Números relativos inteiros e fracionários, operações e propriedades

83
Números relativos inteiros e fracionários, operações e propriedades. 11/04/2011 Eder Sabino Carlos Deixe um comentário Go to comments Números relativos inteiros e fracionários, operações e propriedades. NÚMEROS INTEIROS RELATIVOS INTRODUÇÃO: Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possivel exemplos: a) 5 – 3 = 2 (possível: 2 é um número natural) b) 9 – 9 = 0 ( possível: 0 é um número natural) c) 3 – 5 = ? ( impossível nos números naturais) Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos, -1, -2, -3,……… lê-se: menos um ou 1 negativo lê-se: menos dois ou dois negativo lê-se: menos três ou três negativo Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos numeros inteiros relativos, que será representado por Z. Z = { …..-3, -2, -1, 0, +1, +2, +3,……} Importante: os números inteiros positivos podem ser indicados sem o sinal de +. exemplo a) +7 = 7 b) +2 = 2 c) +13 = 13 d) +45 = 45

Transcript of Números relativos inteiros e fracionários, operações e propriedades

Page 1: Números relativos inteiros e fracionários, operações e propriedades

Números relativos inteiros e fracionários, operações

e propriedades.

11/04/2011 Eder Sabino Carlos Deixe um comentário Go to comments

Números relativos inteiros e fracionários, operações e propriedades.

NÚMEROS INTEIROS RELATIVOS

INTRODUÇÃO:

Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possivel

exemplos:

a) 5 – 3 = 2 (possível: 2 é um número natural) b) 9 – 9 = 0 ( possível: 0 é um número natural) c) 3 – 5 = ? ( impossível nos números naturais)

Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos,

-1, -2, -3,………

lê-se: menos um ou 1 negativo lê-se: menos dois ou dois negativo lê-se: menos três ou três negativo

Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos numeros inteiros relativos, que será representado por Z.

Z = { …..-3, -2, -1, 0, +1, +2, +3,……}

Importante: os números inteiros positivos podem ser indicados sem o sinal de +.

exemplo

a) +7 = 7 b) +2 = 2 c) +13 = 13 d) +45 = 45

Page 2: Números relativos inteiros e fracionários, operações e propriedades

Sendo que o zero não é positivo nem negativo

EXERCICIOS

1) Observe os números e diga:

-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72

a) Quais os números inteiros negativos? R: -15,-1,-93,-8,-72

b) Quais são os números inteiros positivos? R: +6,+54,+12,+23,+72

2) Qual o número inteiro que não é nem positivo nem negativo? R: É o zero

3) Escreva a leitura dos seguintes números inteiros:

a) -8 =(R: oito negativo) b)+6 = (R: seis positivo) c) -10 = (R: dez negativo) d) +12 = (R: doze positivo) e) +75 = (R: setenta e cinco positivo) f) -100 = (R: cem negativo)

4) Quais das seguintes sentenças são verdadeiras?

a) +4 = 4 = ( V) b) -6 = 6 = ( F) c) -8 = 8 = ( F) d) 54 = +54 = ( V) e) 93 = -93 = ( F )

5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos:

a) 5° acima de zero = (R: +5) b) 3° abaixo de zero = (R: -3) c) 9°C abaixo de zero= (R: -9) d) 15° acima de zero = ( +15)

REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA

Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos.

Page 3: Números relativos inteiros e fracionários, operações e propriedades

_I___I___I___I___I___I___I___I___I___I___I___I___I___I_ -6.. -5…-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

exercícios

1) Escreva os números inteiros:

a) compreendidos entre 1 e 7 (R: 2,3,4,5,6) b) compreendidos entre -3 e 3 (R: -2,-1,0,1,2) c) compreendidos entre -4 e 2 ( R: -3, -2, -1, 0, 1) d) compreendidos entre -2 e 4 (R: -1, 0, 1, 2, 3 ) e) compreendidos entre -5 e -1 ( R: -4, -3, -2) f) compreendidos entre -6 e 0 (R: -5, -4, -3, -2, -1)

2) Responda:

a) Qual é o sucessor de +8? (R: +9) b) Qual é o sucessor de -6? (R: -5) c) Qual é o sucessor de 0 ? (R: +1) d) Qual é o antecessor de +8? (R: +7) e) Qual é o antecessor de -6? ( R: -7) f) Qual é o antecessor de 0 ? ( R: -1)

3) Escreva em Z o antecessor e o sucessor dos números:

a) +4 (R: +3 e +5) b) -4 (R: -5 e – 3) c) 54 (R: 53 e 55 ) d) -68 (R: -69 e -67) e) -799 ( R: -800 e -798) f) +1000 (R: +999 e + 1001)

NÚMEROS OPOSTOS E SIMÉTRICOS

Na reta numerada, os números opostos estão a uma mesma distancia do zero.

-I___I___I___I___I___I___I___I___I___I___I___I___I___I_ -6.. -5…-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

Observe que cada número inteiro, positivo ou negativo, tem um correspondente com sinais deferentes

exemplo

a) O oposto de +1 é -1. b) O oposto de -3 é +3. c) O oposto de +9 é -9. d) O oposto de -5 é +5.

Obsevação: O oposto de zero é o próprio zero.

Page 4: Números relativos inteiros e fracionários, operações e propriedades

EXERCÍCIOS

1) Determine:

a) O oposto de +5 = (R:-5) b) O oposto de -9 = (R: +9) c) O oposto de +6 = (R: -6) d) O oposto de -6 = (R: +6) e) O oposto de +18 = (R: -18) f) O oposto de -15 = (R: +15) g) O oposto de +234= (R: -234) h) O oposto de -1000 = (R: +1000)

COMPARAÇÃO DE NÚMEROS INTEIROS ,

Observe a representação gráfica dos números inteiros na reta.

-I___I___I___I___I___I___I___I___I___I___I___I___I___I_ -6.. -5…-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6

Dados dois números quaisquer, o que está à direita é o mair deles, e o que está à esquerda, o menor deles.

exemplos a) -1 > -4, poque -1 está à direita de -4. b) +2 > -4, poque +2 está a direita de -4 c) -4 menor -2 , poque -4 está à esquerda de -2. d) -2 menor +1, poque -2 está à esquerda de +1.

exercicios

1) Qual é o número maior ? a) +1 ou -10 (R:+1) b) +30 ou 0 (R: +30) c) -20 ou 0 ( R: 0) d) +10 ou -10 (R: +10) e) -20 ou -10 (R: -10) f) +20 ou -30 (R: +20) g) -50 ou +50 (R:+50) h) -30 ou -15 (R:-15)

2) compare os seguites pares de números, dizendo se o primeiro é maior, menor ou igual

a) +2 e + 3 (menor) b) +5 e -5 (maior) c) -3 e +4 (nenor) d) +1 e -1 (maior) e) -3 e -6 ( maior) f) -3 e -2 (menor) g) -8 e -2 (menor)

Page 5: Números relativos inteiros e fracionários, operações e propriedades

h) 0 e -5 (maior) i) -2 e 0 (nenor) j) -2 e -4 (maior) l) -4 e -3 (menor) m) 5 e -5 (maior) n) 40 e +40 ( igual) o) -30 e -10 (menor) p) -85 e 85 (menor) q) 100 e -200 (maior) r) -450 e 300 (menor) s) -500 e 400 (menor)

3) coloque os números em ordem crescente.

a) -9,-3,-7,+1,0 (R: -9,-7,-3,0,1) b) -2, -6, -5, -3, -8 (R: -8, -6,-5, -3,-2) c) 5,-3,1,0,-1,20 (R: -3,-1,0,1,5,20) d) 25,-3,-18,+15,+8,-9 (R: -18,-9,-3,+8,+15,+25) e) +60,-21,-34,-105,-90 ( R: -105,-90,-34,-21, +60) f) -400,+620,-840,+1000,-100 ( R: -840,-400,-100,+620,+1000)

4) Coloque os números em ordem decrescente

a) +3,-1,-6,+5,0 (R: +5,+3,0,-1,-6) b) -4,0,+4,+6,-2 ( R: +6,+4,0,-2,-4) c) -5,1,-3,4,8 ( R: 8,4,1,-3,-5) d) +10,+6,-3,-4,-9,+1 (R: +10,+6,+1,-3,-4,-9) e) -18,+83,0,-172, -64 (R: +83,0,-18,-64,-172) f) -286,-740, +827,0,+904 (R: +904,+827,0,-286,-740)

ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS

ADIÇÃO

1) Adição de números positivos

A soma de dois números positivos é um número positivo.

EXEMPLO

a) (+2) + (+5) = +7 b) (+1) + (+4) = +5 c) (+6) + (+3) = +9

Simplificando a maneira de escrever

a) +2 +5 = +7 b) +1 + 4 = +5 c) +6 + 3 = +9

Page 6: Números relativos inteiros e fracionários, operações e propriedades

Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição e eliminamos os parêteses das parcelas.

2) Adição de números negativos

A soma de dois numeros negativos é um número negativo

Exemplo

a) (-2) + (-3) = -5 b) (-1) + (-1) = -2 c) (-7) + (-2) = -9

Simplificando a maneira de escrever

a) -2 – 3 = -5 b) -1 -1 = -2 c) -7 – 2 = -9

Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal de + na operação e eliminando os parênteses das parcelas.

EXERCÍCIOS

1) Calcule

a) +5 + 3 = (R:+8) b) +1 + 4 = (R: +5) c) -4 – 2 = (R: -6) d) -3 – 1 = (R: -4) e) +6 + 9 = (R: +15) f) +10 + 7 = (R: +17) g) -8 -12 = (R: -20) h) -4 -15 = (R: -19) i) -10 – 15 = (R: -25) j) +5 +18 = (R: +23) l) -31 – 18 = (R: -49) m) +20 +40 = (R: + 60) n) -60 – 30 = (R: -90) o) +75 +15 = (R: +90) p) -50 -50 = (R: -100)

2) Calcule:

a) (+3) + (+2) = (R: +5) b) (+5) + (+1) = (R: +6) c) (+7) + ( +5) = (R: +12) d) (+2) + (+8) = (R: +10) e) (+9) + (+4) = (R: +13) f) (+6) + (+5) = (R: +11)

Page 7: Números relativos inteiros e fracionários, operações e propriedades

g) (-3) + (-2) = (R: -5) h) (-5) + (-1) = (R: -6) i) (-7) + (-5) = (R: -12) j) (-4) + (-7) = (R: -11) l) (-8) + ( -6) = (R: -14) m) (-5) + ( -6) = (R: -11)

3) Calcule:

a) ( -22) + ( -19) = (R: -41) b) (+32) + ( +14) = (R: +46) c) (-25) + (-25) = (R: -50) d) (-94) + (-18) = (R: -112) e) (+105) + (+105) = (R: +210) f) (-280) + (-509) = (R: -789) g) (-321) + (-30) = (R: -350) h) (+200) + (+137) = (R: +337)

3) Adição de números com sinais diferentes

A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.

exemplos

a) (+6) + ( -1) = +5 b) (+2) + (-5) = -3 c) (-10) + ( +3) = -7

simplificando a maneira de escrever

a) +6 – 1 = +5 b) +2 – 5 = -3 c) -10 + 3 = -7

Note que o resultado da adição tem o mesmo sinal que o número de maior valor absoluto

Observação:

Quando as parcelas são números opostos, a soma é igual a zero.

Exemplo

a) (+3) + (-3) = 0 b) (-8) + (+8) = 0 c) (+1) + (-1) = 0

simplificando a maneira de escrever

Page 8: Números relativos inteiros e fracionários, operações e propriedades

a) +3 – 3 = 0 b) -8 + 8 = 0 c) +1 – 1 = 0

4) Um dos numeros dados é zero

Quando um dos números é zero , a soma é igual ao outro número.

exemplo

a) (+5) +0 = +5 b) 0 + (-3) = -3 c) (-7) + 0 = -7

Simplificando a maneira de escrever

a) +5 + 0 = +5 b) 0 – 3 = -3 c) -7 + 0 = -7

exercícios

1) Calcule:

a) +1 – 6 = -5 b) -9 + 4 = -5 c) -3 + 6 = +3 d) -8 + 3 = -5 e) -9 + 11 = +2 f) +15 – 6 = +9 g) -2 + 14 = +12 h) +13 -1 = +12 i) +23 -17 = +6 j) -14 + 21 = +7 l) +28 -11 = +17 m) -31 + 30 = -1

2) Calcule:

a) (+9) + (-5) = +4 b) (+3) + (-4) = -1 c) (-8) + (+6) = -2 d) (+5) + (-9) = -4 e) (-6) + (+2) = -4 f) (+9) + (-1) = +8 g) (+8) + (-3) = +5 h) (+12) + (-3) = +9 i) (-7) + (+15) = +8 j) (-18) + (+8) = -10 i) (+7) + (-7) = 0

Page 9: Números relativos inteiros e fracionários, operações e propriedades

l) (-6) + 0 = -6 m) +3 + (-5) = -2 n) (+2) + (-2) = 0 o) (-4) +10 = +6 p) -7 + (+9) = +2 q) +4 + (-12) = -8 r) +6 + (-4) = +2

PROPRIEDADE DA ADIÇÃO

1) Fechamento : a soma de dois números inteiros é sempre um número inteiro

exemplo (-4) + (+7) =( +3)

2) Comutativa: a ordem das parcelas não altera a soma.

exemplo: (+5) + (-3) = (-3) + (+5)

3) Elemento neutro: o número zero é o elemento neutro da adição.

exemplo: (+8) + 0 = 0 + (+8) = +8

4) Associativa: na adição de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.

exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]

5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.

exemplo: (+7) + (-7) = 0

ADIÇÃO DE TRÊS OU MAIS NÚMEROS

Para obter a soma de três ou mais números adicionamos os dois primeiros e, em seguida, adicionamos esse resultado com o terceiro, e assim por diante.

exemplos

1) -12 + 8 – 9 + 2 – 6 = = -4 – 9 + 2 – 6 = = -13 + 2 – 6 = = -11 – 6 = = -17

2) +15 -5 -3 +1 – 2 = = +10 -3 + 1 – 2 = = +7 +1 -2 = = +8 -2 = = +6

Page 10: Números relativos inteiros e fracionários, operações e propriedades

Na adição de números inteiros podemos cancelar números opostos, poque a soma deles é zero.

