Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

93
Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I

Transcript of Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

Page 1: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

Teoria de Filas

Prof. Arthur Tórgo Gómez, Dr.

UNISINOSProgramação em Pesquisa

Operacional I

Page 2: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

2

• Introdução

• Sistemas Dinâmicos

• Teoria de Redes

• Teoria de Filas

• Distribuição Exponencial

• Aplicações

Ementa

Page 3: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

3

Uma das atividades mais desagradáveis do cotidiano é esperar em uma fila. Talvez, por este fato, este fenômeno tem recebido tanta atenção e esforços para o seu entendimento.

O motivo deste esforço passa por uma característica humana: é através da compreensão dos fatos que ganhamos paciência.

\

Introdução

Page 4: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

4

• Teoria de Grafos

• Sistemas de Fluxo

• Teoria de Redes

• Teoria de Filas

Sistemas Dinâmicos

Page 5: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

5

Modelagem

Um recurso flui, se move ou é transferido através de um ou mais canais de capacidades finitas de modo a ir de um ponto a outro.

Sistemas de Fluxo

Page 6: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

6

R ( E, V, M)

Page 7: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

7

Fluxo estável ( determinístico)– a quantidade de fluxo é exatamente conhecida e

é constante em relação a um intervalo de tempo de interesse;

Fluxo instável (randômico ou estocástico)– os períodos de demanda de serviço ( uso do

canal) são incertos ou imprevisíveis e o tamanho das demandas são, também, impredizíveis.

Sistemas de Fluxo

Page 8: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

8

Teoria de Redes/Teoria de Filas

Definição

Teoria de filas é o estudo da gestão do fluxo

em uma estrutura de rede.

Problema do congestionamento

Page 9: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

9

Teoria de Redes/Teoria de Filas

estado

(discreto) processo, transformação

( fila)

Page 10: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

10

Exemplo : Fluxo Estável

Processo com um único canal e uma fila com população finita.

Chegada de Clientes Canal de Serviço

Saída

Fila de Clientes

Page 11: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

11

Teoria de Redes

Definição

Modelos Discretos

• Rede de Extensão Mínima• Caminho Crítico• Fluxo Máximo

Page 12: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

12

Redes de Extensão Mínima

Objetivo

Projetar uma rede que conecte todos os nós da

rede (direta ou indiretamente) de maneira a

minimizar a soma dos comprimentos dos arcos.

( rede de extensão mínima ( minimum spanning

tree))

Page 13: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

13

Algoritmo• Escolha um nó qualquer da rede• Conecte o nó escolhido ao nó mais próximo Obs: os dois nós formam um conjunto conexo

os demais formam um conjunto desconexo

• Escolha o nó no conjunto desconexo que esteja mais próximo a qualquer nó do conjunto conexo e faça a conexão

• Repita o passo anterior até que todos os nós estejam conectados

Page 14: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

14

Exemplo: TV a CaboCidade

Cabos de fibra ótica (km) Bairros

Page 15: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

15

Exemplo: TV a CaboCidade

5 6 9

9 8 8 9

10 9

5 8 7

5

Page 16: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

16

Exemplo: TV a CaboCidade

5 6

8

5 8 7

5 Valor Mínimo = 44 km

Page 17: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

17

Caminho Crítico

Objetivo

Dada uma rede qualquer determinar a seqüência de arcos mais curta entre um nó origem e um nó destino.

( Algoritmo de Dijkstra)

Page 18: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

18

Algoritmo

Algoritmo• Comece pela origem

• Conecte a origem ao nó mais próximo Obs: os dois nós formam um conjunto conexo; os

demais formam um conjunto desconexo• Escolha o nó no conjunto desconexo que esteja mais

próximo à origem via qualquer nó do conjunto conexo e faça a conexão

• Repita o passo anterior até que o nó destino pertença

ao conjunto conexo.

Page 19: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

19

Transporte

Célula de Manufatura

9

6

8

10 9 8 7 destino

5 7

origem 5

Page 20: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

20

Fluxo Máximo

Objetivo

Dada uma rede, cujos arcos tem capacidade

limitada, determinar qual o fluxo máximo que

pode ser transportado entre dois nós ( origem e

destino).

