SUMÁRIO – VOLUME II - · PDF filesumÁrio – volume ii...

16

Transcript of SUMÁRIO – VOLUME II - · PDF filesumÁrio – volume ii...

Page 1: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira
Page 2: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira
Page 3: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

SUMÁRIO – VOLUME II CAPÍTULO 0: RESOLVER PROBLEMAS DE MATEMÁTICA, UMA ARTE ..................... 13 CAPÍTULO 1: INTRODUÇÃO À MATEMÁTICA FINANCEIRA INTRODUÇÃO ............................................................................................................................ 19 RAZÃO E PROPORÇÃO ............................................................................................................. 19 PROPRIEDADE FUNDAMENTAL DAS PROPORÇÕES .......................................................... 20 GRANDEZAS DIRETAMENTE PROPORCIONAIS ................................................................... 21 GRANDEZAS INVERSAMENTE PROPORCIONAIS ................................................................. 21 DIVISÃO EM PARTES PROPORCIONAIS ................................................................................ 21 REGRA DE TRÊS ........................................................................................................................ 22 PORCENTAGEM ........................................................................................................................ 22 LUCROS E PREJUÍZOS ............................................................................................................. 24 DESCONTOS SUCESSIVOS OU AUMENTOS SUCESSIVOS ................................................... 26 JUROS SIMPLES ......................................................................................................................... 28 MONTANTE ................................................................................................................................ 29 JUROS COMPOSTOS – FÓRMULA DO MONTANTE .............................................................. 30 TAXAS EQUIVALENTES – JUROS SIMPLES ............................................................................ 31 TAXAS EQUIVALENTES – JUROS COMPOSTOS .................................................................... 32 OS JUROS E AS PROGRESSÕES ............................................................................................... 32 DESCONTO SIMPLES ................................................................................................................ 33 EXERCÍCIOS PROPOSTOS ....................................................................................................... 33 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 35 RESPOSTAS ................................................................................................................................ 49 TABELA DE FATORES DE ACUMULAÇÃO DE CAPITAL ...................................................... 51 CAPÍTULO 2: MATRIZES DEFINIÇÃO ................................................................................................................................ 53 REPRESENTAÇÃO ..................................................................................................................... 53 IGUALDADE ENTRE MATRIZES .............................................................................................. 54 PRINCIPAIS TIPOS DE MATRIZES ........................................................................................... 54 MULTIPLICAÇÃO DE UM NÚMERO REAL POR UMA MATRIZ ........................................... 55 OPERAÇÕES COM MATRIZES ................................................................................................. 55 POTENCIAÇÃO COM EXPOENTE NATURAL ......................................................................... 60 INVERSÃO DE MATRIZES ......................................................................................................... 64 EXERCÍCIOS PROPOSTOS ....................................................................................................... 65 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 68 RESPOSTAS ................................................................................................................................ 75 CAPÍTULO 3: DETERMINANTES DEFINIÇÃO ................................................................................................................................ 76 COFATOR, MATRIZ DOS COFATORES E MATRIZ ADJUNTA .............................................. 77 PROPRIEDADES DOS DETERMINANTES ............................................................................... 78 TEOREMA DE BINET ................................................................................................................. 79 TEOREMA DE JACOBI .............................................................................................................. 80 TEOREMA DE CAUCHY ............................................................................................................ 81 INVERSÃO DE UMA MATRIZ .................................................................................................... 82

Page 4: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

SOMA DE DETERMINANTES .................................................................................................... 87 DETERMINANTES DE VANDERMONDE ................................................................................. 88 OUTROS MÉTODOS DE CÁLCULO DE DETERMINANTES .................................................. 88 COMPLEMENTO AO CAPÍTULO: A DEFINIÇÃO EXATA DO CÁLCULO DE UM DETERMINANTE ........................................................................................................................