INDICAÇÃO SIMPLIFICADA

a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.

exemplos

a) (+7) + (-5) = 7 – 5 = +2

b) (+6) + (-9) = 6 – 9 = -3

b) Podemos dispensar o sinal + da soma quando esta for positiva

exemplos

a) (-5) + (+7) = -5 + 7 = 2

b) (+9) + (-4) = 9 – 4 = 5

EXERCÍCIOS

1) Calcule

a) 4 + 10 + 8 = (R: 22) b) 5 – 9 + 1 = (R: -3) c) -8 – 2 + 3 = (R: -7) d) -15 + 8 – 7 = (R: -14) e) 24 + 6 – 12 = (R:+18) f) -14 – 3 – 6 – 1 = (R: -24) g) -4 + 5 + 6 + 3 – 9 = (R: + 1) h) -1 + 2 – 4 – 6 – 3 – 8 = (R: -20) i) 6 – 8 – 3 – 7 – 5 – 1 + 0 – 2 = (R: -20) j) 2 – 10 – 6 + 14 – 1 + 20 = (R: +19) L) -13 – 1 – 2 – 8 + 4 – 6 – 10 = (R: -36)

2) Efetue, cancelando os números opostos:

a) 6 + 4 – 6 + 9 – 9 = (R: +4) b) -7 + 5 – 8 + 7 – 5 = (R: -8) c) -3 + 5 + 3 – 2 + 2 + 1 = (R: +6) d) -6 + 10 + 1 – 4 + 6= (R: +7) e) 10 – 6 + 3 – 3 – 10 – 1 = (R: -7) f) 15 – 8 + 4 – 4 + 8 – 15 = (R: 0)

3) Coloque em forma simplificada ( sem parênteses)

a) (+1) + (+4) +(+2) = (R: 1 +4 + 2) b) (+1) + (+8) + (-2) = (R: 1 + 8 – 2)

Page 11: Números relativos inteiros e fracionários, operações e propriedades

c) (+5) +(-8) + (-1) = (R: +5 – 8 – 1) d) (-6) + (-2) + (+1) = (R: -6 – 2 + 1)

4) Calcule:

a) (-2) + (-3) + (+2) = (R: -3) b) (+3) + (-3) + (-5) = (R: -5) c) (+1) + (+8) +(-2) = (R: +7 ) d) (+5) + (-8) + (-1) = (R: -4) e) (-6) + (-2) + (+1) = (R: -7) f) (-8) + ( +6) + (-2) = (R: -4) g) (-7) + 6 + (-7) = (R: -8) h) 6 + (-6) + (-7) = (R: -7) i) -6 + (+9) + (-4) = (R: -1) j) (-4) +2 +4 + (+1) = (R: +3)

5) Determine as seguintes somas

a) (-8) + (+10) + (+7) + (-2) = (R: +7) b) (+20) + (-19) + (-13) + (-8) = (R: -20) c) (-5) + (+8) + (+2) + (+9) = (R: +14) d) (-1) + (+6) + (-3) + (-4) + (-5) = (R: -7) e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) = (R: -23)

6) Dados os números x= 6, y = 5 e z= -6, calcule

a) x + y = (R: +11) b) y + z = (R: -4) c) x + z = (R: -3)

SUBTRAÇÃO

A operação de subtração é uma operação inversa à da adição

Exemplos

a) (+8) – (+4) = (+8) + (-4) = = +4 b) (-6) – (+9) = (-6) + (-9) = -15 c) (+5) – (-2) = ( +5) + (+2) = +7

Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao primeiro o oposto do segundo.

Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a subtração é sempre possivel)

ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL NEGATIVO

Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto

Page 12: Números relativos inteiros e fracionários, operações e propriedades

veja:

a) -(+8) = -8 (significa o oposto de +8 é -8 )

b) -(-3) = +3 (significa o oposto de -3 é +3)

analogicamente:

a) -(+8) – (-3) = -8 +3 = -5

b) -(+2) – (+4) = -2 – 4 = -6

c) (+10) – (-3) – +3) = 10 + 3 – 3 = 10

conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o sínal do número que está dentro dos parênteses.

EXERCÍCIOS

1) Elimine os parênteses

a) -(+5) = -5 b) -(-2) = +2 c) – (+4) = -4 d) -(-7) = +7 e) -(+12) = -12 f) -(-15) = +15 g) -(-42) = +42 h) -(+56) = -56

2) Calcule:

a) (+7) – (+3) = (R: +4) b) (+5) – (-2) = (R: +7) c) (-3) – ( +8) = (R: -11) d) (-1) -(-4) = (R: +3) e) (+3) – (+8) = (R: -5) f) (+9) – (+9) = (R: 0 ) g) (-8) – ( +5) = (R: -13) h) (+5) – (-6) = (R: +11) i) (-2) – (-4) = (R: +2) j) (-7) – (-8) = (R: +1) l) (+4) -(+4) = (R: 0) m) (-3) – ( +2) = (R: -5) n) -7 + 6 = (R: -1) o) -8 -7 = (R: -15) p) 10 -2 = (R:8) q) 7 -13 = (R: -6) r) -1 -0 = (R: -1) s) 16 – 20 = (R: -4)

Page 13: Números relativos inteiros e fracionários, operações e propriedades

t) -18 -9 = (R: -27) u) 5 – 45 = (R:-40) v) -15 -7 = (R: -22) x) -8 +12 = (R: 4) z) -32 -18 = (R:-50)

3) Calcule:

a) 7 – (-2) = (R: 9) b) 7 – (+2) = (R: 5) c) 2 – (-9) = (R: 11) d) -5 – (-1) = (R: -4) e) -5 -(+1) = (R: -6) f) -4 – (+3) = (R: -7) g) 8 – (-5) = (R: 13) h) 7 – (+4) = (R: 3) i) 26 – 45 = (R: -19) j) -72 -72 = (R: -144) l) -84 + 84 = (R: 0) m) -10 -100 = (R: -110) n) -2 -4 -1 = (R: -7) o) -8 +6 -1 = (R: -3) p) 12-7 + 3 = (R:8) q) 4 + 13 – 21 = (R: -4) r) -8 +8 + 1 = (R: 1) s) -7 + 6 + 9 = (R:8) t) -5 -3 -4 – 1 = (R: -13) u) +10 – 43 -17 = (R: -50) v) -6 -6 + 73 = (R: 61) x) -30 +30 – 40 = (R: -40) z) -60 – 18 +50 = (R: -25)

4) Calcule:

a) (-4) -(-2)+(-6) = (R: -8) b) (-7)-(-5)+(-8) = (R: -10) c) (+7)-(-6)-(-8) = (R: 21) d) (-8) + (-6) -(+3) = (R: -17) e) (-4) + (-3) – (+6) = (R: -13) f) 20 – (-6) – (-8) = (R: 34) g) 5 – 6 – (+7) + 1 = (R: -7) h) -10 – (-3) – (-4) = (R: -3) i) (+5) + (-8) = (R: -3) j) (-2) – (-3) = (R: +1) l) (-3) -(-9) = (R: +6) m) (-7) – (-8) =(R: +1) n) (-8) + (-6) – (-7) = (R: -7) o) (-4) + (-6) + (-3) = (R: -13) p) 15 -(-3) – (-1) = (R: +19) q) 32 – (+1) -(-5) = (R: +36)

Page 14: Números relativos inteiros e fracionários, operações e propriedades

5) Calcule:

a) (-5) + (+2) – (-1) + (-7) = (R: -9) b) (+2) – (-3) + (-5) -(-9) = (R: 9) c) (-2) + (-1) -(-7) + (-4) = (R: 0) d) (-5) + (-6) -(-2) + (-3) = (R: -12) e) (+9) -(-2) + (-1) – (-3) = (R: 13) f) 9 – (-7) -11 = (R: 5 ) g) -2 + (-1) -6 = (R: -9) h) -(+7) -4 -12 = (R: -23) i) 15 -(+9) -(-2) = (R: 8 ) j) -25 – ( -5) -30 = (R: -50) l) -50 – (+7) -43 = (R: -100) m) 10 -2 -5 -(+2) – (-3) = (R: 4) n) 18 – (-3) – 13 -1 -(-4) = (R: 11) o) 5 -(-5) + 3 – (-3) + 0 – 6 = (R: 10) p) -28 + 7 + (-12) + (-1) -4 -2 = (R: -40) q) -21 -7 -6 -(-15) -2 -(-10) = (R: -11) r) 10 -(-8) + (-9) -(-12)-6 + 5 = (R: 20)

ELIMINAÇÃO DOS PARENTESES

1) parenteses precedidos pelo sinal +

Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais dos números contidos nesses parênteses.

exemplo

a) + (-4 + 5) = -4 + 5

b) +(3 +2 -7) = 3 +2 -7

2) Parênteses precedidos pelo sinal -

Ao eliminarmos os parênteses e o sinal de – que os precede, devemos trocar os sinais dos números contidos nesses parênteses.

exemplo

a) -(4 – 5 + 3) = -4 + 5 -3

b) -(-6 + 8 – 1) = +6 -8 +1

EXERCICIOS

1) Elimine os parênteses:

a) +(-3 +8) = (R: -3 +8) b) -(-3 +8) = (R: +3 -8)

Page 15: Números relativos inteiros e fracionários, operações e propriedades

c) +(5 – 6) = (R: 5 -6 ) d) -(-3-1) = (R: +3 +1) e) -(-6 + 4 – 1) = (R: +6 – 4 + 1) f) +(-3 -2 -1) = (R: -3 -2 -1 ) g) -(4 -6 +8) = (R: -4 +6 +8) h) + (2 + 5 – 1) = (R: +2 +5 -1)

2) Elimine os parênteses e calcule:

a) + 5 + ( 7 – 3) = (R: 9) b) 8 – (-2-1) = (R: 11) c) -6 – (-3 +2) = (R: -5) d) 18 – ( -5 -2 -3 ) = (R: 28) e) 30 – (6 – 1 +7) = (R: 18) f) 4 + (-5 + 0 + 8 -4) = (R: 3) g) 4 + (3 – 5) + ( -2 -6) = (R: -8) h) 8 -(3 + 5 -20) + ( 3 -10) = (R: 13) i) 20 – (-6 +8) – (-1 + 3) = (R: 16) j) 35 -(4-1) – (-2 + 7) = (R: 27)

3) Calcule:

a) 10 – ( 15 + 25) = (R: -30) b) 1 – (25 -18) = (R: -6) c) 40 -18 – ( 10 +12) = (R: 0) d) (2 – 7) – (8 -13) = (R: 0 ) e) 7 – ( 3 + 2 + 1) – 6 = (R: -5) f) -15 – ( 3 + 25) + 4 = (R: -39) g) -32 -1 – ( -12 + 14) = (R: -35) h) 7 + (-5-6) – (-9 + 3) = (R: 2) i) -(+4-6) + (2 – 3) = (R: 1) j) -6 – (2 -7 + 1 – 5) + 1 = (R: 4)

EXPRESSÕES COM NÚMEROS INTEIROS RELATIVOS

Lembre-se de que os sinais de associação são eliminados obedecendo à seguinte ordem:

1°) PARÊNTESES ( ) ;

2°) COLCHETES [ ] ;

3°) CHAVES { } .

Exemplos:

1°) exemplo

8 + ( +7 -1 ) – ( -3 + 1 – 5 ) = 8 + 7 – 1 + 3 – 1 + 5 = 23 – 2 = 21

Page 16: Números relativos inteiros e fracionários, operações e propriedades

2°) exemplo

10 + [ -3 + 1 - ( -2 + 6 ) ] = 10 + [ -3 + 1 + 2 - 6 ] = 10 – 3 + 1 + 2 – 6 = 13 – 9 = = 4

3°) exemplo

-17 + { +5 – [ +2 - ( -6 +9 ) ]} = -17 + { +5 – [ +2 + 6 - 9]} = -17 + { +5 – 2 – 6 + 9 } = -17 +5 – 2 – 6 + 9 = -25 + 14 = = – 11

EXERCICIOS

a) Calcule o valor das seguintes expressões :

1) 15 -(3-2) + ( 7 -4) = (R: 17) 2) 25 – ( 8 – 5 + 3) – ( 12 – 5 -8) = (R: 20 ) 3) ( 10 -2 ) – 3 + ( 8 + 7 – 5) = (R: 15) 4) ( 9 – 4 + 2 ) – 1 + ( 9 + 5 – 3) = (R: 17) 5) 18 – [ 2 + ( 7 - 3 - 8 ) - 10 ] = (R: 30 ) 6) -4 + [ -3 + ( -5 + 9 - 2 )] = (R: -5) 7) -6 – [10 + (-8 -3 ) -1] = (R: -4) 8 ) -8 – [ -2 - (-12) + 3 ] = (R: -21) 9) 25 – { -2 + [ 6 + ( -4 -1 )]} = (R: 26) 10) 17 – { 5 – 3 + [ 8 - ( -1 - 3 ) + 5 ] } = (R: -2) 11) 3 – { -5 -[8 - 2 + ( -5 + 9 ) ] } = (R: 18) 12) -10 – { -2 + [ + 1 - ( - 3 - 5 ) + 3 ] } = (R: -20) 13) { 2 + [ 1 + ( -15 -15 ) - 2] } = (R: -29) 14) { 30 + [ 10 - 5 + ( -2 -3)] -18 -12} = (R: 0 ) 15) 20 + { [ 7 + 5 + ( -9 + 7 ) + 3 ] } = (R: 33) 16) -4 – { 2 + [ - 3 - ( -1 + 7) ] + 2} = (R: 1) 17) 10 – { -2 + [ +1 + ( +7 - 3) - 2] + 6 } = (R: 3 ) 18) -{ -2 – [ -3 - (-5) + 1 ]} – 18 = (R: -13) 19) -20 – { -4 -[-8 + ( +12 - 6 - 2 ) + 2 +3 ]} = (R: -15) 20) {[( -50 -10) + 11 + 19 ] + 20 } + 10 = (R: 0 )

MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS INTEIROS

MULTIPLICAÇÃO

1) multiplicação de dois números de sinais iguais

observe o exemplo

Page 17: Números relativos inteiros e fracionários, operações e propriedades

a) (+5) . (+2) = +10 b) (+3) . (+7) = +21 c) (-5) . (-2) = +10 d) (-3) . (-7) = +21

conclusão: Se os fatores tiverem sinais iguais o produto é positivo

2) Multiplicação de dois produtos de sinais diferentes

observe os exemplos

a) (+3) . (-2) = -6 b) (-5) . (+4) = -20 c) (+6) . (-5) = -30 d) (-1) . (+7) = -7

Conclusão : Se dois produtos tiverem sinais diferentes o poduto é negativo

Regra pratica dos sinais na multiplicação

SINAIS IGUAIS: o resultado é positivo +

a) (+) . (+) = (+)

b) (-) . (-) = (+)

SINAIS DIFERENTES: o resultado é negativo -

a) (+) . (-) = (-)

b) (-) . (+) = (-)

EXERCÍCIOS

1) Efetue as multiplicações

a) (+8) . (+5) = (R: 40) b) (-8) . ( -5) = (R: 40) c) (+8) .(-5) = (R: -40) d) (-8) . (+5) = (R: -40) e) (-3) . (+9) = (R: -27) f) (+3) . (-9) = (R: -27) g) (-3) . (-9) = (R: 27) h) (+3) . (+9) = (R: 27) i) (+7) . (-10) = (R: -70) j) (+7) . (+10) = (R: 70) l) (-7) . (+10) = (R: -70) m) (-7) . (-10) = (R: 70) n) (+4) . (+3) = (R: 12) o) (-5) . (+7) = (R: -35)

Page 18: Números relativos inteiros e fracionários, operações e propriedades

p) (+9) . (-2) = (R: -18) q) (-8) . (-7) = (R: 56) r) (-4) . (+6) = (R: -24) s) (-2) .(-4) = (R: 8 ) t) (+9) . (+5) = (R: 45) u) (+4) . (-2) = (R: -8) v) (+8) . (+8) = (R: 64) x) (-4) . (+7) = (R: -28) z) (-6) . (-6) = (R: 36)