Algoritmo de Ford-Fulkerson

Page 21: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

21

Algoritmo• Selecione um caminho qualquer entre a origem e o

destino;• Determine o fluxo máximo F que pode ser atingido

usando este caminho;• Subtraia F da capacidade de todos os arcos na direção

usada pelo caminho;• Adicione F a capacidade de todos os arcos na direção

oposta usada pelo caminho; Obs: o caminho selecionado não é mais viável.

• Se houver caminhos alternativos retorne ao primeiro

passo; Se não houver mais caminhos o fluxo máximo é a soma

de todos os F calculados.

Page 22: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

22

Fluxo Máximo

1000 1000

200 800 200

1000 1000

Page 23: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

23

Fluxo Máximo

5 1000 1000

200 800 200 1 2 3 4

1000 1000

6

C 1: { 1,2,3,4} F1 = 200

Page 24: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

24

Fluxo Máximo

5 1000 1000

0 600 0 1 400 2 1000 3 400 4

1000 1000

6

C 1: { 1,2,3,4} F1 = 200 ; C 2: { 1,6,3,2,5,4} F2 = 1000

Page 25: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

25

Fluxo Máximo

5 0 0 2000 2000 0 1600 0 1 400 2 0 3 400 4

2000 0 0 2000

6

C 1: { 1,2,3,4} F1 = 200 ; C 2: { 1,6,3,2,5,4} F2 = 1000F = 200 + 1000 = 1200

Page 26: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

26

Teoria de Redes/Processo Estocástico

A maioria dos sistemas do mundo real estão nesta categorias.

X1

x2

.

xn

Page 27: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

27

Teoria de Filas

• Técnicas matemáticas utilizadas para analisar o fluxo de itens através de uma rede;

• A rede contém um ou mais locais onde existem restrições quanto aos tempos ou freqüências com que os objetos podem passar;

• Princípio da conservação: objetos não podem se materializar ou desintegrar;

Page 28: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

28

Teoria de Filas

• Objetos bloqueados pelas restrições são armazenados em um local ( uma fila) até passarem pela restrição;

• Enquanto houver objetos em uma fila , eles serão processados tão rapidamente quanto a restrição permitir;

• Principais elementos de uma fila são os clientes, os servidores e a disciplina

Page 29: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

29

Teoria de Filas

• Filas se desenvolvem a medida que clientes chegam ao sistema e entram em uma fila para aguardar processamento;

• Os servidores escolhem clientes dentre os que estão na fila de acordo com uma disciplina, efetuam o processamento e despacham os cliente;

Page 30: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

30

Teoria de Filas

• Se o sistema estiver em equilíbrio, há um extenso ferramental analítico que pode ser usado para analisá-lo;

• Quando o sistema não está em equilíbrio ( por exemplo, aumento de fluxo em horas de pico) o problema deve ser analisado por outros métodos, tais como métodos gráficos e simulações.

Page 31: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

31

Exemplos de Sistemas de Filas

• Serviços Comerciais: clientes externos recebem serviço de uma organização comercial:– Serviço pessoa a pessoa com localização fixa: postos de

gasolina, cafeterias...

• Serviço de Transporte: carros são os clientes ( fila em uma sinaleira, caminhão ou navio sendo carregado ou descarregado, aviões esperando para aterrissar ou decolar ;

Page 32: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

32

• Serviços internos de natureza industrial: clientes

recebendo serviços pertencem a organização: Sistemas de manuseio de materiais, Sistemas de manutenção, Estações de inspeção, facilidades de serviços computacionais ....

• Serviços Sociais: Sistema judicial ( os juízes são os servos e os caos esperando a serem julgados são os clientes) , Sistema legislativo ( leis esperando para serem processadas)

Page 33: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

33

Métodos Gráficos• Diagramas de acumulação, mostram o número

total de objetos que entraram e saíram de um sistema do momento de início da análise até um tempo t. Formalmente se objetos entraram no sistema nos tempos a1, a2,.... então a função cumulativa de chegada é dada por A (t) = número de aj com j t. A definição de função de partida D(t) é similar. Por exemplo, no diagrama abaixo mostra as chegadas e saídas de um sistema hipotético

Page 34: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

34

Contagem 8 -

Cumulativa

7 -

6 -

5 -

4 -

A(t) D(t) 3 -

2 -

1 -

. . . . . . .