97

EXERCÍCIOS PROPOSTOS ....................................................................................................... 98 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 102 RESPOSTAS ................................................................................................................................ 115 CAPÍTULO 4: SISTEMAS LINEARES EQUAÇÃO LINEAR – RESOLUÇÃO ......................................................................................... 116 SISTEMA DE EQUAÇÕES LINEARES ....................................................................................... 117 SISTEMAS EQUIVALENTES ...................................................................................................... 117 SISTEMAS LINEARES 2 × 2 – RESOLUÇÃO E DISCUSSÃO ................................................... 118 MATRIZES ASSOCIADAS A UM SISTEMA LINEAR m × n – RESOLUÇÃO ............................ 120 DISCUSSÃO DE UM SISTEMA LINEAR m × n ......................................................................... 123 SISTEMAS LINEARES HOMOGÊNEOS .................................................................................... 128 INTERPRETAÇÃO GEOMÉTRICA DE UM SISTEMA LINEAR 3 × 3 ...................................... 128 INVERSÃO DE UMA MATRIZ (3 × 3) PELA DEFINIÇÃO ....................................................... 132 ALGUNS SISTEMAS NÃO LINEARES ....................................................................................... 134 COMPLEMENTO AO CAPÍTULO: EQUAÇÕES DIOFANTINAS – ALGUNS BREVES COMENTÁRIOS ..........................................................................................................................

137

EXERCÍCIOS PROPOSTOS ....................................................................................................... 139 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 142 RESPOSTAS ................................................................................................................................ 158 CAPÍTULO 5: NÚMEROS BINOMIAIS FATORIAL ................................................................................................................................... 160 NÚMERO BINOMIAL ................................................................................................................. 162 TRIÂNGULO ARITMÉTICO DE TARTAGLIA-PASCAL ........................................................... 163 BINÔMIO DE NEWTON ............................................................................................................. 169 BINÔMIO DE NEWTON PARA APROXIMAÇÕES ................................................................... 173 SOMA DE POTÊNCIAS SEMELHANTES DE NÚMEROS EM P.A. ......................................... 173 TERMO GERAL DO BINÔMIO .................................................................................................. 175 TEOREMA MULTINOMIAL (FÓRMULA DE LEIBNIZ) ........................................................... 180 COMPLEMENTOS AO CAPÍTULO: PRODUTOS NOTÁVEIS E FATORAÇÃO ...................... 183 EXERCÍCIOS PROPOSTOS ....................................................................................................... 184 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 187 RESPOSTAS ................................................................................................................................ 193 CAPÍTULO 6: ANÁLISE COMBINATÓRIA INTRODUÇÃO ............................................................................................................................ 195 PRINCÍPIO FUNDAMENTAL DE CONTAGEM ....................................................................... 195 GRUPAMENTOS – ORDEM E NATUREZA .............................................................................. 201 PERMUTAÇÕES SIMPLES ........................................................................................................ 202 PERMUTAÇÕES COM ELEMENTOS REPETIDOS ................................................................. 206

Page 5: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

PERMUTAÇÕES CIRCULARES ................................................................................................. 208 PERMUTAÇÕES CAÓTICAS OU DESORDENAMENTO ......................................................... 209 COMBINAÇÕES SIMPLES ......................................................................................................... 211 COMBINAÇÕES COMPLETAS .................................................................................................. 217 PARTIÇÕES ................................................................................................................................ 221 ARRANJOS SIMPLES ................................................................................................................. 222 ARRANJOS COM REPETIÇÃO .................................................................................................. 223 COMPLEMENTO AO CAPÍTULO: PRINCÍPIO DE DIRICHLET .......................................... 224 EXERCÍCIOS PROPOSTOS ....................................................................................................... 225 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 229 RESPOSTAS ................................................................................................................................ 240 CAPÍTULO 7: PROBABILIDADE EXPERIMENTO DETERMINÍSTICO × EXPERIMENTO ALEATÓRIO ................................... 241 ESPAÇO AMOSTRAL E EVENTO .............................................................................................. 241 ESPAÇO AMOSTRAL EQUIPROVÁVEL ................................................................................... 241 PROBABILIDADE DA OCORRÊNCIA DE UM EVENTO ......................................................... 242 EVENTOS COMPLEMENTARES ............................................................................................... 248 PROBABILIDADE DA UNIÃO DE EVENTOS ........................................................................... 249 EVENTOS MUTUAMENTE EXCLUSIVOS ................................................................................ 250 PROBABILIDADE CONDICIONAL ........................................................................................... 251 EVENTOS INDEPENDENTES .................................................................................................... 253 DISTRIBUIÇÃO BINOMIAL DE PROBABILIDADES ............................................................... 257 COMPLEMENTO AO CAPÍTULO: FREQÜÊNCIA E PROBABILIDADE ............................... 258 EXERCÍCIOS PROPOSTOS ....................................................................................................... 258 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 261 RESPOSTAS ................................................................................................................................ 266 CAPÍTULO 8: INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO ............................................................................................................................ 267 ARREDONDAMENTO DE NÚMEROS ...................................................................................... 267 VARIÁVEL ................................................................................................................................... 267 POPÚLAÇÃO E AMOSTRA ........................................................................................................ 267 DISTRIBUIÇÃO DE FREQÜÊNCIAS ........................................................................................ 268 GRÁFICOS .................................................................................................................................. 270 MEDIDAS DE CENTRALIDADE ................................................................................................ 273 MEDIDAS DE DISPERSÃO ........................................................................................................ 279 DISTRIBUIÇÃO DE PROBABILIDADES .................................................................................. 283 DISTRIBUIÇÃO NORMAL ......................................................................................................... 284 COMPLEMENTO AO CAPÍTULO: UM POUCO MAIS SOBRE MÉDIAS ............................... 287 EXERCÍCIOS PROPOSTOS ....................................................................................................... 289 QUESTÕES DE CONCURSOS MILITARES .............................................................................. 292 RESPOSTAS ................................................................................................................................ 298 TABELA DE PROBABILIDADES P(0 < Z < z) ........................................................................... 299 APÊNDICE.