2) Calcule o produto

a) (+2) . (-7) = (R: -14) b) 13 . 20 = (R: 260) c) 13 . (-2) = (R: -26) d) 6 . (-1) = (R: -6) e) 8 . (+1) = (R:8) f) 7 . (-6) = (R: -42) g) 5 . (-10) = (R: -50) h) (-8) . 2 = (R: -16) i) (-1) . 4 = (R: -4) j) (-16) . 0 = (R: 0)

MULTIPLICAÇAO COM MAIS DE DOIS NÚMEROS

Multiplicamos o primeiro número pelo segundo, o produto obtido pelo terceiro e assim sucessivamente, até o ultimo fator

exemplos

a) (+3) . (-2) . (+5) = (-6) . (+5) = -30

b) (-3) . (-4) . (-5) . (-6) = (+12) . (-5) . (-6) = (-60) . (-6) = +360

EXERCÍCIOS

1) Determine o produto:

a) (-2) . (+3) . ( +4) = (R: -24) b) (+5) . (-1) . (+2) = (R: -10) c) (-6) . (+5) .(-2) = (R: +60) d) (+8) . (-2) .(-3) = (R: +48) e) (+1) . (+1) . (+1) .(-1)= (R: -1) f) (+3) .(-2) . (-1) . (-5) = (R: -30) g) (-2) . (-4) . (+6) . (+5) = (R: 240) h) (+25) . (-20) = (R: -500) i) -36) .(-36 = (R: 1296) j) (-12) . (+18) = (R: -216) l) (+24) . (-11) = (R: -264) m) (+12) . (-30) . (-1) = (R: 360)

Page 19: Números relativos inteiros e fracionários, operações e propriedades

2) Calcule os produtos

a) (-3) . (+2) . (-4) . (+1) . (-5) = (R: -120) b) (-1) . (-2) . (-3) . (-4) .(-5) = (R: -120) c) (-2) . (-2) . (-2) . (-2) .(-2) . (-2) = (R: 64) d) (+1) . (+3) . (-6) . (-2) . (-1) .(+2)= (R: -72) e) (+3) . (-2) . (+4) . (-1) . (-5) . (-6) = (R: 720) f) 5 . (-3) . (-4) = (R: +60) g) 1 . (-7) . 2 = (R: -14) h) 8 . ( -2) . 2 = (R: -32) i) (-2) . (-4) .5 = (R: 40) j) 3 . 4 . (-7) = (R: -84) l) 6 .(-2) . (-4) = (R: +48) m) 8 . (-6) . (-2) = (R: 96) n) 3 . (+2) . (-1) = (R: -6) o) 5 . (-4) . (-4) = (R: 80) p) (-2) . 5 (-3) = (R: 30) q) (-2) . (-3) . (-1) = (R:-6) r) (-4) . (-1) . (-1) = (R: -4)

3) Calcule o valor das expressões:

a) 2 . 3 – 10 = (R: -4) b) 18 – 7 . 9 = (R: -45) c) 3. 4 – 20 = (R: -8) d) -15 + 2 . 3 = (R: -9) e) 15 + (-8) . (+4) = (R: -17) f) 10 + (+2) . (-5) = (R: 0 ) g) 31 – (-9) . (-2) = (R: 13) h) (-4) . (-7) -12 = (R: 16) i) (-7) . (+5) + 50 = (R: 15) j) -18 + (-6) . (+7) = (R:-60) l) 15 + (-7) . (-4) = (R: 43) m) (+3) . (-5) + 35 = (R: 20)

4) Calcule o valor das expressões

a) 2 (+5) + 13 = (R: 23) b) 3 . (-3) + 8 = (R: -1) c) -17 + 5 . (-2) = (R: -27) d) (-9) . 4 + 14 = (R: -22) e) (-7) . (-5) – (-2) = (R: 37) f) (+4) . (-7) + (-5) . (-3) = (R: -13) g) (-3) . (-6) + (-2) . (-8) = (R: 34) h) (+3) . (-5) – (+4) . (-6) = (R: 9)

PROPRIEDADES DA MULTIPLICAÇÃO

1) Fechamento: o produto de dois números inteiros é sempre um número inteiro.

Page 20: Números relativos inteiros e fracionários, operações e propriedades

exemplo: (+2) . (-5) = (-10)

2) Comultativa: a ordem dos fatores não altera o produto.

exemplo: (-3) . (+5) = (+5) . (-3)

3) Elemento Neutro: o número +1 é o elemento neutro da multiplicação.

Exemplos: (-6) . (+1) = (+1) . (-6) = -6

4) Associativa: na multiplicação de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado.

exemplo: (-2) . [(+3) . (-4) ] = [ (-2) . (+3) ] . (-4)

5) Distributiva

exemplo: (-2) . [(-5) +(+4)] = (-2) . (-5) + (-2) . (+4)

DIVISÃO

Você sabe que a divisão é a operação inversa da multiplicação

Observe:

a) (+12) : (+4) = (+3) , porque (+3) . (+4) = +12 b) (-12) : (-4) = (+3) , porque (+3) . (-4) = -12 c) (+12) : (-4) = (-3) , porque (-3) . (-4) = +12 d) (-12) : (+4) = (-3), porque (-3) . (+4) = -12

REGRA PRÁTICA DOS SINAIS NA DIVISÃO

As regras de sinais na divisão é igual a da multiplicação:

SINAIS IGUAIS: o resultado é +

(+) : (+) = (+)

(-) : (-) = (-)

SINAIS DIFERENTES : o resultado é -

(+) : (-) = (-)

(-) : (+) = (-)

EXERCÍCIOS

1) Calcule o quocientes:

Page 21: Números relativos inteiros e fracionários, operações e propriedades

a) (+15) : (+3) = (R: 5 ) b) (+15) : (-3) = (R: -5) c) (-15) : (-3) = (R: 5) d) (-5) : (+1) = (R: -5) e) (-8) : (-2) = (R: 4) f) (-6) : (+2) = (R: -3) g) (+7) : (-1) = (R: -7) h) (-8) : (-8) = (R: 1) f) (+7) : (-7) = (R: -1)

2) Calcule os quocientes

a) (+40) : (-5) = (R: -8) b) (+40) : (+2) = (R: 20) c) (-42) : (+7) = (R: -6) d) (-32) : (-8)= (R: 4) e) (-75) : (-15) = (R: 5) f) (-15) : (-15) = (R: 1) g) (-80) : (-10) = (R:8) h) (-48 ) : (+12) = (R: -4) l) (-32) : (-16) = (R: 2) j) (+60) : (-12) = (R: -5) l) (-64) : (+16) = (R: -4) m) (-28) : (-14) = (R: 2) n) (0) : (+5) = (R: 0) o) 49 : (-7) = (R: -7) p) 48 : (-6) = (R: -8) q) (+265) : (-5) = (R: -53) r) (+824) : (+4) = (R: 206) s) (-180) : (-12) = (R: 15) t) (-480) : (-10) = (R: 48) u) 720 : (-8) = (R: -90) v) (-330) : 15 = (R: -22)

3) Calcule o valor das expressões

a) 20 : 2 -7 = (R: 3 ) b) -8 + 12 : 3 = (R: -4) c) 6 : (-2) +1 = (R: -2) d) 8 : (-4) – (-7) = (R: 5) e) (-15) : (-3) + 7 = (R: 12) f) 40 – (-25) : (-5) = (R: 35) g) (-16) : (+4) + 12 = (R:8) h) 18 : 6 + (-28) : (-4) = ( R: 10) i) -14 + 42 : 3 = (R: 0) j) 40 : (-2) + 9 = (R: -11) l) (-12) 3 + 6 = (R: 2) m) (-54) : (-9) + 2 = (R:8) n) 20 + (-10) . (-5) = (R: 70) o) (-1) . (-8) + 20 = (R: 28 )

Page 22: Números relativos inteiros e fracionários, operações e propriedades

p) 4 + 6 . (-2) = (R: -8) q) 3 . (-7) + 40 = (R: 19) r) (+3) . (-2) -25 = (R: -31) s) (-4) . (-5) + 8 . (+2) = (R: 36) t) 5: (-5) + 9 . 2 = (R: 17) u) 36 : (-6) + 5 . 4 = (R: 14)

Esta matéria foi retirada do blog jmpmat

NÚMEROS FRACIONÁRIOS E DECIMAIS:

Durante muito tempo, os números naturais eram os únicos números que o homem utilizava. Mas, com o passar do tempo, o homem foi encontrando situações mais difíceis para resolver. No antigo Egito, por exemplo, as terras próximas ao rio Nilo eram muito disputadas por isso os faraós tinham funcionários que mediam e demarcavam os terrenos. Eles usavam cordas com nós separados sempre pela mesma distância. Em muitos casos, principalmente para efetuar medições, precisou criar outros números que não fossem apenas os números naturais. Surgiram assim, os números fracionários ou racionais.

Para representar os números fracionários foi criado um símbolo, que é a fração. Sendo a e b números racionais e b ≠ 0, indicamos a divisão de a por b com o símbolo a : b ou, ainda a/b

Chamamos o símbolo a/b de fração.

Assim, a fração 10/2 é igual a 10 : 2

Na fração a/b, a é o numerador e b é o denominador

Efetuando, por exemplo, a divisão de 10 por 2, obtemos o quociente 5.

Assim, 10/2 é um número natural, pois 10 é múltiplo de 2.

Mas efetuando a divisão de 3 por 4 não obtemos um número natural. Logo ¾ não é um número natural. A fração envolve a idéia de alguma coisa que foi dividida em partes iguais.

Agenor comeu ¾ de uma barra de chocolate. Que quantidade de chocolate Agenor comeu? Que parte da barra de chocolate sobrou?

Dividindo o chocolate em 4 partes, iguais temos;

Agenor comeu ¾ , portanto sobrou ¼

LEITURA DE UMA FRAÇÃO

Algumas frações recebem nomes especiais: as que têm denominadores 2,3,4,5,6,7,8,9

½ um meio

Page 23: Números relativos inteiros e fracionários, operações e propriedades

¼ um quarto

1/6 um sexto

1/8 um oitavo

2/5 dois quintos

9/8 nove oitavos

1/3 um terço

1/5 um quinto

1/7 um sétimo

1/9 um nono

4/9 quatro nonos

16/9 dezesseis nonos

as que tem denominadores 10, 100, 1000, etc………….

1/10 um décimo

1/100 um centésimo

1/1000 um milésimo

7/100 sete centésimos

as decimais que são lidas acompanhadas da palavra avos :

1/11 um onze avos

7/120 sete cento e vinte avos

4/13 quatro treze avos

1/300 um trezentos avos

5/19 cinco dezenove avos

6/220 seis duzentos e vinte avos

EXERCÍCIOS

1) indique as divisões em forma de fração:

Page 24: Números relativos inteiros e fracionários, operações e propriedades

a) 14 : 7 = (R: 14/7) b) 18 : 8 = (R: 18/8) c) 5 : 1 = (R: 5/1) d) 15 : 5 = ( R: 15/5) e) 18 : 9 = (R: 18/9) f) 64 : 8 = (R: 64/8)

2) Calcule o quociente das divisões

a) 12/3 = (R:4) b) 42/21 = (R: 2) c) 8/4 = (R: 2) d) 100/10 = (R: 10) e) 56/7 = (R:8) f) 64/8 = (R: 8 )

3) Em uma fração, o numerador é 5 e o denominador é 6

a) Em quantas partes o todo foi dividido? (R: 6) b) Quantas partes do todo foram consideradas? (R: 5)

4) Escreva como se lêem as seguintes frações:

a) 5/8 (R: cinco oitavos) b) 9/10 (R: nove décimos) c) 1/5 (R: um quinto) d) 4/200 ( R: quatro duzentos avos) e) 7/1000 (R: sete milésimos) f) 6/32 (R: seis trinta e dois avos)

TIPOS DE FRAÇÕES

a) Fração própria : é aquela cujo o numerador é menor que o denominador. Exemplos : 2/3, 4/7, 1/8

b) Fração imprópria: é a fração cujo numerador é maior ou igual ao denominador Exemplo: 3/2, 5/5

c) Fração aparente: é a fração imprópria cujo o numerador é múltiplo do denominador Exemplo: 6/2, 19/19, 24/12, 7/7

EXERCÍCIO

1) Classifique as frações em própria, imprópria ou aparente:

a) 8/9 (R: própria) b) 10/10 (R: imprópria e aparente) c) 26/13(R: imprópria e aparente) d) 10/20 (R: própria)

Page 25: Números relativos inteiros e fracionários, operações e propriedades

e) 37/19 (R: imprópria) f) 100/400 (R: própria)

FRAÇÕES EQUIVALENTES

Para encontrar frações equivalentes, multiplicamos o numerador e o denominador da fração ½ por um mesmo numero natural diferente de zero.

Assim: ½, 2/4, 4/8, 3/6, 5/10 são algumas frações equivalentes a 1/2

SIMPLIFICANDO FRAÇÕES

Cláudio dividiu a pizza em 8 partes iguais e comeu 4 partes. Que fração da pizza ele comeu?

Cláudio comeu 4/8 da pizza. Mas 4/8 é equivalente a 2/4. Assim podemos dizer que Cláudio comeu 2/4 da pizza. A fração 2/4 foi obtida dividindo-se ambos os termos da fração 4/8 por 2 veja:

4/8 : 2/2 = 2/4

Dizemos que a fração 2/4 é uma fração simplificada de 4/8. A fração 2/4 ainda pode ser simplificada, ou seja, podemos obter uma fração equivalente dividindo os dois termos da fração por 2 e vamos obter ½

OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (FRAÇÕES)

ADIÇÃO E SUBTRAÇÃO

1°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores iguais

Conclusão: Somamos os numeradores e conservamos o denominador comum.