1 2 3 4 5 6 7 tempo

Page 35: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

35

• A curva superior, A(t), mostra o processo de chegadas, a inferior D(t), as partidas.

• O afastamento vertical entre as curvas mostra a diferença entre o número total de objetos que entraram e os que saíram do sistema a qualquer momento, ou seja, a população do sistema.

• O afastamento horizontal entre as curvas mostra a diferença entre o horário de saída e de entrada de um objeto, ou seja, o tempo de permanência do objeto no sistema desde que o tempo seja FIFO).

Page 36: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

36

• Portanto, basta examinar o diagrama para determinar informações como:– a população máxima e mínima do sistema e

quando estas populações ocorreram;– tempos de permanência máximos e mínimos;– a área entre as duas curvas permite a

determinação de populações e tempos de permanência médios de objetos no sistema.

Esse tipo de análise permite a solução de problemas em que a teoria clássica de filas não pode ser usada (porque trata basicamente de sistemas em equilíbrio).

Page 37: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

37

Teoria de Filas: Sistemas em Equilíbrio

• Sistemas em equilíbrio são aqueles cujo estado independe do instante de tempo em que análise é feita. Isso não quer dizer que o estado do sistema não se modifique; ele pode flutuar randomicamente, mas seu comportamento pode ser descrito sem levar em consideração o horário.

Page 38: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

38

• Sistemas em equilíbrio são aqueles em que as condições operacionais (taxas de chegada e de serviço) são constantes durante todo o tempo ao menos durante um longo tempo em comparação a tempos de serviços típicos.

• No estudo de sistemas de filas em equílibrio, as chegadas de clientes e os tempos de processamento são normalmente descritos por distribuições probabilísticas ea disciplina pode ser FIFO (first-in first-out), LIFO ( last-in first-out), randômica, ou de acordo com um sistema de prioridades.

Page 39: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

39

• Além ,disto, há outros fatores que podem afetar o desempenho do sistema, como taxas de chegada, múltiplos servidores em paralelo ou em série, chegadas em grupo, comportamento de clientes em espera, etc.

Page 40: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

40

Teoria de Filas: NotaçãoFormato (a/b/c): (d/e/f), onde

• a é a distribuição da chegada dos clientes;

• b é a distribuição dos tempos de serviço ( ou partidas);

• c é o número de servidores em paralelo;

• d é a disciplina de serviço ( FIFO, LIFO,...);

• e é o número máximo de clientes permitidos no sistema ( fila + serviço);

• f é o número máximo de clientes que podem usar o sistema.

Page 41: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

41

Além disto, a notação padronizada utiliza os seguintes símbolos para descrever as atribuições de chegada e serviço dos clientes:

• M processo Poisson, com intervalos exponenciais ( M de Markov)

• D Determinístico

• Ek processo Erlangiano, com intervalos gama (k)

• GI Distribuição Geral com chegadas independentes

• G Distribuição Geral

Page 42: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

42

• Os três últimos símbolos são geralmente omitidos quando a disciplina é FIFO e não há restrições quanto ao número de clientes. Por exemplo o sistemas de filas mais simples é o M/M/1, ou seja, chegadas e serviços Poisson, um servidor apenas e sem restrições quanto ao tamanho máximo da fila, ou ao número máximo de clientes que possam utilizar o sistema.

Page 43: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

43

Exemplos:• Sistema com um servidor: M/M/1:GD// , caso

mais simples.• Sistema com k servidores: M/M/k:GD/ /, um

sistema com múltiplos servidores com uma fila única como é o caso dos bancos.

• Sistemas com espaço limitado: M/M/1:GD/ k /, o espaço para a formação de filas é limitado e que clientes chegam quando o espaço esta lotado abandonam o sistema e não retornam;

Page 44: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

44

• Sistemas com k servidores e espaço limitado: M/M/k:GD/ k / , o sistema tem k servidores e nenhum espaço para a acumulação de clientes além daqueles que estão em serviço. Este é o caso por exemplo de uma central telefônica com k linhas ou de um posto de gasolina com k bombas e nenhuma vaga de estacionamento.

• Manutenção de Máquinas ( clientes limitados): M/M/1:GD/ k / k, no sistema existem k máquinas sob os cuidados de um único operador.

