Matemática Conjuntos

22
OS CONJUNTOS Professora Laura Aguiar 1.1) Estudando os Conjuntos Ao obter coleções de elementos classificados a partir de certa característica, estamos formando conjuntos. Os animais vertebrados, por exemplo, podem ser divididos em cinco classes: peixes, répteis, anfíbios, mamíferos e aves. Cada uma dessas classes de animais forma um conjunto. Na matemática, a ideia de conjunto é fundamental e está presente em diversos outros conceitos. Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto. Geralmente, para dar nome aos conjuntos, usaremos uma letra maiúscula do nosso alfabeto, e os elementos por letras minúsculas. Para representação de um conjunto, utilizaremos uma das três formas seguintes: - Listagem dos elementos: Nesta representação, todos os elementos do conjunto são apresentados numa lista, envolvidos por um par de chaves e separados por ponto e vírgula ou por vírgula. Ex: Conjunto dos algarismos pares. A={0; 2; 4; 6; 8} - Propriedade dos elementos: Quando, pela quantidade, não for conveniente escrever todos os elementos que formam o conjunto, o descreveremos por uma propriedade possuída por todos os seus elementos. Ex: A={ x I x é um algarismo par menor que 9 } Lê-se: O conjunto A é formado pelos elementos x, tal que x é um algarismo par menor que 9. - Diagrama de Euler Venn: Representamos o conjunto por um recinto plano limitado por uma curva fechada. Ex: 1.1.1) Relação de Pertinência A relação de pertinência indica se um determinado elemento pertence ou não a um determinado conjunto. Simbologia: Considerando A={0; 2; 4; 6; 8} , Assim: SIMBOLOGIA TRADUÇÃO 2 A O elemento 2 pertence ao conjunto A. 3 A O elemento 3 não pertence ao conjunto A. Quando fazemos uso da relação de pertinência, estamos, necessariamente, relacionando um elemento a um conjunto, nesta ordem. “elemento” “conjunto” Ou “elemento” “conjunto” Observação: Um elemento pertence a um conjunto se ele é “visível” ou listado no conjunto. 1

description

Teoria dos conjuntos

Transcript of Matemática Conjuntos

Page 1: Matemática Conjuntos

OS CONJUNTOS

Professora Laura Aguiar

1.1) Estudando os Conjuntos

Ao obter coleções de elementos classificados a partir de certa característica, estamos formando conjuntos. Os animais vertebrados, por exemplo, podem ser divididos em cinco classes: peixes, répteis, anfíbios, mamíferos e aves. Cada uma dessas classes de animais forma um conjunto. Na matemática, a ideia de conjunto é fundamental e está presente em diversos outros conceitos. Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto. Geralmente, para dar nome aos conjuntos, usaremos uma letra maiúscula do nosso alfabeto, e os elementos por letras minúsculas. Para representação de um conjunto, utilizaremos uma das três formas seguintes:

- Listagem dos elementos: Nesta representação, todos os elementos do conjunto são apresentados numa lista, envolvidos por um par de chaves e separados por ponto e vírgula ou por vírgula. Ex: Conjunto dos algarismos pares. A={0; 2; 4; 6; 8}

- Propriedade dos elementos: Quando, pela quantidade, não for conveniente escrever todos os elementos que formam o conjunto, o descreveremos por uma propriedade possuída por todos os seus elementos. Ex: A={ x I x é um algarismo par menor que 9 } Lê-se: O conjunto A é formado pelos elementos x, tal que x é um algarismo par menor que 9.

- Diagrama de Euler – Venn: Representamos o conjunto por um recinto plano limitado por uma curva fechada. Ex:

1.1.1) Relação de Pertinência

A relação de pertinência indica se um determinado elemento pertence ou não a um determinado conjunto. Simbologia: Considerando A={0; 2; 4; 6; 8} , Assim:

SIMBOLOGIA TRADUÇÃO

2A O elemento 2 pertence ao conjunto A.

3A O elemento 3 não pertence ao conjunto A.

Quando fazemos uso da relação de pertinência, estamos, necessariamente, relacionando

um elemento a um conjunto, nesta ordem.

“elemento” “conjunto”

Ou

“elemento” “conjunto”

Observação: Um elemento pertence a um conjunto se ele é “visível” ou listado no conjunto.

1

Page 2: Matemática Conjuntos

1.1.2) Relação de Inclusão

A relação de inclusão indica se um determinado conjunto está contido ou não em um outro conjunto. Se todos os elementos de um conjunto pertencem a outro, então o primeiro conjunto está contido no segundo. Basta um único elemento do primeiro conjunto não pertencer ao segundo para que o primeiro conjunto não esteja contido no segundo. Simbologia:

SIMBOLOGIA TRADUÇÃO

AB O conjunto A está contido no conjunto B.

DE O conjunto D não está contido no conjunto E.

B A O conjunto B contém o conjunto A.

E D O conjunto E não contém o conjunto D.

Quando fazemos uso da relação de inclusão estamos, necessariamente, relacionando um conjunto a outro conjunto.

