Piemonte 2

39
C. Piemonte 1 Development of SiPMs a FBK-irst C.Piemonte  FBK   Fondazione Bruno Kessler, Trento, Italy [email protected]

Transcript of Piemonte 2

Page 1: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 1/39

C. Piemonte 1

Development of SiPMs

a FBK-irst

C.Piemonte 

FBK  – Fondazione Bruno Kessler, Trento, Italy

[email protected]

Page 2: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 2/39

C. Piemonte

Outline

• Important parameters of SiPM

• Characteristics of FBK-irst SiPMs

• Application of FBK-irst SiPM

Page 3: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 3/39

C. Piemonte 3

- Gain

- Noise 

- Photo-detection efficiency

- Dynamic range

- Time resolution

General view of the important

parameters in a SiPM

Page 4: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 4/39

C. Piemonte 4

Gain = IMAX*tQ = (VBIAS-VBD)*tQ = (VBIAS-VBD)*CD __ ________ __    ____________

q RQ  q  q

charge collected per event is the area of the exponential

decay which is determined by circuital elements and bias.

t

i

~exp(-t/RS*CD)

~(VBIAS-VBD)/RQ

exp(-t/RQ*CD)

Gain

number of carriers produced per photon absorbed

Page 5: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 5/39

C. Piemonte 5

1) Primary DARK COUNT

False current pulses triggered by non photogenerated carriers

Main source of carriers:  thermal generation in the depleted region.

Critical points: quality of epi silicon; gettering techniques. 

NOISE

2) Afterpulsing:secondary current pulse caused by a carrier released by a trap

which was filled during the primary event. 

3) Optical cross-talk Excitation of neighboring cells due to the emission of

photons during an avalanche discharge

Page 6: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 6/39

C. Piemonte 6

PDE = Npulses / Nphotons = QE x P01x FF

1. QE Quantum efficiency is the probability for a photon to

generate a carrier that reaches the high-field region.

Maximization: anti-reflective coating, drift region location

Photodetection efficiency

2. P01. triggering probability  probability for a carrier traversing the

high-field to trigger the avalanche.

Maximization:  1. high overvoltage

2. photo-generation in the p-side of the junction

(electrons travel through the high-field region)

3. FF. Fill Factor  “standard” SiPMs suffer from low FF due to the

structures present around each micro-cell

(guard ring, trench)

micro-cell

dead width

Page 7: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 7/39C. Piemonte 7

Time resolution

Statistical Fluctuations in the first stages of the current growth:

1. Photo-conversion depth

2. Vertical  Build-up at the very beginning of the avalanche

3. Lateral  Propagation

t=0 pair generation

0<t<t1  drift to the high-field region

t>t1  avalanche multiplication

* for short wavelength light

the first contribution is negligible

t1t’1

single carrier

current level

the avalanche spreading is faster if

generation takes place in the center

Page 8: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 8/39C. Piemonte 8

Development of SiPMs started in 2005 in

collaboration with INFN.

• IRST:development of the technology for the production of SiPMs

(large area devices/matrices) + functional characterization

• INFN (Pisa, Bari, Bologna, Perugia, Trento):development of systems, with optimized read-out electronics,

based on SiPMs for applications such as:

- tracking with scintillating fibers;- PET;

- TOF;

- calorimetry

FBK-irst SiPMs

Page 9: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 9/39C. Piemonte 9

13

14

15

16

17

18

19

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4

depth (um)

   D  o  p   i  n  g  c  o

  n  c .

