature of 21 353

    °C, which simulated a natural shaded microenvironment. 354

    We measured the initial body temperature of individuals before placing them in 355

    the lane for the performance experiment. Body temperature was measured with an 356

    infrared laser thermometer (Digitech QM7221) at a distance of

  • 35

    intervals the loss of motor motion and individual body temperature with a cloacal 371

    thermometer (Miller & Weber 4K8893). 372

    To estimate CTmin, lizards were isolated in styrofoam boxes with gel ice packs. To 373

    estimate CTmax, lizards were directly exposed to sunlight or to bottles containing heated 374

    water placed in styrofoam boxes. To represent the critical thermal limit, we used the 375

    body temperature at which the individual did not move after being turned belly 376

    up(Clobert et al 2000). 377

    378

    Sensitivity of Thermal Performance 379

    We measured individuals’ ability to sustain physical activity to simulate natural 380

    activity conditions where mobility is required for territorial defense, escape from 381

    predators or foraging (Miles 1994; Robson & Miles 2000). Lizards were manually 382

    stimulated to run in a circular track (Clobert et al. 2000) made of metal with an inner 383

    compartment diameter of 60 cm and an external compartment diameter of 150 cm and 384

    25 cm width, which was placed on a substrate with soil from each collection site in 385

    order to mimic natural conditions. The time (s) and distance (m) of individual 386

    locomotion until fatigue and motor-response loss were used as performance estimates 387

    (Clobert et al. 2000). 388

    Each individual was acclimated to run at seven different body temperatures (15 389

    °C, 20 °C, 25 °C, 30 °C, 35 °C, 40 °C and 43 °C) in a randomized sequence. The test 390

    started when the individual’s body temperature was within 0.5 °C of the target 391

    temperature. Lizards had a rest interval of 4 h between each race at a new temperature. 392

    Within individuals, running temperatures were given in a random sequence. The 393

    substrate temperature of the track was adjusted to each running body temperature 394

  • 36

    through intercalation of track site in shadow or sun. The optimum performance 395

    temperature (Topt) was estimated based on the body temperature at which each 396

    individual ran fastest (Huey & Stevenson 1979). 397

    398

    Data analysis 399

    We compared the thermal biology among localities using either an analysis of 400

    variance (ANOVA) or Kruskal-Wallis tests. When significant (P < 0.05) differences 401

    were found in mean trait values among sites, we used the Tukey post hoc test to identify 402

    pairwise differences. The shapes of thermal performance curves (TPC's) of individuals 403

    from each site were estimated and plotted using generalized additive mixed models 404

    (GAMM) (Zajitschek et al. 2012), using the function "gamm" in the package mgcv 405

    (Woods 2006) and ggplot2 (Wickham 2009). Because size may influence locomotor 406

    performance, we included snout-to-vent length (SVL) as a covariate.To compute the 407

    curve, mean CTmax and CTmin values of individuals from each location were given a 408

    performance value of 0. The breadth of optimum performance was estimated asthe 409

    range of body temperatures at which lizards attained 80% (B80) of maximum 410

    performance, by multiplying the maximum performance speed at the best temperature 411

    (Topt) by 0.8 (Huey & Stevenson 1979). Statistical analyses were performed with R (R 412

    Development Core Team 2014). 413

    414

    Results 415

    Operative temperature, occupancy index and extinction risks 416

    The estimated operative temperatures for K. calcarata differed significantly between 417

    sampling sites (F(3,13) = 91, P = 0.0001).At the Tocantins site, lizards had higher mean 418

  • 37

    Te and an amplitude 93% higher than in other locations (Table 1). At Amapá and 419

    Amazonas sites, lizards had the lowest Te (7.5 ° C lower than TO) and were more 420

    thermally homogeneous. Te at Pará was higher and also had greater variability than in 421

    other Amazonian sites (Table 1). 422

    While all ecophysiological traits (Hr, Ha and precipitation) were significant 423

    explanatory variables in our SDM, along with most of their interaction effects and 424

    quadratic terms, historical Amazon forest cover did not contribute significantly, nor did 425

    its interactions (Tables 2 and 3). 426

    The occupancy index in the present (Fig.3a) for the Tocantins sub-region was of 427