“ conjunto” “ conjunto”

“ conjunto” “ conjunto”

“ conjunto” “ conjunto”

“ conjunto” “ conjunto”

Se um conjunto A está contido no conjunto B, dizemos que A é um subconjunto de B. 1.1.3) Conjunto Vazio

O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto

vazio usaremos os símbolos: { } ou .

Atenção: Quando os símbolos { } ou , aparecerem listados ou visíveis, dentro de um conjunto,

o conjunto vazio deverá ser tratado como elemento desse conjunto especificado.

Ex. : Seja o conjunto A={ ; 1; 2; 3}, é correto afirmar para o conjunto A listado, que A , pois

é um elemento do conjunto A.

Também sempre será verdade que:

i) A para qualquer que seja o conjunto A.

ii) AA para qualquer que seja o conjunto A. 1.1.4) Conjunto Unitário

É o conjunto que possui apenas um elemento. 1.1.5) Conjunto das Partes

O Conjunto das partes de um conjunto A, denotado por P(A), é o conjunto formado por todos os subconjuntos do conjunto A. Assim o conjunto das partes é o conjunto dos subconjuntos. Atenção: Lembre-se que dentre os subconjuntos de um dado conjunto, estão o conjunto vazio e o próprio conjunto. Ex.: Seja X = {a, e, i} , encontre P( A ). 2

Page 3: Matemática Conjuntos

1.1.6) Numero de elementos do conjunto das partes

Para indicarmos o número de elementos de um conjunto A, usaremos a notação n(A). E o número de elementos do conjunto das partes será indicado por n[P(A)]. Daí :

)(2)]([ AnAPn

Assim, um conjunto com 4 elementos, terá 42 elementos o seu conjunto das partes, ou seja, o

conjunto A terá no total 16 subconjuntos. 1.1.7) Igualdade de Conjuntos

Dois ou mais conjuntos são iguais quando apresentam os mesmos elementos, em qualquer ordem, sendo que elementos iguais, num mesmo conjunto, serão considerados uma única vez. Daí, podemos afirmar que é verdadeira a igualdade dada por: A= { a; b; c} = { c; b; a} = { a; a; a; b; b; b; c; c}

Simbolicamente a igualdade entre conjuntos fica definida como: ABeBABA

1.2) Operações com conjuntos 1.2.1) União de Conjuntos: A união de dois conjuntos A e B, é o conjunto de todos os elementos que pertencem a A ou B. Indicaremos a união pelo símbolo . Matematicamente:

}|{ BxouaxxBA

isto é:

BxeAxseja

BxeAxseja

BxeAxseja

BAx

Nos diagramas abaixo BA ,é a região hachurada:

3

Page 4: Matemática Conjuntos

1.2.2) Interseção de conjuntos: A interseção de dois conjuntos A e B, é o conjunto formado pelos elementos comuns a A e B. Indicaremos a interseção pelo símbolo . Matematicamente:

}|{ BxeaxxBA

Nos diagramas abaixo BA , é região hachurada:

Quando a interseção de dois conjuntos é o conjunto vazio, eles são chamados de conjuntos disjuntos. 1.2.3) Diferença de conjuntos: A diferença entre dois conjuntos A e B, é o conjunto formado pelos elementos que pertencem a A e não pertencem a B. Matematicamente:

}|{ BxeaxxBA

Nos diagramas abaixo BA ,é a região hachurada:

1.2.4) Conjunto complementar: Dados os conjuntos A e U, se o conjunto A está contido no conjunto U, a diferença U – A, é chamada complementar de A em relação a U. Chamaremos o conjunto U conjunto universo.

Ao complementar de A em relação a U usaremos a notação: CA

U , ou CA , ou A .

Então:

}|{ AxeUxxCA

U

No diagrama abaixo CA

U é a região hachurada:

4

Page 5: Matemática Conjuntos

Ex: Seja U={0; 1; 2; 3; 4; 5; 6; 7; 8; 9} e A={ 1, 3, 5, 7} daí

}9,8,6,4,1,0{ AUCA

U

1.2.5) Diferença Simétrica : A diferença simétrica entre os conjuntos A e B, é o conjunto dos elementos que pertencem a A e não pertencem a B ou, os elementos que pertencem a B e não pertencem A. Indicaremos a

diferença simétrica entre A e b por: BA . Daí:

)()(}|{ ABBAABxouBAxxBA

No diagrama abaixo BA , é região hachurada:

1.2.6) Número de elementos da união de conjuntos: O número de elementos da união de :

- dois conjuntos A e B será: )()()()( BAnBnAnBAn

- três conjuntos A, B e C será:

)()()()()()()()( CBAnCBnCAnBAnCnBnAnCBAn

Dedução:

zyBn

yBAn

yxAn

Seja

)(

)(

)(

pelo diagrama temos q zyxBAn )( , fazendo as

substituições de x, y e z teremos a fórmula, para o número de elementos da união dos dois conjuntos. 1.2.7) Problemas envolvendo conjuntos 1) (Unifap) O dono de um canil vacinou todos os seus cães, sendo que 80% contra parvovirose e 60% contra cinomose. Determine o porcentual de animais que foram vacinados contra as duas doenças. Solução: Sabemos que o total de cães é 100%. Com o auxílio do Diagrama de Venn obtemos: (80% – x) + (x) + (60% – x)= 100% 140% - 2x + x = 100% 5

Page 6: Matemática Conjuntos

40% = x Resposta: 40% dos animais foram vacinados contra as duas doenças.