Page 6: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

FORMULÁRIO-RESUMO DO SEGUNDO VOLUME ............................................................... 303

Page 7: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

8) CFT – 2003 – turma A – Uma pessoa pagou 25% de uma dívida. Em uma segunda oportunidade, pagou 30% do restante, e verificou que com R$ 21 000,00 liquidaria a dívida. A princípio, o valor da dívida, em reais, era de: a) 30 000. b) 40 000. c) 50 000. d) 60 000. QUESTÕES DE CONCURSOS MILITARES – EEAR: 1) EEAR - 1981 - Calculando-se a quarta proporcional entre os números ( )7 3− , ( )7 3+ e ( )5 21− , obtém-se: a) 1/2. b) 3/2. c) 1. d) 2.

2) EEAR - 1981 - Qual o valor de “A” na proporção AA5

319991− =

, ...?

a) 1/5. b) 2/5. c) 3/5. d) 4/5. 3) EEAR - 1991 - (adaptada) Para que R$ 12 870,00 empregados a juros simples, a uma taxa de 6% ao ano, produzam o montante de R$ 17 245,80, deve-se esperar: a) 5 a. b) 5 a. 8 me. c) 6 a. d) 6 a. 4 me. 4) EEAR - 1992 - Um viajante quer fazer em 8 dias o trajeto já feito em 12 dias, andando 10 h por dia. Aumentando sua velocidade de 1/5, deverá andar por dia: a) 10 h 30 min. b) 11 h 20 min. c) 11 h 50 min. d) 12 h 30 min. 5) EEAR - 1993 - (adaptada) Emprestei a um amigo R$ 54 000,00 a uma taxa de 12% ao ano. Depois de certo tempo, ele devolveu-me o empréstimo, pagando R$ 360,00 de juros simples. O meu dinheiro estere emprestado durante .......... dias. a) 32. b) 28. c) 24. d) 20. 6) EEAR - 1994 - Comprou-se um objeto e o mesmo foi revendido por R$ 851,00, tendo-se um lucro de 15% sobre a compra. Para lucrar-se 20%, o objeto deveria ser vendido, em reais, por: a) 870,00. b) 878,00. c) 888,00. d) 890. 7) EEAR - 1994 - A quantia de R$ 132 000,00 foi dividida entre Marcelo e Carolina, na razão direta de suas idades. Se Marcelo tem 29 anos e Carolina tem 26 anos, a parte que coube a Carolina corresponde, em R$, a: a) 48 600,00. b) 52 800,00. c) 62 400,00. d) 68 600,00. 8) EEAR - 1995 - Completar corretamente: Três pedreiros constroem um muro de 20 m de comprimento em 10 dias. Para construírem 30 m de um muro do mesmo tipo, 5 pedreiros levarão .......... dias. a) 25. b) 12. c) 9. d) 4.