   (   1   0   ^   )   [   1   /  c  m   ^   3   ]

0E+00

1E+05

2E+05

3E+05

4E+05

5E+05

6E+05

7E+05

   E

   f   i  e   l   d   (   V   /  c  m   )

Doping

Field

n+ p Shallow-Junction SiPM

1) Substrate: p-type epitaxial

2) Very thin n+ layer

3) Polysilicon quenching resistance

4) Anti-reflective coating optimized for l~420nm

p+ subst.

p epi

n+

[C. Piemonte

“A new Silicon Photomultiplier

structure for blue light detection”

NIMA 568 (2006) 224-232]

IRST technology

Drift regionHigh fieldregion

p

guard region

Page 10: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 10/39C. Piemonte 10

Layout: from the first design…(2005)

SiPM structure:

- 25x25 cells

- microcell size: 40x40mm2

1mm

1mm

Geometry NOT optimized

for maximum PDE

(max fill factor ~ 30%)

Page 11: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 11/39C. Piemonte 11

… to the new devices (i) (2007)

1x1mm2  2x2mm2  3x3mm2 (3600 cells) 4x4mm2 (6400 cells)

Fill factor : 40x40mm2  => ~ 40%

50x50mm2  => ~ 50%100x100mm2 => ~ 76%

Geometries:

Page 12: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 12/39

C. Piemonte 12

…to the new devices (ii) 

Circular: diameter 1.2mm

diameter 2.8mm

Matrices: 4x4 elements

of 1x1mm2

 SiPMs

Linear arrays:

8,16,32 elements of

1x0.25mm2

 SiPMs

Page 13: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 13/39

C. Piemonte 13

•  IV measurementfast test to verify functionality and uniformity of the properties.

• Functional characterization in darkfor a complete characterization of the output signal and

noise properties (signal shape, gain, dark count, optical cross-talk, after-pulse)

• Photo-detection efficiency 

C. Piemonte et al.

“Characterization of the first prototypes

of SiPM fabricated at ITC-irst”

IEEE TNS, February 2007

Tests performed at FBK

Page 14: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 14/39

C. Piemonte 14

Leakage current: mainly due to

surface generation at the

micro-diode periphery

Static characteristic (IV)

Matrix 4x4 1-9

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0 5 10 15 20 25 30 35

Vrev [V]

   I   [   A   ]

SiPM4 - W12

Breakdown voltage

Breakdown current: determined by dark events

Very useful fast test. Gives info about:- Device functionality

- Breakdown voltage

- (Dark rate)x(Gain) uniformity

- Quenching resistance (from forward IV)

Reverse IV

Performed on

several thousands of

devices at wafer level

Page 15: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 15/39

C. Piemonte 15

Dark signals are exactly equal to photogenerated signals

functional measurements in dark give a completepicture of the SiPM functioning

Signal properties – NO amplifier

0.E+00

1.E-03

2.E-03

3.E-03

4.E-03

5.E-03

6.E-03

7.E-03

0.0E+00 1.0E-07 2.0E-07 3.0E-07 4.0E-07

Time (s)

   A  m  p   l   i   t  u   d  e   (   V   )

Thanks to the large gain it is possible to connect the SiPM

directly to the scope

VBIAS

SiPM 

50 

DigitalScope 

SiPM: 1x1mm2

Cell: 50x50mm2

Page 16: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 16/39

C. Piemonte 16

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

Charge (a.u.)

   C  o  u  n   t  s

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

31 32 33 34 35 36

Bias voltage (V)

   G  a   i  n

Pulse gen.

Laser

Pulse area

= charge

histogram

collection

SiPM

~ns

1p.e. 2

3

4

pedestal.

Excellentcell

uniformity

Linear

gain

Signal properties – NO amplifier

Page 17: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 17/39

C. Piemonte 17

s = single

d = double pulses

a = after-pulse

VBIAS

SiPM 

50 

Digital

Scope 

Pulses at the scope.

Av

100x

Signal properties – with amplifier

 A voltage amplifier allows an easier characterization,

but attention must be paid when determining the gain

Page 18: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 18/39

C. Piemonte 18

1x1mm2 (400 cells)  4x4mm2 (6400 cells)

Let’s look at the electro-optical characteristics of

these devices:

Micro-cell size: 50x50mm2

Page 19: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 19/39

C. Piemonte 19

1x1mm2 SiPM - 50x50mm2 cell

0.01

0.10

1.00

-1.0E-08 4.0E-08 9.0E-08 1.4E-07

Time (s)

   A  m  p   l   i   t  u   d  e   (  a .  u .   )

T = 25C

T = 15C

T = 5C

T = -5C

T = -15C

T = -25C

Signal shapeFast transient:

avalanche current

through parasitic

capacitance in

parallel with

quenching res. 