2) Sabe-se que numa escola de esportes 47 alunos fazem futebol, 23 fazem natação e 36 fazem atletismo. Ainda sabe-se que 10 alunos estão matriculados nas 3 modalidades, 12 fazem natação e futebol, 10 fazem natação e atletismo, e 15 fazem futebol e atletismo. a) Qual o total de alunos matriculados nesta escola de esportes? b) Quantos alunos fazem futebol e atletismo? c) Quantos alunos fazem somente futebol e atletismo? Solução: Primeiramente vamos preencher o Diagrama de Venn partindo da interseção mais restrita até a menos restrita. Ou seja, vamos preencher o campo de interseção das 3 modalidades, depois de duas modalidades (par a par) e depois preencher o campo dos alunos que só fazem 1 modalidade.

6

Page 7: Matemática Conjuntos

Observando a evolução no preenchimento do diagrama ( de 1 até 4) devemos ressaltar que, por exemplo, das 37 pessoas que faziam futebol: 20 não faziam outros esportes, 10 faziam os 3 esportes, 12 faziam natação também, 15 faziam atletismo também, 2 faziam somente futebol e natação e 5 faziam somente futebol e atletismo. Com o Diagrama explicitado podemos responder às perguntas iniciais. a) Basta somar todos os campos do diagrama. O diagrama montado nos permite somar as partes

sem somar duas ou três vezes as mesmas pessoas. Total= 69

b) Observando o diagrama 4 percebemos que a quantidade de alunos que fazem futebol e atletismo é: 15

c) A quantidade de alunos que fazem futebol e atletismo, somente, é: 5

1.3) Conjuntos Numéricos

Os conjuntos numéricos foram surgindo, à medida que foi se tornando necessário apresentar resultados para algumas operações matemáticas.

Com a necessidade de contar quantidades, surgiu o conjunto dos números naturais.

1.3.1) Conjunto dos números naturais (N): É o conjunto N = { 0; 1; 2; 3; 4; 5; ...}. Um subconjunto importante de N é o N*: N* = {1; 2; 3; 4; 5; ...} ou N* = N - { 0 }. Em N é sempre possível efetuar a adição e a multiplicação, ou seja, a soma e o produto de dois números naturais resultam sempre em um número natural. Já a divisão ou subtração entre dois números naturais nem sempre é um número natural; a subtração 2 -3, por exemplo, não é possível em N. Daí a necessidade de ampliar o conjunto N introduzindo os números negativos.

“Deus criou os números naturais. O resto é obra dos homens.” Leopold Kronecker

1.3.2) Conjunto dos números inteiros (Z): Ou conjunto dos números relativos, é o conjunto Z = { ...; -3; -2; -1; 0; 1; 2; 3; ...} , Podemos destacar os seguintes subconjuntos de Z:

- N, pois NZ. - Z* = Z – { 0 } ou Z* = { ...; -3; -2; -1; 1; 2; 3; ...}

Geometricamente temos:

7

Page 8: Matemática Conjuntos

Observe que há uma simetria em relação ao zero. O oposto ou simétrico de 3 é –3, oposto ou simétrico de –3 é o 3, valendo 3 + ( - 3) = -3 + 3 = 0.

Quando os números têm o mesmo sinal basta conservá-lo e adicionar os números; quando os sinais são contrários subtraímos o menor do maior, e o sinal que prevalece é o deste último. É bom lembrar também que o sinal mais (+) antes de um parêntese não vai alterar o sinal do número que está entre parênteses, ocorrendo o oposto quando o sinal antes do parêntese for o de (–). Se não houver nenhum sinal antes do parêntese estará implícito que o sinal será o de mais (+).

Para as operações de multiplicação e divisão que virão logo a seguir vale a seguinte regra: “Números de mesmo sinal dão sempre resultado positivo, enquanto que os de sinais contrários conduzem sempre à resultados negativos”.

No conjunto Z, sempre é possível efetuar a adição, a multiplicação e a subtração, ou seja, a soma, o produto e a diferença de dois números inteiros resultam sempre um número inteiro. E todas as propriedades das operações em N continuam válidas em Z.

Já da divisão de dois números inteiros nem sempre resulta um número inteiro: (-8) : (+2) = -4 é possível em Z.

(-7) : (+2) = ? não é possível em Z.