Exemplo: a) 5/7 – 2/7 = 3/7 b) 4/9+ + 2/9 = 6/9 = 2/3 c) 3/5 – 1/5 = 2/5

Exercícios

1) Efetue as adições

a) 3/6 + 2/6 = (R: 5/6) b) 13/7 + 1/7 = (R: 14/7) c) 2/7+ 1/7 + 5/7 = (R: 8/7) d) 4/10 + 1/10 + 3/10 = (R: 8/10) e) 5/6 + 1/6 = (R: 1) f) 8/6 + 6/6 = (R: 14/6) = (R: 7/3) g) 3/5 + 1/5 = (R: 4/5)

Page 26: Números relativos inteiros e fracionários, operações e propriedades

2) Efetue as subtrações:

a) 7/9 – 5/9 = (R: 2/9) b) 9/5 -2/5 = (R: 7/5) c) 2/3 – 1/3 = (R: 1/3) d) 8/3 – 2/3 = (R: 6/3) e) 5/6 – 1/6 = (R: 2/3) f) 5/5 – 2/5 = (R: 3/5) g) 5/7 – 2/7 = (R: 3/7)

3) Efetue as operações:

a) 5/4 + ¾ – ¼ = (R: 7/4) b) 2/5 + 1/5 – 3/5 = (R: 0/5) c) 8/7 – 3/7 + 1/7 = (R: 6/7) d) 7/3 – 4/3 – 1/3 = (R: 2/3) e) 1/8 + 9/8 -3/8= (R: 7/8) f) 7/3 – 2/3 + 1/3 = (R:6/3 ) = (R: 2) g) 7/5 + 2/5 – 1/5 = (R: 8/5) h) 5/7 – 2/7 – 1/7 = (R: 2/7)

2°) Como adicionarmos ou subtrairmos números fracionários escritos sob a forma de fração de denominadores diferentes

conclusão: Quando os denominadores são diferentes fazemos o m.m.c. dos denominadores .

exemplo:

a) 2/3 +1/2 = 4/6 + 3/6 = 7/6

3, 2 I 2 3, 1 I 3 1, 1 I —2 . 3 = 6

b) 2/3 – ¼ = 8/12 – 3/12 = 5/12

3, 4 I 2 3, 2 I 2 3, 1 I 3 1, 1 I —-2 . 2. 3 = 12

exercícios

1) Efetue as adições:

a) 1/3 + 1/5 = (R: 8/15) b) ¾ + ½ = (R: 5/4) c) 2/4 + 2/3 = (R: 14/12) d) 2/5 + 3/10 = (R: 7/10)

Page 27: Números relativos inteiros e fracionários, operações e propriedades

e) 5/3 + 1/6 = (R: 11/6) f) ¼ + 2/3 + ½ = (R: 17/12) g) ½ + 1/7 + 5/7 = (R: 19/14) h) 3/7 + 5/2 + 1/14 = (R: 42/14) i) 4/5 + 1/3 + 7/6 = (R: 69/30) j) 1/3 + 5/6 + ¾ = (R: 23/12) k) ½ + 1/3 + 1/6 = (R: 1) l) 10 + 1/8 + ¾ = (R: 85/8) m) 1/3 + 3/5 = (R:14/15) n) ¾ + 6/7 = (R: 45/28) o) 5/7 + ½ = (R: 17/14) p) ½ + 1/3 = (R: 5/6) q) 3/14 + 3/7 = (R: 9/14) r) 3/5 + ¾ + ½ = (R: 37/20) s) 1/12 + 5/6 + ¾ = (R: 20/12) t) 8 + 1/5 + 4/5 = (R: 45/5) u)

2) efetue as subtrações

a) 5/4 – ½ = (R: 3/4) b) 3/5 – 2/7 = (R: 11/35) c) 8/10 – 1/5 = (R: 6/10) d) 5/6 – 2/3 = (R: 1/6) e) 4/3 – ½ = (R: 5/6) f) 13/4 – 5/6 = (R: 29/12) g) 7/8 – 1/6 = (R: 17/24) h) 4/5 – 1/3 = (R: 7/15) i) 3/5 – ¼ = (R: 7/20) j) 10/11 – ½ = (R: 9/22) l) 6/4 – 2/3 = (R: 10/12) m) 5/8 – ½ = (R: 1/8) n) 4/5 – ¼ = (R: 11/20) o) ¾ – 5/8 = (R: 1/8) p) 9/11 – ½ = (R: 7/22) q) 7 – 2/3 = (R: 19/3) r) 4/2 – 2/3 = (R: 8/6) s) 3/2 – 2/3 = (R: 5/6) t) 1/2 – 1/3 = (R: 1/6) u) 3/2 – 1/4 = (R: 5/4)

3) Efetue

a) 2 + 5/3 = (R: 11/3) b) 7 + ½ = (R: 15/2) c) 3/5 + 4 = (R: 23/5) d) 6/7 + 1 = (R: 13/7) e) 8 + 7/9 = (R: 79/9) f) 5 – ¾ = (R: 17/4) g) 2 – ½ = (R: 3/2)

Page 28: Números relativos inteiros e fracionários, operações e propriedades

h) 7/2 – 3 = (R: 1/2) i) 11/2 – 3 = (R: 5/2) j) 7/4 – 1 = (R: 3/4) k) 1 – ¼ = (R: ¾ ) l) ½ – 1/3 = (R: 1/6) m) ½ + ¼ = (R: ¾) n) 1 + 1/5 = (R: 6/5) o) 1 – 1/5 = (R: 4/5)

4) Calcule o valor das expressões:

a) 3/5 + ½ – 2/4 = (R: 12/20) b) 2/3 + 5/6 – ¼ = (R: 15/12) c) 4/5 – ½ + ¾ = (R: 21/20) d) 5/7 – 1/3 + ½ = (R: 37/42) e) 1/3 + ½ – ¼ = (R: 7/12) f) ¾ – ½ + 1/3 = (R: 7/12) g) 5/6 – ½ + 2/3 = (R: 1) h) 4/5 – ¾ + ½ = (R: 11/20) i) ½ + 2/3 + 2/5 + 1/3 = (R: 57/30) j) 6/5 – ¾ + ½ – 2/3 = (R: 17/60) l) 1/6 + 5/4 + 2/3 = (R: 25/12)

MULTIPLICAÇÃO

Vamos Calcular : 2/3 x 4/5 = 8/15

Conclusão : multiplicamos os numeradores entre si e os denominadores entre si

Exemplo:

a) 4/7 x 3/5 = 12/35

b) 5/6 x 3/7 = 15//42 = 5/14 simplificando

EXERCICIOS

1) Efetue as multiplicações

a) ½ x 8/8 = (R: 8/16) b) 4/7 x 2/5 = (R: 8/35) c) 5/3 x 2/7 = (R: 10/21) d) 3/7 x 1/5 = (R: 3/35) e) 1/8 x 1/9 = (R: 1/72) f) 7/5 x 2/3 = (R: 14/15) g) 3/5 x ½ = (R: 3/10) h) 7/8 x 3/2 = (R: 21/16) i) 1/3 x 5/6 = (R: 5/18) j) 2/5 x 8/7 = (R: 16/35) k) 7/6 x 7/6 = (R: 49/36)

Page 29: Números relativos inteiros e fracionários, operações e propriedades

l) 3/7 x 5/2 = (R: 15/14) m) 3/10 x 5/9 = (R: 15/90) n) 2/3 x ¼ x 5/2 = (R: 10/24) o) 7 x ½ x 1/3 = (R: 7/6) p)

2) Efetue as multiplicações

a) 4/3 x ½ x 2/5 = (R: 8/30) b) 1/5 x ¾ x 5/3 = (R: 15/60) c) ½ x 3/7 x 1/5 = (R: 3/70) d) 3/2 x 5/8 x ¼ = (R: 15/64) e) 5/4 x 1/3 x 4/7 = (R: 20/84)

3) Efetue as multiplicações a) 2 x 5/3 = (R: 10/3) b) 3 x 2/5 = (R: 6/5) c) 1/8 x 5 = (R: 5/8) d) 6/7 x 3 = (R: 18/7) e) 2 x 2/3 x 1/7 = (R: 4/21) f) 2/5 x 3 x 4/8 = (R: 24/40) g) 5 x 2/3 x 7 = (R: 70/3) h) 7/5 x 2 x 4 = (R: 56/5) i) 8 x 2/3 = (R: 16/3) j) 5/9 x 0/6 = (R: 0/54) k) 1/7 x 40 = (R: 40/7) l) ½ x 1/3 x ¼ x 1/5 = (R: 1/120) m) 1 x 2/3 x 4/3 x 1/10 = (R: 8/90)

DIVISÃO

Vamos calcular ½ : 1/6

Para dividir uma fração por outra, basta multiplicar a primeira fração pela inversa da segunda

Assim: ½ : 1/6 = ½ x 6/1 = 6/2 = 3

Exemplos:

a) 2/3 : 5/2 = 2/3 x 2/5 = 4/15 b) 7/9 : 1/5 = 7/9 x 5/1 = 35//9 c) 3/7 : 4 = 3/7 x ¼ = 3/28

Exercícios

1) Efetue as divisões a) ¾ : 2/5 = (R: 15/8) b) 5/7 : 2/3 = (R: 15/14) c) 4/5 : 3/7 = (R: 28/15)

Page 30: Números relativos inteiros e fracionários, operações e propriedades

d) 2/9 : 7/8 = (R: 16/63) e) 1/6 : 5/3 = (R: 3/30) ou (3/10) f) 7/8 : ¾ = (R: 28/24) ou (7/6) g) 8/7 : 9/3 = (R: 24/63) h) 4/5 : 2/5 = (R: 20/10) ou (2/1) ou ( 2) i) 5/8 : ¾ = (R: 20/24) ou (5/6) j) 2/9 : 4/7 = (R: 14/36) ou (7/18)

2) Efetue as divisões :

a) 5 : 2/3 = (R: 15/2) b) 4 : 1/7 = (R: 28/1) ou (28) c) 8/9 : 5 = (R: 8/45) d) 3/7 : 3 = (R: 3/21) e) 7/3 : 4/7 = (R: 49/12) f) 2/3 : ½ = (R: 4/3) g) 4/5 : 2/3 = (R: 12/10) h) 2/7 : 5/3 = (R: 6/35) i) 3/7 : 2 = (R: 3/14) j) 3/2 : 5/7 = (R: 21/10) k) 3/8 : 4/7 = (R: 21/32)

POTENCIAÇÃO

Vamos calcular a potência (2/5)³= 2/5 x 2/5 x 2/5 = 8/125

Conclusão: para elevar uma fração a um expoente, elevam-se o numerador e o denominador da fração desse expoente.

Exemplo

a) (5/7)² = 5²/ 7² = 25/49

1) Toda fração de expoente 1 dá como resultado a própria fração

Exemplo: (3/8)¹ = 3/8

2) Toda a fração elevada ao expoente zero dá como resultado o número 1

Exemplo : (3/4)⁰ = 1

Exercícios

1) Calcule as potências a) (2/3)² = (R: 4/9) b) (4/7)² = (R: 16/49) c) (7/5)² = (R: 49/25) d) (1/3)² = (R: 1/9) e) (5/3)² = (R: 25/9) f) (7/30)⁰ = ( R: 1)

Page 31: Números relativos inteiros e fracionários, operações e propriedades

g) (9/5)¹ = (R: 9/5) h) (2/3)³ = (R: 8/27) i) (1/5)³ = (R: 1/125) j) (1/2)² = (R: 1/4) k) (2/3)⁴= (R: 16/81) l) (2/5)¹ = (R: 2/5) m) (3/11)² = (R: 9/121) n) (9/4)⁰ = (R: 1) o) (12/13)² = (R: 144/169) p) (1/2)⁵ = (R: 1/32) q) (3/7)³ = ( R: 27/343)

RAIZ QUADRADA DE NÚMEROS RACIONAIS (FRAÇÃO)

Sabemos que :

√25 = 5 √49 = 7 √25/49 = 5/7

Conclusão:

Para extrair a raiz quadrada de um número fracionário, extraem-se a raiz quadrada do numerador e a raiz quadrada do denominador.

Exemplos

a) √4/9 = 2/3 b) √1/36 = 1/6

Exercícios

1) Calcule a raiz quadrada a) √9/16 = (R: 3/4) b) √1/25 = (R:1/5) c) √9/25 = (R: 3/5) d) √16/49 = (R: 4/7) e) √64/25 = (R: 8/5) f) √1/9 = (R: 1/3) g) √25/81 = (R: 5/9) h) √49/36 = (R: 7/6) i) √1/100 = (R: 1/10)

EXPRESSÕES COM NÚMEROS RACIONAIS

As expressões com números racionais devem ser resolvidas obedecendo à seguinte ordem de operações:

Page 32: Números relativos inteiros e fracionários, operações e propriedades

1°) Potenciação e Radiciação 2°) Multiplicação e Divisão 3°) Adição e subtração

Essas operações são realizadas eliminando :

1°) Parênteses 2°) Colchetes 3°) Chaves

exemplos:

1) 1/5 + 4/5 x 1/3 =

1/5 + 4/15 =

3/15 + 4/15 =

7/15

2) (3/5)² + 2/5 x ½ =

9/25 + 2/10 =

18/50 + 10/50 =

= 28/50 = 14/25

3) ( 4 + ½ ) – 1/5 : 2/3 =

( 8/2 + ½ ) – 1/5 : 2/3 =

9/2 – 1/5 : 2/3 =

9/2 – 1/5 x 3/2 =

9/2 – 3/10 =

45/10 – 3/10 =

= 42/10 = 21/5

Exercícios

1) Calcule o valor das expressões:

a) 5/8 + ½ -2/3 = (R: 11/24) b) 5 + 1/3 -1/10 = (R: 157/30) c) 7/8 – ½ – ¼ = (R: 1/8) d) 2/3 + 3 + 1/10 = (R: 113/30)

Page 33: Números relativos inteiros e fracionários, operações e propriedades

e) ½ + 1/6 x 2/3 = (R: 11/18) f) 3/10 + 4/5 : ½ = (R: 19/10) g) 2/3 x ¾ – 1/6 = (R: 4/12 ou 1/3) h) 7 – ¼ + 1/7 = (R: 193/28) i) 3 x ½ – 4/5 = (R: 7/10) j) 7/4 – ¼ x 3/2 = ( R: 11/8) k) ½ + 3/2 x ½ = ( R: 5/4) l) 1/10 + 2/3 x ½ = (R: 13/30)

2) Calcule o valor da expressão:

a) 7 x ½ + (4/5)² = (R: 207/50) b) (1/3)² + 2/5 x ½ = (R: 28/90 ) ou (14/45) c) (1/2)² : ¾ + 5/3 = ( R: 24/12) ou (2) d) (1/3)² x 5/2 + ½ = ( R: 14/18) ou (7/9) e) 2/5 x ½ + ( 3/5)² = ( R: 28/50) ou (14/25) f) (2/3)²+ 4 + 1/3 -1/2 = ( R: 77/18)

3) Calcule o valor da expressão:

a) 5/6 – ( 1/3 + 1/5 ) = ( R: 9/30) ou (3/10) b) 2/5 x ( ¾ + 5/8) = ( R: 22/40) ou (11/20) c) ½ : ( 2/3 + ¾ ) = ( R: 12/34) ou ( 6/17) d) ( 1/3 + ½ ) : 5/6 = (R: 30/30) ou (1) e) ½ . ( 2/3 + ¾ ) = ( R: 17/24) f) ( 5/7 x 2/3 ) : 1/6 = (R: 60/21) g) (3/2 – 2/5 ) + ( 5/4 – 2/3) = (R: 101/60) h) 1 + (1/2 – 1/5) – (7/4 – 5/4) = (R: 16/20) i) ( 7/8 – 5/6) + ( 8/9 – 7/9) = (R: 11/72)

4) Calcule o valor das expressões

a) ( ¾ x ½ + 2/5 ) + ¼ = (R: 41/40) b) ( 2/3 x ¼ ) + ( 1/3 x ½ ) = (R: 4/12) c) ( 5- ½ ) : ( 2 – 1/3) = ( R: 27/10) d) ( 3 x 5/2 ) : ( 1/5 + 1/3 ) = (R: 225/16) e) ( 3 x ¾ ) + ( 3 x ¼ ) = ( R: 12/4) f) ( 3 + ½ ) x 4/5 – 3/10 = (R: 25/10)

5) Calcule o valor das expressões

a) ½ : 1/3 + ¾ x 5/9 = ( R: 69/36) b) 3/8 x ( ½ x 4/3 + 4/3 ) = (R: 36/48) c) ( 1/3 + ¼ ) : 5/2 + 2/3 = (R: 54/60) d) ( ¾ + ¼ – ½ ) : 3/2 = (R: 8/11) d) ( 1 + 1/3 )² x 9/4 + 6 = (R: 360/36) e) 1 + (3/2)² + ( 1 + ¼ ) = (R: 18/4)

6) calcule o valor das expressões

Page 34: Números relativos inteiros e fracionários, operações e propriedades

PROBLEMAS COM NÚMEROS RACIONAIS

Os problemas com números racionais absolutos são geralmente resolvidos da seguinte forma :

1°) Encontrando o valor de uma unidade fracionária

2°) obtendo o valor correspondente da fração solicitada

exemplo

Eu tenho 60 fichas, meu irmão tem ¾ dessa quantidade. Quantas fichas tem o meu irmão ?