Slow transient:

Exponential recharge

of the diode capac.

through the

quenching resistor

Important to note:

The value of the quenching resistor increases with decreasing

temperature and so the time constant follows the same trend

Set up: SiPM current signal converted into voltage on a 50W 

resistor and amplified with a wide-band voltage amplifier.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-1.00E-08 4.00E-08 9.00E-08 1.40E-07

Time (s)

   A  m  p   l   i   t  u   d  e

   (  a .  u .   )

T = 25C

Signal shape

Page 20: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 20/39

C. Piemonte 20

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

-0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00

Threshold (V)

   C  o

  u  n   t  s

DC 28

DC 28.5

DC 29

DC 29.5

DC 30

DC 30.5DC 31

DC 32

DC 33

1x1mm2 SiPM – 50x50mm2 cell

Dark count

Growing

thresholdT = -30C VBD = 27.2V

From this plot we get

idea of dark rate and

optical cross-talk

probability

Page 21: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 21/39

C. Piemonte 21

1x1mm2 SiPM - 50x50mm2 cell

1.0E+05

1.0E+06

1.0E+07

27 28 29 30 31 32 33 34 35Voltage (V)

   D  a  r   k  c  o  u  n   t

   (   H  z

25.00

15.00

5.00

-5.00

-15.00

-25.00

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

27 28 29 30 31 32 33 34 35

Voltage (V)

   G  a   i  n

T = 25C

T = 15C

T = 5C

T = -5CT = -15C

T = -25C

Gain

Dark count

y = 0.0674x + 29.2

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

-30 -10 10 30Temperature (C)

   B  r  e  a   k   d  o  w  n  v  o   l   t  a  g  e

   (   V

y = 1E+14e-5.213x

1.E+05

1.E+06

1.E+07

3.2 3.4 3.6 3.8 4.0 4.2

1000/T (1/K)

   D  a  r   k  c  o  u  n   t   (   H  z   )

DC 2V

DC 3V

DC 4V

• 2V overvoltage

• 3V overvoltage

• 4V overvoltage

Page 22: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 22/39

C. Piemonte 22

4x4mm2 SiPM - 50x50mm2 cell4x4mm2

0.01

0.10

1.00

10.00

-1.0E-08 5.0E-08 1.1E-07 1.7E-07 2.3E-07Time (s)

   A  m  p   l   i   t  u   d  e   (  a .  u .   )

1mm2

T = -15C

T = -25C

Signal shape

1mm2 SiPM

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

28 29 30 31 32 33

Voltage (V)

   D  a  r   k  c  o  u  n   t

   (   H  z   )

16 x Dark Count

of 1mm2 SiPM

-15C -25C

0.E+00

1.E+06

2.E+06

3.E+06

28 29 30 31 32 33

Voltage (V)

   G  a   i  n

-15C

-25CGain

Dark count

Page 23: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 23/39

C. Piemonte 23

4x4mm2 SiPM - 50x50mm2 cell

Same conclusions as forthe previous device:

• Excellent cell response uniformity

over the entire device (6400 cells)

Width of peaks dominated by

electronic noise

-5.E-10 2.E-09 4.E-09 6.E-09 8.E-09

Charge (V ns)

28.6V

29.2V

29.6V

1

2 3

4

5

1

2

3 45 6

12

3

4 5 6 7

8

T=-25C Vbd=27.6V

Charge spectra whenilluminating the device

with short light pulses

Page 24: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 24/39

C. Piemonte 24

Photo-detection efficiency (1)

Page 25: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 25/39

C. Piemonte 25

Photo-detection efficiency (2)

dark pulses light pulses

DC curr

with light

DC curr.

wo light

Page 26: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 26/39

C. Piemonte 26

…what is the PDE of these devices? 