Daí a necessidade de ampliar o conjunto Z. 1.3.4) Conjuntos dos números racionais(Q): Ao acrescentarmos as frações não aparentes positivas e negativas ao conjunto Z, obtemos o conjunto dos números racionais Q. Assim, por exemplo, são números racionais:

,...2,3

5,1,

4

3,

2

1,0,

4

1,

2

1,1,

2

3,2

Observe que todo número racional pode ser escrito na forma b

a, com aZ, bZ*. Assim,

escreveremos:

Q =

*, ZbeZacomb

a

Perceba que a restrição *Zb , nos obriga a termos 0b , pois b

a, a divisão de a por b, só tem

significado com 0b . A designação racional, surgiu porque b

a pode ser vista como uma razão

entre os inteiro a e b. A letra Q, que representa o conjunto dos números racionais, é a primeira letra da palavra quociente. Os números racionais podem ser encontrados de três maneiras:

- Número inteiro: Se b = 1, temos Zaa

b

a

1, o que implica que Z é subconjunto de Q. Assim:

QZN

- Número decimal exato: Dado um número racional b

a, a representação decimal desse número é

obtida dividindo-se a por b. Se esse resultado possui uma quantidade finita de casas decimais após a vírgula, este resultado é um número decimal exato. Exemplos:

247,01000

247;8,0

5

4;625,0

8

5;25,0

4

1

- Número decimal periódico ou dízima periódica: É o resultado da divisão b

a, que possui uma

quantidade infinita e periódica de casas decimais após a vírgula. Este resultado é chamado de

dízima periódica, e a fração b

a que gera a dízima, é a fração geratriz. Exemplos: 8

Page 9: Matemática Conjuntos

51,2...515151,233

83;781,0...1787878,0

990

177;6,0...666,0

3

2

No conjunto Q, as quatro operações fundamentais são possíveis e valem todas as

propriedades que valem para os inteiros. Certamente devemos nos lembrar de que a divisão por zero é impossível!

Geometricamente temos:

Entre dois números inteiros nem sempre existe outro número inteiro. Entre dois racionais

sempre existe outro racional. Por exemplo, entre os racionais 5,02

1 e 75,0

4

3 podemos

encontrar infinitos racionais; entre eles 625,08

5 . Mas isso não significa que os racionais

preenchem toda a reta. Os números racionais são insuficientes para medir todos os segmentos de reta. Por exemplo a medida da hipotenusa, de um triângulo retângulo, de catetos medindo uma unidade, é um número não racional. Embora as quatro operações fundamentais (adição, subtração, multiplicação e divisão por um número diferente de zero) sejam sempre definidas em Q,

uma equação como 22 x não pode ser resolvida em Q, pois não existe racional b

a tal que

2

2

b

a. Surge então a necessidade de outro tipo de número, o número não racional ou

irracional.

1.3.5) Conjunto dos números irracionais(I): São os números que não podem ser escrito na forma fracionária, com numerador inteiro e denominador inteiro ( diferente de zero). São as decimais infinitas e não periódicas. Exemplos:

...4142135,12 ; ...7320508,13 ; ...1415926535,3

Representação de alguns irracionais na reta:

9

Page 10: Matemática Conjuntos

1.3.6) Conjunto dos números reais(R): Da união do conjunto dos números racionais com o conjunto dos números irracionais obtemos o conjunto dos números reais R. Simbolicamente:

irracionaléxouracionaléxxQRxouQxQRQR |//

Os números racionais não eram suficientes para esgotar os pontos da reta. Por exemplo, os

pontos da reta correspondente aos números 3 , 2 , , , e não eram preenchidos com os

números racionais. Agora, os números reais esgotam todos os pontos da reta, ou seja, a cada ponto da reta corresponde um único número real e, reciprocamente, a cada número real corresponde um único ponto da reta. Por isso dizemos que existe uma correspondência biunívoca entre os números reais e os pontos da reta. Temos assim a reta real, que é construída desta forma: numa reta, escolhemos uma origem (e associamos a ela o zero), um sentido de percurso e uma unidade de escala. O diagrama a seguir relaciona os conjuntos numéricos vistos até aqui:

RQZN

RRQ /

RRQQ /

RQQ /

QRRQ /

Assim com os números reais toda equação do tipo ax 2com Na , pode ser resolvida e todos

os segmentos de reta podem ser medidos. Existem outros números além dos reais, a raiz de índice par e radicando negativo é impossível em R, pois, por exemplo, não existe número real que, elevado ao quadrado, dê um

número negativo. Assim, 4 não é um número real; é um número complexo ou imaginário.

Podemos usar as seguintes notações para alguns subconjuntos de R:

R real positivo ou nulo

*

R real positivo

R real negativo ou nulo

*

R real negativo

O mesmo pode ser feito com Z e Q. 10

Page 11: Matemática Conjuntos

1.3.7) Relação de ordem em R: Sejam dois números reais quaisquer a e b,entre a e b poderá ocorrer uma, e somente uma, das relações: a = b ou a > b ou a < b.

A desigualdade representada por a < b significa que o número real a é menor que o número real b.Geometricamente se a < b, então a está situado à esquerda de b na reta real.

A desigualdade representada por a > b significa que o número real a é maior que o

número real b. Geometricamente , se a > b, então a está situado à direita de b na reta real.