Page 45: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

45

• Tempos de serviço gerais: M/G/1: GD//, em alguns sistemas de filas, os tempos de serviço não são distribuídos segundo um processo de Poisson, mas sim segundo uma distribuição mais genérica. Esses sistemas são especialmente comuns quando o tempo de serviço é automatizado. Nestes casos, pode –se aplicar a fórmula de Pollaczek-Khintchine.

Page 46: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

46

Teoria de Filas: Estrutura Básica

• Clientes demandando serviço são inseridos no sistema por uma fonte (geração em relação ao tempo).

• Os clientes entram no Sistema da Fila e entram em uma fila.

• Em um dado momento, um membro da fila é selecionado para receber um serviço, conforme uma regra conhecida : disciplina da fila.

Page 47: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

47

• O serviço é realizado pelo prestador do serviço

• Após a realização do serviço o cliente deixa o Sistema da Fila

Fonte Clientes Fila Serviço Clientes Atendidos

Sistema de Fila

Page 48: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

48

Fonte: Processo de Chegadas

• A chegada de clientes ao sistema ocorre, na maioria das vezes, de forma aleatória;

• Caracterizado por uma função de distribuição de probabilidades ( estado estacionário);

Page 49: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

49

Fila

• Assumir fila de tamanho finito;

• Disciplina:– Maneira de como os membros da fila são

selecionados para o serviço: FIFO, LIFO, RANDON ou outra prioridade. Se nada for dito considera-se FIFO.

Page 50: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

50

Serviço• Formado por uma ou mais facilidades;• Cada facilidade contém um ou mais

servidores em paralelo, chamados de servos;• O tempo de realização do serviço é

denominado de tempo de serviço;• Uma função de distribuição de probabilidade

especifica o tempo de serviço.

Page 51: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

51

Sistemas de Filas: exemplos Processo com uma fila com população finita e um servo. Chegada de Clientes Canal de Serviço Saída

Fila de Clientes

Page 52: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

52

Sistemas de Filas: exemplos Processo com uma fila com população finita e três canais. Chegada de Clientes Canal de Serviço Saída

Fila de Clientes

Page 53: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

53

Filas:Terminologia e Notação• Estado do Sistema: número de clientes no sistema;• Tamanho da Fila: número de clientes esperando por serviço

( estado do sistema menos o número de clientes sendo atendidos);

• N(t) = número de clientes no sistema no tempo t (t >= 0);• Pn(t) = probabilidade de exatamente n clientes estarem no

sistema no tempo t, dado um número para o tempo zero;• S = número de servos (paralelos) no sistema ;

Page 54: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

54

Filas:Terminologia e Notação• = taxa média de chegada ( número esperado de

chegadas por unidade de tempo) de novos clientes quando n clientes estão no sistema;

• = taxa média de serviço ( número esperado de clientes atendidos por unidade de tempo) quando n clientes estão no sistema;

• Quando é constante para todo n é representado por ;

n

n

n

Page 55: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

55

• Quando a taxa média de serviço por servo ocupado é constante para todo n >= 1, está constante é representada por µ.

=/(s) é a taxa de utilização do sistema :

fração de tempo esperada dos servos em que eles estão ocupados

Page 56: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

56

Distribuição Exponencial

As características da dinâmica de um Sistema de Filas são determinadas em grande parte por duas propriedades estatísticas:

• Função distribuição de probabilidade das chegadas;

• Função distribuição de probabilidade dos tempos de serviço.

Page 57: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

57

• No mundo real estas distribuições podem assumir as mais variadas formas;

• A função distribuição de probabilidade escolhida deve ser o suficientemente realista para que o modelo forneça predições razoáveis e , ao mesmo tempo, deve ser o suficientemente simples para que o modelo seja matematicamente tratável.

Dadas as considerações acima, a função de distribuição de probabilidade mais importante na Teoria de Filas é a Distribuição Exponencial com parâmetro .

Page 58: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

58

Função Distribuição de Probabilidade

Seja a variável aleatória T que representa ou intervalos entre chegadas ou tempos de serviço.