60 x ¾ = 180/4 = 45

R: O meu irmão tem 45 fichas

EXERCICIOS

1) Determine 2/3 de R$ 1200,00 (R: 800)

2) Numa caixa existem 80 bombons. Calcule 2/5 desses bombons. (R: 32)

3) O comprimento de uma peça de tecido é de 42 metros. Quanto medem 3/7 dessa peça ? (R: 18 m)

4) Um automóvel percorreu 3/5 de uma estrada de 600 km. Quantos quilômetros percorreu? (R: 360 km)

5) Numa viagem de 72 km, já foram percorridos ¾ . Quantos quilômetros já foram percorridos? (R : 54 km)

6) Um livro tem 240 páginas., Você estudou 5/6 do livro. Quantas paginas você estudou? (R: 200)

7) Os 2/5 de um número correspondem a 80. Qual é esse número? (R: 200)

8 ) Os ¾ do que possuo equivalem a R$ 900,00. Quanto possuo? (R: 1200)

9) Um time de futebol marcou 35 gols, correspondendo a 7/15 do total de gols do campeonato. Quantos gols foram marcados no campeonato? (R: 75)

10) Para encher 1/5 de um reservatório são necessários 120 litros de água. Quanto é a capacidade desse reservatório? (R: 600 litros)

11) Se 2/9 de uma estrada corresponde a 60 km, quantos quilômetros tem essa estrada? (R: 270 km)

Page 35: Números relativos inteiros e fracionários, operações e propriedades

12) Para revestir ¾ de uma parede foram empregados 150 azulejos. Quantos azulejos são necessários para revestir toda a parede? (R: 200)

13) De um total de 240 pessoas,1/8 não gosta de futebol. Quantas pessoas gostam de futebol? (R: 210)

14) Eu fiz uma viagem de 700 km. Os 3/7 do percurso foram feitos de automóvel e o restante de ônibus. Que distancia eu percorri de ônibus? (R: 400 km)

15) Numa prova de 40 questões um aluno errou ¼ da prova. Quantas questões ele acertou? (R: 30 )

16) Numa classe de 45 alunos, 3/5 são meninas. Quantos meninos há nessa classe? (R: 18)

17) Um brinquedo custou R$ 152,10,. Paguei 1/6 do valor desse objeto. Quanto estou devendo? (R: 126,75)

NÚMEROS DECIMAIS

FRAÇÃO DECIMAL

Chama-se fração decimal toda fração cujo denominador é 10 ou potência de 10 ex 10, 100, 100…

como:

a) 7/10 b) 3/100 c) 27/1000

NÚMEROS DECIMAIS

a) 7/10 = 0,7 b) 3/100 = 0,03 c) 27/1000 = 0,027

nos números decimais , a virgula separa a parte inteira da parte decimal

LEITURA DO NÚMERO DECIMAL

Para ler um, número decimal, procedemos do seguinte modo:

1°) Lêem -se os inteiros

2°) Lê-se a parte decimal, seguida da palavra:

Page 36: Números relativos inteiros e fracionários, operações e propriedades

décimos - se houver uma casa decimal centésimos - se houver duas casas decimais milésimos - se houver três casas decimais

exemplos:

a) 5,3 – lê-se cinco inteiros e três décimos b) 1,34 – lê-se um inteiro e trinta e quatro centésimos c) 12,007 – lê-se doze inteiros e sete milésimos

quando a parte inteira for zero, lê-se apenas a parte decimal

a) 0,4 – lê-se quatro décimos b) 0,38 – lê-se trinta e oito centésimos

TRANSFORMAÇÃO DE FRAÇÃO DECIMAL EM NÚMERO DECIMAL

Para transformar uma fração decimal em número decimal, escrevemos o numerador e separamos, à direita da virgula, tantas casas quanto são os zeros do denominador

exemplos:

a) 42/10 = 4,2 b) 135/100 = 1,35 c) 135/1000 = 0,135

Quando a quantidade de algarismos do numerador não for suficiente para colocar a vírgula, acrescentamos zeros à esquerda do número.

exemplo:

a) 29/1000 = 0,029 b) 7/1000 = 0,007

EXERCÍCIOS ,

1) transforme as frações em números decimais

a) 3/10 = (R: 0,3) b) 45/10 = (R: 4,5) c) 517/10 = (R:51,7) d) 2138/10 = (R: 213,8) e) 57/100 = (R: 0,57) f) 348/100 = (R: 0,348) g) 1634/100 = (R: 1,634) h) 328/ 1000 = (R: 0,328) i) 5114 / 1000 = (R: 5,114) j) 2856/1000 = (R: 2,856) l) 4761 / 10000 = (R: 0,4761) m) 15238 /10000 = (R: 1,5238)

Page 37: Números relativos inteiros e fracionários, operações e propriedades

2) transforme as frações em números decimais

a) 9 / 100 = (R: 0,09) b) 3 / 1000 = (R: 0,003) c) 65 /1000 = (R: 0,065) d) 47 /1000 = (R: 0,047) e) 9 / 10000 = (R: 0,0009) f) 14 / 10000 = (R: 0,0014)

TRANSFORMAÇÃO DE NÚMERO DECIMAL EM FRAÇÃO

Procedimentos:

1) O numerador é um número decimal sem a virgula 2) O denominador é o número 1 acompanhado de tantos zeros quantos forem os algarismos do número decimal depois da vírgula.

exemplos:

a) 0,7 = 7/10 b) 8,34 / 834 /100 0,005 = 5/ 1000

EXERCÍCIOS

1) Transforme os números decimais em frações

a) 0,4 = (R: 4/10) b) 7,3 = (R: 73/10) c) 4,29 = (R: 429/100) d) 0,674 = (R: 674/1000) e) 8,436 = (R: 8436/1000) f) 69,37 = (R: 6937/100) g) 15,3 = (R: 153/10) h) 0,08 = (R: 8/100) i) 0,013 = (R: 13/1000) j) 34,09 = (R: 3409/100) l) 7,016 = (R: 7016/1000) m) 138,11 = (R: 13811/100)

OPERAÇÕES COM NÚMEROS DECIMAIS

ADIÇÃO E SUBTRAÇÃO

Colocamos vírgula debaixo de vírgula e operamos como se fossem números naturais>

exemplo

1) Efetuar 2,64 + 5,19

Page 38: Números relativos inteiros e fracionários, operações e propriedades

2,64 5,19 + —- 7,83

2) Efetuar 8,42 – 5,61

8,42 5,61 - —- 2,81

Se o número de casas depois da virgula for diferente, igualamos com zeros à direita

3) Efetuar 2,7 + 5 + 0,42

2,70 5,00 + 0,42 —- 8,12

4) efetuar 4,2 – 2,53

4,20 2,53 - —— 1,67

EXERCÍCIOS

1) Calcule

a) 1 + 0,75 = (R: 1,75) b) 0,8 + 0,5 = (R: 1,3) c) 0,5 + 0,5 = (R: 1,0) d) 2,5 + 0,5 + 0,7 = (R: 3,7) e) 0,5 + 0,5 + 1,9 + 3,4 = (R:6,3) f) 5 + 0,6 + 1,2 + 15,7 = (R: 22,5)

2) Efetue as adições

a) 3,5 + 0,12 = (R: 3,62) b) 9,1 + 0,07 = (R: 9,17) c) 4,7 + 12,01 = (R: 16,71) d) 2,746 + 0,92 = (R: 3,666) e) 6 + 0,013 = (R: 6,013) f) 4 + 0,07 + 9,1 = (R: 13,17) g) 16.,4 + 1,03 + 0,72 = (R: 18,15)

Page 39: Números relativos inteiros e fracionários, operações e propriedades

h) 5,3 + 8,2 + 0,048 = (R: 13,548) i) 0,45 + 4,125 + 0,001 = (R: 4,576)

3) Efetue as subtrações

a) 8,2 – 1,7 = (R: 6,5) b) 5 – 0,74 = (R: 4,26) c) 4,92 – 0,48 = (R: 4,44) d) 12,3 – 1,74 = (R: 10,56) e) 3 – 0,889 = (R: 2,111) f) 4,329 – 2 = (R: 2,329) g) 15,8 – 9,81 = (R: 5,99) h) 10,1 – 2,734 = (R: 7,366)

4) Calcule o valor das expressões

a) 5 – 1,3 + 2,7 = (R: 6,4) b) 2,1 – 1,8 + 0,13 = (R: 0,43) c) 17,3 + 0,47 – 8 = (R: 9,77) d) 3,25 – 1,03 – 1,18 = (R: 1,04) e) 12,3 + 6,1 – 10,44 = (R: 7,96) f) 7 – 5,63 + 1,625 = (R: 2,995)

5) Calcule o valor das expressões

a) (1 + 0,4) – 0,6 = (R: 0,8) b) 0,75 + ( 0,5 – 0,2 ) = (R: 1,05) c) ( 5 – 3,5 ) – 0,42 = (R: 1,08) d) 45 – ( 14,2 – 8,3 ) = (R: 39,1) e) 12 + ( 15 – 10,456) = (R: 16,544) f) 1,503 – ( 2,35 – 2,04) = (R: 1,193) g) ( 3,8 – 1,6) – ( 6,2 – 5,02) = (R: 1,04) h) ( 7 + 2,75 ) – ( 0,12 + 1,04) = (R: 8,59)

MULTIPLICAÇÃO DE NÚMEROS DECIMAIS

Multiplicamos os números decimais como se fossem números naturais. O números de casas decimais do produto é igual a soma do número de casas decimais dos fatores.

Exemplo

1) efetuar 2,45 x 3,2

2,46 x3,2 —– 7,872

2) efetuar 0,27 x 0,003

Page 40: Números relativos inteiros e fracionários, operações e propriedades

x0,27 0,003 ——- 0,00081

EXERCÍCIOS

1) Efetue as multiplicações

a) 2 x 1,7= (R: 3,4) b) 0,5 x 4 = (R: 2) c) 0,5 x 7 = (R: 3,5) d) 0,25 x 3 = (R: 0,75) f) 6 x 3,21 = (R: 19,26)

2) Efetue as multiplicações

a) 5,7 x 1,4 = (R: 7,98) b) 0,42 x 0,3 = (R: 0,126) c) 7,14 x 2,3 = (R: 16,422) d) 14,5 x 0,5 = (R: 7,25) e) 13,2 x 0,16 = (R 2,112) f) 7,04 x 5 = (R:35,2) g) 21,8 x 0,32 = (R: 6,976) h) 3,12 x 2,81 = (R: 8,7672) i) 2,14 x 0,008 = (R: 0,01712) j) 4,092 x 0,003 = (R: 0,012276)

3) Determine os seguintes produtos:

a) 0,5 x 0,5 x 0,5 = (R: 0,125) b) 3 x 1,5 x 0,12 = (R: 6,75) c) 5 x 0,24 x 0,1 = (R: 0,288) d) 0,2 x 0,02 x 0,002 = (R: 0,000008) e) 0,7 x 0,8 x 2,1 = (R: 1,176) f) 3,2 x 0,1 x 1,7 = (R: 0,032)

4) calcule o valor das expressões

a) 3 x 2,5 – 1,5 = (R: 6) b) 2 x 1,5 + 6 = (R: 9) c) 3,5 x 4 – 0,8 = (R: 13,2) d) 0,8 x 4 + 1,5 = (R: 4,7) e) 2,9 x 5 – 8,01 = (R: 6,49) f) 1,3 x 1,3 – 1,69 = (R: 0)

MULTIPLICAÇÃO POR POTENCIA DE 10

Para multiplicar por 10, 100, 1000, etc, basta deslocar a vírgula para a direita, uma, duas, três, etc casas decimais.

Page 41: Números relativos inteiros e fracionários, operações e propriedades

exemplos

a) 3,785 x 10 = 37,85 b) 3,785 x 100 = 378,5 c) 3,785 x 1000 = 3785 d) 0,0928 x 100 = 9,28

EXERCÍCIOS

1) Efetue as multiplicações:

a) 4,723 x 10 = (R: 47,23) b) 8,296 x 100 = (R: 829,6) c) 73,435 x 1000 = ( R: 73435) d) 6,49 x 1000 = (R: 6490) e) 0,478 x 100 = (R: 478) f) 3,08 x 1000 = (R: 3080) g) 0,7 x 1000 = (R: 700) h) 0,5 x 10 = (R: 5) i) 3,7 x 1000 = (R: 3700) j) 0,046 x 10 = (R: 0,46)

DIVISÃO

Igualamos as casas decimais do dividendo e do divisor e dividimos como se fossem números naturais.

exemplos

1) efetuar 17,568 : 7,32

Igualando as casas decimais fica : 17568 : 7320 = 2,4

2) Efetuar 12,27 : 3

Igualando as casas decimais fica: 1227 : 300 = 4,09

exercícios

1) Efetuar as divisões:

a) 38,6 : 2 = (R: 19,3) b) 7,6 : 1,9 = (R: 4) c) 3,5 : 0,7 = (R: 5) d) 17,92 : 5,6 = (R: 3,2) e) 155 : 0,25 = ( R: 620) f) 6,996 : 5,83 = (R: 1,2) g) 9,576 : 5,32 = (R: 1,8) h) 2,280 : 0,05 = (R: 45,6)

Page 42: Números relativos inteiros e fracionários, operações e propriedades

i) 1,24 : 0,004 = (R: 310) j) 7,2624 : 2,136 = (R: 3,4)

2) Calcular o valor das expressões

a) 7,2 : 2,4 + 1,7 = (R: 4,7) b) 2,1 + 6,8 : 2 = (R: 5,5 ) c) 6,9 : 3 – 0,71 = (R: 1,59) d) 8,36 : 2 – 1,03 = (R: 3,15) e) 1,6 : 4 – 0,12 = (R: 0,28) f) 8,7 – 1,5 : 0,3 = (R: 3,7)

DIVISÃO POR POTÊNCIA DE 10

Para dividir por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda, uma, duas três , etc casas decimais.

exemplos

a) 379,4 : 10 = 37,94 b) 379,4 : 100 = 3,794 c) 379,4 : 1000 = 0,3794 d) 42,5 ; 1000 = 0,0425

exercícios

1) Efetuar as divisões

a) 3,84 : 10 = (R: 0,384) b) 45,61 : 10 = (R: 4,561) c) 182,9 : 10 = ( R: 18,29) d) 274,5 : 100 = (R: 2,745) e) 84,34 : 100 = (R: 0,8434) f) 1634,2 : 100 =(R: 16,342) g) 4781,9 : 1000 =( R: 4,7819) h) 0,012 : 100 =(R: 0,0012) i) 0,07 : 10 = (R: 0,007) j) 584,36 : 1000 = (R: 0,58436)

2) efetue as divisões

a) 72 : 10² b) 65 : 10³ c) 7,198 : 10² d) 123,45 : 10⁴

POTENCIAÇÃO

A potenciação é uma multiplicação de fatores iguais

Page 43: Números relativos inteiros e fracionários, operações e propriedades

Exemplos:

1) (1,5)² = 1,5 x 1,5 = 2,25 2) (0,4)³ = 0,4 x 0,4 x 0,4 = 0,064

vamos lembrar que: são válidas as convenções para os expoentes um e zero.