Também usaremos a notação:

ba baouba (a é menor que b ou a é igual a b)

ba baouba (a é maior que b ou a é igual a b)

cba

cb

bacbeba

Será muito útil percebermos que se tivermos xR, e escrevermos:

x > 0 x é positivo

x < 0 x é negativo

0x x é não positivo

0x x é não negativo

Algumas propriedades importantes das desigualdades: As simbologias <, >, chamaremos de sentido da desigualdade.Vejamos algumas propriedades muito úteis: 1ª)Podemos adicionar membro a membro, desigualdades de mesmo sentido: -2<x<3 e 1<y<5 -2+1 < x+y < 3+5

2ª) Podemos somar ou subtrair um número real a ambos os membros de uma desigualdade sem alterá-la ou transpor um termo de um membro para o outro, trocando o sinal deste termo. x+7 < 9 x > 9-7 x > 2 que é o mesmo que fazer x+7 < 9 x +7-7 > 9-7 x > 2

3ª) Podemos multiplicar ou dividir ambos os membros de uma desigualdade por um real diferente de zero, mas com o seguinte cuidado: -Se o número for positivo, conservamos o sinal da desigualdade; -Se o número for negativo invertemos o sinal da desigualdade. Observe: -3 < 2 multiplicando por 5 toda a desigualdade -15 < 10. Mas se multiplicarmos por -5, 15 > -10 . 11

Page 12: Matemática Conjuntos

1.4) Intervalos Reais

Certos subconjuntos de R, determinados por desigualdades, tem grande importância na Matemática; são os intervalos reais.

Representação na reta real

Sentença matemática

Notações simbólicas

Intervalo aberto:

{xR | a < x < b}

]a,b[

(a,b)

Intervalo fechado:

{xR | bxa }

[a,b]

[a,b]

Intervalo semi-aberto à direita:

{xR | bxa }

[a,b[

[a,b)

Intervalo semi-aberto à esquerda:

{xR | bxa }

]a,b]

(a,b]

Intervalos “infinitos”:

Representação na reta real

Sentença matemática

Notações simbólicas

{xR | ax }

]a, [

( a, )

{xR | ax }

[a, [

[a, )

{xR | ax }

] ,a[

( ,a)

{xR | ax }

] ,a]

( ,a]

12

Page 13: Matemática Conjuntos

Considera-se como intervalo ] , [ = R.

Observações:

1) A “bolinha fechada” ( ) indica que o extremo do intervalo pertence a ele. A “bolinha aberta” ( ) indica que o extremo do intervalo não pertence a ele. 2) e , simbolizam apenas a ausência de extremidades pela esquerda ou pela direita no

intervalo, sendo sempre abertos. Portanto e não são números reais!

3)Como definimos, intervalos são subconjuntos dos números reais. Assim os seguintes exemplos não são intervalos:

S={xZ | -5< x < 2}; L= {xN | x >3 }; T = {xZ | 13 x }

1.4.1) Operações com intervalos Estudamos em tópicos anteriores que algumas operações podem ser realizadas com conjuntos. Como os intervalos reais são subconjuntos de R, também podemos realizar operações com intervalos. Exemplo:

Dados os conjuntos A = { x R | 23 x } e B = { x R | 80 x }, para efetuar as

operações representamos cada conjunto em retas reais paralelas. Vamos exemplificar as operações de união e interseção, mas as operações de diferença (A – B ou B – A) e de complementar também podem ser efetuadas desta maneira.

BA

BA

13

Page 14: Matemática Conjuntos

1.5) Fixação

1) Sejam A e B subconjuntos de um conjunto X, tais que AX ={0, 1, 5, 6} e BX ={0,4,6}. Se

BA ={2, 3}, o conjunto BA é igual a:

A) {1, 4, 5} B){0, 2, 3, 5} C){1, 2, 3, 4} D){1, 2, 3, 4, 5} E){0, 2, 4, 5, 6}

2) (UFRN) Se A, B e C são conjuntos tais que )( BAC ={6, 7} e )( BAC ={4, 5}, então, C

é igual a: A) {4,5} B) {6, 7} C) {4, 5, 6} D) {5, 6, 7} E) {4, 5, 6, 7}

3) (U.Uberaba) No diagrama, a parte hachurada representa:

A) GFE )(

B) )( GE

C) )( FEG

D) )()( GFFE

E) GFE )(

4) (PUC) A região assinalada no diagrama representa:

A) CBA )(

B) )()( CBBA 14

Page 15: Matemática Conjuntos

C) )()( CBCA

D) )()( BCBA

E) )()( CBCA

5) Suponha que numa equipe de 10 estudantes, 6 usam óculos e 8 usam relógio. O número de estudantes que usam, ao mesmo tempo, óculos e relógio é? A) exatamente 6. B) exatamente 2. C) no mínimo 6. D) no máximo 5. E) no mínimo 4. 6) (PUC-SP) Dentre os inscritos em um concurso público, 60% são homens e 40% são mulheres. Já têm emprego 80% dos homens e 30 % das mulheres. Qual a porcentagem dos candidatos que já tem emprego? A) 60% B) 40% C) 30% D) 24% E) 12% 7) (CESESP) Numa universidade são lidos apenas dois jornais X e Y, 80% dos alunos lêem o jornal X e 60 % lêem o jornal Y. Sabendo-se que todo aluno é leitor de pelo menos um dos dois jornais, assinale a alternativa que corresponde ao percentual de alunos que leem ambos. A) 80% B) 14% C) 40% D) 60% E) 48% 8) (USP) Depois de n dias de férias, um estudante observa que: A – Choveu 7 vezes, de manhã ou à tarde; B – Quando chove de manhã não chove à tarde; C – Houve 5 tardes sem chuva; D - Houve 6 manhãs sem chuva. Então n é igual a: A) 7 B) 9 C) 10 D) 11 E) 12