9) EEAR - 1996 - O valor de “x” na proporção 1

23

54

1

85

1

112

−÷ =

+÷ x é:

a) 5/9. b) 4/5. c) 5/4. d) 64/65. 10) EEAR - 1996 - Se os preços aumentam 10% ao mês, a porcentagem de aumento em um trimestre é igual a:

Page 8: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

a) 30,0%. b) 33,0%. c) 33,1%. d) 33,3%. 11) EEAR - 1996 - Um comerciante comprou uma bicicleta por R$ 440,00 e quer vendê-la com um lucro de 12% sobre o preço de venda. O preço de venda deverá ser, em reais: a) 422,80. b) 492,80. c) 500,00. d) 560,00. 12) EEAR - 1996 - (adaptada) Emprestaram-se duas quantias, R$ 600,00 e R$ 800,00 a uma mesma taxa anual. A primeira rendeu juros simples durante 80 dias e a segunda, 90 dias. Sabendo-se que a segunda rendeu R$ 54,00 a mais que a primeira, a taxa anual foi de: a) 65%. b) 70%. c) 75%. d) 81%. 13) EEAR - 1997 - Os números x, y e z são, nessa ordem, inversamente proporcionais a 4, 6 e 12. Sabendo-se que a sua soma é igual a 132, os valores de x, y e z correspondem, respectivamente, a: a) 24, 36 e 72. b) 60, 48 e 24. c) 22, 44 e 66. d) 66, 44 e 22. 14) EEAR - 1997 - (adaptada) Um automóvel custa, à vista, R$ 12 000,00. Em seis prestações mensais, sem entrada, esse mesmo automóvel passa a custar R$ 14 880,00. A taxa mensal de juros simples é: a) 3,5%. b) 4%. c) 4,6%. d) 5%. 15) EEAR - 1998 - (adaptada) A que taxa foi aplicado um capital de R$ 2 400,00 para produzir, em 7 meses, juros simples de R$ 126,00? a) 9% ao ano. b) 0,9% ao ano. c) 7,5% ao mês. d) 30% ao bimestre. 16) EEAR - 1998 - 624 litros de água salgada apresentavam um índice de salinidade de 12%. Devido à evaporação, esse índice subiu para 18%. A quantidade de água, em litros, que evaporou foi de: a) 74,88. b) 416. c) 208. d) 104. 17) EEAR - 1998 - A diferença entre as idades de duas pessoas é 20 anos e a razão é 4/9. Qual é a soma das idades das duas pessoas, em anos? a) 36. b) 48. c) 52. d) 60. 18) EEAR - 1998 - A quarta proporcional dos números x, y e z, nesta ordem, é 20,4 e z está para x assim como 8,5 está para 2,5. Então, o valor de y é igual a: a) 4. b) 5. c) 6. d) 7. 19) EEAR - 2/2000 - turma A - Um prêmio de R$ 4 000,00 deve ser dividido entre os três primeiros colocados em um concurso, de forma proporcional à pontuação obtida. Se o 1º colocado obteve 92 pontos, o 2º colocado 84 pontos e o 3º colocado 74 pontos, então a DIFERENÇA, em reais, entre os prêmios a que têm direito o 1º e o 3º colocados é igual a: a) 128. b) 160. c) 288. d) 298. 20) EEAR - 2/2000 - turma A - Um círculo tem seu raio aumentado em 100%. Então, sua área ficou aumentada de: a) 100%. b) 200%. c) 300%. d) 400%.

Page 9: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

Analisemos a alternativa a. Apresentemos um contra-exemplo: sejam ⎟⎟⎠

⎞⎜⎜⎝

⎛=

2312

A e

⎟⎟⎠

⎞⎜⎜⎝

⎛ −−=

5221

B . Então ⎟⎟⎠

⎞⎜⎜⎝

⎛ −=+

7511

BA . É fácil perceber que det A = 1; det B = –1 (isto é,

det A = –det B), porém det (A + B) = 12 ≠ 0. Afirmativa falsa portanto. Analisemos a alternativa b. Uma afirmativa do tipo “se, e somente se” precisa ser verdadeira na ida e na volta. Quanto à volta, tudo bem, pois realmente, se ambas as matrizes forem singulares (tiverem determinantes nulos), então, pelo teorema de Binet, o determinante do produto será nulo, ou melhor, o produto também será singular. O impasse está exatamente