Exemplos

1) (7,53)¹ = 7,53 2) ( 2,85)⁰ = 1

1) Calcule as potências a) ( 0,7)² b) (0,3) ² c) (1,2) ² d) (2,5) ² e) (1,7) ² f) (8,4) ² g) (1,1)³ h) (0,1)³ i) (0,15) ² j) (0,2)⁴

2) Calcule o valor das expressões a) (1,2)³ + 1,3 = b) 20 – (3,6) ² = c) (0,2) ² + (0,8) ² = d) (1,5) ² – (0,3) ² = e) 1 – (0,9) ² = f) 100 x (0,1)⁴ = g) 4² : 0,5 – (1,5) ² = h) ( 1 – 0,7) ² + ( 7 – 6)⁵

TRANSFORMAÇÃO DE FRAÇÕES EM NÚMEROS DECIMAIS

Para transformar uma fração em números decimais, basta dividir o numerador pelo denominador (obs o numerador é o números de cima da fração e o denominador o números debaixo)

Exemplos

transformar em números decimais as frações irredutíveis

1) 5/4 = 5 : 4 = 1,25 que será um, número decimal exato 2) 7/9 = 7 : 9 = 0,777… é uma dizima periódica simples 3) 5/6 = 5: 6 = 0,8333…… é uma dizima periódica composta

outros exemplos

Page 44: Números relativos inteiros e fracionários, operações e propriedades

a) 4,666… dízima periódica simples (período 6) b) 2,1818….dízima periódica simples ( período 18) c) 0,3535…. dízima periódica simples (período 35) d) 0,8777…. dízima periódica composta (período 7 e parte não periódica 8 ) e) 5,413333…. dízima periódica composta (período 3 e parte não periódica 41)

EXERCÍCIOS

1) Transforme em números decimais as frações:

a) 10/4 = b) 4/5 = c) 1/3 = d) 5/3 = e) 14/5 = f) 1/6 = g) 2/11 = h) 43/99 = i) 8/3 =

2) Transforme as frações decimais em números decimais :

a) 9/10 = (R: 0,9) b) 57/10 = (R: 5,7) c) 815/10 = (R: 8,15) d) 3/100 = (R: 0,03) e) 74/100 = (R: 0,74) f) 2357/1000 = (R: 2,357) g) 7/1000 = (R: 0,007) h) 15/10000 = (R: 0,0015) i) 4782/10000 = (R: 0,4782)

Equações de primeiro grau

(com uma variável)

Introdução

Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos:

2x + 8 = 0

Page 45: Números relativos inteiros e fracionários, operações e propriedades

5x - 4 = 6x + 8

3a - b - c = 0

Não são equações:

4 + 8 = 7 + 5 (Não é uma sentença aberta)

x - 5 < 3 (Não é igualdade)

(não é sentença aberta, nem igualdade)

A equação geral do primeiro grau:

ax+b = 0

onde a e b são números conhecidos e a diferente de 0, se resolve de maneira simples: subtraindo b dos dois lados, obtemos:

ax = -b

dividindo agora por a (dos dois lados), temos:

Considera a equação 2x - 8 = 3x -10

A letra é a incógnita da equação. A palavra incógnita significa "

desconhecida".

Na equação acima a incógnita é x; tudo que antecede o sinal da igualdade denomina-se 1º membro, e o que sucede, 2º membro.

Page 46: Números relativos inteiros e fracionários, operações e propriedades

Qualquer parcela, do 1º ou do 2º membro, é um termo da equação.

Equação do 1º grau na incógnita x é toda equação que pode ser escrita na forma ax=b, sendo a e b números racionais, com a diferente de zero.

Conjunto Verdade e Conjunto Universo de uma Equação

Considere o conjunto A = {0, 1, 2, 3, 4, 5} e a equação x + 2 = 5.

Observe que o número 3 do conjunto A é denominado conjunto universo da equação e o conjunto {3} é o conjunto verdade dessa mesma equação.

Observe este outro exemplo:

• Determine os números inteiros que satisfazem a equação x² = 25

O conjunto dos números inteiro é o conjunto universo da equação.

Os números -5 e 5, que satisfazem a equação, formam o conjunto verdade, podendo ser indicado por: V = {-5, 5}.

Daí concluímos que:

Conjunto Universo é o conjunto de todos os valores que

Page 47: Números relativos inteiros e fracionários, operações e propriedades

variável pode assumir. Indica-se por U.

Conjunto verdade é o conjunto dos valores de U, que tornam verdadeira a equação . Indica-se por V.

Observações:

• O conjunto verdade é subconjunto do conjunto universo.

• Não sendo citado o conjunto universo, devemos considerar como conjunto universo o conjunto dos números racionais.

• O conjunto verdade é também conhecido por conjunto solução e pode ser indicado por S.

Raízes de uma equação

Os elementos do conjunto verdade de uma equação são chamados raízes da equação.

Para verificar se um número é raiz de uma equação, devemos obedecer à seguinte seqüência:

• Substituir a incógnita por esse número. • Determinar o valor de cada membro da equação. • Verificar a igualdade, sendo uma sentença verdadeira, o número

considerado é raiz da equação.

Exemplos:

Verifique quais dos elementos do conjunto universo são raízes das equações abaixo, determinando em cada caso o conjunto verdade.

• Resolva a equação x - 2 = 0, sendo U = {0, 1, 2, 3}.

Page 48: Números relativos inteiros e fracionários, operações e propriedades

Para x = 0 na equação x - 2 = 0 temos: 0 - 2 = 0 => -2 = 0. (F)

Para x = 1 na equação x - 2 = 0 temos: 1 - 2 = 0 => -1 = 0. (F)

Para x = 2 na equação x - 2 = 0 temos: 2 - 2 = 0 => 0 = 0. (V)

Para x = 3 na equação x - 2 = 0 temos: 3 - 2 = 0 => 1 = 0. (F)

Verificamos que 2 é raiz da equação x - 2 = 0, logo V = {2}.

• Resolva a equação 2x - 5 = 1, sendo U = {-1, 0, 1, 2}.

Para x = -1 na equação 2x - 5 = 1 temos: 2 . (-1) - 5 = 1 => -7 = 1. (F)

Para x = 0 na equação 2x - 5 = 1 temos: 2 . 0 - 5 = 1 => -5 = 1. (F)

Para x = 1 na equação 2x - 5 = 1 temos: 2 . 1 - 5 = 1 => -3 = 1. (F)

Para x = 2 na equação 2x - 5 = 1 temos: 2 . 2 - 5 = 1 => -1 = 1. (F)

A equação 2x - 5 = 1 não possui raiz em U, logo V = Ø.

Resolução de uma equação

Resolver uma equação consiste em realizar uma espécie de operações de operações que nos conduzem a equações equivalentes cada vez mais simples e que nos permitem, finalmente, determinar os elementos do conjunto verdade ou as raízes da equação. Resumindo:

Resolver uma equação significa determinar o seu conjunto verdade, dentro do conjunto universo considerado.

Page 49: Números relativos inteiros e fracionários, operações e propriedades

Na resolução de uma equação do 1º grau com uma incógnita, devemos aplicar os princípios de equivalência das igualdades (aditivo e multiplicativo). Exemplos:

• Sendo , resolva a equação .

MMC (4, 6) = 12

-9x = 10 => Multiplicador por (-1)

9x = -10

Como , então .

• Sendo , resolva a equação 2 . (x - 2) - 3 . (1 - x) = 2 . (x - 4).

Iniciamos aplicando a propriedade distributiva da multiplicação:

2x - 4 - 3 + 3x = 2x - 8

2x + 3x -2x = - 8 + 4 + 3

3x = -1

Como , então

Page 50: Números relativos inteiros e fracionários, operações e propriedades

Equações impossíveis e identidades

• Sendo , considere a seguinte equação: 2 . (6x - 4) = 3 . (4x - 1).

Observe, agora, a sua resolução:

2 . 6x - 2 . 4 = 3 . 4x - 3 . 1

12x - 8 = 12x - 3

12x - 12x = - 3 + 8

0 . x = 5

Como nenhum número multiplicado por zero é igual a 5, dizemos que a equação é impossível e, portanto, não tem solução. Logo, V = Ø.

Assim, uma equação do tipo ax + b = 0 é impossível quando e

• Sendo , considere a seguinte equação: 10 - 3x - 8 = 2 - 3x.

Observe a sua resolução:

-3x + 3x = 2 - 10 + 8

0 . x = 0

Como todo número multiplicado por zero é igual a zero, dizemos que a equação possui infinitas soluções. Equações desse tipo, em que qualquer valor atribuído à variável torna a equação verdadeira, são denominadas identidades.

Pares ordenados

Muitas vezes, para localizar um ponto num plano, utilizamos dois números racionais, numa certa ordem.

Denominamos esses números de par ordenado. Exemplos:

Page 51: Números relativos inteiros e fracionários, operações e propriedades

Assim:

Indicamos por (x, y) o par ordenado formado pelos elementos x e y, onde x é o 1º elemento e y é o 2º elemento.

• Observações

1. De um modo geral, sendo x e y dois números racionais quaisquer, temos:

. Exemplos

2. Dois pares ordenados (x, y) e (r, s) são iguais somente se x = r e y = s.

Representação gráfica de um Par Ordenado

Podemos representar um par ordenado através de um ponto em um plano.

Esse ponto é chamado de imagem do par ordenado.

Coordenadas Cartesianas

Os números do par ordenados são chamados coordenadas cartesianas. Exemplos:

A (3, 5) ==> 3 e 5 são as coordenadas do ponto A.

Denominamos de abscissa o 1º número do par ordenado, e ordenada, o 2º número desse par. Assim:

Page 52: Números relativos inteiros e fracionários, operações e propriedades

Plano Cartesiano

Representamos um par ordenado em um plano cartesiano.

Esse plano é formado por duas retas, x e y, perpendiculares entre si.

A reta horizontal é o eixo das abscissas (eixo x).

A reta vertical é o eixo das ordenadas (eixo y).

O ponto comum dessas duas retas é denominado

origem, que corresponde ao par ordenado (0, 0).

Localização de um Ponto

Para localizar um ponto num plano cartesiano, utilizamos a seqüência prática:

• O 1º número do par ordenado deve ser localizado no eixo das abscissas. • O 2º número do par ordenado deve ser localizado no eixo das ordenadas. • No encontro das perpendiculares aos eixos x e y, por esses pontos, determinamos

o ponto procurado. Exemplo:

• Localize o ponto (4, 3).

Page 53: Números relativos inteiros e fracionários, operações e propriedades

Produto Cartesiano

Sejam os conjuntos A = {1, 2, 3} e B = {3, 4}. Com auxílio do diagrama de flechas ao lado formaremos o conjunto de todos os pares ordenados em que o 1º elemento pertença ao conjunto A e o 2º pertença ao conjunto B.

Assim , obtemos o conjunto: {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

Esse conjunto é denominado produto cartesiano de A por B, e é indicado por:

Logo:

Dados dois conjuntos A e B, não-vazios, denominamos produtos cartesiano A x

B o conjunto de todos os pares ordenados (x, y) onde

Equações de primeiro grau

(com duas variáveis)

Page 54: Números relativos inteiros e fracionários, operações e propriedades

Considere a equação: 2x - 6 = 5 - 3y

Trata-se de uma equação com duas variáveis, x e y, pode ser transformada numa equação equivalente mais simples. Assim:

2x + 3y = 5 + 6

2x + 3y = 11 ==> Equação do 1º grau na forma ax + by = c .

Denominando equação de 1º grau com duas variáveis, x e y, a toda equação que pode ser reproduzida à forma ax + by = c, sendo a e b números diferentes de zero, simultaneamente.

Na equação ax + by = c, denominamos:

x + y - variáveis ou incógnita

a - coeficiente de x

b - coeficiente de y

c - termo independente

Exemplos:

x + y = 30

2x + 3y = 15

x - 4y = 10

-3x - 7y = -48

2x- 3y = 0

x - y = 8

Solução de uma equação de 1º grau com duas variáveis

Quais o valores de x e y que tornam a sentença x - 2y = 4 verdadeira?

Page 55: Números relativos inteiros e fracionários, operações e propriedades

Observe os pares abaixo:

x = 6, y = 1

x - 2y = 4

6 - 2 . 1 = 4

6 - 2 = 4

4 = 4 (V)

x = 8, y = 2

x - 2y = 4

8 - 2 . 2 = 4

8 - 4 = 4

4 = 4 (V)

x = -2, y = -3

x - 2y = 4

-2 - 2 . (-3) = 4

-2 + 6 = 4

4 = 4 (V)

Verificamos que todos esses pares são soluções da equação x - 2y = 4.

Assim, os pares (6, 1); (8, 2); (-2, -3) são algumas das soluções dessa equação.

Uma equações do 1º grau com duas variáveis tem infinitas soluções - infinitos (x, y) - , sendo, portanto, seu conjunto universo .

Podemos determinar essas soluções, atribuindo-se valores quaisquer para uma das variáveis, calculando a seguir o valor da outra. Exemplo:

Page 56: Números relativos inteiros e fracionários, operações e propriedades

• Determine uma solução para a equação 3x - y = 8.

Atribuímos para o x o valor 1, e calculamos o valor de y. Assim:

3x - y = 8

3 . (1) - y = 8

3 - y = 8

-y = 5 ==> Multiplicamos por -1

y = -5

O par (1, -5) é uma das soluções dessa equação.

V = {(1, -5)}

Resumindo:

Um par ordenado (r, s) é solução de uma equação ax + by = c (a e b não-nulos simultaneamente), se para x = r e y = s a sentença é verdadeira.

Gráfico de uma equação de 1º grau com duas variáveis

Sabemos que uma equação do 1º grau com duas variáveis possui infinitas soluções.

Cada uma dessas soluções pode ser representada por um par ordenado (x, y).

Dispondo de dois pares ordenados de um equação, podemos representá-los graficamente num plano cartesiano, determinando, através da reta que os une, o conjunto das solução dessa equação. Exemplo:

• Construir um gráfico da equação x + y = 4.

Inicialmente, escolhemos dois pares ordenados que solucionam essa equação.