Esta variável é dita como tendo Distribuição Exponencial com parâmetro se sua função densidade de probabilidade é

para t>= 0 para t <0

0{)(

t

Tetf

0{)(

t

Tetf

0

{)(

t

Tetf

Page 59: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

59

Probabilidade CumulativaP { T t } = 1 – e -t

P { T > t } = e -t (t 0)

fT

(t)

E(T) = 1/ t

E(T) = 1/ e var(T) = 1/ 2

Page 60: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

60

Propriedades da Distribuição Exponencial

• fT(t) é uma função estritamente decrescente de t ( t 0):– P{0 T t} > P{0 T 1 + t}, qq. t e t > 0

• Perda de memória:– P{ T > t + t | T > t} = P{T > t}, qq. t e t > 0

A distribuição da probabilidade do tempo de permanência até que o evento ( finalização chegada ou serviço) ocorra sempre é a mesma, indiferente de quanto tempo (t) já tenha passado.

O processo esquece a sua história

Page 61: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

61

Explicação deste fenômeno:P{ T > t + t | T > t} = P{ T > t, T > t + t} P{ T > t} = P{ T > t + t} P{ T > t} = e-( t + t)

e- t

= e - t

Page 62: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

62

Comentários

Tempos entre chegadas: o tempo até a próxima chegada não sofre nenhuma influência da última chegada ocorrida;

Tempo de serviço: serviços diferentes.

Page 63: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

63

• O mínimo de várias variáveis randômicas

exponencialmente independentes terá uma distribuição exponencial:– Tempos de chegada: admitindo que existem (n)

diferentes clientes chegando ao sistema e que o intervalo de tempo entre as chegadas para cada cliente (i) tem distribuição exponencial com parâmetro i (i =1,2,...,n). Pela segunda propriedade, o tempo restante a partir de qualquer instante até a próxima chegada tem a mesma distribuição. Portanto, pode-se ignorar o fato que os clientes são diferentes e ainda teremos tempos com distribuição exponencial entre as chegadas para o sistema de filas.

Page 64: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

64

Tempos de Serviço: situação interessante para

modelos de filas tendo mais de um servo (n). Supor que todos os (n) servos tem a mesma distribuição exponencial com parâmetro para o tempo de serviço. Pela propriedade podemos considerar o sistema como tendo um único servo sendo que o tempo de serviço tem distribuição exponencial com parâmetro n .

Page 65: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

65

• Distribuição de PoissonSupor que o tempo entre ocorrências

consecutivas de algum tipo de evento ( chegadas ou serviço realizado por um servo) tem distribuição exponencial com parâmetro .

Em particular seja X(t) o número de ocorências em relação ao tempo t (t 0), onde t=0 define o instante em que inicia a contagem. Portanto,

Page 66: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

66

P{X(t) = n } = (t)ne- t , para n = 0,1,2,...;

n!

Ou seja, X(t) tem distribuição de Poisson com parâmetro t. Se n=0

P{X(t) = 0} = e- t

Que é a probabilidade, de uma distribuição exponencial, de que o primeiro evento ocorra depois de um tempo t.

Page 67: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

67

A média da distribuição de Poisson é E { X(t)} = t, o número esperados de eventos por unidade

de tempo ( taxa média de ocorrência dos eventos).

Quando os eventos são contados em uma base contínua, o processo de contagem {X(t): t0} é dito ser um processo de Poisson com parâmetro ( taxa média).

Page 68: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

68

Finalização de serviços quando os tempos de serviço tem distribuição exponencial com parâmetro : define-se X(t) como número de serviços finalizados por um servo continuamente ocupado em um período de tempo t onde = . Para múltiplos servos = n.

Page 69: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

69

Aplicações

Apresentação de modelos e suas equações;

Sistemas em equilíbrio

• 1 canal e uma fila com população infinita;

• 1 canal e população finita

Page 70: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

70

• Percentagem de tempo em que o servo permanece ocioso ou ocupado;

• Tempo médio que cada cliente gasta na fila de espera;

• Tempo médio gasto pelo cliente no sistema (média dos tempos computados desde o instante de entrada até o de saída;

• Número médio de clientes na fila ( tamanho médio da fila);

Medidas de Efetividade

Page 71: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

71

• Número médio de clientes no sistema em uma unidade de tempo;

• Probabilidade de existir um número n de clientes no sistema.

A escolha do parâmetro depende do objetivo do estudo.

Page 72: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

72

Sistema de 1 canal e 1 fila com população infinita

Chegada de Clientes Canal de Serviço Saída

Fila de Clientes

Page 73: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

73

M/M/1Equações do modelo:• Probabilidade de haver n clientes no sistema

P(n) = (/)n . ( - )/ Equação básica do modelo

• Probabilidade de que o número de clientes no sistema seja superior a um certo valor r

P(n > r) = (/)r+1

Page 74: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

74

• Probabilidade de que o sistema esteja ocioso ( taxa de ociosidade)

P (n = 0) = (/)0 . ( - )/ = ( - )/ • Probabilidade de que o sistema esteja

ocupado (taxa de ocupação)

P(n > 0) = = (/)

Page 75: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

75

Parâmetros da fila• Número médio de clientes no sistema (NS) NS = / ( - )• Número médio de clientes na fila (NF) NF = 2 / ( - ), este valor inclui as filas de

tamanho zero. Para Fila > 0 NF (Fila > 0) = / ( - )• Tempo médio de espera na fila por cliente (TF) TF = / ( - )• Tempo médio gasto no sistema por cliente (TS) TS = 1 / ( - )

Page 76: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

76

Relações entre TF, TS, NF e NS• N. médio de clientes na fila (NF) e tempo médio de

espera a fila(TF) NF = . TF analogamente, • N. médio de clientes no sistema (NS) e tempo

médio gasto no sistema por cliente (TS) NS = . TS• Tempo médio de espera na fila (TF) é igual ao

tempo médio gasto no sistema (TS) menos o tempo médio gasto no atendimento

TF = TS – 1/ • NF = NS - /

Page 77: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

77

Equipe de Apoio Administrativo Uma seção de apoio administrativo ligada a uma linha de

produção é encarregada pelo preenchimento de diversos tipos de formulários referentes a requisição de peças, materiais e manutenção dose equipamentos.

Os formulários devem ser processados o mais rápido possível, de modo a evitar atrasos no processo produtivo.

O sistema tem características aleatórias: não há previsão antecipada dos pedidos.

Deseja-se estudar o sistema para obter subsídios para a tomada de decisão com relação a uma possível ampliação.

Page 78: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

78

Modelagem

• Qualquer funcionário tem condições de processar qualquer tipo de formulário indistintamente ;

• Os clientes são os formulários e as requisições;• A população é considerada infinita;• Levantamento estatístico do número de pedidos por

formulários por dia de serviço e dos tempos gastos no preenchimento dos mesmos: taxa média de chegada = 15 pedidos por dia ( distribuição de Poisson) e = 21 formulários preenchidos por dia ( distribuição de Poisson) com um tempo médio de preenchimento de 22,8 minutos ( dia de 8 horas), segundo a distribuição exponencial negativa.

Page 79: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

79

Medidas de Desempenho• Número médio de pedidos por dia : = 15;• Número médio de atendimentos por dia: = 21;• Taxa de utilização da seção: = 0,714;• Número médio de pedidos na seção: NS = 2,5;• Número médio de pedidos aguardando processamento:

NF = 1,78;• Tempo médio de espera por formulário, antes do

preenchimento: TF = 0,12 dia ou 57,6 minutos;• Tempo médio gasto na seção por formulário, incluindo

espera e preenchimento: TS = 0,17 dia ou 81,6 minutos.

Obs: dia útil de 8 horas

Page 80: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

80

Análise• A seção não está sobrecarregada:

preenchimento dos formulários consome 71% do tempo útil;

• Cada formulário permanece no sistema 1,5 hora em média (o que é considerado razoável );

• O número de requisições esperando o processamento não é elevado (NF = 1,78),o que indica que o sistema está operando satisfatoriamente.

Page 81: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

81

Taxa de Serviço para custo mínimo total do sistema

• Custo do cliente: o tempo do cliente no sistema ( na fila de espera ou sendo atendido) tem custo;

• Custo do atendimento: todos os custos produzidos pelo processo de atendimento (salários,aluguéis,equipamentos,etc) podem ser computados de forma a produzirem um custo médio por atendimento;

• O custo total do sistema é formado pela soma dos dois custos acima;

• O objetivo é determinar a taxa de serviço que resulta no menor custo total do sistema

Page 82: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

82

Nomenclatura

• CT: custo total do sistema;• CE: custo de permanência do cliente no sistema

médio por período;• CA: custo de atendimento médio por período;

• CEunit: custo de permanência unitário,por cliente, por período;

• CAunit: custo de atendimento unitário, por cliente

Page 83: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

83

Relações • CT = CA + CE• CE = CEunit . NS = CEunit .( / ( - ))• CA = CAunit .

• CT = CEunit .( / ( - )) + CAunit .

Para obter o valor de que dá o custo mínimo,basta resolver a equação:

d (CT) = - CEunit . ( / ( - )2) + CAunit = 0 d ( - )2 . CAunit = CEunit . * = + (. Ceunit/ CAunit ) 1/2

Page 84: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

84

Custos CT

CA

CE

* Taxa de Atendimento

Page 85: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

85

Exemplo

Uma oficina elétrica recebe por dia 2 pedidos de consertos, segundo uma distribuição de Poisson. O eletricista consegue reparar uma média de 2,5 aparelhos por dia, também segundo distribuição de Poisson. A oficina estima que cada dia de espera de um aparelho custa R$ 80,00 em termos de penalidades (seguros e imagem da empresa). A mão-de-obrapara cada conserto custa em média R$ 80,00. Determinar o custo total de operação da firma por dia e a eficiência do eletricista referente ao menor custo total.

Page 86: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

86

= 2 pedidos por dia = 2,5 consertos por dia

CEunit= R$ 80,00

CAunit = R$ 80,00

Custo de esperaCE = CEunit .( / ( - )) = 320

Custo de reparosCA = CAunit . = 200

Custo total, CT = 520

* = + (. Ceunit/ CAunit ) ½ = 3,14 equipamentos por dia

Page 87: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

87

• M/M/1: F/k/k

• Exemplos:

• Almoxarifado;

• Oficina de manutenção;

• Sistema caminhão-escavadeira com número finito de caminhões;

Sistema de um canal e população finita

Page 88: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

88

• Probabilidade e haver n clientes no sistema

• Número médio de clientes na fila

NF = K - ( + ) . (1 – P0) • Número médio de clientes no Sistema• NS = K - ( + ) . (1 – P0) + ( / )

Equações do Modelo

k

j

j

nk

jnk

nP

0 !)!(

)(

Page 89: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

89

• Tempo médio gasto no sistema

TS = K - ( + ) . (1 – P0) + (1 / )

2

• Tempo médio gasto na fila

TF = K - ( + ) . (1 – P0)

2

Page 90: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

90

Uma seção de uma fábrica possui 6 máquinas que se estragam com uma taxa média de 3 por semana, segundo a distribuição de Poisson. A equipe de manutenção consegue reparar, em média, 6 máquinas por semana.

• calcular a probabilidade de haver n máquinas fora de operação ( 1 máquina em reparo e n-1 esperando), para n = 0,1,2,3,4,5,6.

• Calcular o tempo médio gasto por máquina na equipe de manutenção, o tempo médio de máquinas na fila e o número médio de máquinas paradas por semana.

Exemplo

Page 91: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

91

• Características do sistema: = 3, = 6 e k=6;

• Probabilidade de haver n máquinas paradas

• n = 0 Po = 0,012• n = 1 P1 = 0,0362• n = 2 P2 = 0,0906• n = 3 P3 = 0,1812

• n = . P. = ...........

k

j

j

nk

jnk

nP

0 !)!(

)(

Page 92: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

92

• Número médio de máquinas esperando conserto, NF = 3,036

• Número médio de máquinas paradas, NS = 3,536

• Tempo médio por máquina parada,

TS = 1,1786 semana

• Tempo médio de espera por máquina,

TF = 1,012 semana

Page 93: Teoria de Filas Prof. Arthur Tórgo Gómez, Dr. UNISINOS Programação em Pesquisa Operacional I.

93

Gelenbe, E.; Pujolle, G. Introduction to Queueing Networks. John Wiley & Sons, New York, 1998.

Hillier, F.S,; Lieberman, G.J. Introduction to Opetrations Research. McGraw-Hill, New York, 1995.

Kleinrock, L. Queueing Systems, Volume I: Theory. John Wiley & Sons, New York, 1975.

Papadopoulos, H.T.;Heavey,C.;Browne,J. Queueing Theory in

Manufacturing Analysis and Design. Chapman & Hall, New

York, 1993.

Bibliografia