Lei de Coulomb

13
► Lei de Coulomb Breve: Lei de Coulomb, lei que governa a interação eletrostática entre duas cargas pontuais, descrita por Charles de Coulomb. Entre as muitas manifestações da eletricidade, encontramos o fenômeno da atração ou repulsão entre dois ou mais corpos eletricamente carregados que se encontram em repouso. De modo geral, estas forças de atração ou repulsão estáticas têm uma forma matemática muito complicada. No entanto, no caso de dois corpos carregados que têm tamanho desprezível em relação à distância que os separa, a força de atração ou repulsão estática entre eles assume uma forma muito simples, que é chamada lei de Coulomb. A lei de Coulomb afirma que a intensidade da força F entre duas cargas pontuais Q1 e Q2 é diretamente proporcional ao produto das cargas, e inversamente proporcional ao inverso do quadrado da distância R que as separa. Consideremos duas cargas puntiformes Q1 e Q2, separadas por uma distância d (Figura). Entre elas haverá um par de forças, que poderá ser de atração ou repulsão, dependendo dos sinais das cargas. Porém, em qualquer caso, a intensidade dessas forças será dada por: F – força elétrica entre 2 cargas [ N ] K o – constante de Coulomb K o = 9 x 10 9 N.m 2 /C 2

Transcript of Lei de Coulomb

► Lei de Coulomb

Breve:

Lei de Coulomb, lei que governa a interação eletrostática entre duas cargas pontuais,

descrita por Charles de Coulomb. Entre as muitas manifestações da eletricidade,

encontramos o fenômeno da atração ou repulsão entre dois ou mais corpos

eletricamente carregados que se encontram em repouso.

De modo geral, estas forças de atração ou repulsão estáticas têm uma forma

matemática muito complicada. No entanto, no caso de dois corpos carregados que têm

tamanho desprezível em relação à distância que os separa, a força de atração ou

repulsão estática entre eles assume uma forma muito simples, que é chamada lei de

Coulomb.

A lei de Coulomb afirma que a intensidade da força F entre duas cargas pontuais Q1 e

Q2 é diretamente proporcional ao produto das cargas, e inversamente proporcional ao

inverso do quadrado da distância R que as separa.

Consideremos duas cargas puntiformes Q1 e Q2, separadas por uma distância d

(Figura). Entre elas haverá um par de forças, que poderá ser de atração ou repulsão,

dependendo dos sinais das cargas. Porém, em qualquer caso, a intensidade dessas

forças será dada por:

 

F – força elétrica entre 2 cargas [ N ]

Ko – constante de Coulomb        Ko = 9 x 109 N.m2 /C2

r – distância entre as cargas [ m ]

Essa lei foi obtida experimentalmente pelo físico francês Charles Augustin de Coulomb

(1736-1806) e por isso é denominada lei de Coulomb.

Se mantivermos fixos os valores das cargas e variarmos apenas a distância entre elas.

Representação gráfica da lei de Coulomb

Representando a força de interação elétrica em função da distância entre duas cargas

puntiformes, obteremos como gráfico uma hipérbole, conforme indica a figura.

  

Mais alongado:

LEI DE COULOMB

Balança de torção de Coulomb

As forças entre cargas elétricas são forças de campo, isto é, forças de ação à distância, como as forças gravitacionais (com a diferença que as gravitacionais são sempre forças atrativas).

O cientista francês Charles Coulomb conseguiu estabelecer experimentalmente uma expressão matemática que nos permite calcular o valor da força entre dois pequenos corpos eletrizados. Coulomb verificou que o valor dessa força (seja de atração ou de repulsão) é tanto maior quanto maiores forem os valores das cargas nos corpos, e tanto menor quanto maior for a distância entre eles. Ou seja: a força com que duas cargas se atraem ou repelem é proporcional às cargas e inversamente proporcional ao quadrado da distância que as separa. Assim, se a distância entre duas cargas é dobrada, a força de uma sobre a outra é reduzida a um quarto da força original.

Para medir as forças, Coulomb aperfeiçoou o método de detectar a força elétrica entre duas cargas por meio da torção de um fio. A partir dessa idéia criou um medidor de força extremamente sensível, denominado balança de torção.