9) (CESGRANRIO) Ordenando os números racionais 24

13p ,

3

2q e

6

5r , obtemos:

A) p < r < q B) p < q < r C) r < p < q D) q < r < p E) r < q < p 15

Page 16: Matemática Conjuntos

10) (UFJF) Na figura abaixo estão representados geometricamente os números reais 0, x, y e 1. Aposição do número real x.y é:

A) à esquerda do zero B) entre zero e x C) entre x e y D) entre y e 1 E) à direita de 1

11) Uma indústria lançou um novo modelo de carro que não teve a repercussão esperada. Os técnicos identificaram 3 possíveis problemas: design pouco inovador (D), acabamento pouco luxuoso (A) e o preço mais elevado em relação aos modelos similares do mercado (P). Feita a pesquisa, obtiveram o resultado:

Problemas Número de votos

D 34

A 66

P 63

D e A 17

D e P 22

A e P 50

D,A e P 10

Sem problemas 16

Qual conclusão é verdadeira: A) Como a quantidade de pessoas que não encontraram problemas é maior do que a daquelas que

encontraram os 3 problemas, a maioria dos entrevistados gostou do modelo. B) Mais da metade dos pesquisados achou o preço elevado. C) Foram entrevistadas mais de 250 pessoas. D) Necessariamente, quem encontrou problema em A também encontrou problema em D.

12) (PUCCAMP) Numa escola de música, 65% das pessoas matriculadas estudam teclado e as restantes estudam violão. Sabe-se que 60% das pessoas matriculadas são do sexo masculino e que as do sexo feminino que estudam violão são apenas 5% do total. Nessas condições, escolhendo-se uma matrícula ao acaso qual é a probabilidade de ser a de uma pessoa do sexo masculino e estudante de teclado? A) 2/5 B) 3/10 C) ¼ D) 1/5 E) 1/10 13) (PUCMG) Em uma empresa, 60% dos funcionários lêem a revista A, 80% lêem a revista B, e todo funcionário é leitor de pelo menos uma dessas revistas. O percentual de funcionários que lêem as duas revistas é: A) 20 % B) 40 % C) 60 % D) 75 % E) 140 % 16

Page 17: Matemática Conjuntos

14) (Unirio) Tendo sido feito o levantamento estatístico dos resultados do CENSO POPULACIONAL em uma cidade, descobriu-se, sobre a população, que: I - 44% têm idade superior a 30 anos; II - 68% são homens; III - 37% são homens com mais de 30 anos; IV - 25% são homens solteiros; V - 4% são homens solteiros com mais de 30 anos; VI - 45% são indivíduos solteiros; VII - 6% são indivíduos solteiros com mais de 30 anos. Com base nos dados anteriores, pode-se afirmar que a porcentagem da população desta cidade que representa as mulheres casadas com idade igual ou inferior a 30 anos é de: A) 6% B) 7% C) 8% D) 9% E) 10% 15) (Unirio) Um engenheiro, ao fazer o levantamento do quadro de pessoal de uma fábrica, obteve os seguintes dados: - 28% dos funcionários são mulheres; - 1/6 dos homens são menores de idade; - 85% dos funcionários são maiores de idade. Qual é a porcentagem dos menores de idade que são mulheres? A) 30% B) 28% C) 25% D) 23% E) 20% 16) (UERJ) Em um posto de saúde foram atendidas, em determinado dia, 160 pessoas com a mesma doença, apresentando, pelo menos, os sintomas diarréia, febre ou dor no corpo, isoladamente ou não. A partir dos dados registrados nas fichas de atendimento dessas pessoas, foi elaborada a tabela abaixo:

Na tabela, X corresponde ao número de pessoas que apresentaram, ao mesmo tempo, os três sintomas. Pode-se concluir que X é igual a: A) 6 B) 8 C) 10 D) 12 17

Page 18: Matemática Conjuntos

17) (UFSM) Numa prova de vestibular, ao qual concorreram 20000 candidatos, uma questão apresentava as afirmativas A, B e C, e cada candidato devia classificá-las em verdadeira (V) ou falsa (F). Ao analisar os resultados da prova, observou-se que 10200 candidatos assinalaram V na afirmativa A; 6100, na afirmativa B; 7720, na afirmativa C. Observou-se ainda que 3600 candidatos assinalaram V nas afirmativas A e B; 1200, nas afirmativas B e C; 500, nas afirmativas A e C; 200, nas afirmativas A, B e C. Quantos candidatos consideraram falsas as três afirmativas?

A) 360 B) 490 C) 720 D) 810 E) 1080

18) (UERJ) Três candidatos, A, B e C, concorrem a um mesmo cargo público de uma determinada comunidade. A tabela a seguir resume o resultado de um levantamento sobre a intenção de voto dos eleitores dessa comunidade.

Pode-se concluir, pelos dados da tabela, que a percentagem de eleitores consultados que não votariam no candidato B é: A) 66,0% B) 70,0% C) 94,5% D) 97,2% 19) (UFG) A afirmação "Todo jovem que gosta de matemática adora esportes e festas" pode ser representada segundo o diagrama: M = { jovens que gostam de matemática }; E = { jovens que adoram esportes }; F = { jovens que adoram festas }

18

Page 19: Matemática Conjuntos

20) (UFRN) Uma pesquisa de opinião, realizada num bairro de Natal, apresentou o resultado seguinte: 65% dos entrevistados frequentavam a praia de Ponta Negra, 55% frequentavam a praia do Meio e 15% não iam à praia.De acordo com essa pesquisa, o percentual dos entrevistados que freqüentavam ambas as praias era de: A) 20% B) 35% C) 40% D) 25%

Gabarito:

1. D 2. C 3. C 4. C 5. E 6. A 7. C

8. D 9. B 10. B 11. B 12. D 13. B 14. B

15. E 16. A 17. E 18. B 19. C 20. B

1.6) Pintou no ENEM 1)(Enem/2003) Os acidentes de trânsito, no Brasil, em sua maior parte são causados por erro do motorista. Em boa parte deles, o motivo é o fato de dirigir após o consumo de bebida alcoólica. A ingestão de uma lata de cerveja provoca uma concentração de aproximadamente 0,3 g/L de álcool no sangue. A tabela abaixo mostra os efeitos sobre o corpo humano provocado por bebidas alcoólicas em função de níveis de concentração de álcool no sangue:

(Revista Pesquisa FAPESP n o 57, setembro 2000) Uma pessoa que tenha tomado três latas de cerveja provavelmente apresenta A) queda de atenção, de sensibilidade e das reações motoras. B) aparente normalidade, mas com alterações clínicas. C) confusão mental e falta de coordenação motora. D) disfunção digestiva e desequilíbrio ao andar. E) estupor e risco de parada respiratória. 19

Page 20: Matemática Conjuntos

Solução: A ingestão de 1 lata de cerveja provoca uma concentração de álcool de 0,3 g/L. Logo, a ingestão de 3 latinhas de cerveja provocarão uma concentração de álcool de 0,9 g/L de sangue. Analisando a tabela, conclui-se que a pessoa terá perda da sensibilidade, das reações motoras, queda de atenção, dentre outros sintomas. Sendo assim, a resposta é a alternativa A. 2)(Enem) Um fabricante de cosméticos decide produzir três diferentes catálogos de seus produtos, visando a públicos distintos. Como alguns produtos estarão presentes em mais de um catálogo e ocupam uma página

inteira, ele resolve fazer uma contagem para diminuir os gastos com originais de impressão. Os catálogos C1•,

C2‚ e C3 terão, respectivamente, 50, 45 e 40 páginas.Comparando os projetos de cada catálogo, ele verifica que C1•e C2‚ terão 10 páginas em comum; C1 e C3 terão 6 páginas em comum; C2 e C3 terão 5 páginas em

comum, das quais 4 também estarão em C1. Efetuando os cálculos correspondentes, o fabricante concluiu que, para a montagem dos três catálogos, necessitará de um total de originais de impressão igual a:

A) 135. B) 126. C) 118. D) 114. E) 110. Resposta: C

1.7) Sessão Leitura

O homem que colocou o infinito no bolso O alemão Georg Cantor, no início do século, desafiou o senso comum ao descobrir números que a imaginação matemática ainda não alcançava.

Desde que o homem aprendeu a pensar, poucos conceitos perturbaram tanto o seu espírito quanto o infinito. Um exemplo simples são os números inteiros: 1, 2, 3, 4, 5... e assim por diante. A sequencia nunca termina e não se pode imaginar um número que seja maior que todos os outros — era o que se pensava até o final do século XIX. O fato, porém, é que há números ainda maiores, como se além de um infinito houvesse outros. Esse paradoxo abalou o pensamento matemático e surpreendeu seu próprio autor, o matemático Georg Cantor (1845-1918). Filho de dinamarqueses, nascido na Rússia e radicado na Alemanha, sua pátria por adoção, Cantor era bastante conservador, dizem os historiadores. [...] quando foi atacado por sua descoberta, defendeu-se dizendo sinceramente que fizera tudo para evitá-lo. “Apenas, não vejo como fugir dela”, acrescentou. E estava certo. Seu método, claro como água, consistiu em comparar a lista dos números inteiros com as de outros números. Por exemplo, como os existentes entre 0 e 1, tais como 0,014828910... ou........... 0,999999273... E a comparação era feita como quem vistoria uma sala de cinema: se não há cadeiras vazias e ninguém está de pé, é certo que o número de cadeiras é igual ao de pessoas. Caso contrário, será maior o número do que sobrar, cadeiras ou pessoas. Com essa ideia em mente, Cantor emparelhou os números inteiros com os números menores que 1 e constatou: depois de esgotar a lista dos inteiros, ainda havia menores que 1 a emparelhar. Concluiu que o número desses últimos — apenas entre 0 e 1 — era maior que o infinito número dos inteiros. Nem havia nome para tal quantidade, e coube a Cantor batizá-la. Chamou de álefe-zero ao conjunto de todos os inteiros — o 20

Page 21: Matemática Conjuntos

“menor” dos infinitos. Vinha depois o álefe-zero mais 1, e por aí adiante, numa inimaginável hierarquia de infinitos. O mundo ficou pasmo, mas, como quase sempre acontece, grande parte do problema era simples falta de costume com uma ideia nova.

O notável avanço dos fractais Fonte: Wikipédia

E, depois de assimilados, os métodos cantorianos se mostraram perfeitamente práticos e muito úteis. Apenas a título de ilustração, eles serviram de base à recente teoria dos fractais, que representa um notável avanço no conceito de dimensão. Uma casa tem dimensão 3 porque tem altura, largura e comprimento, e uma folha tem dimensão 2 porque só tem largura e comprimento. Mas há objetos difíceis de classificar — como os alvéolos pulmonares. Por serem ramificados como uma árvore, se diz que sua dimensão é fracionária — alguma coisa entre uma área e um volume — e é denotada por algum número entre 2 e 3. Isso, por si só, mostra que Cantor ajudou a ampliar os cálculos que a Matemática é capaz de fazer. Ainda mais importante que esse lado prático, porém, foi uma mudança de fundo na maneira de ver os números. Curiosamente, o melhor caminho para entender a visão moderna é relembrar como os números eram usados na Pré-história — e ainda hoje são usados por pastores nômades que aprenderam a contar com seus ancestrais. Como não sabem dizer quantos animais têm, os pastores colocam pedrinhas numa sacola, uma para cada vaca que sai do curral. Assim, sabem que têm tantos animais quantas pedras há na sacola. Ou seja, quase se pode dizer que a sacola de pedras é o número — e que esses povos carregam seus números no bolso, em lugar de decorá-los.

Colocar pedras abstratas numa sacola infinita

Esse tosco sistema serve apenas para manter o gado sob controle. Mas é mais ou menos isso o que a Matemática moderna entende por número: uma espécie de comparação entre dois conjuntos — o conjunto de pedras e o de vacas, ou de qualquer outra coisa. É fácil perceber que, para contar os infinitos números entre 0 e 1, Cantor repetiu o procedimento daqueles pastores: a diferença básica é que, como pedras, ele usou os números inteiros. Sua sacola era infinita e suas pedras, abstratas, mas seu objetivo, desde o início, era compreender os números comuns. Ou, pelo menos, uma categoria rebelde de números comuns. O exemplo clássico, conhecido desde a Antiguidade, é a raiz de 2. À primeira vista, é um número trivial, para todos os efeitos igual a 1,41. O problema é que 1,41 ao quadrado dá 1,9881 — e não 2, como deveria acontecer se fosse a raiz procurada. A resposta exata, na verdade, nunca poderia ser escrita, e o mesmo vale para a maior parte dos números entre 0 e 1 . Pelo simples motivo de que raiz de 2 tem infinitos algarismos. Existem fórmulas para se calcularem quantos algarismos se queiram. Por exemplo, com dez casas decimais, o número seria 1,4142135623. Mesmo assim, seu quadrado é 1,9999999997. Ainda não alcança o alvo, como se raiz de 2 fosse uma construção eternamente inacabada.

Esse fato perturbou profundamente os gregos antigos, que conheciam bem as frações, e muitas delas com infinitos algarismos, como 0,66666666... A diferença é que esse número pode ser abreviado na forma de uma razão: ele vale exatamente 2/3. No entanto, não há razão capaz de simbolizar a raiz de 2 e outros números. Daí porque foram chamados “irracionais”, no século V A.C. (hoje, frações, inteiros e irracionais são todos englobados num só conjunto, o dos números reais). Não por acaso, por volta daquela época, o infinito começou a revelar suas arapucas aos filósofos e matemáticos.

[...] 21

Page 22: Matemática Conjuntos

http://super.abril.com.br/cotidiano/georg-cantor-alefe-zero-homem-colocou-infinito-bolso-

440970.shtml

http://www.thefamouspeople.com/profiles/georg-cantor-519.php

Questões:

a) Qual a principal ideia do texto?

b) É possível determinar o menor elemento do conjunto dos números inteiros?

c) De acordo com Cantor, é possível estabelecer um ordenamento entre os infinitos? Justifique.

d) O intervalo [0,1] está contido em qual conjunto numérico: N, Z, Q , I ou R?

e) Cite dois números racionais que, de acordo com o texto, poderiam corresponder à quantidade de dimensões dos alvéolos pulmonares.

1.8)Referências:

MELLO,J. L.P. (2005). Matemática: Construção e significado. Volume único. 1. Ed. São Paulo: Moderna SOUZA, Joamir. (2010). Matemática: Novo Olhar. Volume 1. 1 Ed. São Paulo: FTD PAIVA,Manoel. (2005). Matemática. Volume único. 1 Ed. São Paulo: Moderna

22