    42.3 %, 63.8% for the Amapá sub-region, 69.4%for the Amazonas sub-region 428

    and65.6%for the Pará sub-region. The extinction risk for 2050 (Fig. 3b) for the Pará 429

    sub-region was 5.2%, 16.7% for the Tocantins sub-region, 22.3%for the Amazonas sub-430

    region and 37.2%for the Amapá sub-region. The extinction risk for 2070 (Fig. 3c) for 431

    the Pará sub-region was of 8.0%, 19.4% for the Tocantins sub-region, 21.2%for the 432

    Amazonas sub-region and 45.6% for the Amapá sub-region. 433

    Similar extinction risk values to those for the sub-regions were estimated for K. 434

    calcarata in larger conservation units in each sub-region (Table 4). Also, similar 435

    extinction risk values to those for the sub-regions were observed for the 150 sites in 436

    which the species is known to occur across all four sub-regions (Fig. 4 and Appendix I). 437

    438

    Preferred temperatures and thermal tolerances 439

    Individuals of K. calcarata from different sampling locations exhibited significant 440

    differences in Tpref (F(3,94) = 123 , P

  • 38

    (AM: 31.3 ± 2.8 °C; PA: 30.4 ± 2.6 °C and AP: 29.9 ± 2.2 °C). The remaining three 443

    populations exhibited no significant differeince in Tpref (Table 1). 444

    No significant differences were found in mean thermal tolerance range among the 445

    sampling locations, although there was a trend for differences in minimum temperature 446

    (CTmin) among locations (CTmin, P = 0.08; CTmax, P = 0.3; Amptol, P = 0.5). Amapá 447

    individuals had the lowest CTmin (6.2 °C difference from PA individuals, which 448

    presented the highest CTmin). Variances of minimum and maximum critical limits were 449

    significantly different between locations (Levene test, CTmin, F(3,26) = 3.2, P = 0.03; 450

    CTmax, F(3,27) = 3.6, P = 0.02). Pará (CTmin,14.0 ± 6.4 °C; CTmax, 41.4 ± 3.3 °C), 451

    Amazonas (CTmin,11.1 ± 3.0 °C; CTmax, 40.7 ± 6.1 °C), and Amapá (CTmin, 8 ± 5.2 °C; 452

    CTmax, 39.8 ± 3.5 °C) individuals were similar to each other, showing greater variability 453

    in thermal tolerance estimates than Tocantins individuals (CTmin,12.8 ± 1.1 °C; CTmax, 454

    43.1 ± 0.8 °C) which were 99.96% and 99.97% less variable than other populations in 455

    CTmax and CTmin, respectively(Table 1). 456

    There was no significant relationship between mean operative temperature or 457

    maximum operative temperature (Te,max) and Tpref, Topt, or the upper temperature limit 458

    for 80% of maximum performance measured in the laboratory (P ≥ 0.3 in all cases). 459

    However, there was a strong positive relationship (Fig.5) between maximum operative 460

    temperatures (Te,max) and critical thermal maximum (CTmax) measured in the laboratory 461

    (CTmax = 37± 0.1*Te,max, F(3,45) = 37.1, P = 0.02). 462

    463

    Thermal sensitivity of locomotor performance 464

    Body temperatures significantly affected individual performance at all sampling 465

    locations (AM: F value = 31.6, P =

  • 39

    0.2; AP: F value = 5.2, P = 0.0003, r2 = 0 .08 and TO: F value = 34.2, P = 0.0001, r

    2= 467

    0.5) with reduced performance at higher temperatures. We detected a significant effect 468

    (P =

  • 40

    change in a mega-diverse region. We also present an updated model to calculate 491

    extinction risks based on highest body temperatures recorded in the field instead of 492

    preferred body temperatures estimated in laboratory, which can serve as a baseline for 493

    future studies with forest helioterms. 494

    While Sinervo et al. (2010) predicted an extinction risk for teiids of 13.6% by 495

    2050 and 21% by 2080, our geographically and taxonomically more 496

    refinedphysiological models that included more habitat variables in the SDMfor K. 497

    calcarata predictedhigher relative extinction risks, with 29.1% for 2050 and 32.4% for 498

    2070. A possible reason for the difference between the studies is that 30 out of the 36 499

    heliotermic species Sinervo et al. (2010) considered for their predictions live in open 500

    vegetation areas and deserts, and experience higher activity temperatures (mean body 501

    activity temperatures = 38.6oC) than the few living in forest or aquatic environments 502

    (mean body activity temperatures = 34.8oC). However, even using other species, the 503

    model of Sinervo et al. (2010) should have had a greater relative extinction rate because 504

    they used a narrower thermal tolerance. Our modeling suggests that heliothermic 505

    lineages of Kentropyx calcarata living in densely forested environments (PA, AM, AP) 506

    have lower thermal preferences than the lineage living in the Amazon-Cerrado ecotone, 507

    and this elevates the risk of extinction. 508

    In a similar approach, Kubisch et al. (2015) calculate the restriction hours for a 509

    thermoconformer and predicted that 20% of Homonota darwinii populations could 510

    become extinct by 2080, while Sinervo et al. (2010) predicted that the Phyllodactylidae 511

    family as a whole would not suffer impacts due to climate change. Extinction risk 512

    modeling by Kubisch et al. (2015) was conducted at the species level on a high latitude 513

    species of Phyllodactylidae gecko, and thus, may represent a finer scale risk assessment. 514

  • 41

    Our SDM results suggest that the ecophysiological traits, as the thermal breadth 515

    for activity, provide a useful explanation of the occurrence of K. calcarata in certain 516

    locations of the Amazon. In addition, the significant effect of precipitation (alone and in 517

    interaction with hours of restriction) suggests that a study of egg development and/or 518

    adult water loss (Muth 1980), and the potential for climate change induced drought 519

    (Westphal et al. 2016), might prove to be a fruitful avenue of research at a deeper 520

    mechanistic level than we have done with our study of thermal ecophysiological traits 521

    across the four clades of K. calcarata. 522

    There was little relationship between mean or maximum operative temperatures 523

    and most of the thermal traits we measured. This might be expected, because the cost 524

    associated with different environments is mainly related to behavioral modifications 525

    that might not strongly impact fitness. However, passing the critical thermal maximum 526

    has a very strong immediate cost (death), so it is not surprising that it is related to the 527

    maximum environmental temperature of the site. 528

    Thermal traits appear to be, at least in part, determined by the environmental 529

    temperatures at each site, as evidenced by the strong relationship between critical 530

    thermal maximum and maximum operative temperatures. This indicates selection for 531

    different thermal traits at different sites (Gunderson & Leal 2012; Moritz et al. 2012;, 532

    Piantoni, Navas & Ibargüengoytía 2016). The variance in laboratory measures of 533

    thermal critical limits was greater in some sites than others, especially those sites that 534

    had low mean preferred temperatures. Therefore, adaptation to forested environments 535

    with lower environmental temperatures does not appear to have resulted in narrow 536

    amplitudes of thermal traits and loss of adaptive potential to climate changes. Huey et 537

    al. (2012) and Deutsch et al. (2008) predicted that presumed narrow amplitudes of 538

  • 42

    thermal traits of tropical ectotherms would increase their vulnerability to climate 539

    change, but we show that individuals of Kentropyx calcarata, although living in 540

    thermally homogeneous environments, exhibit high variability in critical limits, which 541

    may favor individuals with increased tolerance to changes in temperature under a 542

    global-warming scenario. 543

    Intrapopulational polymorphism tends to increase the niche amplitude (Weaver & 544

    Hedrick 1991) in a way that thermal traits with greater variability may be favored by 545

    natural selection caused by climate change (Logan et al. 2014). Thus, we suggest that 546

    the potential adaptive amplitude will be greater in populations or areas whose 547

    individuals exhibit greater variation in thermal tolerance. Populations of K. calcarata in 548

    the Amazonian sites clearly show high flexibility in the thermal critical limits and, 549

    therefore, may have higher potential adaptive amplitude. On the other hand, critical 550

    limits were less variable in the population at the ecotone. This could be a result of 551

    higher selection pressure at the ecotone, resulting in reduced variance in this phenotype. 552

    Despite the lower variablility, under a scenario of climate warming, this could favor 553

    these populations as Tpref was higher at the ecotone. 554

    Most studies evaluating thermal biology considered the mean values of those 555

    traits to evaluate differences between species, populations or locations. We found 556

    geographic differences in thermal traits, such as critical limits and in variability values. 557

    We suggest that future studies should pay closer attention to the variability of thermal 558

    traits. Variability in responses to environmental conditions can be considered as a proxy 559

    for the adaptive potential of natural populations (e.g., Logan et al. 2014) and, therefore, 560

    of persistence in response to climate change (Hoffman & Sgro 2011). 561

  • 43

    Large areas of tropical forest have been predicted as potential refuges for 562

    biodiversity with increasing temperatures (Kearney et al. 2009, Clusella-Trullas et al. 563

    2011). Our estimates are of increased extinction risks in most regions, mainly with the 564

    reduction of favorable areas for occurrence in lower altitude Amazon forest regions that 565

    could contribute to local declines. However, even if the species goes extinct in some 566

    areas, colonization processes facilitated by the large land connection that exists in the 567

    Amazon region may lead to species persistence in the long term. 568

    As it is a forest heliotherm, persistence of Kentropyx calcarata also depends on 569

    forest preservation. However, the Amazon rainforest is currently under high 570

    deforestation rates and some sub-regions are even more impacted, such southern Pará 571

    State that has the second highest absolute deforestation rate of the Amazon (Fonseca et 572

    al. 2015). It is also important to note that, in addition to extinction risks estimated for 573

    the Tocantins sub-region, the Cerrado-Amazon ecotone is under intense anthropogenic 574

    change characterized by intense change of natural landscapes for cattle ranching and 575

    agriculture (Costa & Pires 2010; Coe et al. 2013). Combined effects of temperature 576

    increases on a global scale and on a local scale as a result of landscape conversion are 577

    factors that may further increase extinction risks of K. calcarata in these regions. 578

    Our results show that Kentropyx calcarata thermal physiology varies 579

    geographically and thermal maxima appear to be conditional on the thermal 580

    environment of each populations of this species. We used an novel approach to model 581

    extinctions risks for intraespecific lineages of a tropical heliothermic lizard that takes 582

    into account activity body temperatures measured in the field and vegetation cover ande 583

    preciptation as environmental variables. The results reinforce that tropical lizard species 584

    are under local extinction risks and that these risks can be geographically structured, 585

  • 44

    with some regions within its range predicted to become more favorable and some 586

    becoming less favorable for the species. Also, our laboratory studies indicate large 587

    differences among individuals from the same site and from different sites in thermal 588

    traits. We propose that this variability in thermal traits is the basis of local adaptation 589

    and might buffer some populations from extinction as the climate warms. Large areas of 590

    dense forest vegetation, thermal-tolerance variability and natural selection for heat 591

    tolerance are factors with considerable capacity to absorb the impacts of temperature 592

    increase on tropical ectotherms during climate change, and they should be included in 593

    future models of extinction risk. 594

    595

    Acknowledgements 596

    We would like to thank Conselho Nacional de Desenvolvimento Científico e 597

    Tecnológico (CNPq) and Partnerships for Enhanced Engagement in Research from the 598

    US National Academy of Sciences and US Agency for International Development 599

    (PEER NAS/USAID PGA-2000005316) for funding this research. We thank the 600

    institutions that provided spatial data of K. calcarata: University of Kansas (KU), 601

    Coleção Herpetológica da Universidade Federal da Paraíba (CHUFPB), Coleção de 602

    Tecido Animal da Universidade Federal do Espírito Santo (CTAUFES), Coleção 603

    Herpetológica do Museu Paraense Emílio Goeldi (CH-MPEG), Coleção Herpetológica 604

    da Universidade de Brasília (CHUNB), Coleção Herpetológica do Instituto de Pesquisas 605

    Científica e Tecnológica do Amapá (CH-IPCTA), Museu de Zoologia da Universidade 606

    de São Paulo (MZUSP), and Coleção de Anfíbios e Répteis do Instituto Nacional de 607

    Pesquisas da Amazônia (INPA-H). We thank Dra. Teresa Avila-Pires for support in 608

    data collection in Pará, the staff of INPA reserves for support in data collection in AM 609

  • 45

    (Valdecira, Valdir and Rubenildo), and to all people who gave direct assistance for data 610

    collection in all locations: AM = G. Lima, L. Chrisley, L. M. Viegas, J. Buckner, K. 611

    Bajer, O. R. Molnar, Sr. Compensa and Jesus; PA = C. Sette, A. Paula, Sr. Mór and 612

    Dorinha; and TO = C. Morais, S. Balbino, D. Tucker, M. Kucinick and S. Bee. FPW 613

    thanks financial support from CNPq (CNPq: 475559/2013-4) and PEER 614

    NAS/USAID.B.S. and D. B. M. were supported by NSF EF-1241848. JCS thanks Jack 615

    W. Sites, Jr. (BYU) for his support. GRC thanks Coordenação de Aperfeiçoamento de 616

    Pessoal de Nível Superior (CAPES), CNPq,Fundação de Apoio à Pesquisa do Distrito 617

    Federal (FAPDF) and PEER for financial support. WEM was supported by the PPBio 618

    and CENBAM, and both contributed to the availability of a data repository. 619

    620

    Data Accessibility: data deposited in the KNB Data Repository. Identifier 621

    knb.1111.4 (https://knb.ecoinformatics.org/#view/knb.1111.4) 622

    623

  • 46

    References 624

    Addo-Bediako, A., Chown, S.L. & Gaston, K.J. (2000) Thermal tolerance, climatic 625

    variability and latitude. Proceedings of the Royal Society of London Series B, 267, 626

    739-745. 627

    Angilletta, M. J., Niewiarowski, P.H. & Navas, C.A. (2002) The evolution of thermal 628

    physiology in ectotherms. Journal of Thermal Biology, 27, 249-268. 629

    Araujo, M.B., Ferri-Yanez, F., Bozinovis, F., Marquet, P.A., Valladares, F. & Chown, 630

    S.L. (2013) Heat freezes niche evolution. Ecology Letters, 16, 1206-1219. 631

    Avila-Pires, T.C.S. (1995) Lizards of Brazilian Amazonia (Reptilia: Squamata). 632

    Zoologische Verhandelingen, Leiden. 633

    Avila-Pires, T.C.S., Mulcahy, D.G., Werneck, F.P. & Sites Jr., J.W. (2012) 634

    Phylogeography of the teiid lizard Kentropyx calcarata and the sphaerodactylid 635

    Gonatodes humeralis (Reptilia: Squamata): Testing a geological scenario for the 636

    lower Amazon-Tocantins Basins, Amazonia, Brazil. Herpetologica, 68, 272-287. 637

    Baken, G.S. (1992) Measurement and application of operative and standard operative 638

    temperatures in ecology, American Zoologist, 4, 194-216. 639

    Bonino, M.F., Azócar, D.L.M., Schulte II, J.A., Abdala, C.S. & Cruz, F.B. (2015) 640

    Thermal sensitivity of cold climate lizards and the importance of distributional 641

    ranges. Zoology, 118, 281-290. 642

    Both,C., van Asch, M., Bijlsma, R.G., van den Burg, A.B. & Visser, M.E. (2009) 643

    Climate change and unequal phenological changes across four trophic levels: 644

    constraints or adaptations? Journal of Animal Ecology, 78, 73-83. 645

  • 47

    Ceia-Hasse, A., Sinervo, B., Vicente, L. & Periera, H.M. (2014) Integrating 646

    ecophysiological models into species distribution projections of European reptile 647

    range shifts in response to climate change. Ecography, 7, 679-688. 648

    Clobert, J., Oppliger, A., Sorci, G., Ernande, B., Swallow, J.G. & Garland, T. (2000) 649

    Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and 650

    susceptibility to parasitism in a lizard, Lacerta vivipara. Functional Ecology, 14, 651

    675-684. 652

    Clusella-Trullas, S., Blackburn, T.M. & Chown, S.L. (2011) Climatic predictors of 653

    temperature performance curve parameters in ectotherms imply complex responses 654

    to climate change. The American Naturalist, 177, 738-751. 655

    Coe, M.T., Marthews, T.R., Costa, M.H., Galbraith, D.R., Greenglass, N.L., Imbuzeiro, 656

    H.M.A., Levine, N.M., Malhi, Y., Moorcroft, P.R., Muza, M.N., Powell, T.L., 657

    Saleska, S.R., Solorzano, L.A. & Wang, J.F. (2013) Deforestation and climate 658

    feedbacks threaten the ecological integrity of south-southeastern Amazonia. 659

    Philosophical Transactions of the Royal Society B-Biological Sciences, 368, 660

    20120155. http://dx.doi.org/10.1098/rstb.2012.0155. 661

    Colwell, R.K., Brehm, G., Cardelus, C.L., Gilman, A.C. & Longino, J.T. (2008) Global 662

    warming, elevational range shifts, and lowland biotic attrition in the wet tropics. 663

    Science, 322, 258-261. 664

    Costa, M.H. & Pires, G.F. (2010) Effects of Amazon and Central Brazil deforestation 665

    scenarios on the duration of the dry season in the arc of deforestation. International 666

    Journal of Climatology, 30, 1970-1979. 667

  • 48

    Cronemberg, A.A. (2015) Filogeografia multi-locus de Kentropyx calcarata Spix 1825 668

    (Reptilia: Teiidae) na Amazônia Oriental. Master's Thesis, Museu Paraense Emilio 669

    Goeldi, Pará. 670

    Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, 671

    D.C. & Martin, P.R. (2008) Impacts of climate warming on terrestrial ectotherms 672

    across latitude. Proceedings of the National Academy of Sciences USA, 105, 6668-673

    6672. 674

    Dillon, M.E., Wang, G. & Huey, R.B. (2010) Global metabolic impacts of recent 675

    climate warming. Nature, 467, 704-707. 676

    Fonseca, A., Justino, M., Souza Jr., C. & Veríssimo, A. (2015) Deforestation report for 677

    the Brazilian Amazon (November) SAD (p. 10). Belém: Imazon. 678

    Gasnier, T.R., Magnusson, W.E. & Lima, A.P. (1994) Foraging activity and diet of four 679

    sympatric lizard species in a tropical rainforest. Journal of Herpetology, 28, 187-680

    192. 681

    Gunderson, A.R. & Leal, M. (2012) Geographic variation in vulnerability to climate 682

    warming in a tropical Caribbean lizard. Functional Ecology, 26, 783-793. 683

    Hoffman, A.A. & Sgro, C.M. (2011) Climate change and evolutionary adaptation. 684

    Nature, 470, 479-485. 685

    Huey, R.B. & Stevenson, R.D. (1979) Integrating thermal physiology and ecology of 686

    ectotherms: a discussion of approaches. American Zoologist, 19, 357-366. 687

    Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Alvarez-Perez, H.J. 688

    & Garland Jr, T. (2009) Why tropical forest lizards are vulnerable to climate 689

    warming. Proceedings of the Royal Society of London Series B, 276, 1939-1948. 690

  • 49

    Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M. & Williams, 691

    S.E. (2012) Predicting organismal vulnerability to climate warming: roles of 692

    behaviour, physiology and adaptation. Philosophical Transactions of the Royal 693

    Society B, 367,1665-1679. 694

    IPCC (2014) Climate Change 2014.Impacts, Adaptation, and Vulnerability. Part A: 695

    Global and Sectoral Aspects. Contribution of Working Group II to the Fifth 696

    Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 697

    University Press, Cambridge. 698

    INMET (2016) Instituto Nacional de Meteorologia – (http://www.inmet.gov.br/portal/) 699

    Accessed on January 02, 2016. 700

    Kearney, M. & Porter, W. (2009) Mechanistic niche modelling: combining 701

    physiological and spat