Fonte : geocities.yahoo.com.br

LEI DE COULOMB

Os fenômenos elétricos e magnéticos só começaram a ser compreendidos no final do século XVIII, quando principiaram os experimentos nesse campo. Em 1785, o físico francês Charles de Coulomb confirmou, pela primeira vez de forma experimental, que as cargas elétricas se atraem ou se repelem com uma intensidade inversamente proporcional ao quadrado da distância que as separa. A possibilidade de manter uma força eletromotriz capaz de impulsionar de forma contínua partículas eletricamente carregadas chegou com o desenvolvimento da bateria de pilha química em 1800, pelo físico italiano Alessandro Volta.

O cientista francês André Marie Ampère demonstrou experimentalmente que dois cabos por onde circula uma corrente exercem uma influência mútua igual à dos pólos de um ímã. Em 1831, o físico e químico britânico Michael Faraday descobriu que podia induzir o fluxo de uma corrente elétrica num condutor em forma de espiral, não conectado a uma bateria, movendo um ímã em suas proximidades ou colocando perto outro condutor, pelo qual circulava uma corrente variável.

Coulomb, Charles de (1736-1806), físico francês e pioneiro na teoria elétrica. Em 1777, inventou a balança de torção para medir a força da atração magnética e elétrica. A unidade de medida de carga elétrica recebeu o nome de coulomb em sua homenagem (ver Unidades elétricas).

Unidades elétricas, unidades empregadas para medir quantitativamente toda espécie de fenômenos eletrostáticos e eletromagnéticos, assim como as características eletromagnéticas dos componentes de um circuito elétrico. As unidades elétricas empregadas estão definidas no Sistema Internacional de unidades.

A unidade de intensidade de corrente é o ampère. A da carga elétrica é o coulomb, que é a quantidade de eletricidade que passa em um segundo por qualquer ponto de um

circuito através do qual flui uma corrente de um ampère. O volt é a unidade de diferença de potencial. A unidade de potência elétrica é o watt.

A unidade de resistência é o ohm, que é a resistência de um condutor em que uma diferença de potencial de um volt produz uma corrente de um ampère. A capacidade de um condensador é medida em farad: um condensador de um farad tem uma diferença de potencial de um volt entre suas placas quando estas apresentam uma carga de um coulomb.

O henry é a unidade de indutância, a propriedade de um circuito elétrico em que uma variação na corrente provoca indução no próprio circuito ou num circuito vizinho. Uma bobina tem uma auto-indutância de um henry quando uma mudança de um ampère/segundo na corrente elétrica que a atravessa provoca uma força eletromotriz oposta de um volt.

Lei de Coulomb, lei que governa a interação eletrostática entre duas cargas pontuais, descrita por Charles de Coulomb. Entre as muitas manifestações da eletricidade, encontramos o fenômeno da atração ou repulsão entre dois ou mais corpos eletricamente carregados que se encontram em repouso.

De modo geral, estas forças de atração ou repulsão estáticas têm uma forma matemática muito complicada. No entanto, no caso de dois corpos carregados que têm tamanho desprezível em relação à distância que os separa, a força de atração ou repulsão estática entre eles assume uma forma muito simples, que é chamada lei de Coulomb.

A lei de Coulomb afirma que a intensidade da força F entre duas cargas pontuais Q1 e Q2 é diretamente proporcional ao produto das cargas, e inversamente proporcional ao inverso do quadrado da distância R que as separa.

Eletricidade, categoria de fenômenos físicos originados pela existência de cargas elétricas e pela sua interação. Quando uma carga elétrica encontra-se estacionária, ou estática, produz forças elétricas sobre as outras cargas situadas na mesma região do espaço; quando está em movimento, produz, além disso, efeitos magnéticos.

Os efeitos elétricos e magnéticos dependem da posição e do movimento relativos das partículas carregadas. No que diz respeito aos efeitos elétricos, essas partículas podem ser neutras, positivas ou negativas (ver Átomo). A eletricidade se ocupa das partículas carregadas positivamente, como os prótons, que se repelem mutuamente, e das partículas carregadas negativamente, como os elétrons, que também se repelem mutuamente (ver Elétron; Próton).