1º par: A (4, 0)

2º par: B (0, 4)

Page 57: Números relativos inteiros e fracionários, operações e propriedades

A seguir, representamos esses pontos num plano cartesiano.

x y

4 0 0 4

Finalmente, unimos os pontos A e B, determinando a reta r, que contém todos os pontos soluções da equação.

A reta r é chamada reta suporte do gráfico da equação.

Sistemas de Equações

Considere o seguinte problema:

Pipoca, em sua última partida, acertou x arremessos de 2 pontos e y arremessos de 3 pontos. Ele acertou 25 arremessos e marcou 55 pontos. Quantos arremessos de 3 pontos ele acertou?

Page 58: Números relativos inteiros e fracionários, operações e propriedades

Podemos traduzir essa situação através de duas equações, a saber:

x + y = 25 (total de arremessos certo)

2x + 3y = 55 (total de pontos obtidos)

Essas equações contém um sistema de equações.

Costuma-se indicar o sistema usando chave.

O par ordenado (20, 5), que torna ambas as sentenças verdadeiras, é chamado solução do sistema. Um sistema de duas equações com duas variáveis possui uma única solução.

Resolução de Sistemas

A resolução de um sistema de duas equações com duas variáveis consiste em determinar um par ordenado que torne verdadeiras, ao mesmo tempo, essas equações.

Estudaremos a seguir alguns métodos:

Método de substituição

Solução

• determinamos o valor de x na 1ª equação.

x = 4 - y

• Substituímos esse valor na 2ª equação.

2 . (4 - y) -3y = 3

• Resolvemos a equação formada.

Page 59: Números relativos inteiros e fracionários, operações e propriedades

8 - 2y -3y = 3

8 - 2y -3y = 3

-5y = -5 => Multiplicamos por

-1

5y = 5

y = 1

• Substituímos o valor encontrado de y, em qualquer das equações, determinando x.

x + 1 = 4

x = 4 - 1

x = 3

• A solução do sistema é o par ordenado (3, 1).

V = {(3, 1)}

Método da adição

Sendo U = , observe a solução de cada um dos sistemas a seguir, pelo método da adição.

Resolva o sistema abaixo:

Solução

• Adicionamos membros a membros as equações:

2x = 16

Page 60: Números relativos inteiros e fracionários, operações e propriedades

x = 8

• Substituímos o valor encontrado de x, em qualquer das equações, determinado y:

8 + y = 10

y = 10 - 8

y = 2

A solução do sistema é o par ordenado (8, 2)

V = {(8, 2)}

Equação do Primeiro Grau com Duas

Variáveis

Como já explicado no tópico Equação, equação do 1° grau com duas incógnitas, é qualquer equação que possa ser reduzida à forma ax + by = c, onde x e y são incógnitas e a, b e c são números racionais, com a ≠ 0 e b ≠ 0. a, b e c são coeficientes da equação.

Como também já explicamos no referido tópico, a resolução de problemas de equação do 1° grau com uma incógnita, resume-se a isolarmos a incógnita no primeiro membro, obtendo assim a raiz da equação no segundo membro.

Abaixo temos um exemplo de um problema envolvendo uma equação do 1° grau com duas incógnitas:

"Em minha sapateira tenho sapatos meus e de minha esposa. A sapateira tem

capacidade para o armazenamento de 20 pares de sapatos e no momento está lotada.

Quantos pares são meus e quantos são de minha esposa?"

Assumindo que a incógnita x represente os meus pares de sapato e que y represente os pares dela, podemos montar a seguinte equação:

x + y = 20

Page 61: Números relativos inteiros e fracionários, operações e propriedades

Resolução de equações do 1° grau com duas incógnitas

Antes mesmo de qualquer explicação você pode intuir que a equação x + y = 20 admite várias soluções.

x = 5 e y = 15 é uma das possíveis soluções, já que a soma de 5 com 15 totaliza 20, o que torna a equação verdadeira.

Como a representação de sapatos é realizada pelo conjunto dos números naturais, já que não faria sentido termos sapatos fracionários ou negativos, por exemplo, temos uma solução para qualquer valor de x entre 0 e 20 inclusive, desde que y seja igual a 20 - x, por exemplo, se x = 8, então y = 12.

Matematicamente podemos fazer a seguinte representação:

S = {x, y ∈∈∈∈ N | x ≤ 20, y = 20 - x}

Com x e y sendo números naturais, temos 21 soluções possíveis para este problema, no entanto se não houvesse a restrição para números fracionários ou negativos, teríamos infinitas soluções, pois qualquer que fosse o valor arbitrado a x, bastaríamos subtrair tal valor de 20, para encontrarmos o correspondente valor de y que tornasse a equação verdadeira, por exemplo, se arbitrarmos -30 a x, temos que y = 50, pois 20 - (-30) = 50.

Regra geral para a resolução de equações do primeiro grau com mais de

uma variável

Para que você possa obter uma solução para uma equação do primeiro com duas ou mais incógnitas, você deve atribuir um valor aleatório a todas as incógnitas, exceto a uma. Os valores atribuídos devem estar contidos no conjunto universo da equação. A partir daí você terá uma equação do primeiro grau com uma incógnita, cuja solução irá compor a solução da equação original, se o valor encontrado estiver contido no conjunto universo da equação.

Veja este exemplo:

2x + 3y - z = 40 , sendo que o conjunto universo é: U = {x, y, z ∈∈∈∈ N}

Como as incógnitas são números naturais, segundo o seu conjunto universo, só podemos atribuir valores inteiros e positivos às variáveis, ou então o número 0. Podemos então arbitrar 10 a x e 20 a y, para então encontrarmos o valor de z. Vejamos:

Como 40 ∈∈∈∈ N, então uma dentre as infinitas soluções seria: S = {10, 20, 40}

Agora observe o que aconteceria se tivéssemos arbitrado 3 a x e 5 a y:

Page 62: Números relativos inteiros e fracionários, operações e propriedades

Note que -19 não é um número natural, portanto {3, 5, -19} não está contido no conjunto universo desta equação e por isto não pode ser sua solução.

Equação do Primeiro Grau

Denomina-se equação do 1° grau com uma incógnita, qualquer equação que possa ser reduzida à forma ax = b, onde x é a incógnita e a e b são números reais, com a ≠ 0. a e b são coeficientes da equação.

Equações do 1° grau podem possuir mais de uma incógnita. Como exemplo, temos as equações do 1° grau com duas incógnitas, que são quaisquer equações que podem ser reduzidas a uma equação equivalente da forma ax + by = c, com a ≠ 0 e b ≠ 0. Neste caso, além de a e b, temos também c como coeficientes da equação.

Utilizamos equações do 1° grau com uma incógnita na resolução de problemas tal qual o seguinte:

"Se eu tivesse o dobro da quantia que eu possuo, com mais dez reais eu poderia

comprar um certo livro que custa cem reais. Quantos reais eu possuo?"

Inicialmente iremos expressar este mesmo problema em linguagem matemática. Para isto vamos chamar a quantia que eu possuo atualmente de x. Este é valor procurado.

Ao referir-me ao dobro da quantia, matematicamente estou me referindo a 2x, ou seja, ao dobro de x.

O dobro da quantia mais dez reais será expresso matematicamente como 2x + 10.

Finalmente devemos expressar que o dobro da quantia mais dez é igual a cem, logo a expressão inteira será: 2x + 10 = 100.

Basicamente substituímos o texto em português pelos seus respectivos operadores matemáticos.

Resolução de equações do 1° grau com uma incógnita

Para solucionarmos a equação 2x + 10 = 100 iremos recorrer aos conceitos de equações equivalentes, princípio aditivo da igualdade e princípio multiplicativo da igualdade, vistos no tópico Equação. Resumindo, iremos obter equações equivalentes sucessivamente através da aplicação destes princípios, até que a raiz da equação seja encontrada.

Page 63: Números relativos inteiros e fracionários, operações e propriedades

Primeiramente vamos lembrar que o oposto de um número real é igual a este mesmo número com o sinal trocado. O oposto de 2 é igual a -2. Obviamente o oposto de -2 voltará ao número 2 inicial. Note ainda que a soma de um número pelo seu oposto sempre resultará em 0.

Precisamos também lembrar o que vem a ser o inverso de um número real diferente de zero. De antemão sabemos que um número real diferente de zero multiplicado pelo seu inverso resultará sempre em 1.

Segundo este conceito, o inverso de 2 é 1/2, já que 2 . 1/2 = 1. Obviamente o inverso de

1/2 é 2 pelo mesmo motivo.

O inverso de 3/5 é 5/3, pois

3/5 .

5/3 = 1.

Simplificando, se a for um número real inteiro e diferente zero, o seu inverso será 1/a. No caso de frações, o inverso multiplicativo da fração a/b será

b/a, com a e b diferentes

de zero.

A partir deste conceito podemos começar a solucionar a equação.

Vejamos:

A ideia é deixarmos a incógnita x isolada no primeiro membro à direita do sinal de igualdade e a raiz no segundo membro, à esquerda. Gradualmente iremos passando os números do primeiro membro para o segundo membro.

Para passarmos o número 10 no primeiro membro, para o segundo membro, iremos recorrer ao princípio aditivo da igualdade. Vamos subtrair 10 dos dois membros da equação:

Ao subtrairmos 10 nos dois membros da equação, na verdade estamos somando o oposto de 10, que é -10 em ambos os membros como vemos abaixo, de sorte que o 10 saia do primeiro membro, pois como já vimos, ao somarmos um número real ao seu oposto o resultado sempre será igual a zero:

Ao realizarmos as operações chegaremos à equação:

Que é equivalente a:

Page 64: Números relativos inteiros e fracionários, operações e propriedades

Para tirarmos o coeficiente 2 do primeiro membro, iremos recorrer ao princípio multiplicativo da igualdade, dividindo ambos os membros por 2:

Na verdade o que estamos fazendo é multiplicando ambos os membros pelo inverso multiplicativo do coeficiente 2 que é 1/2, para que ele saia do primeiro membro, já que será reduzido ao número 1. Na realidade o cálculo seria este:

Realizando os cálculos em qualquer um dos dois casos encontramos a raiz procurada:

Passando para o outro lado

Depois de adquirido tais conhecimentos, podemos ver uma forma mais simples de solucionarmos este tipo de equação. Vejamos:

A ideia agora é passar o termo 10 do primeiro para o segundo membro. Como ele está sendo somado, passará para o outro lado sendo subtraído, já que a subtração é a operação inversa da adição:

Que se resume a:

Passamos agora o coeficiente 2 para o segundo membro. Como ele está multiplicando, do outro lado ele estará dividindo. Isto porque a divisão é a operação inversa da multiplicação:

Realizando a divisão encontramos a raiz 45 encontrada anteriormente:

Apenas a título de verificação, vamos substituir a incógnita x por 45 para confirmarmos que este valor torna a equação verdadeira:

Page 65: Números relativos inteiros e fracionários, operações e propriedades

Resumo

Este método que acabamos de estudar resume-se em isolar a incógnita no primeiro membro, passando progressivamente cada um dos coeficientes para o segundo membro. A passagem é feita passando o termo para o outro lado, invertendo-se a operação que é realizada sobre o mesmo:

• Se for adição, passa a subtração; • Se for subtração, passa a adição; • Se for multiplicação, passa a divisão; • Se for divisão, passa a multiplicação.

Na verdade tais inversões nada mais são que uma forma simplificada de utilização dos princípios aditivo e multiplicativo da igualdade, como visto inicialmente.

Exemplo de problema envolvendo a utilização de

equação do primeiro grau

O perímetro de um terreno retangular é de 200m. O terreno tem de largura 28m a

menos que o seu comprimento. Qual é a área deste terreno?

Chamemos de x o comprimento do terreno, então x - 28 será a medida da sua largura. Sabemos que o perímetro de uma figura retangular é igual ao dobro da soma do seu comprimento com a sua largura. Matematicamente temos:

2 . (x + x - 28) = 200

Resolvendo a equação temos:

Então já temos que o comprimento do terreno é de 64m. Como de largura ele tem 28 metros a menos que isto, então ele tem 36m de largura.

Como sabemos, a área do terreno será obtida multiplicando-se a medida do seu comprimento, pela medida da sua largura, portanto:

A área deste terreno é de 2304m2.

Sistemas de Equações do Primeiro Grau

com Duas Incógnitas

Page 66: Números relativos inteiros e fracionários, operações e propriedades

Quando tratamos as equações do 1° grau com duas variáveis vimos que a equação x + y = 20 admite infinitas soluções, pois se não houver restrições como as do exemplo na página em questão, podemos atribuir qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 - x.

A equação x - y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções.

Como as equações x + y = 20 e x - y = 6 admitem infinitas soluções podemos nos perguntar:

Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo tempo tanto a primeira, quanto à segunda equação?

Este é justamente o tema deste tópico que vamos tratar agora.

Métodos de Resolução

Há vários métodos para calcularmos a solução deste tipo de sistema. Agora veremos os dois mais utilizados, primeiro o método da adição e em seguida o método da substituição.

Método da Adição

Este método consiste em realizarmos a soma dos respectivos termos de cada uma das equações, a fim de obtermos uma equação com apenas uma incógnita.

Quando a simples soma não nos permite alcançar este objetivo, recorremos ao princípio multiplicativo da igualdade para multiplicarmos todos os termos de uma das equações por um determinado valor, de sorte que a equação equivalente resultante, nos permita obter uma equação com uma única incógnita.

A seguir temos outras explicações que retratam estas situações.

Quando o sistema admite uma única solução?

Tomemos como ponto de partida o sistema composto pelas duas equações abaixo:

Page 67: Números relativos inteiros e fracionários, operações e propriedades

Perceba que iremos eliminar o termo com a variável y, se somarmos cada um dos termos da primeira equação com o respectivo termo da segunda equação:

Agora de forma simplificada podemos obter o valor da incógnita x simplesmente passando o coeficiente 2 que multiplica esta variável, para o outro lado com a operação inversa, dividindo assim todo o segundo membro por 2:

Agora que sabemos que x = 13, para encontrarmos o valor de y, basta que troquemos x por 13 na primeira equação e depois isolemos y no primeiro membro:

Escolhemos a primeira e não a segunda equação, pois se escolhêssemos a segunda, teríamos que realizar um passo a mais que seria multiplicar ambos os membros por -1, já que teríamos -y no primeiro membro e não y como é preciso, no entanto podemos escolher a equação que quisermos. Normalmente iremos escolher a equação que nos facilite a realização dos cálculos.

Observe também que neste caso primeiro obtivemos o valor da variável x e em função dele conseguimos obter o valor de y, porque isto nos era conveniente. Se for mais fácil primeiro encontrarmos o valor da segunda incógnita, é assim que devemos proceder.

Quando um sistema admite uma única solução dizemos que ele é um sistema possível e determinado.

Quando o sistema admite uma infinidade de soluções?

Vejamos o sistema abaixo:

Note que somando todos os termos da primeira equação ao da segunda, não conseguiremos eliminar quaisquer variáveis, então vamos multiplicar os termos da primeira por -2 e então realizarmos a soma:

Veja que eliminamos não uma das variáveis, mas as duas. O fato de termos obtido 0 = 0 indica que o sistema admite uma infinidade de soluções.