Measured on 1x1mm2 SiPM using photon counting technique

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

30 31 32 33 34 35

Bias voltage (V)

   P   D   E

L=400nm

L=425nm

L=450nm

L=475nmL=500nm

L=550nm

50x50mm cell - ~50% fill factor

400nm

Broad peak between 450 and 600nm

500nm

425nm

450nm

Page 27: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 27/39

C. Piemonte 27

• Laser: - wavelength: 400 or 800nm

- pulse width: ~60fs- pulse period: 12.34ns with time jitter <100fs

• Filters: to have less than 1 photodetection/laser pulse

• SiPMs: 3 devices from 2 different batches measured

Time resolution (1)

G. Collazuol, NIMA, 581, 461-464, 2007.

Page 28: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 28/39

C. Piemonte 28

Time resolution (2)

Distribution of thetime difference

Timing performance (s)

as a function of theover-voltage

Page 29: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 29/39

C. Piemonte 29

Microcell functionality measurement

(measurement at RWTH Aachen)

Page 30: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 30/39

C. Piemonte

Measurement of microcell

eficiency with a 5 umLED spot diameter

Microcell functionality measurement

Page 31: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 31/39

C. Piemonte

Microcell functionality measurement

Page 32: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 32/39

C. Piemonte 32

Some applications and

projects in which we areinvolved

Page 33: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 33/39

C. Piemonte 33

SiPM matrix – for PET (1)

Matrix 4x4 1-9

1.E-11

1.E-10

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

0 5 10 15 20 25 30 35

Vrev [V]

   I   [   A   ]

SiPM4 - W12IV curves of 9 matrices of one wafer

1mm

9x16 IV curvesNon working SiPM

• Uniform BD voltage

• Uniform dark rate

First, small monolithic matrix of SiPM:Element 1x1mm2

Micro-cell size: 40x40mm2

Page 34: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 34/39

C. Piemonte 34

Na22 spectrum with LSO

on a single SiPM(1x1mm2, 40x40mm2 cell)

Res = 18%

Tests are ongoing in Pisa(DASiPM project, A. Del Guerra) 

on these devices coupled with pixellated

and slab LSO scintillators

SiPM matrix – for PET (2)

NEXT STEP: Larger monolithic matrices

Page 35: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 35/39

C. Piemonte 35

50%

55%

60%

65%

70%

75%80%

85%

90%

95%

100%

0 1 2 3 4

SiPM dark current (microAmps/mm^2)

   M  u  o  n   E   f   f   i  c   i  e  n  c  y   f  o  r   1   k   H  z  n  o   i  s  e

2.8 mm round IRST

SiPM for CMS- Outer Hadron calorimeter 

Muon response in YB2 using SiPMs

Muon Efficiency in YB2Baseline HPD response at 8 kV

Circular SiPM - 50x50mm2 cellfor CMS – Outer Hadron Calorimeter

Muon response using SiPMs

Muon response using HPD at 8kV

package designed by Kyocera

module with

18 SiPMs

Each SiPM

reads a bundle

of 5 fibers

6mm2 area SiPM

Page 36: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 36/39

C. Piemonte 36

Array of SiPM for Fiber Tracking

32x array connected to ASIC designed for strip detectors=> capacitive divider at the input to reduce signal

Response uniformity under LED illumination

INFN PG (R. Battiston) + Uni Aachen

Page 37: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 37/39

C. Piemonte 37

HYPERimage project

Seventh Framework programme, FP7-HEALTH-2007-A

coordinator

Page 38: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 38/39

C. Piemonte 38

HYPERimage project

Development of hybrid TOF-PET/MR test systems

with dramatically improved effective sensitivity

First clinical whole body PET/MR investigations of

breast cancer

TOF-PET building blocks

Page 39: Piemonte 2

8/12/2019 Piemonte 2

http://slidepdf.com/reader/full/piemonte-2 39/39

• The SiPM is going to play a major role as a

detector for low intensity light, because of:

- comparable/better proprieties than PMT;

- the inherent characteristics of a solid-state det..

• IRST has been working on SiPMs (GM-APDs) for about

3 years obtaining very good results in:

- performance;

- reproducibility;

- yield;

- understanding of the device.

Conclusion