Em troca, as partículas negativas e positivas se atraem entre si. Esse comportamento pode ser resumido dizendo-se que cargas do mesmo sinal se repelem e cargas de sinal diferente se atraem.

A força entre duas partículas com cargas q1 e q2 pode ser calculada a partir da lei de Coulomb segundo a qual a força é proporcional ao produto das cargas, dividido pelo quadrado da distância que as separa. A lei é assim chamada em homenagem ao físico francês Charles de Coulomb.

Se dois corpos de carga igual e oposta são conectados por meio de um condutor metálico, por exemplo, um cabo, as cargas se neutralizam mutuamente. Essa neutralização é devida a um fluxo de elétrons através do condutor, do corpo carregado negativamente para o carregado positivamente. A corrente que passa por um circuito é denominada corrente contínua (CC), se flui sempre no mesmo sentido, e corrente alternada (CA), se flui alternativamente em um e outro sentido. Em função da resistência que oferece um material à passagem da corrente, podemos classificá-lo em condutor, semicondutor e isolante.

O fluxo de carga ou intensidade da corrente que percorre um cabo é medido pelo número de coulombs que passam em um segundo por uma seção determinada do cabo. Um coulomb por segundo equivale a 1 ampère, unidade de intensidade de corrente elétrica cujo nome é uma homenagem ao físico francês André Marie Ampère. Quando uma carga de 1 coulomb se desloca através de uma diferença de potencial de 1 volt, o trabalho realizado corresponde a 1 joule. Essa definição facilita a conversão de quantidades mecânicas em elétricas.

Os fenômenos elétricos e magnéticos só começaram a ser compreendidos no final do século XVIII, quando principiaram os experimentos nesse campo. Em 1785, o físico francês Charles de Coulomb confirmou, pela primeira vez de forma experimental, que as cargas elétricas se atraem ou se repelem com uma intensidade inversamente proporcional ao quadrado da distância que as separa. A possibilidade de manter uma força eletromotriz capaz de impulsionar de forma contínua partículas eletricamente carregadas chegou com o desenvolvimento da bateria de pilha química em 1800, pelo físico italiano Alessandro Volta.

O cientista francês André Marie Ampère demonstrou experimentalmente que dois cabos por onde circula uma corrente exercem uma influência mútua igual à dos pólos de um ímã. Em 1831, o físico e químico britânico Michael Faraday descobriu que podia induzir o fluxo de uma corrente elétrica num condutor em forma de espiral, não conectado a uma bateria, movendo um ímã em suas proximidades ou colocando perto outro condutor, pelo qual circulava uma corrente variável.

Coulomb, Charles de (1736-1806), físico francês e pioneiro na teoria elétrica. Em 1777, inventou a balança de torção para medir a força da atração magnética e elétrica. A unidade de medida de carga elétrica recebeu o nome de coulomb em sua homenagem (ver Unidades elétricas).

Unidades elétricas, unidades empregadas para medir quantitativamente toda espécie de fenômenos eletrostáticos e eletromagnéticos, assim como as características eletromagnéticas dos componentes de um circuito elétrico. As unidades elétricas empregadas estão definidas no Sistema Internacional de unidades.

A unidade de intensidade de corrente é o ampère. A da carga elétrica é o coulomb, que é a quantidade de eletricidade que passa em um segundo por qualquer ponto de um circuito através do qual flui uma corrente de um ampère. O volt é a unidade de diferença de potencial. A unidade de potência elétrica é o watt.

A unidade de resistência é o ohm, que é a resistência de um condutor em que uma diferença de potencial de um volt produz uma corrente de um ampère. A capacidade de

um condensador é medida em farad: um condensador de um farad tem uma diferença de potencial de um volt entre suas placas quando estas apresentam uma carga de um coulomb.

O henry é a unidade de indutância, a propriedade de um circuito elétrico em que uma variação na corrente provoca indução no próprio circuito ou num circuito vizinho. Uma bobina tem uma auto-indutância de um henry quando uma mudança de um ampère/segundo na corrente elétrica que a atravessa provoca uma força eletromotriz oposta de um volt.