Page 68: Números relativos inteiros e fracionários, operações e propriedades

Quando um sistema admite uma infinidade de soluções dizemos que ele é um sistema possível e indeterminado.

Quando o sistema não admite solução?

Vejamos este outro sistema:

Note que se somarmos os termos da primeira equação com os da segunda, também não conseguiremos eliminar nenhuma das variáveis, mas agora veja o que acontece se multiplicarmos por 2 todos os termos da primeira equação e realizarmos a soma das equações:

Obtivemos 0 = -3 que é inválido, este é o indicativo de que o sistema não admite soluções.

Quando um sistema não admite soluções dizemos que ele é um sistema impossível.

Método da Substituição

Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos na outra equação, a variável isolada pela expressão obtida no segundo membro da equação obtida quando isolamos a variável.

Este procedimento também resultará em uma equação com uma única variável.

O procedimento é menos confuso do que parece. A seguir veremos em detalhes algumas situações que exemplificam tais conceitos, assim como fizemos no caso do método da adição.

Quando o sistema admite uma única solução?

Para nos permitir a comparação entre os dois métodos, vamos utilizar o mesmo sistema utilizado no método anterior:

Vamos escolher a primeira equação e isolar a variável x:

Page 69: Números relativos inteiros e fracionários, operações e propriedades

Agora na segunda equação vamos substituir x por 20 - y:

Agora que sabemos que y = 7, podemos calcular o valor de x:

Quando o sistema admite uma infinidade de soluções?

Solucionemos o sistema abaixo:

Este sistema já foi resolvido pelo método da adição, agora vamos resolvê-lo pelo método da substituição.

Por ser mais fácil e gerar em um resultado mais simples, vamos isolar a incógnita y da primeira equação:

Agora na outra equação vamos substituir y por 10 - 2x:

Como obtivemos 0 = 0, o sistema admite uma infinidade de soluções.

Quando o sistema não admite solução?

Novamente vamos solucionar o mesmo sistema utilizado no método anterior:

Observe que é mais viável isolarmos a variável x da primeira equação, pois o seu coeficiente 2 é divisor de ambos coeficientes do primeiro membro da segunda equação, o que irá ajudar nos cálculos:

Agora substituímos x na segunda equação pelo valor encontrado:

Page 70: Números relativos inteiros e fracionários, operações e propriedades

Conforme explicado anteriormente, o resultado 0 = -3 indica que este sistema não admite soluções.

Sistemas do 1º grau

* Definição

Observe o raciocínio: João e José são colegas. Ao passarem por uma livraria, João resolveu comprar 2 cadernos e 3 livros e pagou por eles R$ 15,40, no total dos produtos. José gastou R$ 9,20 na compra de 2 livros e 1 caderno. Os dois ficaram satisfeitos e foram para casa.

No dia seguinte, encontram um outro colega e falaram sobre suas compras, porém não se lembrava do preço unitário de dos livros. Sabiam, apenas que todos os livros, como todos os cadernos, tinham o mesmo preço.

Bom, diante deste problema, será que existe algum modo de descobrir o preço de cada livro ou caderno com as informações que temos ? Será visto mais à frente.

Um sistema de equação do primeiro grau com duas incógnitas x e y, pode ser definido como um conjunto formado por duas equações do primeiro grau. Lembrando que equação do primeiro grau é aquela que em todas as incógnitas estão elevadas à potência 1.

* Observações gerais

Em tutoriais anteriores, já estudamos sobre equações do primeiro grau com duas incógnitas, como exemplo:

Page 71: Números relativos inteiros e fracionários, operações e propriedades

X + y = 7 x – y = 30 x + 2y = 9 x – 3y = 15

Foi visto também que as equações do 1º grau com duas variáveis admitem infinitas soluções:

X + y = 6 x – y = 7

Vendo a tabela acima de soluções das duas equações, é possível checar que o par (4;2), isto é, x = 4 e y = 2, é a solução para as duas equações.

Assim, é possível dizer que as equações

X + y = 6

X – y = 7

Formam um sistema de equações do 1º grau.

Exemplos de sistemas:

Page 72: Números relativos inteiros e fracionários, operações e propriedades

* Resolução de sistemas

Resolver um sistema significa encontrar um par de valores das incógnitas X e Y que faça verdadeira as equações que fazem parte do sistema.

Exemplos:

a) O par (4,3 ) pode ser a solução do sistema

x – y = 2

x + y = 6

Para saber se estes valores satisfazem ao sistema, basta substituir os valores em ambas as equações:

x - y = 2 x + y = 6

Page 73: Números relativos inteiros e fracionários, operações e propriedades

4 – 3 = 1 4 + 3 = 7

1 ≠ 2 (falso) 7 ≠ 6 (falso)

A resposta então é falsa. O par (4,3) não é a solução do sistema de equações acima.

b) O par (5,3 ) pode ser a solução do sistema

x – y = 2

x + y = 8

Para saber se estes valores satisfazem ao sistema, basta substituir os valores em ambas as equações:

x - y = 2 x + y = 8

5 – 3 = 2 5 + 3 = 8

2 = 2 (verdadeiro 8 = 8 (verdadeiro)

A resposta então é verdadeira. O par (5,3) é a solução do sistema de equações

acima.

* Métodos para solução de sistemas do 1º grau.

Page 74: Números relativos inteiros e fracionários, operações e propriedades

- Método de substituição

Esse método de resolução de um sistema de 1º grau estabelece que “extrair” o valor de uma incógnita é substituir esse valor na outra equação.

Observe:

x – y = 2

x + y = 4

Vamos escolher uma das equações para “extrair” o valor de uma das incógnitas, ou seja, estabelecer o valor de acordo com a outra incógnita, desta forma:

x – y = 2 ---> x = 2 + y

Agora iremos substituir o “X” encontrado acima, na “X” da segunda equação do sistema:

x + y = 4

(2 + y ) + y = 4

2 + 2y = 4 ----> 2y = 4 -2 -----> 2y = 2 ----> y = 1

Temos que: x = 2 + y, então

Page 75: Números relativos inteiros e fracionários, operações e propriedades

x = 2 + 1

x = 3

Assim, o par (3,1) torna-se a solução verdadeira do sistema.

- Método da adição

Este método de resolução de sistema do 1º grau consiste apenas em somas os termos das equações fornecidas.

Observe:

x – y = -2

3x + y = 5

Neste caso de resolução, somam-se as equações dadas:

x – y = -2

3x + y = 5 +

4x = 3

x = 3/4

Page 76: Números relativos inteiros e fracionários, operações e propriedades

Veja nos cálculos que quando somamos as duas equações o termo “Y” se anula. Isto tem que ocorrer para que possamos achar o valor de “X”.

Agora, e quando ocorrer de somarmos as equações e os valores de “x” ou “y” não se anularem para ficar somente uma incógnita ?

Neste caso, é possível usar uma técnica de cálculo de multiplicação pelo valor excludente negativo.

Ex.:

3x + 2y = 4

2x + 3y = 1

Ao somarmos os termos acima, temos:

5x + 5y = 5, então para anularmos o “x” e encontramos o valor de “y”, fazemos o seguinte:

» multiplica-se a 1ª equação por +2

» multiplica-se a 2ª equação por – 3

Vamos calcular então:

Page 77: Números relativos inteiros e fracionários, operações e propriedades

3x + 2y = 4 ( x +2)

2x + 3y = 1 ( x -3)

6x +4y = 8

-6x - 9y = -3 +

-5y = 5

y = -1

Substituindo:

2x + 3y = 1

2x + 3.(-1) = 1

2x = 1 + 3

x = 2

Verificando:

3x + 2y = 4 ---> 3.(2) + 2(-1) = 4 -----> 6 – 2 = 4

Page 78: Números relativos inteiros e fracionários, operações e propriedades

2x + 3y = 1 ---> 2.(2) + 3(-1) = 1 ------> 4 – 3 = 1

Nas próximas lições veremos mais sobre os principais temas de matemática para concursos.

Unidades de Medidas de Tempo

Em outro tópico relacionado às unidades de medidas, tratamos sobre o Sistema Métrico Decimal, agora neste tópico o tema em questão são as unidades de medidas de tempo.

Dia, hora, minutos e segundos

Um dia é um intervalo de tempo relativamente longo, neste período você pode dormir, se alimentar, estudar, se divertir e muitas outras coisas.

Muitas pessoas se divertem assistindo um bom filme, porém se os filmes tivessem a duração de um dia, eles não seriam uma diversão, mas sim uma tortura.

Se dividirmos em 24 partes iguais o intervalo de tempo relativo a um dia, cada uma destas frações de tempo corresponderá a exatamente uma hora, portanto concluímos que um dia equivale a 24 horas e que 1/24 do dia equivale a uma hora.

Uma ou duas horas é um bom tempo para se assistir um filme, mas para se tomar um banho é um tempo demasiadamente grande.

Se dividirmos em 60 partes iguais o intervalo de tempo correspondente a uma hora, cada uma destas 60 partes terá a duração exata de um minuto, o que nos leva a concluir que uma hora equivale a 60 minutos, assim como 1/60 da hora equivale a um minuto.

Dez ou quinze minutos é um tempo mais do que suficiente para tomarmos um bom banho, mas para atravessarmos a rua este tempo é um verdadeiro convite a um atropelamento.

Se dividirmos em 60 partes iguais o intervalo de tempo relativo a um minuto, cada uma destas partes terá a duração exata de um segundo, com isto concluímos que um minuto equivale a 60 segundos e que 1/60 do minuto equivale a um segundo.

Das explicações acima podemos chegar ao seguinte resumo:

Page 79: Números relativos inteiros e fracionários, operações e propriedades

Conversões entre Unidades de Medidas de Tempo

O texto acima foi escrito por pura formalidade, pois todo mundo está cansado de saber que um dia possui 24 horas e que um minuto possui 60 segundos, mas muitos se confundem quando querem passar de uma unidade para outra, não sabem se dividem ou se multiplicam. Vamos raciocinar um pouco em cima disto.

Como nós sabemos um dia é maior que uma hora, que é maior que um minuto, que é maior que um segundo. Para realizarmos a conversão de uma unidade de tempo maior para uma unidade de tempo menor, devemos realizar uma multiplicação.

Obviamente para transformarmos de uma unidade menor para uma unidade maior, devemos realizar a operação inversa, ou seja, devemos realizar uma divisão.

Se você preferir apenas multiplicar, também pode seguir as instruções da tabela abaixo:

Tabela para Conversão entre Unidades de Medidas de

Tempo

Exemplos de Conversão entre Unidades de Medidas de

Tempo

Page 80: Números relativos inteiros e fracionários, operações e propriedades

Converta 25 minutos em segundos

A unidade de tempo minuto é maior que a unidade segundo, já que 1 minuto contém 60 segundos, portanto, de acordo com o explicado acima, devemos realizar uma multiplicação, mas devemos multiplicar por quanto?

Ora, devemos multiplicar por 60, pois cada minuto equivale a 60 segundos:

Visto que:

Então:

25 min é igual a 1500 s

Converta 2220 segundos em minutos

Este exemplo solicita um procedimento oposto ao do exemplo anterior. A unidade de tempo segundo é menor que a unidade minuto já que:

Logo devemos dividir por 60, pois cada segundo equivale a 1/60 do minuto:

Note que alternativamente, conforme a tabela de conversão acima, poderíamos ter multiplicado 1/60 ao invés de termos dividido por 60, já que são operações equivalentes:

2220 s é igual a 37 min

Quantos segundos há em um dia?

Nos exemplos anteriores nos referimos a unidades vizinhas, convertemos de minutos para segundos e vice-versa. Neste exemplo precisamos converter de dias para segundos, que não são unidades vizinhas.

Como a unidade de tempo dia é maior que a unidade segundo, iremos solucionar o problema recorrendo a uma série de multiplicações.

Page 81: Números relativos inteiros e fracionários, operações e propriedades

Pela tabela de conversão acima para convertermos de dias para horas devemos multiplicar por 24, para convertermos de horas para minutos devemos multiplicar por 60 e finalmente para convertermos de minutos para segundos também devemos multiplicar por 60. Temos então o seguinte cálculo:

Em um dia há 86400 segundos

10080 minutos são quantos dias?

Semelhante ao exemplo anterior, só que neste caso precisamos converter de uma unidade menor para uma unidade maior. Como as unidades não são vizinhas, vamos então precisar de uma série de divisões.

De minutos para horas precisamos dividir por 60 e de horas para dias temos que dividir por 24. O cálculo será então:

10080 minutos são 7 dias

Frações de segundo

Em algumas situações mesmo o segundo é uma unidade de tempo muito grande. É comum em alguns esportes trabalharmos com décimos, centésimos e até mesmo milésimos de segundo.

Um décimo de segundo pode ser expresso por 0,1 s ou ainda 1/10 s.

Expressamos um centésimo de segundo por 0,01 s ou ainda 1/100 s.

Um milésimo de segundo pode ser expresso por 0,001 s ou ainda 1/1000 s.

Para convertermos de segundos para décimos, centésimos ou milésimos de segundos, dividimos o valor por 10, 100 ou 1000 respectivamente. No cálculo inverso realizamos a multiplicação por estes valores.

Semana, Quinzena, Mês, Ano, Década, Século e

Milênio

Page 82: Números relativos inteiros e fracionários, operações e propriedades

Além das unidades estudas acima, podemos também relacionar algumas outras:

Unidade Equivale a

Semana 7 dias

Quinzena 15 dias

Mês 30 dias *

Bimestre 2 meses

Trimestre 3 meses

Quadrimestre 4 meses

Semestre 6 meses

Ano 12 meses

Década 10 anos

Século 100 anos

Milênio 1000 anos

* - O mês comercial utilizado em cálculos financeiros possui por convenção 30 dias. Segundo o calendário um mês pode ter 28, 29, 30 ou 31 dias dependendo do mês em si e de ser o ano bissexto ou não.

Medidas de tempo

Introdução

É comum em nosso dia-a-dia pergunta do tipo:

Qual a duração dessa partida de futebol?

Qual o tempo dessa viagem?

Qual a duração desse curso?

Qual o melhor tempo obtido por esse corredor?

Todas essas perguntas serão respondidas tomando por base uma unidade padrão de medida de tempo.

A unidade de tempo escolhida como padrão no Sistema Internacional (SI) é o segundo.

Segundo

Page 83: Números relativos inteiros e fracionários, operações e propriedades

O Sol foi o primeiro relógio do homem: o intervalo de tempo natural decorrido entre as sucessivas passagens do Sol sobre um dado meridiano dá origem ao dia solar.

O segundo (s) é o tempo equivalente a do dia solar médio.

As medidas de tempo não pertencem ao Sistema Métrico Decimal.

Múltiplos e Submúltiplos do Segundo

Quadro de unidades

Múltiplos minutos hora dia

min h d 60 s 60 min = 3.600 s 24 h = 1.440 min = 86.400s

São submúltiplos do segundo:

• décimo de segundo • centésimo de segundo • milésimo de segundo

Cuidado: Nunca escreva 2,40h como forma de representar 2 h 40 min. Pois o sistema de medidas de tempo não é decimal.

Observe: