Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono

Post on 15-Jan-2016

26 views 0 download

description

Café com Física IFSC /USP. Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono. Paulo Seleghim Jr. seleghim@sc.usp.br. The problem. Energy use by humankind. Power to sustain our life processes. 2500 cal/day. 2000 W. 120 W. 90 W. - PowerPoint PPT Presentation

Transcript of Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de Carbono

Biorrefinarias: Máquinas de Produção de Energia e Armazenamento Geológico de

CarbonoPaulo Seleghim Jr.

seleghim@sc.usp.br

Café com FísicaCafé com FísicaIFSC/USPIFSC/USP

2

The problem...

seleghim@sc.usp.br

3

Power to sustain our life processes

Power to support our lifestyle

2500 cal/day

120 W

90 W

2000 W

500 EJ/year

2300 W7 billion people

industry + agriculture (28% = )

transportation sector (27% )

services + residences (36% )

Energy use by humankind

Typical sugarcane millTypical sugarcane millNon-renewable Carbon based economy

CO2

energychemical compounds

seleghim@sc.usp.br

petroleum

Typical sugarcane millTypical sugarcane millFossil carbon based economy

6

The solution...

seleghim@sc.usp.br

Typical sugarcane millTypical sugarcane millRenewable neutral carbon based economy

energybiochemical compounds

CO2

seleghim@sc.usp.br

Typical sugarcane millTypical sugarcane millFossil carbon based economy

Typical sugarcane millTypical sugarcane millFossil carbon based economy

Already engenders tremendous socio-economic impacts on…

HUMAN CONDITION !

Typical sugarcane millTypical sugarcane millRenewable negative carbon based economy

energy - biochemical compounds

CO2

CO2

seleghim@sc.usp.br

CO2

Typical sugarcane millTypical sugarcane millFossil carbon based economy

Typical sugarcane millTypical sugarcane millFossil carbon based economy

13

Case Study:Sugarcane in Brazil:

Industrial Reference Unit

seleghim@sc.usp.br

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100 110 120

frequency (%)

area (kha)

$

plantation external

limit (r)

filed operations cost ~ r3

economies of scale ~r2

viability limit

Typical sugarcane mill

state of São Paulo

Agriculture / Industry equilibrium

Typical sugarcane millAgro-Industrial Reference Unit – Processing Scales

30 kha500 tsc/h

lowerviability limit

15

Agricultural production + Logistics + Industrial Processing

20 – 40 kha

sunlight water CO2

sugar(35 t/h)

ethanol(42 m3/h)

electricity(50 MW)

solids1-10 t/h

vinasse500 m3/h

CO2

2 t/h

harvesting500 t/h

field op.

water1000 t/h

nutrients (1 ton/h)

seleghim@sc.usp.br

200 MUS$

Agro-Industrial Reference Unit – Processing Scales

16

Carbon capture and storage

Fermentation: 2 tCO2/h

Bagasse and straw combustion: 89 tCO2/h

Potential CO2 capture for a reference sugarcane mill

Annual CO2 capture and storage by the sugarcane sector One mill: 0.43 MtCO2/year

Number of mills: 450 average proc. rate 500tsc/h

Annual CCS: 292 MtCO2/year

Annual CO2 Brazilian emissions

~ 400 MtCo2/year

seleghim@sc.usp.br

17

Case Study:Sugarcane in Brazil:

Conversion pathways

seleghim@sc.usp.br

dewatering

water

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

sugar cane500 tc/h

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

CO2

2 t/h

vinasse500 m3/h

electricity40-50 MW

straw

seleghim@sc.usp.br

dewatering

dewatering

water

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

sugar cane500 tc/h

ethanol43-76 m3/h

juice

bagasse

150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

2 t/h

vinasse500 m3/h

electricity20-30 MW

bagasse150 t/h

straw

seleghim@sc.usp.br

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

sugar cane500 tc/h

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

photo-bioreactor

extractionseparation

transes-terification

biodiesel /chemicals

broth

glycerin

nutrientsnutrients

waterwater

electricity10-20 MW

bagasse150 t/h

straw

seleghim@sc.usp.br

chemicals

waterwater

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

sugar cane500 tc/h

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

anaerobic digestion

electricity10-20 MW

bagasse150 t/h

straw

methane

nutrientsnutrients

seleghim@sc.usp.br

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

sugar cane500 tc/h

electricity~10 MW

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

bagasse150 t/h

straw

chemicals

waterwater

anaerobic digestion

methane

nutrientsnutrients

seleghim@sc.usp.br

23

Production of supercritical CO2 from oxycombustion

cyclone condensereconomizer

biomass

boiler

superheater

power cycle

evaporator

N2

water

supercritical CO2 unit

air

CO2

CO2

air separation unit

oxyfuel boiler

scCO2

power

O2

seleghim@sc.usp.br

24

Temperature oC

Entropy kJ/kg/oC

separaçãoH2O

pressão de injeção no

reservatório

25

26

Carbon capture and storage

27

Carbon capture and storage

28

Carbon capture and storage

29

Carbon capture and storage

30

Carbon capture and storage

Oil and gas 2.5 Gtenough for 6 years

Saline aquifers 2000 Gtenough for 5000 years

Pre-salt ???

CO2 storage capacity (CarbMap project)

Sugarcane sector 292Mta,

total Brazilian emissions 400Mta…

seleghim@sc.usp.br

Example of commercial plants in operation

Reference sugarcane mill: 0.43 MtCO2/year

Global CCS Institute 2012, The Global Status of CCS: 2012

Example of commercial plants in operation

Reference sugarcane mill: 0.43 MtCO2/year

Global CCS Institute 2012, The Global Status of CCS: 2012

33

First feasibility studies:

robust optimal operation

seleghim@sc.usp.br

operatingparamete

rs

Process optimization approach

uniform random

ethanol +electricity + scCO2

characteristicdistributions

Inputs that miximize outputs

How to set the control variables in order to increase probability of optimal

conversion, given the variability of all uncontrolled variables ?

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

Ox

yco

mb

ust

ion

bo

iler a

nd

turb

ine

s

electricity~10 MW

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

bagasse150 t/h

straw

chemicals

water

anaerobic digestion

methane

nutrients

seleghim@sc.usp.br

Process optimization approach

Monte Carlo simulations (simplified example)

dewatering

dewatering

water

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

juice

bagasse

150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

2 t/h

vinasse500 m3/h

bagasse150 t/h

straw

seleghim@sc.usp.br

Process optimization approach

control variable

stochastic variables

dewatering

dewatering

water

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

juice

bagasse

150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

2 t/h

vinasse500 m3/h

bagasse150 t/h

straw

Monte Carlo simulations (simplified example)

seleghim@sc.usp.br

Process optimization approach

Modeling equations…

seleghim@sc.usp.br

Simulation variables

39

Carbon capture and storage by a sugarcane mill

Optimization approach – operation envelope

power(MW)

ethanol(m3/h)

baseline ethanolproduction (meth,min)

baseline powergeneration (Wmin)

maximum powergeneration (Wmax)

maximum ethanolproduction (meth,max)

energyconservation

operatingenvelope

target operating region

dewatering

dewatering

water

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

boiler andturbines

ethanol43-76 m3/h

juice

bagasse

150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

2 t/h

vinasse500 m3/h

electricity20-30 MW

bagasse150 t/h

straw

seleghim@sc.usp.br

40

Carbon capture and storage by a sugarcane mill

Optimization approach – operation envelope

power(MW)

ethanol(m3/h)

baseline ethanolproduction (meth,min)

baseline powergeneration (Wmin)

maximum powergeneration (Wmax)

maximum ethanolproduction (meth,max)

energyconservation

operatingenvelope

target operating region

scCO2

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

Ox

yco

mb

ust

ion

bo

iler a

nd

turb

ine

s

electricity~10 MW

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

bagasse150 t/h

straw

chemicals

water

anaerobic digestion

methane

nutrients

seleghim@sc.usp.br

power(MW)

ethanol(m3/h)

baseline ethanolproduction (meth,min)

baseline powergeneration (Wmin)

maximum powergeneration (Wmax)

maximum ethanolproduction (meth,max)

energyconservation

operatingenvelope

target operating region

41

Carbon capture and storage by a sugarcane mill

Optimization approach – operation envelope

scCO2

dewatering

dewatering

water

CO2

2 t/h

vinasse500 m3/h

molasses

mechanicalprocessing

juiceextraction

cookingcrystallization

juicefermentation

sugarcentrifugation

winedistillation

Ox

yco

mb

ust

ion

bo

iler a

nd

turb

ine

s

electricity~10 MW

ethanol43-76 m3/h

juice

bagasse150 t/h

sugar0-65 t/h

fermentable sugars

bagassepre-treatment

cellulosehydrolization

NFFs

CO2

bagasse150 t/h

straw

chemicals

water

anaerobic digestion

methane

nutrients

seleghim@sc.usp.br

42

Processing pathways (hem. are fermented or burned)

Conversion of sugarcane into ethanol and electricity

de-wateringcombustion

de-wateringcombustion

hydrolysisfermentation

cellulose hemicellulose lignin sucroseashes water

ethanol energy

c1 c2 c3

C6H10O5 C5H8O4 C73H139O13

pre-treatmentfermentation

fiber sucroseashes water

a f s w

tops + leaveswater + sucrose

bagassejuice straw

seleghim@sc.usp.br

energy conservation limit

Process optimization approach

control results: fiber + water contents

More fiber and less water

(53%) litigation: dewatering versus sc water content

13% to 25% fiber

70 %to 55% water

seleghim@sc.usp.br

Process optimization approach

burning x hydrolysis (hemicelluloses are burned)

optimality optimality

Two optimal operating states85% + 15%

15%t +o 85%

seleghim@sc.usp.br

Process optimization approach

burning x hydrolysis (hemicelluloses are fermented)

Much more robust conversion process !

seleghim@sc.usp.br

Process optimization approach

more lignin, more hemicellulosesless cellulose

fiber composition (hemicelluloses are burned)

Process optimization approach

idem, slightly more robust process

fiber composition (hemicelluloses are fermented)

49

sucrose/starch (+water)

lignocellulosic fiber (-water)

Industrial biorefineries evolution

seleghim@sc.usp.br

50

1G+2G BRFs will evolve to 1G2G and possibly to 2G only

BRFs at much higher processing scales…

seleghim@sc.usp.br

Obrigado…Paulo Seleghim Jr.

seleghim@sc.usp.br

Café com FísicaCafé com FísicaIFSC/USPIFSC/USP