Lei de Coulomb, lei que governa a interação eletrostática entre duas cargas pontuais, descrita por Charles de Coulomb. Entre as muitas manifestações da eletricidade, encontramos o fenômeno da atração ou repulsão entre dois ou mais corpos eletricamente carregados que se encontram em repouso.

De modo geral, estas forças de atração ou repulsão estáticas têm uma forma matemática muito complicada. No entanto, no caso de dois corpos carregados que têm tamanho desprezível em relação à distância que os separa, a força de atração ou repulsão estática entre eles assume uma forma muito simples, que é chamada lei de Coulomb.

A lei de Coulomb afirma que a intensidade da força F entre duas cargas pontuais Q1 e Q2 é diretamente proporcional ao produto das cargas, e inversamente proporcional ao inverso do quadrado da distância R que as separa.

Eletricidade, categoria de fenômenos físicos originados pela existência de cargas elétricas e pela sua interação. Quando uma carga elétrica encontra-se estacionária, ou estática, produz forças elétricas sobre as outras cargas situadas na mesma região do espaço; quando está em movimento, produz, além disso, efeitos magnéticos.

Os efeitos elétricos e magnéticos dependem da posição e do movimento relativos das partículas carregadas. No que diz respeito aos efeitos elétricos, essas partículas podem ser neutras, positivas ou negativas (ver Átomo). A eletricidade se ocupa das partículas carregadas positivamente, como os prótons, que se repelem mutuamente, e das partículas carregadas negativamente, como os elétrons, que também se repelem mutuamente (ver Elétron; Próton).

Em troca, as partículas negativas e positivas se atraem entre si. Esse comportamento pode ser resumido dizendo-se que cargas do mesmo sinal se repelem e cargas de sinal diferente se atraem.

A força entre duas partículas com cargas q1 e q2 pode ser calculada a partir da lei de Coulomb segundo a qual a força é proporcional ao produto das cargas, dividido pelo quadrado da distância que as separa. A lei é assim chamada em homenagem ao físico francês Charles de Coulomb.

Se dois corpos de carga igual e oposta são conectados por meio de um condutor metálico, por exemplo, um cabo, as cargas se neutralizam mutuamente. Essa neutralização é devida a um fluxo de elétrons através do condutor, do corpo carregado negativamente para o carregado positivamente. A corrente que passa por um circuito é denominada corrente contínua (CC), se flui sempre no mesmo sentido, e corrente

alternada (CA), se flui alternativamente em um e outro sentido. Em função da resistência que oferece um material à passagem da corrente, podemos classificá-lo em condutor, semicondutor e isolante.

O fluxo de carga ou intensidade da corrente que percorre um cabo é medido pelo número de coulombs que passam em um segundo por uma seção determinada do cabo. Um coulomb por segundo equivale a 1 ampère, unidade de intensidade de corrente elétrica cujo nome é uma homenagem ao físico francês André Marie Ampère. Quando uma carga de 1 coulomb se desloca através de uma diferença de potencial de 1 volt, o trabalho realizado corresponde a 1 joule. Essa definição facilita a conversão de quantidades mecânicas em elétricas.

A LEI DE COULOMB

A primeira constatação de que a interação entre cargas elétricas obedece à lei de força

Onde r é a distância entre as cargas e F é o módulo da força, foi feita por Priestley em 1766. Priestley observou que um recipiente metálico carregado, não possui cargas na superfície interna, 1 , não exercendo forças sobre uma carga colocada dentro dele. A partir deste fato experimental, pode-se deduzir matematicamente a validade de (1) O mesmo tipo de dedução pode ser feita na gravitação, para mostrar que dentro de uma cavidade não há força gravitacional.

Medidas diretas da lei (1) foram realizadas em 1785 por Coulomb , utilizando um aparato denominado balança de torção . Medidas modernas mostram que supondo uma lei dada por

Então

O resultado completo obtido por Coulomb pode ser expresso como

Onde a notação está explicada na figura 2.

Figura 2: Forca entre duas cargas

Um outro fato experimental é a validade da terceira lei de Newton ,

Fonte: www.algosobre.com.br

A LEI DE COULOMB

O estudo da eletricidade e do magnetismo remonta aos gregos antigos e tomou grande impulso no século XVIII, com as contribuições de Franklin, Priestley, Mitchell e Coulomb entre outros. No início do século XIX, Oersted descobriu que os fenômenos elétricos e magnéticos eram da mesma natureza, ao perceber que a agulha de um imã era perturbada quando colocada nas proximidades de um fio percorrido por uma corrente. Já nos meados desse século, Maxwell conseguiu formalizar as leis do eletromagnetismo em quatro equações, cuja importância é a mesma que as leis de Newton estão para a mecânica. Com essas equações se previu a existência das ondas eletromagnéticas bem como se pode determinar a natureza ondulatório-eletromagnética da luz. Dessa forma, a ótica, que era considerada como uma matéria à parte, passou também a se integrar no escopo de estudo da teoria eletromagnética.

Não vamos neste curso nos alongar na parte inicial da eletrostática, uma vez que isso já foi objeto de estudo durante o curso de segundo grau. Consideramos como sabidos fatos como a existência de cargas elétricas positivas e negativas, eletrificação por indução, atração e repulsão de cargas, a unidade de carga no Sistema Internacional (SI) como sendo o Coulomb (C), etc. Iremos, entretanto, reafirmar dois princípios básicos do eletromagnetismo:

a. Princípio da conservação de cargas: a carga total (que é a soma algébrica de todas as cargas, sejam elas positivas ou negativas) deve ser conservada. Assim, em um processo de eletrificação de corpos as cargas são transferidas de um corpo ao outro, ao invés de serem criadas ou destruídas. Esse processo torna-se ligeiramente diferente quando da aniquilação de um elétron com um pósitron, gerando radiação gama. Observe que a carga total permanece nula em todo o processo.

b. Princípio de quantização de carga. Esse princípio afirma que toda a carga é múltiplo inteiro de uma carga elementar e, que é, em módulo, igual à carga do elétron. Não existe um valor de carga menor que e e nem um múltiplo não inteiro desse valor. O valor de e vale 1,602 x 10-19 C.

Uma vez estabelecidas estas premissas, iremos então iniciar nosso estudo com:

A LEI DE COULOMB

Suponha duas cargas q1 e q2 isoladas de qualquer outra distribuição de cargas e campos eletromagnético ou gravitacional. Segundo Coulomb a força que cada carga sofre é diretamente proporcional ao produto das cargas e inversamente proporcional ao quadrado da distância que as separam. Assim podemos escrever, por exemplo, que a força sobre a carga q2 exercida pela carga q1será:

Analogamente a força sobre q1 exercida por q2será:

onde r12=r12 é a distância que separa as cargas. Se as cargas tiverem sinais opostos, a força será atrativa e se os sinais forem iguais, a força será repulsiva. A constante de proporcionalidade K depende do meio onde estão inseridas as cargas e seu valor dependo do sistema de unidades. Assim, se o meio é vácuo e o sistema de unidades é o SI, teremos

. No sistema CGS o valor de K é simplesmente igual a 1,A motivação para a busca da lei do inverso do quadrado da distância veio da lei da gravitação e das experiências de Priestley onde se mostrava que uma carga no interior de um condutor oco carregado não sofre nenhuma força, qualquer que seja o valor da carga de prova ou do condutor. Como veremos no capítulo referente ao campo elétrico, esse comportamento só pode ser explicado se a lei do inverso do quadrado for aplicada. De fato, Coulomb, realizando medidas com balança de torção, pode comprovar essa hipótese.

Como sabemos, a força tem natureza vetorial e como tal deve ser assim expressa. Além disso, devemos buscar uma expressão de caráter vetorial que descreva também os fenômenos de atração ou repulsão entre as cargas. Para isso, suponha duas cargas qi e qj

isoladas.

A posição da carga qi é descrita pelo vetor ri, enquanto que aposição de qj é descrita

pelo vetor

Observe que a distância entre as cargas é dada por

O vetor unitário que tem a direção da reta que une as cargas e aponta no sentido da carga qj para a carga qi é dada por:

Desta forma, a força sobre a carga qj exercida por qi