na ida. Apresentemos um contra-exemplo: sejam as matrizes ⎟⎟⎠

⎞⎜⎜⎝

⎛=

0000

A e ⎟⎟⎠

⎞⎜⎜⎝

⎛=

1001

B . Então

⎟⎟⎠

⎞⎜⎜⎝

⎛=

0000

AB . É fácil perceber que det (AB) = 0 (portanto AB é uma matriz singular),

entretanto det A = 0 (é uma matriz singular), mas det B = 1 ≠ 0 (não é uma matriz singular). Afirmativa falsa portanto. A afirmativa c é uma conseqüência do teorema de Binet. Sabemos, pelo referido teorema, que det (AB) = det A . det B. Sendo AB singular, seu determinante é nulo, isto é, podemos concluir que det A . det B = 0. Para que o produto de dois números reais seja nulo é necessário que pelo menos um deles (det A ou det B) seja nulo. Afirmativa verdadeira portanto. Quanto à afirmativa d, sabemos que uma matriz cujo determinante é nulo não possui inversa. É uma afirmativa falsa, portanto. Quanto à afirmativa e, sabemos também que o determinante de uma matriz é igual ao determinante de sua transposta, portanto, se uma matriz é singular, sua transposta também é. RESPOSTA: alternativa c. EXERCÍCIO RESOLVIDO: (ITA – 1982) Sejam A, B e P matrizes reais quadradas de ordem n, tais que B = Pt . A . P. Sendo P inversível, dentre as afirmações abaixo, qual é a falsa? a) se B é simétrica, então A é simétrica. b) se A é simétrica, então B é simétrica. c) se A é inversível, então B é inversível. d) se B é inversível, então A é inversível. e) det A = det B. RESOLUÇÃO: Sendo B = Pt . A . P, então temos: Bt = (Pt . A . P)t ⇒ Bt = Pt . At . P.Como B =Bt, então temos: Pt . A . P = Pt . At . P, isto é, A = At, portanto A é simétrica também. A afirmação da alternativa a é verdadeira. Sendo B = Pt . A . P, então temos: Bt = (Pt . A . P)t ⇒ Bt = Pt . At . P = Pt . A . P = B. sendo Bt = B, B é simétrica também. A afirmação da alternativa b é verdadeira. Sendo B = Pt . A . P, então temos: det B = detPt . det A . det P Se A é inversível, então det A ≠ 0. Mas det Pt = det P ≠ 0 (P é inversível), então, det A ≠ 0 ⇒ det B ≠ 0, portanto B é inversível também. A afirmação da alternativa c é igualmente verdadeira. Mais uma vez, sendo B = Pt . A . P, então temos: det B = detPt . det A . det P Se B é inversível, então det B ≠ 0. Mas det Pt = det P ≠ 0 (P é inversível), então, det B ≠ 0 ⇒ det A ≠ 0, portanto A é inversível também. A afirmação da alternativa d é também verdadeira.

Page 10: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

c) apenas (I) é falsa. d) apenas (II) é falsa. e) apenas (III) é verdadeira. 17) ITA – 2003 - Sejam a, b, c e d números reais não-nulos. Exprima o valor do

determinante da matriz ⎥⎥⎥⎥

⎢⎢⎢⎢

2

2

2

2

1111

ddabcccabdbbacdaabcd

na forma de um produto de números

reais. QUESTÕES DE CONCURSOS MILITARES – ESCOLA NAVAL:

1) E.N. – 1989 – Se A = ⎟⎟⎠

⎞⎜⎜⎝

⎛1111 então, sendo At a transposta de A, temos:

a) A2 = A. b) A2 = 2A. c) A é invertível. d) A + At = 0. e) det A = 1.

2) E.N. – 1993 – Se A = ⎥⎥⎥

⎢⎢⎢

⎡−

010011201

, B = ⎥⎥⎥

⎢⎢⎢

101112

e C = ⎥⎦

⎤⎢⎣

⎡−−

012110 , o determinante da

transposta da matriz 2A - BC vale: a) –4. b) –2. c) 0. d) 2. e) 4. RESPOSTAS: QUESTÕES DE VESTIBULARES: 1) a 2) a 3) c 4) a 5) d 6) e 7) c 8) e 9) 42 10) d 11) d 12) d 13) b 14) c 15) d 16) c 17) c 18) b 19) d 20) d 21) b 22) d 23) b 24) d 25) d 26) c 27) a 28) d 29) d 30) e QUESTÕES DE CONCURSOS MILITARES: CFT: 1) b 2) a EEAR: 1) c 2) c 3) b 4) d 5) b 6) b 7) d 8) a 9) c 10) d EPCAR: 1) c 2) b 3) a ESFAO: 1) e 2) a 3) b 4) c 5) c 6) c 7) b 8) c AMAN: 1) e 2) d 3) e 4) a 5) b ESPCEX: 1) c 2) d 3) a 4) a 5) c 6) a 7) d AFA: 1) a 2) c 3) b 4) a 5) a 6) b 7) b 8) b 9) c 10) a 11) a 12) b EFOMM: 1) b 2) c 3) a 4) a 5) d 6) d 7) e 8) d 9) b 10) b 11) b IME: 1) 4a2 2) zero 3) zero 4) S = {–2, 0, 4/7} 5) 46 080 ITA: 1) a 2) d 3) c 4) e 5) b 6) d 7) d 8) c 9) e 10) e 11) d 12) b 13) c 14) e 15) b 16) e 17) (d – c)(d – b)(d – a)(c – b)(c – a)( b – a) E.N.: 1) b 2) b

Page 11: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

a) –29. b) –73. c) –85. d) –98. e) –135.

11) EFOMM – 2002 – O sistema ⎪⎩

⎪⎨

=−=+−=+−

03032

02

zxzyx

zyx:

a) apresenta uma única solução não-nula. b) possui três soluções distintas. c) possui infinitas soluções. d) não apresenta solução. e) possui uma única solução nula. 12) EFOMM - 2003 – Em um navio transportador de petróleo, um oficial de náutica colheu 3 amostras de soluções resultantes da lavagem dos tanques e constatou 3 produtos diferentes x, y, z que podem ser relacionados pelo

⎪⎩

⎪⎨

=−+=++=+−

02420202

zyxzymx

mzyx. Para que valores de m o sistema é possível e determinado?

a) m = 1 e m = 6. b) m ≠ 5 e m ≠ -3. c) m = 4 e m = 5. d) m = 3 e m ≠ -2. e) m ≠ 3 e m ≠ -1. QUESTÕES DE CONCURSOS MILITARES – IME: 1) IME – Determine o valor de a para que o sistema abaixo tenha mais de uma solução e resolva-o neste caso.

⎪⎩

⎪⎨

=++=++

=−+

23332

1

zayxazyx

zyx

2) IME – 1998 – Resolva e interprete geometricamente o sistema matricial abaixo, em função de α e β.

⎥⎥⎥

⎢⎢⎢

⎡−−

=⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

⎡−−

βα84

86

765321

zyx

3) IME – 1999 – Determine α para que seja impossível o sistema:

( )⎪⎩

⎪⎨

+=−++

=+−=−+

2144253432

2 αα zyxzyxzyx

Page 12: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

DICA: Poderíamos aplicar um “golpe baixo” nesta questão, que apenas serve para apontar a resposta certa, não se tratando de uma resolução de verdade. Fazendo “testes” para n = 9, 8, 7, 6 ou 5, o valor que “funcionar” (tornar a igualdade verdadeira) é a resposta procurada. EXERCÍCIO RESOLVIDO: (FMU-FIAM-FAAM-SP) Os valores de x que verificam a

identidade ⎟⎟⎠

⎞⎜⎜⎝

⎛+

=⎟⎟⎠

⎞⎜⎜⎝

⎛+ 12

102

10xx

são:

a) x = 0 ou x = 10. b) x = –2 ou x = –1/2. c) x = –2 ou x = 10/3. d) x = 1. e) x = 1 ou x = 13/3. RESOLUÇÃO: Para que dois binomiais sejam iguais (tenham o mesmo valor), devem ter mesmos numerador e denominador ou ser complementares. Então:

• x + 2 = 2x + 1 ⇒ x = 1; ou • x + 2 + 2x + 1 = 10 ⇒ 3x = 7 ⇒ x = 7/3

Mas, se x = 7/3, teremos binomiais com denominadores fracionários, portanto, x = 7/3 não serve em nosso universo de estudo, logo, x = 1 apenas. RESPOSTA: alternativa d.

EXERCÍCIO RESOLVIDO: (UFSE) A soma ⎟⎟⎠

⎞⎜⎜⎝

⎛25

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛35

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛46

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛57

é igual a:

a) ⎟⎟⎠

⎞⎜⎜⎝

⎛56

. b) ⎟⎟⎠

⎞⎜⎜⎝

⎛67

. c) ⎟⎟⎠

⎞⎜⎜⎝

⎛78

. d) ⎟⎟⎠

⎞⎜⎜⎝

⎛48

. e) ⎟⎟⎠

⎞⎜⎜⎝

⎛58

.

RESOLUÇÃO: Aplicando sucessivamente a relação de Stifel:

⎟⎟⎠

⎞⎜⎜⎝

⎛25

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛35

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛46

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛57

⎟⎟⎠

⎞⎜⎜⎝

⎛36

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛46

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛57

⎟⎟⎠

⎞⎜⎜⎝

⎛47

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛57

= ⎟⎟⎠

⎞⎜⎜⎝

⎛58

.

RESPOSTA: alternativa e.

EXERCÍCIO RESOLVIDO: A soma ⎟⎟⎠

⎞⎜⎜⎝

⎛1317

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛1417

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛1518

é igual a:

a) ⎟⎟⎠

⎞⎜⎜⎝

⎛1618

. b) ⎟⎟⎠

⎞⎜⎜⎝

⎛4

19. c) ⎟⎟

⎞⎜⎜⎝

⎛1019

. d) ⎟⎟⎠

⎞⎜⎜⎝

⎛1619

. e) ⎟⎟⎠

⎞⎜⎜⎝

⎛3

19.

RESOLUÇÃO:

Page 13: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

Aplicando Stifel sucessivamente, vem:

⎟⎟⎠

⎞⎜⎜⎝

⎛1317

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛1417

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛1518

⎟⎟⎠

⎞⎜⎜⎝

⎛1418

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛1518

= ⎟⎟⎠

⎞⎜⎜⎝

⎛1519

Mas, nas opções, figura apenas o seu complementar (cujo valor é idêntico), então, como

⎟⎟⎠

⎞⎜⎜⎝

⎛1519

= ⎟⎟⎠

⎞⎜⎜⎝

⎛4

19, a resposta é ⎟⎟

⎞⎜⎜⎝

⎛4

19.

RESPOSTA: alternativa b.

EXERCÍCIO RESOLVIDO: (UNIFOR-CE) A soma ⎟⎟⎠

⎞⎜⎜⎝

⎛05

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛16

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛27

+ ⎟⎟⎠

⎞⎜⎜⎝

⎛38

+ ... + ⎟⎟⎠

⎞⎜⎜⎝

⎛2530

é

igual a:

a) ⎟⎟⎠

⎞⎜⎜⎝

⎛2531

. b) ⎟⎟⎠

⎞⎜⎜⎝

⎛2630

. c) ⎟⎟⎠

⎞⎜⎜⎝

⎛2631

. d) ⎟⎟⎠

⎞⎜⎜⎝

⎛2530

. e) ⎟⎟⎠

⎞⎜⎜⎝

⎛2731

.

RESOLUÇÃO: Aplicando a propriedade P5, percebe-se facilmente que a soma dos binomiais da questão, todos localizados em uma diagonal do triângulo aritmético, é igual ao binomial localizado, no triângulo aritmético, logo abaixo do último binomial parcela, isto é, está uma

linha abaixo e na mesma coluna de ⎟⎟⎠

⎞⎜⎜⎝

⎛2530

. O binomial procurado é ⎟⎟⎠

⎞⎜⎜⎝

⎛2531

.

RESPOSTA: alternativa a.

EXERCÍCIO RESOLVIDO: (ITA) A soma ⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛nn

nnnn

....3

.32

.21

é igual a:

a) n . 2n–1. b) 2n. c) n . 2n. d) (n + 1).2n+1. e) n . 2n+1. RESOLUÇÃO: Vamos escrever a soma em uma forma mais interessante:

( ) ( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛−

−+⎟⎟⎠

⎞⎜⎜⎝

⎛−

−+⎟⎟⎠

⎞⎜⎜⎝

⎛−

−++⎟⎟⎠

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛nn

nn

nn

nn

nn

nn

nnnn.

1.1

2.2

3.3...

3.3

2.2

1.1

0.0

Ou melhor ainda: a soma S pedida é dada por ∑=

⎟⎟⎠

⎞⎜⎜⎝

⎛=

n

op pn

pS . . Desenvolvendo o

binomial, temos: ( ) ( ) ( )( )

( ) ( )∑∑∑=== −−

−=

−−=

−=

n

op

n

op

n

op pnpnn

pnppnp

pnpnpS

!!1!1

!!1.!.

!!!. .

Mas ( )

( ) ( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−−

=−−

−11

!!1!1

pn

pnpn

, então, extraindo n do somatório, podemos dizer:

Page 14: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

0 e 1 ou ainda 4, 0 e 0 (e suas respectivas permutações). Vamos representar o número 4 por ||||. Os exemplos de somas com as parcelas acima poderiam ser representados simbolicamente por:

• + || + || • | + | + || • ||| + + | • |||| + +

Note-se que, na verdade, estamos fazendo as permutações com elementos repetidos de seis símbolos (quatro símbolos | e dois símbolos +), dos quais um deles aparece 4 vezes e o outro, duas vezes. Por isso, o problema pode ser resolvido calculando-se

152

302!4

!456!2!4

!62,46 ==

×××

==P .

RESPOSTA: alternativa d. EXERCÍCIO RESOLVIDO: (UNICAMP) De quantas maneiras é possível distribuir 20 bolas iguais entre 3 crianças de modo que cada uma delas receba, pelo menos, 5 bolas? RESOLUÇÃO: A situação corresponde à equação x + y + z = 20, onde cada uma das incógnitas assume, no mínimo, o valor 5. Para este caso, para podermos utilizar o truque da questão anterior, onde as variáveis eram não negativas, faremos as seguintes substituições de variáveis: x = α + 5; y = β + 5 e z = γ + 5, ficando com a seguinte equação: α + 5 + β + 5 + γ + 5 = 20 ⇒ α + β + γ = 5, equação em que se pode utilizar o truque da questão anterior, porque α, β e γ podem ser nulas.

Então: 212

422!5

!567!2!5

!72,57 ==

×××

==P .

RESPOSTA: Podemos distribuir as 20 bolas de 21 maneiras. OBS.: Este tipo de questão também pode ser resolvido por meio de fórmulas de combinação, o que será mostrado dentro do item combinações completas. EXERCÍCIO RESOLVIDO: (UFF) Percorrendo-se uma unidade de comprimento por vez, em movimentos paralelos aos eixos coordenados e no sentido positivo dos mesmos, deseja-se caminhar da origem até o ponto (3, 3), conforme o exemplificado na figura. Determine de quantas maneiras isto pode ser feito. + (3, 3) O +

Page 15: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

• Histograma: formado por retângulos justapostos, sendo a largura de cada retângulo igual à amplitude de cada respectiva classe e a altura igual à freqüência da classe representada. A área do histograma é proporcional à soma das freqüências. A título de exemplo, vamos agrupar as notas da turma T em intervalos de classe com amplitude 2.

classes fi 1 3 2 3 5 2 5 7 9 7 9 7 total 20

freqüências 10 8 6 4 2 1 3 5 7 9 notas OBS.: Unindo os pontos médios das classes, incluindo os pontos médios das classes anterior à primeira e posterior à última, obtemos um gráfico de linha chamado polígono de freqüências. Registrando as freqüências acumuladas sob forma de gráfico de linhas, obtemos o que chamamos de ogiva. Para a construção de uma ogiva, adotamos como zero a freqüência do limite inferior da primeira classe. freqüências 10 20 8 16 6 12 4 8 2 4 2 4 6 8 10 12 notas 2 4 6 8 10 classes polígono de freqüências ogiva EXERCÍCIO RESOLVIDO: (UNEB) O gráfico a seguir representa o resultado de uma pesquisa feita em um município, no mês de junho de 2001, a fim de analisar a redução do consumo de energia em residências, tendo em vista a meta fixada pelo governo, e com base na seguinte pergunta: “Qual a redução conseguida em relação à meta?” A partir dessa

Page 16: SUMÁRIO – VOLUME II -  · PDF filesumÁrio – volume ii capÍtulo 0: resolver problemas de matemÁtica, uma arte ..... 13 capÍtulo 1: introduÇÃo À matemÁtica financeira

informação e sabendo que o percentual para cada resposta é proporcional à área do setor que o representa, o ângulo do setor correspondente à resposta “menor” é igual a: a) 108,3º. b) 118,8º. 42 – menor c) 142º. 5 – não sabem*. d) 151,2º. 20 – igual e) 160º. 33 – maior * não responderam RESOLUÇÃO: Como as áreas são proporcionais às taxas, basta utilizarmos uma regra de três: Ângulo: taxa: 360º 100% x 42% 100x = 42 . 360 ⇒ x = 151,2º. RESPOSTA: alternativa d. MEDIDAS DE CENTRALIDADE: São parâmetros que representam com precisão as propriedades da distribuição de freqüências. Voltaremos a utilizar a tabela de notas da turma T:

Notas (xi) quantidade de alunos (freqüência absoluta)

0 0 1 1 2 1 3 1 4 1 5 3 6 6 7 4 8 2 9 1

10 0 Nossas medidas de centralidade são: